
A Practical and Efficient Algorithm for the k-mismatch Shortest
Unique Substring Finding Problem∗

Daniel R. Allen

Department of Computer Science

Eastern Washington University

Cheney, WA 99004, USA

dra4@eagles.ewu.edu

Sharma V. Thankachan
†

Department of Computer Science

University of Central Florida

Orlando, FL 32816, USA

sharma.thankachan@ucf.edu

Bojian Xu
‡

Department of Computer Science

Eastern Washington University

Cheney, WA 99004, USA

bojianxu@ewu.edu

ABSTRACT
This paper revisits the k-mismatch shortest unique substring find-

ing problem and demonstrates that a technique recently presented

in the context of solving the k-mismatch average common substring

problem can be adapted and combined with parts of the existing

solution, resulting in a new algorithm which has expected time

complexity ofO (n logk n), while maintaining a practical space com-

plexity atO (kn), where n is the string length. When k > 0, which is

the hard case, our new proposal significantly improves the any-case

O (n2) time complexity of the prior best method for k-mismatch

shortest unique substring finding. Experimental study shows that

our new algorithm is practical to implement and demonstrates sig-

nificant improvements in processing time compared to the prior

best solution’s implementation when k is small relative to n. For ex-
ample, our method processes a 200KB sample DNA sequence with

k = 1 in just 0.18 seconds compared to 174.37 seconds with the prior

best solution. Further, it is observed that significant portions of the

adapted technique can be executed in parallel, using two different

simple concurrencymodels, resulting in further significant practical

performance improvement. As an example, when using 8 cores, the

parallel implementations both achieved processing times that are

less than 1/4 that of the serial implementation, when processing a

10MB sample DNA sequence with k = 2. In an age where instances

with thousands of gigabytes of RAM are readily available for use

through Cloud infrastructure providers, it is likely that the trade-off

of additional memory usage for significantly improved processing

times will be desirable and needed by many users. For example,

the best prior solution may spend years to finish a DNA sample of

200MB for any k > 0, while this new proposal, using 24 cores, can

finish processing a sample of this size with k = 1 in 206.376 seconds

with a peak memory usage of 46GB, which is both easily available

and affordable on Cloud for many users. It is expected that this new

efficient and practical algorithm for k-mismatch shortest unique

∗
Authors are in alphabetical order.

†
Supported in part by the U.S. National Science Foundation grant CCF-1703489.

‡
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5794-4/18/08. . . $15.00

https://doi.org/10.1145/3233547.3233564

substring finding will prove useful to those using the measure on

long sequences in fields such as computational biology.

CCS CONCEPTS
• Theory of computation → Pattern matching; Sorting and
searching; Parallel algorithms; • Applied computing → Bioin-
formatics; • Information systems → Information retrieval;

KEYWORDS
String, Shortest Unique Substring, Mismatch, Hamming Distance

ACM Reference Format:
Daniel R. Allen, Sharma V. Thankachan, and Bojian Xu. 2018. A Practical

and Efficient Algorithm for the k-mismatch Shortest Unique Substring

Finding Problem. In ACM-BCB’18: 9th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics, August 29-
September 1, 2018, Washington, DC, USA.ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3233547.3233564

1 INTRODUCTION
The computer science subfield known as string processing focuses

on the design and analysis of algorithms which process sequences

of characters, commonly referred to as strings. The algorithms

from this subfield find applications in many problem spaces. Use

cases range from powering fast searches for a word or phrase in

electronic documents on personal computing devices or the Web,

to efficiently processing a body of text in a text editor or word

processor application in order to provide spell-checking and syntax

highlighting functionality, to finding faint patterns in DNA and

protein sequences [5]. String processing has been said to form

the heart of the field of computational molecular biology, where

biological constructs such as DNA and proteins are abstracted to

sequences of characters which can be studied independently from

their complex biological environments [5].

In 2005, Haubold et al. demonstrated that the shortest unique

substring (SUS) is a useful construct for alignment free genome

comparison [6]. A SUS as presented by the authors is described as a
substring which only occurs once in a sequence such that any reduc-

tion of its length would result in the loss of its uniqueness property.

These authors presented a string processing algorithm which relies

upon generalized suffix trees to detect shortest unique substrings

across a set of sequences, but did not analyze the performance of

the presented algorithm rigorously.

Nearly a decade later in 2013, the SUS finding problem was re-

visited by Pei et al. where the authors noted additional applications

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

428

https://doi.org/10.1145/3233547.3233564
https://doi.org/10.1145/3233547.3233564

for the construct including intelligent snippet selection in docu-

ment search, polymerase chain reaction primer design in molecular

biology, identification of unique DNA signatures of closely related

organisms, and context extraction in event analysis [11]. Here the

authors present algorithms which process an input string of length

n and can answer SUS queries, that is, they return a single SUS
which spans over a given index of the input string. One algorithm

presented uses a suffix tree and can answer a query in O (n) time.

Another algorithm is presented which can find a SUS for every

index in the string inO (n2) time and subsequently can answer each

query with a precomputed SUS value in O (1) time. Both strategies

require O (n) space.
The following year, Tsuruta et al. presented an algorithm which

calculated a SUS for every index of an input string inO (n) time and

space using suffix arrays [14]. The same year, another independent

O (n) time O (n) space SUS finding algorithm was presented by İleri

et al. in [9] which was demonstrated through empirical data to be

significantly more space efficient in practice than the solution by

Tsuruta et al. while the processing times of the two algorithms

were nearly the same. Another notable work in 2014 by Hu et al.

proposed use of an O (n) space indexing structure which can be

constructed in O (n) time and can subsequently be used to answer

queries for a SUS which contains a given substring of the input in

O (1) time [8].

In 2017, Hon, Thankachan, and Xu (HTX) presented a time and

space optimal SUS finding solution in [7]. The solution has O (n)
time complexity for finding a SUS for each index in an input string,

and works in the space of the two length n output arrays which in

the end hold the beginning and end indices of the SUS found for each
corresponding index in the input string. Presented experimental

data indicates that the solution has significantly better time and

space performance in practice than comparable existing SUS finding
solutions.

An additional contribution of [7] was the proposal of an approx-
imate version of the SUS finding problem where the uniqueness

constraint is more strict than in the exact version of the problem.

The proposed approximate version requires that the substrings be

unique even allowing for up to k mismatches, which is expected

to be useful for applications in subfields such as computational

biology where factors like genetic mutation and experimental er-

ror make approximate string matching necessary. This concept of

approximate matching has proven useful with other constructs, for

example in [13] experimental results showed that increasing a sim-

ilar k-mismatch parameter applied to average common substring

finding lead to better results when estimating the evolutionary

distance between pairs of primate genomes.

After proposing the k-mismatch SUS finding problem, the au-

thors of [7] proceed to present an algorithm which solves the prob-

lem when k > 0, which is the hard case, for an input string of

length n in O (n2) time and O (n) space by performing a series of

calculations and transformations in-place on two length n arrays.

Notably, only one step in the series requires greater thanO (n) time.

Our contribution.
• This paper’s primary contribution is to demonstrate how

strategies presented by Thankachan et al. in [13] in the con-

text of solving the k-mismatch average common substring

problem can be adapted and applied to solve the aforemen-

tioned time-expensive step from the HTX k-mismatch SUS
finding algorithm. The adaptation leads to a new algorithm

with overall expected time complexity of O (n logk n) and
O (nk) space complexity

1
, a significant improvement on the

performance of the best prior work for approximate SUS

finding.

• An additional contribution of this work comes in the area of

practical performance improvement, where it is shown that

the most time-expensive step in the new algorithm can be

effectively parallelized to take advantage of modern multi-

core CPUs. Further, it is observed that the concurrency mod-

els applied to the new algorithm are also applicable to the

k-mismatch average common substring finding algorithm

presented in [13].

• The newly proposed algorithm for k-mismatch SUS finding
has been fully implemented and is ready for use. The imple-

mentation is demonstrated to have achieved significantly

improved processing times for approximate SUS finding,

compared to the implementation of the HTX solution, when

k is small relative to n, which is typically true in genomic

sequence research due to the fact that the error rate of DNA

sequencing instruments keeps coming down. For example,

the serial implementation of the new algorithm processes a

200KB sample DNA sequence with k = 1 in just 0.18 seconds,

compared to 174.37 seconds required by the HTX implemen-

tation. As an example, when using 8 cores, the parallel im-

plementation gets a further speedup by a factor of over 4,

when processing a 10MB sample DNA sequence with k = 2.

• While the new proposal has a higher space complexity than

the HTX solution, and does indeed use considerably more

memory in practice, this is likely to be an acceptable and

needed trade-off for the improved processing times in many

cases at the age of affordable Cloud infrastructure. For exam-

ple, projecting out based on observed run times of the HTX

solution, it can be expected that the solution may take more

than 7 years to process a 200MB sample DNA input (for any

k > 0), which is too long for a user to wait. In contrast, the

new proposal, using 24 cores, finished processing a sample of

this size with k = 1 in 206.376 seconds with a peak memory

usage of 46GB which is both easily available and affordable

from Cloud for many users. It is expected that this new tool

for k-mismatch shortest unique substring finding will prove

useful to those using the measure on long sequences in fields

such as computational biology.

1
Note that the algorithm presented in [12], which has no implementation yet by the

authors of [12], is similarly adaptable, and solves the k -mismatch SUS finding problem

inO (n log
k n) time andO (n) space, in theory. However, this paper focuses on adapt-

ing the algorithm from [13] for its practicality of implementation and competitive

expected time complexity.

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

429

2 PROBLEM FORMULATION AND
PREPARATION

Consider a string S of n characters each drawn from an alphabet.

S[1] references the first character in S , S[n] references the last char-
acter, and S[i] references the ith character in the string. A substring

of S spanning from S[i] to S[j] (inclusive, i ≤ j) is represented as

S[i ..j]. An indexm of S is covered by a substring S[i ..j] iff i ≤ m ≤ j .
The length of a substring S[i ..j] is denoted |S[i ..j]|. The suffix of S
which begins at index i is represented by Si .

The Hamming distance between two equal length strings is

defined as the number of indices at which characters differ between

the two strings. A substring S[i ..j] is said to be k-mismatch unique

if there exists no other substring of equal length S[i ′..j ′], i ′ , i ,
such that the Hamming distance between the two substrings is ≤ k .
A substring that is not k-mismatch unique is a k-mismatch repeat.

Definition 2.1. Of a given string S , a k-mismatch shortest unique

substring covering index m, denoted as SUSkm , is a k-mismatch

unique substring covering indexm, such that no other k-mismatch

unique substring coveringm with a shorter length exists.

We say that a k-mismatch SUS is an exact SUS when k = 0, and

anapproximate SUS when k > 0.

Problem (k-mismatch SUS finding). For a string S of length n and a

value k , 1 ≤ k ≤ n−1, output two length n arraysA and B such that,

for every index i in S , S[A[i]..B[i]] is the rightmost SUSki , using
expected O (n logk n) time and O (nk) space.

In this work, we focus on the hard case where 1 ≤ k ≤ n − 1,
because: (1) an optimal and practical solution with O (n) time and
space complexities already exists for the exact SUS case (k = 0) [7].
(2) The solution for the case where k ≥ n is trivial, as SUSnm ≡ S for
any indexm.

Definition 2.2. The k-mismatch longest common prefix of two suf-

fixes Sp and Sq , denoted as LCPk (Sp , Sq), represents thek-mismatch

longest common prefix to suffixes Sp and Sq , that is, the longest
prefix which has Hamming distance ≤ k between the two suffixes.

The notation of LCP0 (Sp , Sq) is often simplified as LCP (Sp , Sq)
when it is clear from the context.

Definition 2.3. The k-mismatch left-bounded longest repeat start-
ing at index i , denoted as LLRki , is a k-mismatch repeat S[i ..j] such
that j = n or S[i ..j + 1] is k-mismatch unique.

Clearly, |LLRki | = max{|LCPk (Si , Sj) |, j , i}, for every i .

Idea of the solution. Given an array of length n which at every

index i holds the value |LLRki |, algorithms presented in [7] can be

directly applied to calculate SUSki for every index i in S in O (n)

time and O (n) space. Calculating all LLRki values for the string S is

the one algorithm presented in [7] that has O (n2) time complexity

when k > 0. The dynamic programming-based strategy used in

their work involves comparing every pair of distinct suffixes of S
which clearly takes O (n2) time. In [13], an algorithm for finding

the k-mismatch average common substring of two input strings X
and Y is presented. A step of the algorithm involves calculating, for

every index i in X , maxj {|LCPk (Xi ,Yj) |} in expected O (m log
k m)

time, wherem is the combined length of X and Y . This is clearly

similar to the calculation of |LLRki | values for each index in S . In
the next section, it will be demonstrated that, with modifications,

the same strategy from [13] can indeed be applied to calculate all

|LLRki | values in expected O (n logk n) time.

3 THE ALGORITHM
This section presents an adaptation and modification of the algo-

rithm and associated analysis from [13], to make it operate on the

single input string S and to calculate |LLRki | for every index i in S .

Definition 3.1 (Order-h Partition). An order-h partitionCh , where
h is an integer 1 ≤ h ≤ k , is a collection {P1, P2, . . .} of subsets of
the set of all suffixes of S , such that for each (Si , Sj), i , j pair of

suffixes of S , there exists a subset P in Ch where

|LCPh−1 (Si , Sj) | = min

{
|LCPh−1 (s, s ′) | | s, s ′ ∈ P

}

The weight of Ch , W (Ch), is the sum of sizes of all P ∈ Ch . Let

Ψh−l (P) = min{|LCPh−1 (s, s ′) | | s, s ′ ∈ P }.

The following subsections will demonstrate how an order-k

partition with expected weightO (n logk n) can be constructed, and

that an order-k partition can be used to populate an array holding

every |LLRki | value in linear time with respect to the partition’s

weight.

3.1 Constructing an order-k partition
The approach presented here to construct an order-k partition is

iterative. First, an order-1 partition is constructed using the suffix

tree of S , then an order-2 partition is constructed using the order-1

partition, and so on until finally an order-k partition is constructed.

For the purposes of this algorithm, two properties of compact

tries over sets of suffixes (for which no suffix is a prefix of any other

suffix) are important:

(1) Each non-leaf node is the lowest common ancestor of at least

2 suffixes since each non-leaf node has at least 2 non-empty

sub-trees descending from it.

(2) Every pair of suffixes contained in such a trie will have 1

lowest common ancestor non-leaf node.

In order to ensure that no suffix is a k-mismatch prefix of another,

each suffix of S has a sequence $1$2 . . . $k+1 of k + 1 special char-
acters which do not appear in S appended to its end. Now, as an

initial step, a suffix tree (a compact trie over all suffixes) of S is

constructed which will be maintained throughout the LLRk finding

algorithm. The suffix tree requires O (n) space and construction

takes O (n) time [15].

To generateC1
, iterate over each non-leaf nodeu of the suffix tree

of S , and at each such node, collect a subset P ∈ C1
which consists

of all of the suffixes corresponding to leaves which are descendants

of u. For correctness, observe that each pair (Si , Sj), i , j of suffixes

will be included in the subset P , collected at the non-leaf node

that is their lowest common ancestor in the tree, and that both

|LCP0 (Si , Sj) | and Ψ0 (P) are equal to the string-depth of this node.

Additionally, since each suffix of S belongs to at most 1 non-leaf

node at each level of the suffix tree, it can immediately be seen

thatW (C1) ≤ nH , where H is the height of the suffix tree. Another

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

430

way to think about each subset P collected is that, each contains at

least 2 suffixes that have different characters at index Ψh−1 (P) + 1,

while all of the included suffixes have length Ψh−1 (P) prefixes that
are within Hamming distance h − 1 of each other; this is clearly

the case in the outlined h = 1 case, and will be maintained as an

invariant across each iteration to generate subsequent higher order

partitions.

Now it will be demonstrated generally how a partition Ch can

be generated from a partition Ch−1. For each P in Ch−1, create a
new set P ′ which consists of the suffixes from P with each having

had its first Ψh−2 (P) + 1 characters deleted, and create a compact

trie ∆ over the suffixes in P ′. Then, iterate over each non-leaf node

w in ∆, and at each such node collect a subset P ′′ ∈ Ch which

has one entry for each suffix corresponding to a leaf node in the

trie which is a descendant ofw . Rather than adding the suffix for

each descendant leaf node directly to P ′′, instead the original suffix

which had a prefix deleted to create the corresponding entry in P ′

is used. This can be equivalently expressed as, for each P in Ch−1:

P ′ = {Si+Ψh−2 (P)+1 | Si ∈ P }

and, where Z is the set of suffixes corresponding to the descendant

leaves ofw :

P ′′ = {Si | Si+Ψh−2 (P)+1 ∈ Z }

Conceptually, the Ψh−2 (P) + 1 length prefix deletion when gener-

ating each P ′ can be thought of as accepting and moving past the

mismatch occurring at index Ψh−2 (P)+1 in at least 2 of the suffixes

in P . The subsequent processing of P ′ follows the same logic used

when processing the set of all suffixes of S in the h = 1 case, once

again a compact trie structure is used to identify indices where next

mismatches occur between suffixes with length Ψh−1 (P ′′) prefixes
that are within Hamming distance h − 1 of each other. Note that

the height of ∆ is ≤ H , this is clear because the compact trie is

created over a subset of the suffixes over which the suffix tree of S

was created. It follows thatW (Ch) ≤ H ·W (Ch−1) sinceW (Ch−1)
is the total number of suffixes across all P ′, and each suffix in a

particular P ′ corresponds to a leaf node which is the descendant of

just 1 non-leaf node per level in the corresponding ∆. Combining

this observation with the known bound onW (C1), it is seen that

W (Ck) = O (nHk).

3.1.1 Correctness. Under the assumption that Ch−1 is an order-

(h − 1) partition, it will now be formally proven that the collection

Ch , generated as specified previously, is an order-h partition. By

our assumption, it is the case that for any (Si , Sj), i , j pair there

exists a P ∈ Ch−1 such that |LCPh−2 (Si , Sj) | = Ψh−2 (P). Con-
sider ∆ to be the trie constructed while processing P . Based on the

definition of P ′ over which ∆ was created, and previously noted

trie properties, it is known that a nodew exists in ∆ which is the

lowest common ancestor of the leaves corresponding to suffixes

Si+Ψh−2 (P)+1 and Sj+Ψh−2 (P)+1 and the string-depth of w in ∆ is

equal to |LCP (Si+Ψh−2 (P)+1, Sj+Ψh−2 (P)+1) |. It follows then, based

on its definition, that the new set P ′′ ∈ Ch constructed atw contains

both Si and Sj . Further, it is clear that Ψ
h−1 (P ′′) = |LCPh−1 (Si , Sj) |

since exactly one additional mismatch between Si and Sj was by-
passed when processing P . This completes the proof.

3.1.2 Time and space complexity. When processing each P ∈

Ch−1, the set P ′ can be collected in O (|P |) time. Construction of

the corresponding compact trie ∆ can be completed in overall

O (|P ′ | log|P ′ |) time by lexicographically sorting the suffixes in P ′,
computing the longest common prefix lengths between all pairs

of suffixes which are consecutive in the sorted order in O (|P ′ |)
time, and then using a standard linear time suffix tree construction

technique [2, 13]. Combining for all P ∈ Ch−1 the total time spent

constructing the compact tries while generating Ch from Ch−1 is

O (W (Ch−1) logn). Producing the P ′′ sets from the generated tries

takes, in total, time proportional to the sum of sizes across all of

the sets that are generated, which is known to be O (W (Ch)) =

O (W (Ch−1)H). Adding the time for trie creation with the time

spend generating P ′′ sets results in the total time spent generating

Ch fromCh−1:O (W (Ch−1) (logn +H)). The total time for creating

Ck is then (logn + H)
∑k−1
h=1W (Ch) = O (nHk−1 (H + logn)).

On the topic of space complexity, observe that when creating

a P ′′ ∈ Ch only a single P ∈ Ch−1 is needed. Based on this ob-

servation, it is clearly possible to generate the members of Ck in

a depth-first manner in which there is only ever one member in

existence at a time for each Ch for 1 ≤ h < k . Using this strategy,
O (nk) space complexity can be achieved, because the space usage

of one member from Ch , 1 ≤ h < k , is O (n). Also note that we do
not store all the members ofCk in memory. Rather, once a member

of Ck is generated in the depth-first manner, it will be processed

and then discarded (see details in Section 3.2).

Lemma 3.2. Members of an order-k partition Ck of total weight
O (nHk) can be generated in sequence using O (nk) working space in
O (nHk−1 (H + logn)) time.

3.2 Processing members of an order-k partition
An array B of length n is initialized such that all elements are 0.

As each member P ∈ Ck is generated (Section 3.1), it is processed

right away on the fly, possibly resulting in updates to elements in B,

and then it is discarded. When processing of all members P ∈ Ck is

complete, B will hold at each index i the value |LLRki |. Processing
of each member P consists of the following steps:

(1) For each suffix s ∈ P , find the lexicographic rank in S
of the suffix s ′ which is obtained by deleting the length

(Ψk−1 (P) + 1) prefix from s , and place this rank in a pair

with s ′. Conceptually, the s ′ suffixes are the remainder of

the suffixes in P after deleting prefixes up to and including

the character at the index of the first kth mismatch occur-

rence across all of the suffixes in P . Note then, that the first
mismatch occurring between any two s ′ suffixes will be

no greater than the (k + 1)th mismatch between the corre-

sponding two members of P . The lexicographic rank of a

given s ′ can be computed in O (1) time using the suffix tree

of S [13].

(2) Sort all pairs from the previous step in an array V by their

s ′ rank. Note that this sorting step moves pairs which have

the longest common prefixes between their s ′ suffixes closer

together.

(3) Let δ = (Ψk−1 (P) + 1) and lcaStringDepth(Sx , Sy) be a func-
tion that returns the string-depth of the lowest common

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

431

ancestor node of the two leaf nodes in the suffix tree of S
which correspond to the distinct suffix arguments Sx and

Sy . Iterate over the indices into the array V of sorted pairs

from index p = 1 to p = |V |. At each index, let i be the index
in S at which the suffix s starts, where s is the suffix in P
from whichV [p].s ′ was created, and calculate two candidate
values based on adjacent pairs:

a =



δ + lcaStringDepth(V [p].s ′,V [p − 1].s ′), if p > 1

0, otherwise

and:

b =



δ + lcaStringDepth(V [p].s ′,V [p + 1].s ′), if p < |V |

0, otherwise

then update:

B[i]← max{B[i],a,b}

Note that lcaStringDepth(Sx , Sy) can be computed in O (1)
time using the suffix tree of S [3].

3.2.1 Correctness. Observe that the candidate values used to

update an element at index i in B are always either less than or

equal to |LCPk (Si , So) | where So is the other suffix s corresponding
to the s ′ from the relevant adjacent pair in V . This is clear because

it is known that all members of P had at most k mismatches up

to and including index (Ψk−1 (P) + 1), and by adding the string-

depth of the lowest common ancestor of the two s ′ suffixes to

this index, the index just prior to the next mismatch between Si
and So was calculated. From this observation, and the fact that no

suffix Si appears multiple times in the same P ∈ Ck , it follows that

the final value at index i in B after processing all members of Ck

is no greater than maxj,i |LCPk (Si , Sj) |. Let j = m be the index

where |LCPk (Si , Sj) | is maximized for any given i . By definition,

Ck must include a member P such that Si , Sm ∈ P and Ψk−1 (P) =
|LCPk−1 (Si , Sm) |. During processing of this P , the sorting in step 2

will arrange the pairs corresponding to Si and Sm to be adjacent and

B[i] will be updated to the value |LCPk (Si , Sm) |. This concludes the

proof that after processing all members ofCh , the array B will have

been correctly updated to hold at each index i the value |LLRki |.

3.2.2 Time complexity. The processing ofCk consists of sorting

and iterating over sets which altogether have a total size ofO (nHk),

so a time complexity bound of O (nHk (logn)) is obvious. However,
as described in section 2.2 of [13] the logn factor can be eliminated

by observing that all of the sorting required is over integers in the

range from 1 to n and thus can be accomplished using linear-time

sorting algorithms like count sort. This optimization leaves a time

complexity of O (nHk).

Lemma 3.3. An array B of length n containing at each index i the
value |LLRki | can be computed by processing Ck in O (nHk) time.

Combining lemma 3.2 and lemma 3.3 yields the following theorem.

Theorem 3.4. Given a string S of length n, and an integer k ≥ 1,
an array B of length n can be computed such that for every index
1 ≤ i ≤ n the value at B[i] is equal to |LLRki | inO (nHk−1 (H + logn))
time using O (nk) space.

Since the expected height of a suffix tree for a string of length n is

O (logn) [1, 13], we can have:

Corollary 3.5. Given a string S of length n, and an integer k ≥ 1,
an array B of length n can be computed such that for every index
1 ≤ i ≤ n the value at B[i] is equal to |LLRki | in O (n logk n) time
using O (nk) space.

3.3 Parallel order-k partition construction and
processing

It has been demonstrated in the prior subsections that each member

of an order-k partition can be constructed through independent

processing of each non-leaf node of the suffix tree of S . Further,
it has been shown that each member of an order-k partition can

be processed independently to generate candidate values for each

index i of the |LLRk | array, and that the maximal candidate value

generated in this way for any index i will be equal to |LLRki |. A
contribution of this paper is the observation that this independence

means that multiple members ofCk can be computed and processed

concurrently, each independently on separate computing threads

with some form of synchronization only required when comparing

candidate values, for the same index of the |LLRk | array, which
were generated by different threads. While this parallelism can

provide significant practical improvement to processing times on

modern multi-core machines, these gains clearly come at the cost

of an additional factor t , the number of concurrent threads, on the

space complexity of the solution, because there are t independent
instances of the depth-first search like procedure for the construc-

tion and processing of the members of Ck . However, it is shown
in section 4 that with a good choice of concurrency model, the

additional space usage observed in practice is often fairly minimal

and that significant processing time improvements can be achieved

even with a relatively low t value. It is worth noting that this

strategy for parallelism can be similarly applied to the k-mismatch

average common substring finding proposal from [13].

3.4 Computing SUS values
Definition 3.6 (k-mismatch LSUS). The k-mismatch left-bounded

shortest unique substring that starts at index i , denoted as LSUSki , is
a k-mismatch unique substring S[i ..j], such that i = j or otherwise
every proper prefix of S[i ..j] is a k-mismatch repeat.

Prior to passing the array B as input into the standalone algo-

rithms presented in [7], it is necessary to make a final transforma-

tion such that the array holds, at every index i , the ending index

of LSUSki , or NIL if no such LSUSki exists. Fact 4.2 from [7] can be

used to update B, holding all |LLRki | values, such that at each index

i it instead holds the ending index of LSUSki , if it exists, and NIL
otherwise, in one O (n)-time iteration as follows.

B[i] =



NIL, if B[i] = n − i + 1

i + B[i], otherwise

Finally, a new array A of length n can be passed along with B into

Algorithms 3 and then 4 from [7] in succession to update the two

arrays in place such that, for every index i in S , S[A[i]..B[i]] is the

rightmost SUSki . These algorithms each requireO (n) time andO (1)

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

432

additional working space. Clearly, the time and space spent creating

and processing the order-k partition Ck dominates, and thus the

overall expected time complexity of this k-mismatch SUS finding
algorithm is O (n logk n) while the space complexity is O (kn).

Theorem 3.7. Given a string S of size n and an integer k , one can
find SUSki of S for every index i using O (n logk n) expected time and
O (kn) space.

4 EXPERIMENTAL STUDY
Note that our proposal and implementation can also be applied to

the exact SUS finding problem (k = 0). However, the experimental

results are uninteresting and thus have been omitted, since the

optimalO (n) time and space in-place solution for exact SUS finding
presented in [7] is clearly superior. This is consistent with what we

claimed earlier in the paper that the main contribution of this work

lies in the approximate SUS finding (k > 0), which is the harder

case, and for which the best prior work has an any-caseO (n2) time

complexity and thus does not scale well to long strings.

Setup. Experiments were run on a dedicated c5.9xlarge EC2 in-

stance hosted by Amazon Web Services,
2
featuring 3.0 GHz Intel

Xeon Platinum processors with 36 cores, and 72GB RAM, running

the Amazon Linux 2 operating system. In each experiment, the

input string S of length n was drawn from the first n characters

of the largest DNA file available from the Pizza&Chili corpus
3
. The

peak memory usage data presented in this section was collected

using the GNU time executable. The presented timing data was

collected by adding code to the implementations which records the

start and end time of processing. This internal timing strategy was

used in order to focus on processing times of the implementations

without including time spent on disk I/O operations required to

read input and write output.

Implementation. In order to explore the practical performance

of the algorithm presented in this paper, the C++ implementation

from [13] was modified to use the presented algorithm to calcu-

late SUSki values for every index i of an input string
4
. The adapted

implementation maintains the same strategy for simulating opera-

tions on the suffix tree, using a suffix array (SA), inverse suffix array

(ISA), LCP array, and range minimum query (RMQ) tables. SA con-

struction makes use of the libdivsufsort library [10], while the

ISA, LCP array, and RMQ tables are built using the SDSL library [4].

As [13], our implementation did not use supported compression

techniques on the structures produced by the SDSL library in order

to optimize for time performance. The executable used for collect-

ing experimental results was compiled using version 7.2.1 of the

GCC C++ compiler with the -O3 optimization option applied.

4.1 Two parallel strategies
It was noted in section 3.3 that construction and processing of

relevant order-k partitions can be completed in parallel across t
threads. In order to demonstrate the practicality and effectiveness

of this parallelization, two parallel strategies, each using a different

2
https://aws.amazon.com/

3
http://pizzachili.dcc.uchile.cl/texts.html

4
Our C++ implementation: https://github.com/dra4/k_mismatch_sus_finding

concurrency model, were implemented and evaluated in addition

to the serial algorithm.

• The first strategy uses a simple non-shared approachwherein

each thread has its own independent length n array in which

to store candidate values for the final B array holding |LLRki |
values. Then, after all members have been constructed and

processed, passes are made in serial over each of the t arrays
to populate the final B array with the overall maximum value

occurring at each index.

• The second strategy uses a shared approach where a single

length n array B is shared across all t threads. This imple-

mentation uses lock-free atomic operations when accessing

or updating a value stored at a particular index in the shared

B array to control data races and ensure correctness.

In both of the parallel strategies, non-leaf nodes of the suffix tree

of S (from which members of the order-k partition are generated)

are initially divided evenly among the t threads. The non-shared
implementation distributes the nodes such that nodes with a lower

string-depth in the suffix tree will be processed first, in an effort to

ensure that the most expensive, with regards to the amount of work

necessary to construct them, members of the order-k partition are

constructed early, and in an attempt to roughly balance the num-

ber of expensive members initially assigned to each thread. The

shared implementation shuffles the non-leaf nodes and distributes

them randomly to the threads, in an effort to avoid collisions be-

tween updates to the value at the same index of the shared B array,

while maintaining an expected rough balance of expensive mem-

bers across threads. Each thread of both parallel implementations

uses a simple work-stealing strategy to dynamically rebalance re-

maining work any time an individual thread finishes its assigned

work, until no work remains across all threads. The non-shared

approach has the advantage of being quite simple and not needing

to worry about possible performance degradation due to update

collisions, but this clearly comes at the cost of additional memory

use.

4.2 Results
A note regarding the experimental results on peak memory usage

presented in this section is that, a brief initial spike inmemory usage

was generally observed during the RMQ table construction. As a

result, expected slopes in peak memory usage plots (as explained

later in this section by varying t or k values) do not emerge until

these values are sufficiently high, as to cause memory use during

partition construction to surpass the initial RMQ construction spike.

This factor should be kept in mind when interpreting the peak

memory usage graphs presented in the rest of this section.

Performance affected by the values of k .

• Time: (1) In the processing time graph included in Figure 1,

it can be seen that all three implementations of this paper’s

proposed algorithm perform significantly better than the ex-

isting HTX solution from [7], when k values are small, which

is typically true due to the error rate of DNA sequencing

instruments decreasing over time. (2) Also seen is the ex-

pected exponential growth in processing time as k increases.

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

433

https://aws.amazon.com/
http://pizzachili.dcc.uchile.cl/texts.html
https://github.com/dra4/k_mismatch_sus_finding

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

k

200KB Input

HTX

Serial

Shared, t=8

Non-shared, t=8

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
M

B
s)

k

200KB Input

HTX

Serial

Shared, t=8

Non-shared, t=8

Figure 1: Processing time and peak memory usage measurements across implementations, given a 200KB input string and
varying k values. HTX from [7], along with the serial and two parallel implementations of this paper’s proposed algorithm.

It is clear that after k grows beyond a certain point, rela-

tive to the input string length, the HTX solution (which has

a processing time independent of k) offers superior time

performance. (3) The non-shared and shared parallel imple-

mentations consistently outperform the serial implementa-

tion of this paper’s proposal. Time performance between

the two parallel implementations is quite similar, with the

non-shared approach achieving slightly faster times.

• Space: (1) The graph in Figure 1 showing peakmemory usage

shows that, as expected, all implementations of this paper’s

proposal use more memory than the in-place HTX algorithm.

(2) This graph also illustrates the expected linear relationship

between the k value and peak memory usage by this paper’s

implementations while t and n values are held constant. (3)

As anticipated, among this paper’s implementations, the

serial version of the algorithm uses the smallest amount of

memory, while the non-shared parallel strategy uses the

most.

Performance improvement via parallelism. Graphs in Figure 2

depict the impact of the thread count, t , on processing time and

peak memory usage required by the parallel implementations of

our proposal. Note that the advantage of our proposal against the

HTX solution has been demonstrated in Figure 1, and thus in this

figure we focus on the comparison of the serial and parallel imple-

mentations of our proposal.

• Time: (1) The processing time plots show that the first ad-

ditional threads result in the largest step improvements to

processing time with returns diminishing and eventually

leveling out and subsequently even starting to degrade. (2)

Notably, the level point occurs later for the larger input string.

This pattern is fairly intuitive, as there must be enough work

available for assignment to each thread to offset the costs

associated with allocating that thread and dividing and/or

combining work across additional threads. This trend was

observed to continue in an additional experiment with the

shared parallel implementation which processed a 200MB

input string when k = 2 in 1,367.22 seconds with t set to 12,

and processed the same input in 1,249.94 seconds with t set
at 24. (3) The processing time results in these graphs show

that with sufficiently high values of t in these scenarios both

parallel implementations were able to achieve speeds more

than 4 times faster than the serial implementation, with the

non-shared implementation again slightly faster than the

shared implementation.

• Space: While the peak memory usage of both parallel im-

plementations diverges from the reference point set by the

serial implementation as t grows large, as expected, growth
is much steeper for the non-shared implementation.

Scalability. The graphs of Figure 3 present the scalability of our

proposal when the input string size n gets larger. Again, here we

focus on the comparison of the serial and parallel implementations

of our proposal, as their advantage against the HTX solution has

been well demonstrated by Figure 1.

• Time: (1) When k is relatively small, our proposal scales well

when the string size grows, showing its nearly linear time

complexity, in its both serial and parallel implementations. (2)

Comparing the processing time graphs for k = 1 and k = 2,

it can be observed that the factor, by which parallelism in-

creases processing speed, is consistently larger in the k = 2

case, where there is overall a greater amount of work to

be done in the partition generation and processing stage.

(3) In both cases, the parallel implementations show con-

sistent significant improvements in processing time, when

compared to the serial implementation. (4) Once again, pro-

cessing times differ only slightly between the two parallel

implementations, with the non-shared implementation show-

ing a relatively small speed advantage when compared to

the shared implementation.

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

434

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

t

10MB Input, k=2

Serial (Reference)

Shared

Non-shared2

4

8 12 24 36

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

t

10MB Input, k=2

Serial (Reference)

Shared

Non-shared

2 4

8

12

24

36

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

t

20MB Input, k=2

Serial (Reference)

Shared

Non-shared2

4
8 12 24 36

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 5 10 15 20 25 30 35 40

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

t

20MB Input, k=2

Serial (Reference)

Shared

Non-shared

2 4
8

12

24

36

Figure 2: Processing time and peakmemory usagemeasurements across implementations, given 10MB and 20MB input strings
and varying t (thread count) values. Measurements from the two parallel implementations of this paper’s proposed algorithm
are included along with measurements from the serial implementation using 1 thread as a reference point.

• Space: (1) The peak memory usage graphs show that in the

k = 1 cases, neither parallel implementation needs more

space than the serial implementation, because all implemen-

tations do not need enough extra memory to overcome the

initial memory peak seen during RMQ table construction. (2)

However, in the k = 2 cases, the non-shared implementation

does surpass that point and starts diverging upwards as n
increases, as expected.

4.3 Summary
As demonstrated by the experimental results presented in this sec-

tion, the primary advantage of the newly proposed algorithm over

the prior best solution from [7] is significantly lower processing

times when k is small relative to n. The improved processing times

clearly come at the cost of additional memory usage. In an age

where instances with thousands of gigabytes of RAM are readily

available for use through Cloud infrastructure providers, this is

expected to be an acceptable trade-off in many cases where the im-

proved processing times make processingmuch longer input strings

feasible. The results from the parallel implementations demonstrate

that further significant practical improvement to processing times

can be achieved through parallelism when multiple CPU cores are

available. It is expected that the shared parallel implementation

will be preferable as it has been observed to consistently perform

nearly as well as the non-shared parallel implementation while

using considerably less memory with high n and t values. When

multiple CPU cores are available, choosing an initial t value which
is equal to the number of available cores may be sensible since little

degradation of processing time was observed for having “too high”

of a t value. If memory is constrained, choosing a lower t value may

be preferable and still provide significant practical performance

improvement since the first few additional threads were observed

to provide the largest incremental processing time improvements.

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

435

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

Input Size (MBs)

k=1

Serial

Shared, t=8

Non-shared, t=8

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

Input Size (MBs)

k=1

Serial

Shared, t=8

Non-shared, t=8

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20

P
ro

ce
ss

in
g

 T
im

e
 (

se
co

n
d

s)

Input Size (MBs)

k=2

Serial

Shared, t=8

Non-shared, t=8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18 20

P
e

a
k
 M

e
m

o
ry

 U
sa

g
e

 (
G

B
s)

Input Size (MBs)

k=2

Serial

Shared, t=8

Non-shared, t=8

Figure 3: Processing time and peakmemory usagemeasurements across implementations, given input strings of varying sizes
and k values of 1 and 2. Measurements from the serial and two parallel implementations of this paper’s proposed algorithm
are included.

5 CONCLUSION
This paper revisited the k-mismatch shortest unique substring find-

ing problem proposed by [7] and demonstrated that techniques

presented in [13] could be adapted to help solve the problem in

improved expected time complexity of O (n logk n) while maintain-

ing a practical space complexity of O (kn). Further, it was observed
that the techniques from [13] could be executed in parallel both in

this problem’s context as well as in the context of the k-mismatch

average common substring problem which was worked on in the

referenced paper. Experimental study showed that the new algo-

rithm is practical to implement and demonstrated significantly

improved processing times for small k values relative to n when

compared to the implementation of the best prior solution from [7].

Experimental results were also presented which showed further

practical performance improvement achieved through parallelism

using two simple concurrency models. It is expected that this new

efficient and practical algorithm for k-mismatch shortest unique

substring finding will prove useful to those using the measure on

long sequences in fields such as computational biology.

REFERENCES
[1] Luc Devroye, Wojciech Szpankowski, and Bonita Rais. 1992. A Note on the

Height of Suffix Trees. SIAM J. Comput. 21 (1992), 48–53.
[2] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. 2000. On the

Sorting-complexity of Suffix Tree Construction. J. ACM 47 (2000), 987–1011.

[3] Johannes Fischer and Volker Heun. 2006. Theoretical and Practical Improvements

on the RMQ-Problem, with Applications to LCA and LCE. In Proceedings of the
Annual Symposium on Combinatorial Pattern Matching (CPM). 36–48.

[4] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. 2014. From Theory

to Practice: Plug and Play with Succinct Data Structures. In Proceedings of the
International Symposium on Experimental Algorithms. 326–337.

[5] Dan Gusfield. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press.

[6] Bernhard Haubold, Nora Pierstorff, Friedrich Möller, and Thomas Wiehe. 2005.

Genome comparison without alignment using shortest unique substrings. BMC
Bioinformatics 6 (2005), 123.

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

436

[7] Wing-Kai Hon, Sharma V. Thankachan, and Bojian Xu. 2017. In-place algorithms

for exact and approximate shortest unique substring problems. Theoretical
Computer Science 690 (2017), 12 – 25.

[8] Xiaocheng Hu, Jian Pei, and Yufei Tao. 2014. Shortest Unique Queries on Strings.

In Proceedings of the International Symposium on String Processing and Information
Retrieval (SPIRE). 161–172.

[9] Atalay Mert Ileri, M Oğuzhan Külekci, and Bojian Xu. 2015. A simple yet time-

optimal and linear-space algorithm for shortest unique substring queries. Theo-
retical Computer Science 562 (2015), 621–633.

[10] Yuta Mori. [n. d.]. libdivsufsort: A lightweight suffix-sorting library.

https://github.com/y-256/libdivsufsort ([n. d.]).
[11] Jian Pei, Wush Chi-Hsuan Wu, and Mi-Yen Yeh. 2013. On shortest unique sub-

string queries. In Proceedings of IEEE International Conference on Data Engineering

(ICDE). 937–948.
[12] Sharma V. Thankachan, Alberto Apostolico, and Srinivas Aluru. 2016. A Provably

Efficient Algorithm for the k -Mismatch Average Common Substring Problem.

Journal of Computational Biology 23 (2016), 472–482.

[13] Sharma V. Thankachan, Sriram P. Chockalingam, Yongchao Liu, Alberto Apos-

tolico, and Srinivas Aluru. 2016. ALFRED: A Practical Method for Alignment-Free

Distance Computation. Journal of Computational Biology 23 (2016), 452–460.

[14] Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. 2014.

Shortest Unique Substrings Queries in Optimal Time. In Proceedings of the Inter-
national Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM). 503–513.

[15] P. Weiner. 1973. Linear pattern matching algorithms. In Proceedings of the Annual
Symposium on Switching and Automata Theory (SWAT). 1–11.

Session 17: Algorithms ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

437

	Abstract
	1 Introduction
	2 Problem Formulation and Preparation
	3 The Algorithm
	3.1 Constructing an order-k partition
	3.2 Processing members of an order-k partition
	3.3 Parallel order-k partition construction and processing
	3.4 Computing SUS values

	4 Experimental Study
	4.1 Two parallel strategies
	4.2 Results
	4.3 Summary

	5 Conclusion
	References

