Session: Data Movement Il

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Buffets: An Efficient and Composable Storage Idiom

for Explicit Decoupled Data Orchestration
Michael Pellauer* Yakun Sophia Shao* Jason Clemons* Neal Crago* Kartik Hegde'
Rangharajan Ventakesan® Stephen W. Keckler* Christopher W. Fletcher” Joel Emer**

*NVIDIA

"University of Illinois, Urbana-Champaign

TMIT

{mpellauer, sshao, jclemons, ncrago, rangharajanv, skeckler, jemer}@nvidia.com
{kvhegde2, cwfletch}@illinois.edu

Abstract

Accelerators spend significant area and effort on custom on-
chip buffering. Unfortunately, these solutions are strongly
tied to particular designs, hampering re-usability across
other accelerators or domains. We present buffets, an efficient
and composable storage idiom for the needs of accelerators
that is independent of any particular design. Buffets have
several distinguishing characteristics, including efficient de-
coupled fills and accesses with fine-grained synchronization,
hierarchical composition, and efficient multi-casting. We im-
plement buffets in RTL and show that they only add 2% con-
trol overhead over an 8KB RAM. When compared with DMA-
managed double-buffered scratchpads and caches across a
range of workloads, buffets improve energy-delay-product
by 1.53% and 5.39X, respectively.

CCS Concepts « Computer systems organization —
Other architectures ; . Software and its engineering
— Buffering ;

Keywords Accelerators; Staging Buffers; Data Orchestra-
tion; Synchronization

ACM Reference format:

Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal
Crago, Kartik Hegde, Rangharajan Venkatesan, Stephen W.
Keckler, Christopher W. Fletcher, Joel Emer. 2019. In Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS ’19), 14 pages.

DOI: 10.1145/3297858.3304025

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00
https://doi.org/10.1145/3297858.3304025

137

Table 1. Percentage of area dedicated to on-chip mem-
ory for a selection of machine learning accelerators.

DaDianNao [5]: 48% | Eyeriss [6]: 40%-93%
EIE [18]: 93% | SCNN [35]: 57%
TPU [22] 35% | PuDianNao [27] 63%

1 Introduction

Architects are increasingly turning to domain-specific ac-
celerators to satisfy the insatiable performance demands in
areas like machine learning and image processing [6, 12, 18,
22, 27, 34, 35, 37]. Accelerators leverage dense, customized
datapaths for computation, but off-chip memory accesses re-
main slow and costly in comparison. Thus accelerators spend
significant area for on-chip memory hierarchies (Table 1).

A key difference from general-purpose processors is that
accelerator architects leverage knowledge of the workload
and domain to achieve high-performance, energy-efficient
data orchestration — that is, the transfer of active regions
in and out of the buffer hierarchy. We term this task ex-
plicit data orchestration, as the decisions are under the di-
rect control of the architects. Indeed, several contemporary
accelerators—such as DaDianNao [5], Eyeriss [6] and SCNN
[35]—devote significant effort towards engineering custom
buffering arrangements and present their orchestration as
a major contribution inseparable from the architecture it-
self. Others mention custom buffering in passing but focus
their presentation on other aspects such as novel datapaths
[3, 19, 22, 28, 36]. Overall, a significant cost of any accelera-
tor is the data orchestration buffer hierarchy, both in terms
of area and effort.

A downside of this design-by-design approach is that the
accelerator community lacks a generalized, reusable storage
hierarchy that is not tied inextricably to any particular de-
sign or domain. Beyond wasteful duplication of engineering
effort, the lack of a consistent abstraction for data move-
ment, staging, and synchronization also means a dearth of
toolflows exist to auto-orchestrate data-sets and generate
control FSMs for data movement. In fast-moving application
domains like machine learning, there is a particular need
to decrease design effort, lest accelerators find themselves
obsolete before reaching the market.

https://doi.org/10.1145/3297858.3304025

Session: Data Movement Il

In the general-purpose computing community, existing
reusable buffer idioms such as caches, scratchpads, and FIFOs
have served as the foundation for several toolsets, but these
approaches are ill-suited for the needs of accelerators. Caches
direct too much area and power into dynamically making
implicit data orchestration decisions, at odds with the desires
of accelerator architects. FIFOs are too inflexible to serve the
complex data reuse and update patterns of modern accelera-
tor application domains. Scratchpads lack synchronization,
making them difficult to hierarchically compose.

This paper introduces buffets, a novel storage idiom for
explicit data orchestration. Buffets are efficient and compos-
able, and are not tied to any particular accelerator design or
domain. The interface of buffets raises the level of abstrac-
tion, encapsulating synchronization in the staging buffer
and thus lowering the complexity of designing and verify-
ing the accelerator itself. We make the following specific
contributions:

1. We develop a novel taxonomy of buffering idioms and
discuss why an approach based on explicit decoupled data
orchestration (EDDO) is the best match for accelerators.

2. We present detailed operational behavior for buffet inter-
facing. We focus on efficient implementation of synchro-
nization within the buffet itself without remote polling
or barriers.

3. We present a scheme for seamlessly composing buffets
into hierarchies, similar to caches. We extend inter-buffet
synchronization to support multicast of data from a single
buffet access, an efficiency feature that is not available in
traditional scratchpads or caches.

4. We implement buffets in RTL and compare them to double-
buffered scratchpads and caches across a range of work-
loads, and show that buffets improve energy-delay prod-
uct by 1.53% and 5.39X, respectively. We also show that
buffet-based accelerators achieve similar performance at
3.4x less area than caches.

To facilitate adoption, we provide an open-source refer-
ence implementation of a buffet, written in Verilog, here:

https://github.com/cwfletcher/buffets

2 Classifying Data Orchestration

Accelerator architects leverage their design-time knowledge
of workload characteristics and access patterns, allowing
them to extract benefits such as:

e Preemptively transferring exactly the data that will be
referenced in the future,

e Maximizing the number of accesses to data in the smallest,
fastest and most energy-efficient buffer,

e Staging data at the least-upper bound buffer between

sharers in the hierarchy,

Overlapping the fill of the next data tile with the con-

sumption of the current data tile,

Simultaneously broadcasting (or multi-casting) the result

of a buffer access to all consumers of the accessed data,

Synchronizing data availability precisely and cheaply,

e And, removing data exactly when it is no longer needed.

138

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Coupled Decoupled

Global
Response

Global
Response

Local

Local
Response

Response

Local
Request

Implicit

Decoupled
Access-Execute

DRAM

Global

Global
Response

Response

Global
Request

Local
Local Response
Request

DMA Engines
(EDDO - this work)

Local
Request | Response

Scratchpad (e.g.,
GPU shared memory)

Explicit

Figure 1. Taxonomy of data orchestration approaches,
as used in typical deployment scenarios.

Figure 1 shows a classification of traditional deployment
scenarios for reusable buffering idioms along two axes. (We
discuss specific contemporary related work in Section 7.)
At a high level, the implicit/explicit distinction refers to the
level of workload knowledge that can be leveraged to control
staging buffer decisions, while the coupled/decoupled axis
refers to whether memory responses and requests are round-
trip or flow-forward. We now present a detailed discussion
of this taxonomy, and establish why these buffering schemes
are not able to sufficiently provide the accelerator features
described above. Table 2 presents a comparative summary
of the major points covered throughout the section.

2.1 Implicit versus Explicit Orchestration

In the general-purpose computing community, caches (Ta-
ble 2A) have served admirably as a reusable, modular buffer
abstraction based on load/store operations. Although the
engineering and area costs for a given cache hierarchy may
be quite high, the effort is often amortized across several
design points with re-parameterization. Caches have several
desirable properties, such as composing invisibly into hierar-
chies. Memory-level parallelism—both multiple outstanding
fills, as well as concurrency between fills and accesses to cur-
rent contents—can be achieved using well-studied additional
hardware (often called lockup-free cache structures).

We say that caches perform implicit data orchestration
as the load request initiator does not directly control the
cache hierarchy’s decisions about whether the response data
is retained at any given level of the storage hierarchy, nor
when it is removed. (In Figure 1 this is represented by the
Global request/response being shielded from the datapath.)

https://github.com/cwfletcher/buffets

Session: Data Movement Il

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Table 2. Summary of properties of traditional data orchestration approaches in typical deployment scenarios.
Shaded cells indicate undesirable properties for domain-specific accelerators (though may be acceptable for
general-purpose architectures).

(A) Datapath + Cache
(Implicit, Coupled)

(B) Datapath + Scratchpad
(Explicit, Coupled)

(C) D.AE. Dpaths + Cache
(Implicit, Decoupled)

(D) DMA + FIFO + Dpath
(Explicit, Decoupled)

(E) DMA + Buffet + Dpath
(Explicit, Decoupled)

Buffer Non-RAM Area High Low High Low Low
Buffer Access Energy High Low High Low Low
Placement Policy Workload-agnostic Workload-controlled Workload-agnostic Workload-controlled Workload-controlled
Achieving Multiple Complex Complex Complex Straightforward Straightforward
Fills in Flight (lockup-free structs.) (unrolling, multi-thread.) (lockup-free structs.) (credit scheme) (credit scheme)
Achieving Overlapped Complex Complex Straightforward Straightforward Straightforward
Fill and Access | (static req. pipelining) (static req. pipelining) (dynamic rate matching) (dynamic rate matching) (dynamic rate matching)
Hierarchically Composable Yes No Yes Yes Yes
Landing Zone Hold Time Round-trip Round-trip Hop-to-hop Hop-to-hop Hop-to-hop
Access Multicast Dynamic coalescing Dynamic coalescing Workload-controlled Workload-controlled Workload-controlled
Data Availability Encapsulated Encapsulated Out-of-band Encapsulated Encapsulated
Synchronization (load-to-use) (load-to-use) (supplemental queue) (peek stalling) (read stalling)
Access Order Arbitrary Arbitrary Arbitrary Strict FIFO Arbitrary
In-Place Updates Yes Yes Yes No Yes
Removal Policy Workload-agnostic Workload-controlled Workload-agnostic Strict FIFO (or clear all) Workload-controlled

Heuristic replacement policies are advantageous in general-
purpose scenarios because they are workload agnostic'. On
the other hand, for domain-specific accelerators, the area
and energy overheads for features like tag matches and asso-
ciative sets are considered unacceptable. It is notable that no
contemporary commercial machine learning ASICs incorpo-
rate caches.

One alternative is to use scratchpads (Table 2B), which
expose an address range of a particular staging buffer for
loads/stores, thereby enabling explicit and precise control
over the orchestration. (In Figure 1 this is represented by the
datapath managing both local and global request/response.)
A GPU’s shared memory scratchpad [32] is the most wide-
spread contemporary example of this idiom for explicit data
orchestration. The size and address range of the scratchpad
is exposed architecturally, and the transfer of data into and
out of the scratchpad is managed via explicit instructions.
While scratchpads avoid the hardware overheads of caches,
extracting memory parallelism-both across fills and overlap-
ping fills and accesses—is tedious and error-prone?, and as a
result they are difficult to compose into hierarchies.

2.2 Coupled versus Decoupled Orchestration

Caches and scratchpads both use a load/store paradigm
where the initiator of the request also receives the response.
We call this a coupled staging of data, reflected in the left col-
umn of Figure 1. With this setup, synchronization between
data demand and data availability is efficient and intuitive—
the requester is notified when corresponding response re-
turns (load-to-use). The disadvantage to this approach is
that it complicates overlapping the fill and access of data

! As many programmers care more about optimization than portability, they
often reverse engineer the details of the cache hierarchy and replacement
policy to try to explicitly manipulate them. This is an indication that ar-
chitects could provide more officially-supported explicit data orchestration
features in general-purpose processors.

2GPU shared memory is paired with high multi-threading and loop unrolling
to offset these problems, but this complexity is considered unacceptable for
fixed-function accelerators.

tiles (e.g., double-buffering) as the single requester/consumer
must alternate between requesting and consuming responses.
Additionally, a “landing zone” for the incoming data tile must
be held reserved for the entire round-trip load latency, which
increases pressure on RAM resources that could otherwise
be used for larger tile sizes.

The alternative is to decouple the load request initiator
from the response receiver. (In Figure 1 this is represented
by the request/response arrows going to different modules).
In this setup, a separate hardware module (e.g., a DMA en-
gine, or address generator (AGEN)) is responsible for pushing
data into one or more functional units’ staging buffers.®* To
tolerate latency, these are often double-buffered and hence
sometimes referred to as ping-pong buffers [9, 10]. The main
advantage to this approach is that the requester can run at
its own rate, and can multicast data to multiple simultane-
ous consumers. Additionally, the feed-forward nature of the
pipeline means that the tile landing zone only needs to be
reserved proportional to the latency between adjacent levels
of the hierarchy, rather than the entire hierarchy traversal
round-trip, allowing for increased utilization of equivalent
RAM. Finally, this approach often can transmit large blocks
of data, i.e., bulk transfers, which are more efficient than
small requests, which must dynamically re-coalesce accesses
to the same memory line.

This separate producer/consumer approach is similar to
Smith’s [42] decoupled access-execute (DAE) style of general-
purpose computing architecture (Table 2C). In a DAE orga-
nization two processors are connected by a hardware queue.
The access processor is responsible for performing all address
calculations and generating loads—analogous to the DMA
engine. Load responses are passed to the execute processor—
analogous to an accelerator’s functional units and their local
staging buffers. DAE improves parallelism and reduces the
critical paths of instructions while allowing both processors
to compute at their natural rate. However, classical DAE does

3Cache pre-fetching can be considered an example of decoupling. Consider-
ation of this large body of work is beyond the scope of this paper.

139

Session: Data Movement Il

not explicitly control data orchestration buffers—decisions
about staging data are still managed by the cache hierarchy,
thus Figure 1 categorizes DAE as implicit decoupled.

We advocate that the explicit decoupled data orchestration
(EDDO) approach best matches the needs of domain-specific
accelerators, as it allows for the best opportunities to leverage
static workload knowledge combined with efficient, high-
performance hardware. Hardware FIFOs [21, 46] (Table 2D)
are one traditional reusable EDDO staging buffer organi-
zation. The advantages are that FIFOs cleanly encapsulate
synchronization via head and tail pointers, and are easily
hierarchically composable. However, in practice FIFOs are
not flexible enough to meet the needs of modern accelera-
tors, which often require random access within an active
window or tile of data [4, 6, 13, 45]. Additionally, for data
types such as the partial sums in a convolutional neural net,
staged data must be modified several times in place before
being drained [6, 29]. This is not possible in single write-
port FIFOs without costly re-circulation. Thus our goal is to
combine the efficient hardware of FIFOs with the flexibility
of scratchpads (Table 2E).

2.3 Synchronization Concerns

In a decoupled system, the timing of loading new tiles is a
critical correctness component, as initiating a transfer too
early could overwrite live data, and a transfer too late results
in efficiency loss. Some accelerators use systolic approaches
to bound tile processing time—essentially removing the need
for synchronization hardware beyond simple counters. How-
ever, these time bounds often become overly conservative
in realistic systems that have non-deterministic latencies
involving off-chip accesses, arbitrated networks-on-chip, or
functional units whose processing time involves conditional
execution. Therefore a reusable storage idiom cannot rely
on them.

This paper assumes that accelerators are built using a
standard ready-valid (Rpy/VLD) micro-protocol for pipeline
flow control as in SystemC compilation [2, 31]. For exam-
ple, a FIFO could assert Pop.RpY when it is non-empty, and
dequeue the oldest element when Por.VLD is asserted. With-
out loss of generality, our techniques can be applied using
other micro-protocols such as TRy/Ack. For convenience,
this paper uses an operation-centric terminology [20] and
assumes a straightforward translation into micro-protocol.
For example, with FIFOs the following pseudo-code:

gC.Push(gA.Pop () + gB.Pop())

is shorthand for “when gC is asserting Pusu.RpY (not full)
and g2 and gB are asserting Pop.Rpy (not empty), perform an
addition and assert all VLDs” We refer to the micro-protocol
details as appropriate for clarity in cases where this short-
hand is not sufficient.

While circuit-level micro-protocols form the necessary
groundwork for adjacent stages of a properly synchronized
accelerator, they are not a complete solution for data orches-
tration, which is a higher-level concern spanning remote
producers and consumers. In the remainder of this paper,

140

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Global AGEN DRAM
\Oxmoo Response [C H]
DRAM »1 I
Global ~N_ A __}--—
Request ..)
0x1 g
]
@ =
Local
Local - / Response
Request M-S T A M
Y 4 7'y
] v
AGEN
:] % (Cacen J DPATH)

Figure 2. Buffet classification and operations.

we present an EDDO storage idiom that encapsulates fine-
grained synchronization within the staging buffer operations
themselves. Encapsulation increases composability and re-
usability, allowing accelerator architects to cheaply leverage
the benefits of EDDO for multiple application domains.

3 The Buffet Storage Idiom

Figure 2 depicts the data orchestration model of a buffet.
In reference to the taxonomy found in Table 1, buffets fall
into the EDDO quadrant, as data movement is explicit and
they use decoupled fill engines. The buffet approach expands
the decoupling farther than traditional DMA setups by also
using decoupled address generators to iterate over staged
data. In Section 4 we discuss the composability benefits of
this organization.

Figure 2 also depicts the buffet’s operational interface.
Within the buffet, a finite-state machine controls the four
fundamental storage operations: FILL(DATA), READ(INDEX),
UPDATE(INDEX, DATA), and SHRINK(NUM). Upper-level mod-
ules in the hierarchy (e.g., DRAM) initiate FILL operations
and move new data into the buffet, while lower-level mod-
ules (e.g., datapath) work with data in the buffet using REaAD
and UPDATE operations. Finally, SHRINK operations remove
data from the window.? Thus the lifetime of a piece of data
in the staging buffer can be described with the following
regular expression:

Eq. 1: Fill — (Read — Update?)* — Read — Shrink

Unlike scratchpad loads and stores, these operations en-
capsulate synchronization. We now present a detailed de-
scription of buffets’ internal logic to arbitrate stalls.

3.1 Buffet Operational Behavior

Figure 3 presents a detailed architectural diagram of a buffet,
and Algorithm 1 shows specific behavior. Newly transferred
data is installed into the RAM via the FirL logic, labeled @.
This path closely matches a conventional FIFO—no remote

4We choose the name buffet due to similarities with actual restaurants,
where waiters bring out new dishes (fill) which are repeatedly iterated over
by diners (read) until a course change (shrink). Of course, in restaurants
diners are not allowed to return modified dishes to the buffet (update), due
to food safety concerns!

Session: Data Movement Il

DRAM

M

[ﬂ AGEN

- FSM AGEN)

Figure 3. Buffet implementation details.

address accompanies the data, and placement is based on
local address generation in the order it is received. (This is
not a fundamental restriction, but the complexities of un-
ordered FILL are beyond the scope of this paper.) Unlike a
FIFO, the READ @ request includes an externally-provided
index, allowing data to be read in a different order than it is
received. The index is relative to the window, so 0 represents
the oldest installed datum in the staging buffer. It is not legal
for the index to exceed the physical size of the RAM.

Logic ensures that reading a position outside the active
window will stall until the data arrives, similar reading an
empty FIFO. However, the presence of this index means that
buffet read stalling must be handled differently than tradi-
tional FIFOs, such as ones generated by commercial tools
[21, 46]. In these circuits Pop.VLD is asserted whenever the
FIFO is non-empty. In buffets, the presence of the requested
data is a function of the index. Therefore we use a separate
read response path, represented by the "read_rsp_out.Send()"
operation. READRSP.VLD is only asserted when the requested
data has been filled, as in caches. For simplicity we present
read responses returning in the same order as requests—
sufficient for the needs of most accelerators—but this is not
fundamental (as in caches). In scenarios where blocking is
harmful, a supplemental non-blocking CHECK(INDEX) opera-
tion can be added to test if a certain index is in range.

Beyond indexed reads, a significant distinction from a
FIFO is that data elements within the active window can be
modified in-place, which we call the UPDATE @ path. Inter-
nal logic stalls the modification of the RAM until both an
index and a data element are asserting VLD. Thus the index
generation FSM and datapath can produce at different rates,
and the system can tolerate dynamic timing variation. Se-
mantically distinguishing RAM writes into FILL and UPDATE
operations raises the level of abstraction, allowing buffets
to use customized synchronization logic for each case, as
discussed below.

Finally, the SHRINK path @ depicts the logic for removing
staged data from the buffet. This operation takes a size param-
eter and removes that many elements from the active win-
dow. This operation simply updates internal scoreboarding—
no data movement occurs. A credit is released to the FiLL
address generator indicating room for another bulk transfer.

141

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Algorithm 1 Buffet Operational Details

// Initialize a buffet

function IN1T(5Z)
head = 0;
occupancy = 0;
size = sz;
credit_out.Send(size);

end function

/] Emplace new data for staging.

function Firi(data)
slot = (head + occupancy) % size;
buffer[slot] = data;
SetUpToDate(slot, true);
occupancy++;

end function

// Iterate over staged data.

function Reap(index, will_update)
slot = head + index % size;
wait_until(index < occupancy && IsUpToDate(slot));
read_rsp_out.Send(buffer[slot]);
SetUpToDate(slot, !will_update);

end function

/I Update previously read locations.

function UrpATE(index, data)
slot = (head + index) % size;
buffer[slot] = data;
SetUpToDate(slot, true);

end function

// Unstage data and free room for more Fills.

function SHRINK(num)
wait_until(num < occupancy);
head = (head + num) % size;
occupancy = occupancy - num;
credit_out.Send(num);

end function

Accelerators that modify in-place data should drain it via
the standard READ path before invoking SHRINK. We advo-
cate that the same index generation FSM that iterates staged
data should generate calls to SHRINK, removing the need
for explicit stall logic between index-based read requests
and re-basing of the oldest element in the active window.
This arrangement is not fundamental, but for simplicity of
synchronization we use this presentation for the remainder
of this paper.

3.2 Buffet Synchronization Details

We leverage the semantics of buffet operations to provide
fine-grained synchronization with minimal logic and stalls.
The cases where explicit hardware synchronization is re-
quired are represented by the “wait_until” calls in Algo-
rithm 1. Many other cases of synchronization can be handled
without the need for explicit hardware support because of
the order of operations in Equation 1, as shown in Figure
4. For example, because modified values are always READ
before SHRINK, we do not need synchronization logic be-
tween UPDATE and SHRINK—they are transitively synchro-
nized through ReAD.

Because modification of data by the datapath can take
notable latency, buffets add RAW-hazard checks, which we
present abstractly as an “UpToDate" scoreboard with per-
fect knowledge. In practice, any physically efficient tracker

Session: Data Movement Il ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Filter

—> Synchonized via hardware ... » Synchronized implicitly
(a— b: b may stall until a occurs) (@ b: b occurs regardless of a) D:IJD @for £ : [0..F)
@ @ for o : [0..0)
Input output[o] += input[o+f]

increment LTI T * filter[f]

occupancy C_@_,

set up to date set up to date @~ —(D—

seriali:zed d;)zta w?is . (A) Weight-Stationary Algorithm
by same obtained via
dFSM i proceeding UPDATE Filter @for nf : [0..F NumTiles)
I rea . —
nliod T — iigdit . - D:I:\:‘ l:l:‘ ® for no : [0..0 NumTiles)
érggrfntéé?oabésréqd ‘modified values . > 2 @ for tf : [0..F_TileSize)
at least once e .. will be read for drain @ @ for to : [0..0 TileSize)
(otherwise ghrmk 3hecks Input f=nf * F TileSize + tf
occupancy <= num, —
e LITTTTILLTTTT o=no*o_Tilesize + to
_
@ ®C' ®C' “®. C' output[o] + 1np1llt[o+f]
. . S . . -— 00— O— * filter[f]
Figure 4. Operation synchronization relationships.
®

(B) Tiled Weight-Stationary

Figure 5. 1D Convolution example orchestration.

can be used, including imprecise hashing schemes. For sim-
plicity, we present will update as a parameter to READ

that indicates that the datapath will modify the currently choose a weight-stationary dataflow [6] which involves re-
staged value—many alternative interfacing paradigms can loading partial sums several times until the final sum is pro-
be conceived of, including Lock() methods. If a subsequent duced to demonstrate all buffet features. These same prin-
READ requests an index that is undergoing modification, the ciples generalize to other dataflows of full convolutional
response is stalled from returning—indistinguishable from neural networks and other kernels.
reading an index that has not yet been filled. FILL writes do The baseline formulation maximizes reuse of filter weights
not need to perform this check. Thus we can improve energy with only a single on-chip register, but it must resort to
efficiency and performance using higher-level knowledge. expensive off-chip accesses for inputs and outputs (if 2x the
Encapsulating hazard detection inside the buffering in- size of O is larger than on-chip buffering). Figure 5B shows
terface removes the need for engineering custom stall logic a more realistic tiled formulation. This introduces some re-
on a per-deployment basis. To meet the efficiency demands reads of weights, but significantly reduces reloads of inputs
of domain-specific accelerators, buffets provide options for and outputs as the tiles can be held resident on-chip.
design-time customization. If the architects can prove that Figure 6 shows a straightforward accelerator implementa-
no RAW hazard is possible, then the RAW hazard detection tion of this algorithm using buffets. This accelerator uses sep-
logic can be statically removed via a parameter. Similarly, arate buffers per datatype—similar to an instance of Eyeriss
if FILLs are proven to be mutually exclusive with UPDATES [6] with a single processing element and a different dataflow.
then they can share a write port rather than using a more Following the EDDO principles, separate address generation
expensive RAM with multiple write ports. Finally, for buf- FSMs (labeled @) generate requests to the DRAM that install
fets that hold read-only data the entire UPDATE path can be data into the staging buffers. The weight-stationary dataflow
removed. The goal is to allow designers to quickly construct means that the weights are staged once W‘}‘lﬂe input and out-
a functionally correct orchestration hierarchy that can serve put tiles are re-staged per weight tile. The "wait_until” in the
as a starting point for optimization refinements. transfer FSMs @ represents blocking until sufficient credit
Another case for design-time optimization is the syn- is available. The backwards path that increments the credit
chronization between SHRINK and FirL. Algorithm 1 con- count is not shown.
servatively uses explicit synchronization for SHRINK: e.g., Looking in-depth at the READ FSMs @, we highlight sev-
“wait_until(num < occupancy)”. This logic can be removed eral points that distinguish buffets from FIFOs. First, both
at design time if the architects can prove each staged data the input and output buffet are performing window-based
element will be read at least once. Figure 4 depicts this as access relative to the oldest element. Second, the size-based
implicitly synchronized, as we expect this to be the more shrink gives more control over data liveness—the input is
common case. Synchronization with the external fill request reading a tile volume larger than its shrink, and so repre-
generator is handled via backwards credit flow—similar to a sents a sliding window. Finally, the Output buffet is being
network-on-chip protocol, discussed in detail in Section 4. used to perform in-place updates of staged sums. Each sum

is modified F_TileSize times per tile. The buffet’s inter-
. . nal scoreboarding ensures that subsequent READs will block
3.3 Example Orchestration with Buffets . § ensu ubse Wi

. . . . on previous UPDATEs—a scenario which could occur if the
Figure 5A shows an example 1-dimensional convolution that MACC datapath was implemented as pipeline with internal
demonstrates the use of buffets for EDDO. We purposely latency. As stated above, unnecessary scoreboard logic can

142

Session: Data Movement Il

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

function FiLLINPUT() (1] function READINPUT() (3)
halo_size = O_TileSize - F_TileSize + 1; [DRAM] for n : [0..F_NumTiles * O_NumTiles)
for nf : [0..F_NumTiles) 7y 7y 7y for tf : [0..F_TileSize)

tile_base = nf * F_TileSize; ; ; ; for to : [0..0_TileSize)
TransferInputTile(tile_base, halo_size); -> [IﬂPUf] [F/7_f6’f] [OU{IDUZ] input_buffet.Read(tf+to);
for no : [0..0_NumTiles) Fill Fill Fill // Retain some overlap for next tile
TransferInputTile(tile_base + halo_size + AGEN AGEN AGEN // (sliding window)
no * O_TileSize, O_TileSize); A 4 v A 4 input_buffet.Shrink(O_TileSize);
(mnput \ (Fiter Y (output)

function FILLFILTER() Buffet Buffet Buffet function READFILTER()

for nf : [0..F_NumTiles) Oﬁ Oﬁ O [for n : [0..F_NumTiles * O_NumTiles)
TransferFilterTile(nf * F_TileSize, F_TileSize); {] E] for tf : [0..F_TileSize)
function FiL.LOUTPUT() : filter_buffet.Read(th);
for nf : [0..F_NumTiles) e Input N (Fier) filter_buffet.Shrink(F_TileSize);
for no : [0..0_NumTiles) Read Read
TransferOutputTile(no * O_TileSize, O_TileSize);| | AGEN) | AGEN | function READANDUPDATEOUTPUT()
for n : [0..F_NumTiles * O_NumTiles)
All tile transfer functions above follow this form: I for tf : [0..F_TileSize)
function TrRaNSFEROUTPUTTILE(base, size) @ function DATAPATH() (4] for to : [0..0_TileSize)
wait _until(output_credit >= size); inp = input_buffet.read_rsp_out.Recv(); output_buffet.Read(to);
// This can be implemented as bulk transfer: wt = filter_buffet.read_rsp_out.Recv(); output_buffet.update_idx_in.
for x : [0..size) psum = output_buffet.read_rsp_out.Recv(); Send(to);
output_buffet.Fill(output[base+x]); psum +=inp * wt; // Drain of modified values omitted
output_credit -= size; output_buffet.update_data_in.Send(psum); output_buffet.Shrink(O_TileSize);

Figure 6. Basic accelerator of Figure 5 using buffets, with pseudo-code describing the EDDO data transfers.

be removed using design-time parameterization. In this algo-
rithm, every partial-sum output that is read is also modified,
so the accelerator can use the READANDUPDATEOUTPUT FSM
to generate READ and UPDATE indices. Other scenarios can
require separate index generators for these two classes.

Furthermore, the READ FSMs reveal some key ways that
buffets differ from traditional scratchpads. In a scratchpad,
read requests return the current RAM value, so it is the re-
sponsibility of the iterator FSM to not issue a read request
until it knows the desired data has been staged. Buffets’
encapsulation of fine-grained synchronization means that
no explicit checks are present in the REAp FSM. The index
generator issues READ operations at its natural rate—if the re-
quested data is not available, then the READ_RSP.VLD signals
will stall the DaATaPATH FSM @, as described in 3.1. Further-
more, with scratchpads all accesses are done via absolute
addresses into the underlying RAM, which places the bur-
den of dividing the RAM into active and inactive regions
onto the index generator. With buffets, the FSMs contain no
explicit base address manipulation, nor wrapping-around of
addresses relative to the size of the RAM. This hardware has
not disappeared, but has been encapsulated inside the buffet,
simplifying the creation of the index generation FSM to only
repetition counts, bounds, and offsets.

This encapsulation of the modular arithmetic is important
for another reason: offset-based indexing separates the size of
the active tile from the size of the underlying storage which
is pre-buffering future tiles. One way this manifests is that
Figure 6 does not specify concrete sizes for the underlying
RAM. If it is equal to the tile size, no pre-buffering will occur,
as each buffet can only hold the active window:. If it is twice
the tile size, then the arrangement is equivalent to traditional

143

double-buffering. It can also be set to any arbitrary constant.
This flexibility has an important implication: the function-
ality of the FSMs in Figure 6 is unchanged across all these
options, and do not need any alteration or re-verification if
the underlying RAM size of the buffets is increased as part
of design-space exploration. This will not affect correctness,
only performance as more room is available to pre-fill tiles.

Designers often talk about double-, triple-, or even quad-
buffering, but extra buffering should not be limited to multi-
ples of tile size. By changing the Fill FSMs to transfer after
receiving smaller credit totals such as 1/4, or 1/8 tile (or even
arbitrary absolute values unrelated to tile size) architects can
determine the optimal buffering needed to tolerate the for-
ward latency through the memory system, which is unlikely
to be an exact multiple of tile size. Additionally, if some dat-
apaths are farther from the memory buffets’ encapsulation
makes it straightforward to give them more buffering for
extra latency tolerance without altering their logic. In effect,
this approach makes the staging buffer RAM sizes a low-level
micro-architectural feature that can be determined late in
the design process based on underlying physical properties,
rather than a first-order design consideration.

3.4 Automatically Deriving Configuration

The EDDO approach requires the implementation of separate
index generation engines per buffet. These iteration loops
all relate to the original tiling and inter-tile schedule chosen
by the architects using workload knowledge. As a specific
example, the loop for READFILTER in Figure 6 removes the
O_TileSize loop level because in the original algorithm
(Figure 5) the variable o is not used to index the filter
array. This implies that the same filter weight value is being
held local to the datapath while the input and output changes

Session: Data Movement Il

2\
J
N

DRAM / AGEN

—_— -

L2 Buffet

AGEN AGEN

DRAM L3 Buffet

L1 Buffet

Figure 7. An example buffet hierarchy.

with o—hence the name “weight stationary”. Similarly, the
sliding window on the input buffet is created by addition of
the f offset into the input vector.

We believe that automatic derivation of control FSMs from
a single tiling specification is feasible future work. This has
been accomplished before for specific high-value domains
[16, 40] but not in a generalized tool. The domain-specific
nature of accelerators limits the data orchestration patterns
that need to be supported by automatic generation solutions.
Furthermore, architects of accelerators can always fall back
on handcrafting the data flows if the tools fail. The design of
such tools is beyond the scope of this paper.

In summary, buffets’ encapsulation of synchronization
into the operational interface allows design to more produc-
tively occur at a higher level of abstraction. We view buf-
fets as combining the best properties of FIFOs, N-buffered
scratchpads, and custom sliding window buffers. In the next
section we will demonstrate that these same features also
enable composition of buffet hierarchies.

4 Composition of Buffets

No staging buffer can be considered entirely in isolation.
Domain-specific accelerators require the ability to hierar-
chically stage and distribute data, which facilitates maxi-
mizing data reuse from small buffers physically co-located
with functional units. This section describes the interaction,
modularity, and composability of buffets.

4.1 Buffet Hierarchies

Multiple levels of buffets can be seamlessly arranged into a
hierarchy, as shown in Figure 7. An upstream buffet’s address
generation FSM’s READ operations take on a role similar to a
traditional DMA engine, driving data to FILL the next buffet
using the crediting mechanism presented previously. The
downstream buffet’s REap FSM blocks locally, without any
external polling. Thus serially composing N buffets requires
N + 1 address generators, not 2N. Larger tiles are staged,
then broken down and distributed to lower levels for further
staging and processing. We show data as flowing through
all levels, but this is not fundamental—fills can bypass in-
termediate levels as appropriate. The data also need not be

144

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

inclusive as upstream buffets can shrink away data before it
is fully consumed downstream.

Importantly, a hierarchy of buffets allows applications to
fully exploit data reuse at each level in the hierarchy. Unlike
FIFOs, buffets’ arbitrary iteration ordering means that data
iteration order can be changed at each address generation
level. This both allows interleaving of tile delivery across
lower levels and altering the data layout in the memory
dynamically so that each level may use a customized layout.

Backwards paths to return modified data to larger, upper-
level buffets are accomplished using the UpDATE function-
ality. Thus the slot for the value is held in a non-up-to-date
state by the upper-level buffet until the modified value is
produced. As a result UpDATE traffic does need any kind of
credit-check mechanism. Additionally, there is no require-
ment that modified values pass through all levels of staging
buffer during writeback. Accelerators can provision connec-
tivity to transmit results from the datapath directly to higher
levels, or to off-chip memory.

As both READ and UPDATE requests are generated locally,
any given index FSM only needs to concern itself with gener-
ating addresses sized to its local RAM. This means that low-
bitwidth address calculation datapaths can be used rather
than 32 or 64-bit address arithmetic. (Domain-specific accel-
erators generally do not use address translation for on-chip
accesses, but it is not uncommon to use large-bitwidth ad-
dressing to ease system integration.) As a secondary benefit,
addresses are never transmitted remotely between buffets,
which can reduce transfer bandwidth and energy compared
to traditional memories.

Buffets make no assumptions about being deployed with
direct connections between levels, or being connected via a
network-on-chip. In the latter case, buffets’ credit flow for
forward Firrs and use of UPDATE for backward writeback of
modified values act as a guarantee of deadlock freedom, as
any injected data will be unconditionally drained—a so-called
“consumption assumption”. This guarantee can simplify net-
work flow-control design and verification, and result in sim-
pler hardware. For example, buffet-based accelerators may
require fewer or no virtual channels for correctness—though
they still may still be employed for routing or quality-of-
service reasons. Furthermore, a buffet’s FiLL path may be
directly attached to the output of a router port, essentially
supplanting the need for separate egress buffer hardware.

4.2 Sharing Fills via Multicast

If the transport substrate supports broadcast or multicast,
either via dedicated wires or a network, then buffets can
leverage it. Multicast is a significant source of energy effi-
ciency, as it means the output of one access to a large physi-
cal RAM can be delivered efficiently to all consumers in the
EDDO specification. Leveraging static workload knowledge
is more area- and energy- efficient than dynamically detect-
ing and coalescing multiple requests to the same address in a
cache or scratchpad hierarchy, and does not rely on multiple
requests arriving within a limited time window.

Session: Data Movement Il

@ for nf : [O. .F_NumTiles/F_NumPartitions)
Filter ® for no : [O. .0_NumTiles/O NumPartitions)
‘ ‘ ‘ D:‘ ® parallel for pf : [0..F NumPartitions)
D= - ® parallel for po : [0..0 NumPartitions)
@ for tf : [0..F TileSize)
® @ for to : [0..0 TileSize)
® f = nf * F_NumPartitions
Input * F_TileSize
‘ ‘ | ‘ ‘ ‘ + pf * F_TileSize + tf
: M o = no * O NumPartitions
o U0 O, * 0 TileSize
D HC & + po * O_TileSize + to
® output[o] += input[o+f]
3 * filter[f]

Figure 8. Parallel partitioned version of Figure 5.

To achieve multicast we use a straightforward extension
of the credit scheme presented in Section 3. The FrLL FSM’s
credit register is extended to a vector tracking credits of
multiple target buffets. All downstream targets must have
sufficient room before a transfer can be initiated, and credits
are decremented from all targeted counters upon transmis-
sion. Finally, the backwards credit path is supplemented with
an ID field indicating from which buffet the credit originated,
which is used to increment the appropriate counter in the
credit vector. An extension of this scheme uses run-time
configurable routes and IDs allows the design of accelerators
with dynamically reconfigurable buffet hierarchies.

4.3 Sharing Physical RAMs Efficiently

Scenarios exist where it is advantageous for multiple buffets
at the same level of the hierarchy to share a single physical
RAM. Sharing can avoid internal space fragmentation due
to RAM size constraints and decrease per RAM overheads.
Additionally, architects may wish to exploit dynamically
reconfiguring buffet sizes so that more space can be allocated
to the most critical data structure.

To implement this feature, we supplement the logical buf-
fet bookkeeping with base and bound registers. All incre-
ments to the head pointer are carried out modulo base and
bound. Various multi-port and/or banking schemes can be
used to maximize RAM efficiency by matching the required
bandwidth across data types. For example, the accelerator
previously presented in Figure 6 uses a weight stationary
dataflow which means that new filter weights are only re-
quired every O_TileSize cycles, whereas new inputs and
outputs are required every cycle. Therefore it may be prof-
itable for the filters to share the same RAM as either the
inputs or outputs, but multiplex the inputs and outputs them-
selves would reduce throughput more significantly.

Overall, RAM-sharing buffets represent a combination
of design-time customization and runtime flexibility. The
aim is that these design-time parameters allow buffet de-
ployments to approach the efficiency of ad-hoc accelerator-
specific buffer schemes with minimal engineering effort and
without sacrificing re-usability.

145

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

DRAM

L2 Buffet

L1 Buffet

DRAM to L2 Transfers:
Input: Broadcast
Filter: Unicast (partitioned)
Output: Unicast (cross-partition reduction)

L2 to L1 Transfers:

Input: Unicast w/Multicast halos
Filter: Broadcast

Output: Unicast (partitioned)

Figure 9. Example accelerator derived from the EDDO
in Figure 8 with multiple levels of buffets sharing
RAM:s. For simplicity, paths for cross-partition reduc-
tion of partial sums are not shown.

4.4 Example of Hierarchical Orchestration

We now revisit the 1-dimensional convolution example pre-
sented in Section 3.3 in the context of a more realistic ac-
celerator with parallel functional units, a multi-level buf-
fet hierarchy, and physically shared RAM. Figure 8 shows
an extension of the weight-stationary dataflow by spatially
partitioning individual tiles across the separate functional
units—represented by parallel-for loops. We use the term
“partition” to refer to tiles that are executed by parallel hard-
ware instances. As the number of partitions is a design-time
parameter, any remaining mismatch between data size must
be handled as passes in the outer loop. We omit edge cases
from the algorithm.

Figure 9 shows an accelerator with F_ NumPartitions
=2and O_NumPartitions=2.Buffets within alevel share
the same multi-banked RAM, which could potentially allow
F_TileSize and O_TileSize to be configured at run-
time, with the constraint that the total tile size across all
data types size fits in the underlying RAM. This dataflow
employs separate partitions updating the same partial sum,
and so requires an additional datapath for reduction before
updating DRAM. This path is not shown in the figure as it
has no effect on the underlying orchestration patterns.

Despite the pedagogical nature of this accelerator, it has
several interesting characteristics. First, each L2 buffet holds
a disjoint filter tile, so the L2 filter buffets are filled via unicast
from DRAM. The delivery of tiles can either be interleaved
or serial, as determined by the iteration order of the READ
index generation FSM. Partitioning filters means that inputs
are broadcast from DRAM to L2, as the same input must be
convolved against all weights (excepting the edges).

The L2 buffets’ READ FSMs distribute the second level of
spatial partitioning. Each L1 processes a different output
tile against the same weights, therefore output tiles are now

Session: Data Movement Il

@ L1Outputs]
O L1 Fitters
@ L1 Inputs
@ 2 Outputs|
o L2 Fitters
o 12 Inputs

100%
10

10
100

256
1024

F_NumPartitions
O_NumParititions
Total Functional Units
F_TileSize
O_TileSize

75%

Normalized Data Transfers

Indiv. L2 Buffet Size | 455KB 0%

Total L2 Buffet Size | 455.0KB

Indiv. L1 Buffet Size [50KB U
Total L1 Buffet Size [500.0 KB

Input size 1.64 MB

Filter size 74 KB 0%

Input:Filter ratio 21.78 \)“\‘35‘ N\\)\‘I\C’A{"

Figure 10. Analysis of the impact of enabling multicast
on a Figure 9-style accelerator.

unicast. One the other hand, the filter tiles are now broadcast
from the L2 to all connected L1s. For inputs, the tile is unicast,
but the halo region depicted in Figure 8 can be multicast
simultaneously to two L1 buffets. In the steady state, this
savings is doubled because of overlap with both previous
and next partitions.

Multicast can represent a significant savings. Figure 10
shows an analysis of two Figure 9-style accelerators that
differ only in support of multicast. No standard 1D convolu-
tional benchmark exists, so we approximated data set sizes
by examining the work to produce one output channel of
VGG-Net16 [41], convolutional layer 13 and projecting the
data ratios down into one dimension, giving an input size
21.78x larger than the filter. The multicast version reduces
traffic between staging buffers to 58.9% of the unicast-only
arrangement, and therefore performs only 58.9% of RAM
accesses as well.

5 Evaluation

In this section, we present an evaluation using buffets. We
first discuss our evaluation methodology and experimental
setup (Section 5.1). We then evaluate buffet-integrated accel-
erators compared with state-of-the-art accelerator memory
systems (Section 5.2 and Section 5.3). In particular, we show
that using buffets can result in significant better performance
and energy efficiency than using DMA- and cache-based
memory system.

5.1 Methodology

To better understand the costs of buffets, we implemented a
buffet in RTL. The design supports all the buffet operations
and is fully parameterizable so that it can be attached to
RAM of different sizes. We synthesize the design with Syn-
opsys Design Compiler with a commercial 16nm technology
with a 1GHz frequency. We use Synopsys PrimeTime PX for
accurate power analysis.

Table 3 shows the area and energy characterization of
a buffet designed for an 8KB RAM, a representative RAM
size in commonly-used accelerator kernels. RAM estimates
are based on CACTI [26] with the same technology. We
demonstrate that buffets are a light-weight mechanism that
can be efficiently integrated as an accelerator’s on-chip RAM.

146

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

To capture cycle-level behavior of buffets on a range of
different accelerator benchmarks, we use a modified ver-
sion of gem5-Aladdin [39]. Gem5-Aladdin is a cycle-level,
power-performance-area simulator that captures the behav-
iors of both CPUs and specialized accelerators. Specifically,
gemb5-Aladdin models two types of memory systems for ac-
celerators: DMA-managed scratchpad and private cache. We
augment gem5-Aladdin’s DMA-managed scratchpad model
to support the buffet operations and proposed hardware
components. The area and energy costs of a buffet are based
on our RTL implementation. Our evaluations run on eight
workloads from the SHOC benchmark suite [11], the same
benchmark suite that was validated in Aladdin [38].

5.2 Buffet versus DMA versus Cache

To quantify the performance and energy efficiency of accel-
erators that integrate buffets, we perform a comprehensive
design space exploration sweeping a range of design param-
eters, listed in Table 4. In this analysis, we fix algorithmic
design choices, e.g., tile sizes, for all the configurations. Fig-
ure 11 shows the performance-power Pareto curves for each
SHOC benchmark, distinguished by memory system types:
cache, DMA with double-buffering (DB), and a buffet. The
energy-optimal design point for each memory system is la-
beled with a star of the corresponding color. All the DMA
design points apply double-buffering for better throughput.

We see that a buffet-based memory system delivers better
performance and power efficiency than DMA- and cache-
based systems across all the benchmarks. Cache-based de-
signs tend to have higher power cost and lower performance
due to cache’s expensive structures, e.g., tag array and MSHR,
to support implicit data orchestration. Buffet’s advantage
over DMA is more pronounced for benchmarks in the top
row, because these benchmarks are streaming applications
without much local reuse. In this case, the execution of these
kernels is heavily data movement constrained. Buffet’s fine-
grained synchronization between FiLL and READ operations
efficiently overlap the data movement and execution. In addi-
tion, compared to DMA-managed double-buffering, a buffet-
based design does not require an over-provisioned on-chip

Table 3. Buffet Area and Energy Characterization.

Component [Area (um?) [Area % [Energy (pJ/Access) [Energy %

Buffet Control 446 2% 0.47 14%
RAM 17,571 98% 2.98 86%
Total [18016 | 100% | 3.45 [100%

Table 4. Design Space Parameters [start:step:end].

Parameters [Values Parameters [Values
Buffer Idiom Buffet, DMA, Hardware Strided
Prefetchers
Cache -
Datapath Lanes [1:2:8] Cache Size [1KB:2:32KB]
Pipelining Enable/Disable Frequency 1G§IZ
- S System Bus | 32
Spad. Bandwidth [1:2:8] Width

Session: Data Movement Il

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

1 Cache w Cache Cache Cache
6 —#- DMA w/ DB 125 —m— DMA w/ DB 4 —#- DMA w/ DB —#- DMA w/ DB
—@— Buffet ﬁ —o— Buffet —o— Buffet 3 —o— Buffet
= < 1.00 \ < <
R : s s %
Ea 7&’ E E ELl 7
5 | 507 5 5| W\
z E 52 E N
g, goso = g g, N ®
~a
- 0.25 1
0 0.00 0 0
0 5 10 15 20 0 2 4 6 8 10 0 10 20 30 40 0 50 100 150 200
Latency (us) Latency (us) Latency (us) Latency (us)
(a) triad (b) reduction (c) scan (d) sort
20
Cache Cache Cache Cache
30 —#- DMA w/ DB 15.0 ﬁ —#- DMAw/DB ~#- DMA w/ DB s DMAw/ DB
2 —o— Buffet 125 —e— Buffet —o— Buffet 15 —e— Buffet
s s S A
E20 E100 A
g15 g 75 & 0
€10 € s0 e 5 _
5 25
0 - 0.9 0
0 5 10 15 20 0.0 2.5 50 7.5 10.0 125 0 5 10 15 20 25 0 50 100 150
Latency (us) Latency (us) Latency (us) Latency (us)
(e) md (f) stencil (g) gemm (h) fit

Figure 11. Power-Performance Pareto frontiers for buffet-, DMA-, and cache-based accelerator designs for SHOC

benchmarks. Energy-optimal points are shown as stars.

3 Cache
[0 DMA w/ DB

= Buffet

100% 100%

EDP Normalized to Cache (Log)
Area Normalized to Cache (Log)

b :

B

=3 Cache N DMA w/ DB
@ DMA w/ DB 20 Tile=16
= Buffet

% 15

¥

=10

o

o

v

“‘aiee\xd“égf“‘;sfﬁ e 49“2; ™ e

Figure 12. EDP comparison for
buffet-, DMA-, and cache-based ac-
celerator designs.

RAM, as the fine-grained overlapping opportunity is cap-
tured within a tile, leading to better power efficiency. In con-
trast, benchmarks in the second row have more data reuse
and spend most of their execution time performing computa-
tion. As a result, we see the performance difference between
buffet- and DMA-based accelerator designs is smaller. How-
ever, a buffet-based accelerator design still achieves lower
power, and smaller area cost, as RAM over-provisioning is
not needed.

Figure 12 and Figure 13 show the energy and area break-
downs of the energy-optimal design points (stars in Fig-
ure 11) for buffet-, DMA-, and cache-based accelerator de-
signs. Buffet-based accelerator design overall achieves 2.3x
energy reduction compared to DMA-based designs and 4.5%
compared to cache-based designs. As mentioned previously,
buffets generally require less storage space than DMA-based
designs due to fine-grained data transfer and lack of double-
buffering, leading to 2.1x area efficiency compared to double-
buffered DMA.

147

U\av; d“(x\ggfca‘;sju\" o é@na‘u e

Figure 13. Area comparison for
buffet-, DMA-, and cache-based ac-
celerator designs.

0 250 500 750 1000 1250
Latency (us)

Geomem\

Figure 14. Design spaces of buffet-
and DMA-based GEMM accelera-
tors with same on-chip RAM size.

5.3 Algorithm-Memory System Co-Design

Tile-size is an important algorithmic parameter that is highly
dependent on available physical RAM and communication
latency. Buffets’ fine-grained synchronization support re-
moves the strict need for over-provisioning physical RAM
sizes in the design process. As a result, buffet-based acceler-
ators can support much larger tiles with the same physical
RAM budget, compared to double-buffered scratchpad for
DMA-based memory system.

Figure 14 quantifies the benefits of buffet’s efficient use
of on-chip RAM. In this experiment, we focus on the design
spaces of a tiled-GEMM accelerator with buffet- and DMA-
based memory system under the same physical RAM budget.
Buffet-based accelerators of tile size 32 delivers significantly
better performance and power efficiency compared to DMA-
based design of tile size 16. With buffet’s fine-grained syn-
chronization between FiLL and READ, a buffet-based design
can dedicate the entire on-chip RAM for a single tile, while
double-buffered DMA must dedicate half of its physical RAM

Session: Data Movement Il

for next tile. In this case, a larger tile in a buffet enables more
data reuse for each tiled computation and reduces the overall
DRAM accesses, leading to better overall energy efficiency.

6 Experiences using Buffets

We have taped out two domain-specific neural net accelerator
test chips using buffets to store tiles of weights, inputs, and
partial sums. We now share our non-quantitative learnings
from this experience.

Test Chips: The first accelerator (details in [23]-although
to avoid confusion the term “buffet” is not used in that work)
is a proof-of-concept prototype that uses three levels of buf-
fets: private L1s, shared L2, and an off-chip L3. Buffets for
weights, inputs, and sums share the same RAM banks and
individual buffets can be dynamically resized to use more or
less memory. Design-time customizations are: (A) removing
update paths from all buffets except sums, (B) multiplexing
RAM ports for writes and fills, and (C) using bulk RAW-
hazard tracking. The second chip is an efficient, specialized
accelerator that was derived from the first with high design
productivity. This uses private L1s and distributed L2s. Buffet
RAM is hard-partitioned across data types, reducing area
and energy. Details of this chip are not yet published.

Design Effort: One benefit was that buffets eliminate the
need for designing customized data movement engine for
inputs, weights, and sums. For example: weights, inputs, and
partial sums have distinct data access patterns. Instead of
spending engineering effort to design customized FSMs for
each individual data type, we directly instantiate buffets with
different design-time customizations to support these differ-
ent access patterns. Second, buffets significantly simplify the
data delivery and computation overlap in the system. For
example, instead of manually designing double- or triple-
buffering mechanism in hardware, buffets use the SHRINK
operation to signal the available space in the consumer and
use the tail pointer to indicate data availability.

Using Buffets: One lesson is that buffets’ flexible SHRINK
size results in a tradeoff between convenience and efficiency.
Small shrinks are generally easier to generate addresses
for—as they better leverage the encapsulation of modular
arithmetic—but result in more credit-flow traffic and smaller
bulk transfers. A second lesson is that the contiguous SHRINK
requires that data layout match un-staging order rather than
access order. For example, simultaneously shrinking 1 col-
umn of each input channel requires a non-standard column-
major/channel-minor memory order. This was not a restric-
tion in practice as we used buffets’ flexible access order in
the L2 to transpose tile layout while filling the L1s.

7 Related Work

A variety of approaches have been used for the data orches-
tration of accelerators. Many accelerators use a customized
buffering solution based on their application [5, 6, 15, 35, 47].
While these proprietary buffering designs are efficient, they
require significant engineering effort. The accelerator com-
munity needs a general reusable accelerator storage design
to provide high performance with minimal effort. Buffets

148

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Table 5. Categorizing storage idioms for accelerators.

Jenga [44] Implicit Coupled
DeSC [17] Explicit Decoupled
PDAE Cache Prefetch [4] Implicit Coupled
PDAE DAE [4] Implicit Decoupled
Stash [24] Implicit Coupled
Accelerator Store [30] Explicit Coupled
Patch Memory [8] Implicit Coupled
LEAP Scratchpads [1] Implicit Coupled
CoRAM [7] Explicit Coupled
Stream dataflow [33] Explicit Decoupled

fill this need as an efficient and full featured solution for
accelerator designs. Table 5 provides a comparison of buffets
to other works that provide general storage solutions for ac-
celerators. Table 6 provides a detailed comparison of buffets
to previous works that use the explicit decoupled idioms.

Jenga [44] treats the cache SRAM banks as a general pool
that can be used to create distributed virtual cache hierar-
chies that are targeted to given application. This solution
uses the implicit coupled idioms to provide a cache based
solution. This approach provides a more efficient solution
than a traditional cache but still has more overhead than an
explicitly managed memory architecture.

Decoupled Supply-Compute (DeSC) [17] uses a traditional
DAE approach to divide memory accesses instructions from
compute instructions and place them on separate datapaths,
connected by a queue. However, the queue size in DESC is
not architecturally visible, and therefore cannot be used as an
explicit target for determining data tiling size. Additionally,
DeSC uses a traditional DAE FIFO queue which prevents
random iteration without transferring the data to the L0
registers thus limiting access order and preventing in-place
updates. It also has a high non-RAM overhead associated
with having a full OoO processor as the access engine.

Prefetching with decouple access-execute (PDAE) [4] has
two hierarchies for data orchestration. PDAE uses a prefetch-
ing cache for accelerators with regular access patterns and a
traditional decoupled-access-execute approach for systems
with irregular access patterns. The prefetching cache has
traditional cache overheads while the DAE approach has sim-
ilar iteration restrictions as DeSC. Buffets provide a general
structure that can be used with minimal overhead.

Stash [24] is a data staging scheme for accelerators that
makes scratchpads more like caches. It unifies scratchpads
into the global address space like a cache, but uses a specific
user-provided translation function to fill the scratchpad on a
miss. Translation reduces the number of explicit operations
required to fill the scratchpad though the creation of a load-
and-store-scratchpad. Stash does not use a decoupled fill
approach, and explicit double-buffering is still required for
concurrency.

The Accelerator Store [30] is a shared memory scratchpad
that allows multiple logical buffers to be mapped onto a
single scratchpad, similar to buffets. The logical buffers can
be configured in FIFO, random-access, or a hybrid mode.
However RAMs are accessed by coupled datapath load/store

Session: Data Movement Il

Table 6. Comparison of contemporary EDDO ap-
proaches with categories from Table 2.

| DeSC[17] | Stream dataflow [33] | Buffet
Non-RAM Area High Low Low
Access Energy Low Low Low
Placement Workload- Workload- Workload-
Policy controlled controlled controlled
Multiple Straight- Straight- Straight-
Fills in Flight forward forward forward
Overlapped Straight- No Straight-
Fill and Access forward forward
Hier. Composable No No Yes
Access Workload- Workload- Workload-
Multicast controlled controlled controlled
Data Availability | Encapsulated Explicit Encapsulated
Synchronization | (peek stalling) (barrier) (read stalling)
Access Order | Limited OoO Arbitrary Arbitrary
In-Place Updates No No Yes
Removal Workload- Workload- Workload-
Policy controlled controlled controlled

(or get/put for FIFO mode) operations, without any dedicated
index generators and synchronized using bulk interrupts.

Patch Memory [8] is a domain-specific scratchpad specifi-
cally designed for data tiling in image processing accelerators.
Users define patch parameters and dataflow order between
patches, and data is filled in a DAE style. Iterations into the
patch use coupled loads and stores from the datapath without
DAE. Patch memory is not hierarchically composable.

LEAP Scratchpads [1] are a memory architecture for FP-
GAs that allow users to define logically separate scratchpads
that are mapped onto a unified cache structure with tags
and traditional fill-on-load behavior. Concurrent accesses
are possible to other logical scratchpads while one scratch-
pad is filling. Based on the caches, they are hierarchically
composable.

CoRAM [7] is a memory architecture for FPGAs used as
accelerators. CORAM defines a set of operations that is used
to construct custom fill engines and scratchpads that are pro-
grammed into the FPGA’s logic and block RAM. Fine-grained
synchronization is possible directly through FPGA signals.
However CoRAM does not use DAE for iteration accesses,
but rather a traditional load/store interface. Additionally no
indication is given of an ability to compose CoRAM hierar-
chically, though this may be possible given the generality of
the CoRAM operations.

Stream-dataflow [33] is an architecture and programming
model based on streams and CGRAs. The data is stored lo-
cally in a scratchpad and streamed into a dataflow CGRA
for efficient acceleration. The architecture uses an address
generators for accessing the memory system and scratchpad.
However, the synchronization of the accesses requires the
use of explicit barriers. This need of barrier prevents over-
lapping fill and access. The Stream-dataflow architecture
does not support in-place updates due to the flow of the data
through the system. Furthermore their memory system was
not designed to be composable.

149

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

8 Discussion and Future Work

The domain-specific accelerator era of heterogeneous com-
puting is poised to tackle key problems in compute through
the integration of application specific engines. However,
achieving this efficiency requires tremendous effort to design
and verify a wide variety of accelerators. We have identified
commonalities in the efficient transfer and staging of data
that can be leveraged to generate a design effort and area
efficient generalized accelerator memory system.

In this paper we made several contributions towards achiev-
ing a practical, reusable, accelerator-agnostic buffering idiom.
We discussed why reusable idioms that have worked well in
the general-purpose computing space fall short for acceler-
ators. Through our taxonomy of approaches, we identified
explicit decoupled data orchestration (EDDO) as the tactic
that best allows accelerator architects to leverage their static
workload knowledge for efficiency. We described buffets’ op-
erational behavior, and why encapsulating synchronization
within the buffer interface increases efficiency and lowers de-
sign effort. We demonstrated the compositionality of buffets,
and discussed the benefits multicast can bring. When com-
pared with DMA managed double-buffered scratchpads and
caches across a range of workloads, buffets offer 1.53% and
5.39% energy-delay product advantage respectively. With
respect to area, we implement buffets in RTL and show that
buffet-based accelerators achieve similar performance at
3.4% less area than caches, and 2% control overhead over an
8KB RAM.

We see many future extensions for this work. A key com-
ponent is the development of a domain-agnostic accelerator
toolflow that can generate orchestration FSMs and hardware
configurations. We believe that run-time reconfiguration of
orchestration patterns can be added into this toolflow as well.
This feature allows data orchestration to be tuned to the par-
ticular sizes and ratios of the current data-set, rather than
settling for an average-case approach, which has shown to
be advantageous for individual accelerators [14, 25, 29, 43].
We hope that accelerator-independent EDDO abstractions
such as buffets help bring together the necessary engineering
effort to create such a toolflow, rather than each accelerator
creating their own tools. To facilitate adoption, we provide
an open-source reference implementation of a buffet, written
in Verilog, here:

https://github.com/cwfletcher/buffets

Acknowledgments

The authors would like to thank Adrian Sampson and the
anonymous reviewers for feedback that greatly improved
this paper. Michael Fetterman, Thomas Bourgeat, Arvind,
Daniel Sanchez, Hyoukjun Kwon, Tushar Krishna, Aamer
Jaleel, Angshuman Parashar, and Sean Treichler contributed
valuable discussions and feedback.

Distribution Statement A. This research was, in part, funded
by the U.S. Government. The views and conclusions con-
tained in this document are those of the authors and should

https://github.com/cwfletcher/buffets

Session: Data Movement Il

not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

References

(1]

—r—
w N
[t s’

(8]

(9]

(10]

[11

—

(12]

(13]

(14

flaa)

(15

—

[16]

M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer. Leap
Scratchpads: Automatic Memory and Cache Management for Recon-
figurable Logic. In Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA), pages 25-28, February 2011.
Cadence. Stratus High-Level Synthesis Reference Guide, 2015.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Dian-
Nao: A Small-footprint High-throughput Accelerator for Ubiquitous
Machine-learning. In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operation Systems
(ASPLOS), pages 269-284, 2014.

T. Chen and G. E. Suh. Efficient data supply for hardware accel-
erators with prefetching and access/execute decoupling. In The An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. DaDianNao: A Machine-Learning Supercom-
puter. In Proceedings of the International Symposium on Microarchitec-
ture (MICRO), pages 609-622, December 2014.

Y. H. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 367-379, June 2016.

E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An In-fabric Memory
Architecture for FPGA-based Computing. In Proceedings of the Inter-
national Symposium on Field Programmable Gate Arrays (FPGA), pages
97-106, February 2011.

J. Clemons, C. C. Cheng, L. Frosio, D. Johnson, and S. W. Keckler. A
Patch Memory System for Image Processing and Computer Vision.
In Proceedings of the International Symposium on Microarchitecture
(MICRO), pages 1-13, October 2016.

J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-
man. Accelerator-rich architectures: Opportunities and progresses. In
Proceedings of the Design Automation Conference (DAC), 2014.

E.G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni. An analysis
of accelerator coupling in heterogeneous architectures. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6, June
2015.

A.Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter. The scalable heterogeneous computing
(shoc) benchmark suite. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, 2010.

Z.Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam. Shidiannao: Shifting vision processing closer to the
sensor. In ACM SIGARCH Computer Architecture News, volume 43,
pages 92-104. ACM, 2015.

C. F. Fajardo, Z. Fang, R. Iyer, G. F. Garcia, S. E. Lee, and L. Zhao.
Buffer-integrated-cache: A cost-effective sram architecture for hand-
held and embedded platforms. In Proceedings of the Design Automation
Conference (DAC), 2011.

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun. Neuflow: A runtime reconfigurable dataflow processor for vision.
In Computer Vision and Pattern Recognition Workshops (CVPRW), 2011.
J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,
E. S. Chung, and D. Burger. A configurable cloud-scale DNN proces-
sor for real-time AL In The International Symposium on Computer
Architecture (ISCA), 2018.

Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong. Fp-dnn: An automated framework for mapping deep
neural networks onto fpgas with rtl-hls hybrid templates. 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 152-159, 2017.

150

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

T. J. Ham, J. L. Aragdn, and M. Martonosi. Desc: Decoupled supply-
compute communication management for heterogeneous architec-
tures. In Proceedings of the International Symposium on Microarchitec-
ture (MICRO), pages 191-203, December 2015.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally. EIE: Efficient Inference Engine on Compressed Deep Neural
Network. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 243-254, June 2016.

K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W. Fletcher.
Ucnn: Exploiting computational reuse in deep neural networks via
weight repetition. In Proceedings of the 45th Annual International Sym-
posium on Computer Architecture, ISCA 18, pages 674-687, Piscataway,
NJ, USA, 2018. IEEE Press.

J. C. Hoe and Arvind. Synthesis of operation-centric hardware descrip-
tions. In Proceedings of the 2000 IEEE/ACM International Conference
on Computer-aided Design, ICCAD °00, pages 511-519, Piscataway, NJ,
USA, 2000. IEEE Press.

Intel. FIFO: Intel FPGA IP User Guide, 2018.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S.Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-1. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tut-
tle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 1-12, June 2017.

B. Khailany, E. Khmer, R. Venkatesan, J. Clemons, J. S. Emer, M. Fojtik,
A. Klinefelter, M. Pellauer, N. Pinckney, Y. S. Shao, S. Srinath, C. Torng,
S. L. Xi, Y. Zhang, and B. Zimmer. A modular digital vlsi flow for
high-productivity soc design. In Proceedings of the 55th Annual Design
Automation Conference, DAC ’18, pages 72:1-72:6, New York, NY, USA,
2018. ACM.

R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou,
P. Srivastava, S. V. Adve, and V. S. Adve. Stash: Have Your Scratchpad
and Cache It Too. In Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 707-719, June 2015.

H.Kwon, A. Samajdar, and T. Krishna. Maeri: Enabling flexible dataflow
mapping over dnn accelerators via reconfigurable interconnects. In
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operation Systems (ASPLOS), 2018.

S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-
P: Architecture-level Modeling for SRAM-based Structures with Ad-
vanced Leakage Reduction Techniques. In Proceedings of the Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 694-701,
2011.

D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen. PuDianNao: A Polyvalent Machine Learning Accelerator.
In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operation Systems (ASPLOS), pages
369-381, March 2015.

D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen. Pudiannao: A polyvalent machine learning accelerator.
SIGPLAN Not., 50(4):369-381, Mar. 2015.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li. Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks.
In The International Symposium on High-Performance Computer Archi-
tecture (HPCA), 2017.

M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks. The Accelerator
Store: A Shared Memory Framework for Accelerator-based Systems.
ACM Transactions on Architecture and Code Optimization, 8(4):48:1-
48:22, January 2012.

Mentor Graphics. Catapult Synthesis User and Reference Manual, 2016.

Session: Data Movement Il

[32] J. Nickolls and W. J. Dally. The GPU Computing Era. IEEE Micro,

(33]

(36]

(37]

(38]

[39]

30(2):56—69, March 2010.

T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam. Stream-
dataflow acceleration. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2017.

NVIDIA Deep Learning Accelerator (NVDLA). http://nvdla.org, 2017.
A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. SCNN: An Ac-
celerator for Compressed-sparse Convolutional Neural Networks. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 27-40, June 2017.

R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A.Pedram, C. Kozyrakis, and K. Olukotun. Plasticine: A Reconfigurable
Architecture For Parallel Patterns. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 389-402, June 2017.
W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz. Convolution engine: balancing efficiency & flexibility
in specialized computing. In ACM SIGARCH Computer Architecture
News, volume 41, pages 24-35. ACM, 2013.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A Pre-RTL,
Power-Performance Accelerator Simulator Enabling Large Design
Space Exploration of Customized Architectures. In The 41st ACM/IEEE
International Symposium on Computer Architecture (ISCA), pages 97—
108, 2014.

Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks. Co-Designing
Accelerators and SoC Interfaces using gem5-Aladdin. In Proceedings

151

[40]

[41]

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

of the International Symposium on Microarchitecture (MICRO), 2016.
H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh. From high-level deep neural models to fpgas.
In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1-12, Oct 2016.

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR, abs/1409.1556, 2014.

[42] J. E. Smith. Decoupled Access/Execute Computer Architectures. In

[43]

[44]

[45]

[46]

[47]

Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 112-119, April 1982.

L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li. C-brain: A deep
learning accelerator that tames the diversity of cnns through adaptive
data-level parallelization. In Proceedings of the Design Automation
Conference (DAC), 2016.

P.-A. Tsai, N. Beckmann, and D. Sanchez. Jenga: Software-defined
cache hierarchies. In Proceedings of the International Symposium on
Computer Architecture (ISCA), 2017.

L. Wu, A. Lottarini, T. Paine, M. Kim, and K. Ross. Q100: The archi-
tecture and design of a database processing unit. In Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), 2014.

Xilinx. FIFO Generator v13.1: LogiCORE IP Product Guide, Vivado Design
Suite, 2017.

A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H. Esmaeilzadeh. GANAX:
a unified mimd-simd acceleration for generative adversarial networks.
In The International Symposium on Computer Architecture (ISCA), 2018.

http://nvdla.org

	Abstract
	1 Introduction
	2 Classifying Data Orchestration
	2.1 Implicit versus Explicit Orchestration
	2.2 Coupled versus Decoupled Orchestration
	2.3 Synchronization Concerns

	3 The Buffet Storage Idiom
	3.1 Buffet Operational Behavior
	3.2 Buffet Synchronization Details
	3.3 Example Orchestration with Buffets
	3.4 Automatically Deriving Configuration

	4 Composition of Buffets
	4.1 Buffet Hierarchies
	4.2 Sharing Fills via Multicast
	4.3 Sharing Physical RAMs Efficiently
	4.4 Example of Hierarchical Orchestration

	5 Evaluation
	5.1 Methodology
	5.2 Buffet versus DMA versus Cache
	5.3 Algorithm-Memory System Co-Design

	6 Experiences using Buffets
	7 Related Work
	8 Discussion and Future Work
	References

