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Electron radiated power in cyclotron radiation emission spectroscopy experiments
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The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency
information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy. Here
we derive the expected radio-frequency signal from an electron in a waveguide CRES apparatus from first
principles. We demonstrate that the frequency-domain signal is rich in information about the electron’s kinematic
parameters and extract a set of measurables that in a suitably designed system are sufficient for disentangling
the electron’s kinetic energy from the rest of its kinematic features. This lays the groundwork for high-resolution
energy measurements in future CRES experiments, such as the Project 8 neutrino mass measurement.
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I. INTRODUCTION TO CYCLOTRON RADIATION
EMISSION SPECTROSCOPY

Following the invention of the Penning trap [1], low-energy
electrons bound with electric and magnetic fields have been
used to make some of the most precise measurements of
fundamental physics values (e.g., the g− 2 of the electron
[2,3]). The success of these measurements was contingent
on a well-developed theory relating the signal from the axial
motion of the electron in the trap to the electron’s kinematic
parameters [4].

Recently it has been proposed [5] that the technique called
Cyclotron Radiation Emission Spectroscopy (CRES) [6] may
be used to make precision measurement of nuclear β decay. In
CRES, decay electrons or positrons are trapped in a magnetic
bottle, and the cyclotron radiation from these particles gives
direct information about their total energy. Since an electric
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field would introduce a position-dependent component to the
particle energy, studies of radioactive decay require a purely
magnetic trap, eliminating the possibility of a full Penning
trap configuration.

At present, the primary application of CRES being investi-
gated is an endpoint measurement of tritium for the purposes
of measuring the neutrino mass scale by the Project 8 collab-
oration [6,7]. The determination of the neutrino mass via a
tritium endpoint measurement is a well-studied process [8],
but successful execution requires exquisite electron energy
measurement, high rejection of low-energy electron signals,
and a deep understanding of systematic uncertainties in both
electron energy and detection efficiency. CRES is also being
explored to improve measurement of Fierz interference in
neutron and nuclear β decay, which is currently limited by
detector systematics [9,10].

In order to address the understanding of systematic uncer-
tainties in Project 8 and other nuclear physics experiments
dependent on CRES, we develop here a mathematical descrip-
tion that relates the characteristics of the apparatus, the motion
of the electron, and the measured signal.

For the purposes of this paper, we will consider the current
configuration of the Project 8 prototype experiment where
electrons are produced and trapped inside a waveguide. The
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waveguide propagates the cyclotron radiation emitted by the
electrons to a receiver with minimal losses. The background
magnetic field within the waveguide consists of two contribu-
tions: a strong, uniform, background field, which is parallel
to the axis of the waveguide, and a magnetic distortion which
forms the magnetic bottle.

In Sec. II, we investigate the variation of the cyclotron fre-
quency due to the electron’s motion. In Sec. III, we derive the
electron’s radiation spectrum into the waveguide. In Sec. IV,
we study the effects of signal reflections on the measured
radiation spectrum. In Sec. V, we apply the formulas from
Secs. II, III, and IV to two examples of magnetic bottle
configurations. Finally, in Secs. VI and VII, we demonstrate
that there is sufficient information in the signal to reconstruct
the kinematic parameters of the electron.

II. MOTION AND CYCLOTRON FREQUENCY OF AN
ELECTRON IN A MAGNETIC BOTTLE

A. The need for a magnetic trap

The angular cyclotron frequency, �c, of an electron with
kinetic energy Ke and mass me, in a magnetic field B, is
given by

�c = eB

γme
= eB

me + Ke/c2
, (1)

where e is the elementary charge, c is the speed of light, and
γ the electron’s Lorentz factor. For a known magnetic field,
a measurement of the frequency of an electron’s cyclotron
radiation is also a determination of its kinetic energy [6]. The
frequency resolution of the measurement, and therefore the
energy resolution, improves with increasing observation time.
Therefore a no-work trap is necessary for an electron to be
observed for a sufficiently long time.

B. Magnetic bottle and pitch-angle definition

A magnetic bottle consists of a local minimum in the
magnitude of background magnetic field. The behavior of a
charged particle in a magnetic bottle has been well described
[4,11], so here we highlight only the elements important for
our results. If we define an electron’s instantaneous pitch
angle, θ (t ), as the angle between the local magnetic field
and the electron’s momentum, then the kinetic energy for an
electron undergoing cyclotron motion can be decomposed to
its parallel and perpendicular components as

Ke = Ke‖ + Ke⊥

= 1

2

p20
me

cos2 θ (t ) + μ(t )B(t ), (2)

where p0 is the magnitude of the electron’s initial momentum
and μ is the equivalent magnetic moment of the electron,
given by

μ(t ) = 1

2

p20
me

sin2 θ (t )

B(t )
. (3)

In the adiabatic regime, where the change in the magnetic
field direction is slow compared with the cyclotron frequency,

FIG. 1. Axial motion of an electron in a magnetic bottle. The
magnetic trap has depth�B and maximum value Bmax. The electron’s
pitch angle is defined as the angle between the electron’s momentum
vector and the direction of the local magnetic field. If the electron’s
pitch angle at the bottom of the trap satisfies Eq. (4), then the electron
undergoes an oscillatory axial motion inside the trap. The turning
point for the electron corresponds to the position when the pitch
angle is 90◦.

an electron’s equivalent magnetic moment is a constant of
motion. For the remainder of this derivation μ is treated as
time independent and the term μB(t ) behaves as a magnetic
potential energy. Electrons with pitch angles of 90 + δθ◦
or 90 − δθ◦ will have the same motion; therefore we will
only consider electrons with pitch angles between 0 and 90◦.
The pitch angle approaches 90◦ for an electron exploring
regions of increasing magnetic field, whereas the pitch angle
decreases for an electron approaching the bottom of the trap.
For every electron, we define the pitch angle at the bottom of
the trap to be θbot. Due to conservation of energy, the condition
on pitch angle for a trapped electron is

θbot � sin−1

(√
1 − �B

Bmax

)
, (4)

where Bmax is the maximum value of the magnetic field and
�B is the trap depth.

Existing CRES experiments operate at a background field
of 1T, which we use for all examples throughout. A 4mT trap
depth on this background field can trap electrons with pitch
angles greater than 86◦. As a consequence, electrons trapped
in the magnetic bottle with a pitch angle other than 90◦ at
the bottom of the trap will undergo periodic axial motion as
depicted in Fig. 1.

C. Time-varying cyclotron frequency of an electron

The magnetic field experienced by an electron varies with
time due to its axial motion, resulting in a time-varying
cyclotron frequency, given by

�c(t ) = eB(t )

me + Ke/c2
. (5)

Additionally, the electron’s cyclotron motion causes it to
radiate, reducing its kinetic energy and therefore increasing
its cyclotron frequency. This energy loss can be expressed as

dKe(t )

dt
= −P(t ), (6)
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where P, the power radiated by the electron, can be assumed
to be constant over short times. The energy radiated is much
smaller than the electron’s initial total energy. Therefore, the
instantaneous frequency of radiation emitted by the electron
can be derived from Eq. (1) as

�c(t ) � eB(t )

me + K0/c2

(
1 + Pt

mec2 + K0

)
, (7)

where K0 is the initial kinetic energy of the electron. Because
the cyclotron radiation is observed for a finite amount of time,
the frequency is shifting by the electron power loss Pt

mec2+K0
.

Existing CRES experiments operate with mildly relativistic
electrons, we take a 30-keV electron for examples throughout.
Such an electron in a 1-T background field radiates 1 fW of
power. Over 10 μs this results in a cyclotron frequency shift of
3 kHz, which is equivalent to an energy shift of 60 meV. This
effect can be ignored in the following calculation of CRES
power spectral density. We will consider it again when we
introduce the slope of tracks in Sec. VI.

D. Axial motion and Doppler shift

As a trapped electron oscillates axially in a magnetic bottle,
the frequency of radiation collected by the receiver on the
same axis, �r , is shifted by the Doppler effect and can be
expressed as

�r (t ) = �c(tret )

[
1 − vz(tret )

vp

]−1

, (8)

where tret is the retarded time, vz is the electron axial velocity,
and vp is the phase velocity of the wave inside the waveguide.
For mildly relativistic electrons with the large pitch angles
required for trapping, the term vz (tret )

vp
is small compared to 1.

Substituting �c from Eq. (7) into Eq. (5) results in

�r (t ) � eB(tret )

me + K0/c2

[
1 + vz(tret )

vp

]
, (9)

in which the second-order contributions in vz/vp have been
neglected. Equation (9) introduces two systematic effects that
must be accounted for to understand the relationship between
the electron’s energy and the observed signal.

First, the average value of B(t ) is greater than the value of
B at the center of the trap and depends on the magnitude of
the electron’s axial motion. This causes the average measured
frequency to be dependent on the electron’s motion in the
trap. This feature has been briefly discussed in Ref. [6], for
electrons in a harmonic trap, and will be discussed in detail in
Sec. V.

Second, the terms B(t ) and vz(t ) vary periodically at har-
monics of the frequency of the electron’s axial motion. This
imposes frequency modulation on the cyclotron signal, both
by the varying magnetic field and by the Doppler shift, with
the modulation due to the magnetic field being the smaller
of the two effects. Frequency-modulated signals have been
studied extensively as a form of encoding information in
radio-frequency signals [12]. The expected signal at the re-
ceiver consists of a frequency comb structure, where the main
carrier is at the average cyclotron frequency and is surrounded

10 20 30 40 50 60 70
Frequency [arb. units]

0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [a

rb
. u

ni
ts

]

FIG. 2. The comb structure of the frequency spectrum of cy-
clotron power from a trapped 30-keV electron in a 1-T background
field. The central peak is located at the average cyclotron frequency,
and the axial frequency, which defines the separation between the
peaks, is 15 MHz.

by sidebands which are evenly spaced by the frequency of
axial motion as shown in Fig. 2.

The relative magnitude of the sidebands can be charac-
terized by the modulation index, h = �ω

ωa
, where �ω is the

maximum frequency change due to the Doppler shift and
magnetic field and ωa is the axial frequency. The magnitude
of the nth sideband is given by the Bessel function Jn(h). For
values of h greater than 0.5, a significant fraction of power
is present in the sidebands. For h � 2.41, all of the power is
radiated in sidebands, and no power is radiated into the carrier,
as shown in Fig. 5.

As a simple case, we can calculate the sideband structure
from only the Doppler shift for an electron moving axially
in simple harmonic motion, with axial frequency ωa and
maximum travel zmax. From Eq. (9) we note that the maximum
frequency change is �ω = �cωazmax/vp. The modulation
index is then h = �czmax

vp
. The threshold for significant received

signal power in the sidebands, h ∼ 0.5, is therefore equivalent
to an axial travel for electrons greater than a half-wavelength
of light in waveguide.

E. Grad-B and curvature drifts

The electron undergoes a cyclotron motion, an axial mo-
tion, and two drift motions induced by nonuniformity in the
magnetic field. The first force is prompted by the magnetic
gradient in the trap. These local magnetic field gradients exert
a force on the electron that gives rise to a drift velocity
perpendicular to both the magnetic field and its gradient,
which we call grad-B motion, given by [13]

vgrad−B = μ

m�cB
B × ∇B. (10)

This slow grad-B motion is analogous in its effect to
magnetron motion in a Penning trap; it pins the guiding center
of the electron’s cyclotron motion to a larger circle. The radius
of this larger circle is set by the electron’s radial position in the
trap at the moment it is created.
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The grad-B velocity for a 30-keV electron with pitch
angle of 86◦ in a 1-T magnetic field with a 10-mT/m field
gradient is smaller than 300 m/s. This velocity corresponds to
a frequency of 5 kHz for an electron orbit with a 1cm radius.
For power spectral densities calculated for a finite time length
smaller than grad-B motion’s period, this effect can be ignored
and the electron’s guiding center can be assumed fixed.

The curvature in the field lines introduces another drift
motion, which we call curvature drift, given by [13]

vcurv = v2
0 cos

2[θ (t )]

�cB3
B × (B · ∇)B. (11)

For the conditions described below Eq. (10), the curvature
drift is smaller than 3 m/s and therefore negligible. For a
detailed study of these two effects look at Refs. [14] and [15].

III. RADIATION OF A TRAPPED ELECTRON INTO A
WAVEGUIDE MODE

We now derive generic expressions for the spectral dis-
tribution of the cyclotron radiation of a trapped electron.
We first expand the radiation from a generic current inside
the waveguide volume in terms of waveguide modes and
derive the power that propagates through the waveguide. We
then discuss the specific case of an electron coupling to a
waveguide and the associated approximations (as done with
more detail in Ref. [16]). This allows us to show that the mode
excitation can be written in term of harmonics, corresponding
to the axial modes, which demonstrates the comb structure
of the measured cyclotron power. Finally, we discuss the
implications of our results in two examples, rectangular and
circular waveguides.

A. Waveguide modes and transmitted power

Generalizing the notation in Jackson [15], the electric and
magnetic fields inside a waveguide can be written as a sum
over all modes in the ± z directions as

E±(r, t ) =
∑

λ

∫ ∞

−∞
A±

λ (ω)[Etλ(x, y) ± Ezλ(x, y)ẑ]

× e±ikλze−iωt dω

H±(r, t ) =
∑

λ

∫ ∞

−∞
A±

λ (ω)

[
± 1

Zλ

ẑ × Etλ(x, y) + Hzλ(x, y)ẑ
]

× e±ikλze−iωt dω, (12)

where kλ is the wave number and Zλ the mode impedance.
The amplitude, Aλ(ω), of each mode is found via Poynting’s
theorem and is given by

A±
λ (ω) = −Zλ

2

∫
V
J(ω) · [Etλ(x, y) ∓ Ezλ(x, y)ẑ]e∓ikλzd3r,

(13)

withV being the waveguide volume and the current inside the
waveguide, J(ω), defined as

J(ω) = 1

2π

∫ ∞

−∞
J(r, t )eiωt dt . (14)

These mode amplitudes fully determine the signal in the
waveguide. The transverse electric field modes, Etλ(x, y), are
normalized over the waveguide cross section A such that∫

A
Etλ · Etμda = δλμ. (15)

The longitudinal electric field modes, Ezλ(x, y), are
normalized for TM modes such that∫

A
EzλEzμda = −γ 2

λ

k2λ
δλμ, (16)

with γλ being the mode eigenvalues, which are zero for TE
modes.

The power transmitted in the ± z direction is a spatial
integral of the normal component of the Poynting vector, taken
over the waveguide’s cross section, A. It can be written as

P±(t ) =
∫
A
E±(r, t ) × H±(r, t ) · (±ẑ) da

=
∑

λ

1

Zλ

[B±
λ (t )]

2, (17)

in which the mode excitation, B±
λ (t ), not to be confused with

the B-field, is defined as

B±
λ (t ) =

∫ ∞

−∞
A±

λ (ω)e±ikλze−iωt dω. (18)

B. Power spectral density

Power spectral density is the quantity which we ultimately
aim to calculate. To that end, we define the power spectral
density of the mode excitation as

P̃±(ω) = 2π

T

∑
λ

1

Zλ

|B̃±
λ (ω)|2, (19)

with

B̃±
λ (ω) = 1

2π

∫ +∞

−∞
B±

λ (t )e
iωt dt = A±

λ (ω)e±ikλz, (20)

and T being the total time of observation. Equation (19) can be
interpreted as the sum of the power in each waveguide mode,

P̃±(ω) =
∑

λ

P̃±
λ (ω), (21)

where

P̃±
λ (ω) = 2π

T

1

Zλ

|B̃±
λ (ω)|2. (22)

In the case of a single electron, moving on the trajectory
r = r0(t ) with the velocity v(t ), the current density is

J(r, t ) = −ev(t )δ3[r − r0(t )]. (23)

From this and Eq. (13), the mode amplitudes can be found
to be

A±
λ (ω) = − Zλ

4π

∫
V

∫ ∞

−∞
ev(t ) · [Etλ(x, y) ∓ Ezλ(x, y)ẑ]

× δ3[r − r0(t )]eiωt e∓ikλzdtd3r. (24)
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By changing the order of integrals and taking the spatial
integral, we find that

A±
λ (ω) = − eZλ

4π

∫ ∞

−∞
v(t ) · [Etλ(x0(t ), y0(t ))

∓ Ezλ(x0(t ), y0(t ))ẑ]eiωt e∓ikλz0(t )dt, (25)

where the field is evaluated at the electron’s position, r0(t ) =
(x0(t ), y0(t ), z0(t )). Using the mode amplitudes, the procedure
from the preceding section is used to find B̃±

λ (ω), from which
the energy losses and signal power follow.

C. Field amplitudes for a CRES electron

Equation (25) describes the coupling of an electron inside
a waveguide, without any assumptions about its motion. A
number of reasonable approximations can be used in the case
of an electron in a CRES experiment.

The electron’s periodic motion can be decomposed into a
cyclotron motion, an axial motion, and a drift motion. Follow-
ing the discussion of Sec. II E we assume this last motion is
slow compared with the first two, so the electron’s transverse
and longitudinal velocity components can be written as

vt (t ) = v0 sin θ (t )[cos�c(t )e1 + sin�c(t )e2]
(26)

vz(t ) = v0 cos θ (t ),

where (e1, e2) is an orthonormal basis in the plane transverse
to the z direction, v0 is the electron’s initial velocity, and �c(t )
is the phase of the electron in its cyclotron orbit, defined as

�c(t ) =
∫ t

0
�c(t

′)dt ′. (27)

This phase can also be written as a combination of constant
phase progression at the average cyclotron frequency, �0, and
a periodic perturbation at the electron’s axial frequency.

The v · E term in Eq. (25), at the position (x0(t ), y0(t )), can
then be written as

v(t ) · (Etλ ∓ Ezλẑ) = v0 sin θ (t ){E1λ cos[�c(t )]

+ E2λ sin[�c(t )]} ∓ cos θ (t )Ezλ),
(28)

where E1λ and E2λ are the components of the transverse
electric field for the mode λ.

The radius of the cyclotron motion, rc, and the wavelength
of the cyclotron radiation, λc, are related via

rc = v

2πc
λc. (29)

As a result, the radius of cyclotron motion is small compared
to the wavelength of cyclotron radiation and therefore the
waveguide dimensions. The variation in coupling due to the
cyclotron motion can be neglected, and one can replace
the actual position of the electron by its gyrocenter, defined
to be the center of the electron’s cyclotron motion. In this
work, we will further assume the transverse position of the
electron’s gyrocenter (xc, yc) does not change with time. This
may not be true in experiments with significant drift motion.

The z component of the v · E term in Eq. (25) is equal to
zero for transverse electric (TE) modes and small in transverse

magnetic (TM) modes for electrons with large pitch angles.
The phase oscillation induced by sin θ (t ) in Eq. (28) is thus
small compared with the cyclotron phase �c and can be
neglected.

Using the above approximations, Eq. (28) can be re-
written as

v · E = v0{E1λ(x, y) cos[�c(t )] + E2λ(x, y) sin[�c(t )]}
= v0

2
[(E1λ − iE2λ)e

i�c (t ) + (E1λ + iE2λ)e
−i�c (t )]. (30)

Replacing the above expression for v · E in Eq. (25) we get

A±
λ (ω) = −eZλv0

8π

[
(E1λ − iE2λ)

∫ ∞

−∞
ei�c (t )e∓ikλz0(t )eiωt dt

+ (E1λ + iE2λ)
∫ ∞

−∞
e−i�c (t )e∓ikλz0(t )eiωt dt

]
, (31)

where the electric fields are being evaluated at the electron’s
gyrocenter (xc, yc).

D. Mode expansion of motion and phase

Because z0(t ) and �c(t ) − �0t are periodic at the elec-
tron’s axial motion frequency �a, these terms can be ex-
panded in a Fourier series as

ei�c (t )−i�0t =
∞∑

m=−∞
αme

im�at (32)

and

eikλz(t ) =
∞∑

m=−∞
βm(kλ)e

im�at . (33)

As a result, the exponential term in Eq. (31) can be written as

ei�c (t )+ikλz0(t ) =
∞∑

n=−∞
an(kλ)e

i(�0+n�a )t , (34)

in which

an(kλ) =
∞∑

m=−∞
αm(kλ)βn−m(kλ). (35)

These coefficients, an, can be computed from a decomposition
of the axial motion and the cyclotron phase evolution into
harmonics of the axial frequency. This greatly simplifies the
study of the radiated power spectral density.

Based on Eq. (35), we get the following:

ei�c (t )−ikλz0(t ) =
∞∑

n=−∞
an(−kλ)e

i(�0+n�a )t ,

e−i�c (t )−ikλz0(t ) =
∞∑

n=−∞
a∗
n(kλ)e

−i(�0+n�a )t , (36)

e−i�c (t )+ikλz0(t ) =
∞∑

n=−∞
a∗
n(−kλ)e

−i(�0+n�a )t .
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Expanding the exponential terms in Eq. (31) using the above
Fourier series results in

A±
λ (ω)=−eZλv0

2

[
(E1λ−iE2λ)

∞∑
n=−∞

an(∓kλ)δ(ω+�0+n�a)

+ (E1λ + iE2λ)
∞∑

n=−∞
a∗
n(±kλ)δ(ω − �0 − n�a)

]
.

(37)

E. Frequency comb structure of cyclotron power

Utilizing conventional techniques of handling δ2 func-
tions and the relationship between the wave number and fre-
quency, the power spectral density for the waveguide mode λ,
Eq. (22), is

P̃±
λ (ω) = P0,λ

∞∑
n=−∞

∣∣∣∣an
(

±�0 + n�a

vp,λ

)∣∣∣∣
2

× {δ[ω − (�0 + n�a)] + δ(ω + �0 + n�a)},
(38)

where P0,λ is defined as

P0,λ = e2v2
0Zλ

8

[
E2
1λ + E2

2λ

]
(39)

and vp,λ is the phase velocity in the waveguide for the mode
λ. Note that there are possible cross terms between the nth
positive and the mth negative frequencies when n + m =
− 2�0

�a
. Because of the small values of an for large n, these

terms can be neglected.
The measured power spectrum thus exhibits a comb struc-

ture in the frequency domain as shown in Fig. 2. For an
electron with no axial motion, all the power will be radiated
with a frequency �0. An electron with pitch angle other than
90◦ at the bottom of the trap will undergo axial motion, and as
a result some power will be radiated at the harmonic frequen-
cies which are n�a away from the main peak. Equation (38)
indicates that the power in the nth harmonic is

Pn = P0,λ

∣∣∣∣an
(

±�0 + n�a

vp,λ

)∣∣∣∣
2

. (40)

F. Power in particular waveguide geometries

The simplest experimental design choice is a waveguide
geometry in which the radiation from the electron will only
couple significantly to a single propagating mode. Detailed
calculations of P0,λ for two interesting examples are included
in Appendix B. For the TE10 mode in a rectangular waveguide
we get

P0,TE10 = Z10e2v2
0

4wh
cos2

(
πxc
w

)
, (41)

in which Z10 is the TE10 mode impedance, v0 is the electron
velocity, w and h are the waveguide’s width and height,
defined to be along x and y directions, respectively, and xc
is the x position of the electron’s gyrocenter.

FIG. 3. Schematic of an experiment with an electron undergoing
cyclotron motion in a waveguide with a conductive short. The
relevant parameters include the origin,O; the position of the electron,
z0; the position of the waveguide short, zs, on the left side of the
waveguide; and the position of the receiver, zr , on the right side of
the waveguide. The magnetic field, B, is parallel to the waveguide
axis.

For the TE11 mode in a circular waveguide we get

P0,TE11 = Z11e2v2
0

8πα

[
J ′2
1 (kcρc) + 1

k2cρ
2
c

J21 (kcρc)

]
, (42)

in which Z11 is the TE11 mode impedance, ρc defines the
radial position of the gyrocenter of the electron in cylindrical
coordinates, kc is the wave number for the cutoff frequency of
the mode, and α is defined in Eq. (B8).

IV. EFFECTS OF WAVEGUIDE REFLECTION

In our discussion of waveguides we have assumed infinite
length, whereas any experimental realization of a CRES ex-
periment must be finite in length. Allowing that one end of
the waveguide must have a receiver, we are left with several
options for the treatment of signals at the other end.

One option is to add a second receiver. The signal observed
by each receiver is then available for analysis at the cost of
supporting two receiver systems. Another option is to install
a terminator on one end of the waveguide. The receiver will
detect only half of the electron’s radiated power and the signal
will be the same as the case of the infinite waveguide. The
final option, shown in Fig. 3, is to install a conductive short
to the end of the waveguide, reflecting signals back to the first
receiver. The first two options have been already analyzed.
In this section we calculate the effects of the reflector on the
power spectral density of the CRES signal.

The total mode excitation at the receiver, B̃λ(ω), is a
superposition of the direct wave, B̃+

λ (ω), and the reflected
wave, B̃−

λ (ω). The reflection induces a phase shift of 180◦. As
a consequence, the total mode excitation at the receiver can be
written as

B̃λ(ω) = B̃+
λ (ω) + B−

λ (ω)eiπ

= B+
λ (ω) − B−

λ (ω).
(43)

Using the definition of B̃±
λ (ω) given by Eq. (20), we then have

B̃λ(ω) = A+
λ (ω)eikλzr − A−

λ (ω)eikλ(2|zs−zt |+zr ), (44)

where the expression is being evaluated at the receiver’s
position, zr , and zs and zt are the positions of the reflector and
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the trap center respectively. The power spectral density then
follows by using Eq. (19),

Pλ(ω) = 4P0,λ

∞∑
n=−∞

∣∣∣∣an
(

�0 + n�a

vp.λ

)∣∣∣∣
2

× cos2
[
(zt − zs)

�0 + n�a

vp.λ

]

× {δ[ω − (�0 + n�a)] + δ(ω + �0 + n�a)}.
(45)

Here we have assumed that the trap is symmetric, in which
case an(−k) can be written in terms of an(k) as in Eq. (A8)
(see Appendix A).

This power spectrum still has a comb structure, similarly
to the one in the absence of a reflector at the end of the
waveguide. However, the amplitude of each peak is now
modulated with an extra cos2 factor, which depends on the
distance between the reflector and trap center, zt − zs. There-
fore, while the introduction of a reflector increases the total
power collected by the receiver, it also introduces a frequency-
dependent amplitude for each peak in the power spectrum.

V. TRAPPING GEOMETRIES

In Sec. III, we built the foundation for calculating the
CRES signal’s spectral features. From the obtained equations,
it is clear that it is impossible to extract a simple analytical
solution that is valid and usable for every trap configuration.
Therefore, in this section we describe a step-by-step procedure
to obtain the spectral properties of a CRES signal. We will
then apply this procedure to two simple and useful trap
geometries, enabling us to derive numerical solutions for more
complicated geometries following these steps:

(i) An appropriate field approximation B(z) must be
found. In some cases, where the expression of the
exact magnetic field is complex, one can consider
using a piecewise approximation of the field.

(ii) With the assumed field profile, the electron’s equa-
tion of axial motion, Eq. (2), can be solved. Since
the effective potential in this equation depends only
on the axial position of the electron, we can find a
general solution,

t =
∫ z0(t )

z0(0)

dz′√
2
m [Ke − μB(z′)]

. (46)

(iii) Once the axial motion of the electron is calculated,
the axial frequency follows. For the special case of a
symmetric trap, we find

�−1
a = 2

π

∫ zmax

0

dz√
2
m [E0 − μB(z)]

. (47)

(iv) Once the axial position of the electron is found at any
given time, the value of magnetic field experienced
by the electron at that time, B(t ), follows. Finally, the
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FIG. 4. The on-axis magnetic field profile of a “harmonic” trap
(solid black line), generated by a single coil, and the corresponding
approximation given by Eq. (52) with L0 = 20 cm (dashed red line).

cyclotron phase, Eq. (27), is found to be

�c(t ) =
∫ t

0

eB(t ′)
γme

dt ′. (48)

(v) To find the power in each peak, the Fourier co-
efficients introduced in Eq. (34) should be deter-
mined by

an = 1

Ta

∫ Ta

0
ei[�c (t )+kλz(t )]e−i(�0+n�a )t dt, (49)

in which �0 is the average cyclotron frequency
given by

�0 = �c(Ta)

Ta
. (50)

(vi) The power in each peak of the spectrum can be
determined, using Eq. (40), to be

Pn = P0,λ|an|2. (51)

(vii) Finally, the total power radiated by the electron can
be calculated by summing over the power of all
peaks. This power will define the slopes of tracks in
Sec. VI.

A. Power spectrum in a “harmonic trap”

The simplest magnetic bottle is realized with a single
trapping coil producing a field antiparallel to a background
field. This geometry can be approximated as a purely axial
field with parabolic z dependence as represented by Fig. 4. It
can be described by

Bz(z) = B0

(
1 + z2

L2
0

)
, (52)

in which L0 is the characteristic length of the trap. Note that
this approximation is accurate for trapped electrons with large
pitch-angle values that cannot travel to high field regions.

For the harmonic field approximation, electrons undergo
simple harmonic motion in the axial direction,

z(t ) = zmax sin(�at ), (53)
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in which the axial frequency is determined by the axial
velocity at the trap minimum,

�a = v0 sin θbot

L0
, (54)

and the maximum displacement for the electron is zmax =
L0 cot θbot.

The magnetic field seen by the electron as a function of
time is

Bz(t ) = B0

[
1 + z2max

2L2
0

− z2max

2L2
0

cos(2�at )

]
. (55)

The cyclotron frequency Eq. (1) of a trapped electron,

�c(t ) = eB0

γme

[
1 + z2max

2L2
0

− z2max

2L2
0

cos(2�at )

]
, (56)

follows. The last term describes the modulation in frequency
and the first two terms determine the average cyclotron
frequency

�0 = eB0

γme

(
1 + z2max

2L2
0

)
. (57)

The cyclotron phase, which can then be found by integrating
over the cyclotron frequency, is

�c(t ) = �0t + q sin(2�at ), (58)

in which the magnitude of the modulation is

q = − eB0

γme

z2max

4L2
0�a

. (59)

To find the power spectrum of the electron’s radiation,
Fourier coefficients in Eq. (35) are needed and can be cal-
culated using the Jacobi-Anger expansion given by

ei�c (t )+ikλz0(t ) = ei[�0t+q sin(2�at )+kλzmax sin(�at )]

=
∞∑

m,p=−∞
Jm(q)Jp(kλzmax)e

i[�0+(2m+p)�a]t ,

(60)

where Jn is the nth Bessel function of the first kind. Therefore,
the power for each harmonic can be found from Eq. (51) by
squaring

an(kλ) =
∞∑

m=−∞
Jm(q)Jn−2m(kλzmax) (61)

and using the appropriate P0,λ as found in Sec. III F. Let us
note that these coefficients, an, correspond to the coefficients
αm and βm defined by Eq. (32) and Eq. (33). This result
matches well with our original intuition because the mod-
ulation is harmonic, with a modulation index of q for the
magnetic field-induced modulation, and a modulation index of
kλzmax for the Doppler shift-induced modulation. The relative
magnitude of the main peak and sideband powers for typical
parameters are shown in Fig. 5.

From Eq. (4), a 4-mT deep trap in a 1-T background
magnetic field can trap electrons with pitch angles as small
as 86◦. In this case, the magnitude of the modulation of the
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FIG. 5. Relative magnitudes of the sidebands in a harmonic trap
as a function of the maximum axial travel, zmax, of a trapped 30-keV
electron. Here we consider an ideal harmonic trap as described in
Eq. (52), with a background field of 1 T and an L0 of 20 cm. No
reflection effect is taken into account.

magnetic field experienced by the electron, q, will be smaller
than 0.6, while the Doppler effect’s modulation, kλzmax, can be
as large as 10.5. Therefore, Jm(q) can be approximated with
δm0. In this case, the power spectrum will be simplified to

P̃±
λ (ω) = P0,λ

∞∑
n=−∞

J2n (kλzmax)

× {δ[ω − (�0 + n�a)] + δ(ω + �0 + n�a)}.
(62)

This approximation works well for shallow traps in which
�B
B < 0.002.

B. Power spectrum in a “bathtub trap”

The harmonic trap described previously has a limited trap-
ping volume. A “bathtub trap,” generated using two coils,
includes a wide flat region to extend the trapping volume.
This field geometry is depicted in Fig. 6. In this case, we
approximate the field as a region of constant magnetic field
between two half parabolas given piecewise by

Bz(z) =

⎧⎪⎨
⎪⎩
B0

[
1 + (z+L1/2)2

L2
0

]
z < − L1

2

B0 − L1
2 < z < L1

2

B0
[
1 + (z−L1/2)2

L2
0

] L1
2 < z

, (63)

in which L0 is a measure of field gradient in the curved region
and L1 is the width of the flat region.

For convenience, here we define t0 to be the time when the
electron first enters the flat region from the curved region with
negative z and we define t2 to be the time one half-period later
when it enters the flat region from the opposite direction. This
field configuration results in constant velocity motion when
the electron is in the flat region, from t0 = 0 to t1 = L1

v0 cos θbot
,

and half harmonic motion at the two ends, for t2 − t1 = π
ωa
, in

which the angular frequency ωa of the half harmonic motion
is defined by ωa = v0 sin θbot

L0
. The period of axial motion is then

T = 2t2 = 2π
�a
, which means that the frequency of the axial
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FIG. 6. Magnetic field profile generated by two coils separated
by 5 cm, forming a “bathtub” shape (solid black line), and the
corresponding approximation given by Eq. (63) with L0 = 35 cm
and L1 = 0.5 cm (dashed red line).

motion is

�a = 2π
2L1

v0 cos θbot
+ 2πL0

v0 sin θbot

= ωa

(
1 + L1

πL0
tan θbot

)−1

. (64)

The equation of axial motion for an electron is thus

z(t ) =

⎧⎪⎪⎨
⎪⎪⎩

vz0t − L1
2 0 < t < t1

zmax sin[ωa(t − t1)] + L1
2 0 < t1 < t < t2

−vz0(t − t2) + L1
2 t2 < t < t3 ≡ t1 + t2

−zmax sin[ωa(t − t3)] − L1
2 t3 < t < T

,

(65)

with zmax = L0 cot θbot being the maximum displacement for
the electron into the harmonic potential.

Using this equation and magnetic field configuration from
Eq. (63), the magnetic field seen by the electron as a function
of time is

Bz(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B0 0 < t < t1
B0

{
1 + z2max

2L2
0

− z2max

2L2
0
cos[2ωa(t − t1)]

}
t1 < t < t2

B0 t2 < t < t3
B0

{
1 + z2max

2L2
0

− z2max

2L2
0
cos[2ωa(t − t3)]

}
t3 < t < T

.

(66)

The cyclotron frequency of the electron is therefore

�c(t )= eB0

γme

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 0 < t < t1
1 + z2max

2L2
0

− z2max

2L2
0
cos[2ωa(t − t1)] t1 < t < t2

1 t2 < t < t3
1 + z2max

2L2
0

− z2max

2L2
0
cos[2ωa(t − t3)] t3 < t < T

,

(67)

and the average frequency of cyclotron radiation is

�0 = eB0

γme

[
1 + z2max

2L2
0

(
1 + L1

πL0
tan θbot

)−1
]
. (68)

The detailed calculation of the coefficients an, which are
used to calculate the power, can be found in Appendix C.

0 1 2 3 4 5
Time [arb. units]

20

25

30

35

40

45

50

55

60

65

F
re

qu
en

cy
 [a

rb
. u

ni
ts

]

FIG. 7. Schematic of the power (represented by line width), as
a function of time and frequency in the absence of a waveguide
reflector. The main track and first-order sidebands are shown. Sudden
losses of energy (and thus increases of frequency), induced by colli-
sions with background gas particles, happen at 1.5 ms and 3.5 ms.

VI. SPECTRAL FEATURES IN CYCLOTRON RADIATION
EMISSION SPECTROSCOPY

In this section we identify the features required for recon-
structing the kinematics of an electron in a CRES experiment,
based on the relationships in previous sections. We also de-
velop a common terminology for these features.

The power spectrum of the signal generated by an electron
possesses a comb structure given by Eq. (38). If we represent
the power spectrum as a function of time in a spectrogram,
then the excess of power forms connected structures that we
call tracks. Figure 7 represents the tracks coming from the
comb structure of the spectrum. The track at the average
cyclotron frequency, given by Eq. (7), is called the main
track. As the electron radiates energy, the cyclotron frequency
increases, causing the tracks to have a positive slope. For any
given trap configuration, the track’s slope, S, is proportional
to the power radiated into both propagating and nonprop-
agating modes. According to Eq. (7) this relation can be
written as

S = �c

mec2 + K0
P. (69)

Electrons can scatter off a molecule of the residual gas in
the waveguide, causing abrupt energy losses, changes of pitch
angle, and breaks in the observed tracks.

The tracks parallel to the main tracks we call sidebands.
These tracks are located at multiples of the axial frequency,
fa = �a

2π , away from the main track; the order of a sideband
corresponds to this multiplicity. As long as we only consider
time intervals short enough that the power radiated does
not significantly change the axial frequency, sidebands will
appear parallel to the main track. Equations (54) and (64)
show how the axial frequency, measured from the frequency
distance to sidebands, can be used to relate the pitch angle
and kinetic energy of an electron in a harmonic or bathtub
traps.

The distribution of power between a main track and its
sidebands depends on the electron’s energy and pitch angle.

055501-9



A. Ashtari Esfahani et al. PHYSICAL REVIEW C 99, 055501 (2019)

0 1 2 3 4 5
Time [arb. units]

20

25

30

35

40

45

50

55

60

65

F
re

qu
en

cy
 [a

rb
. u

ni
ts

]

FIG. 8. Schematic of the power (represented by line width) as
a function of time and frequency in the presence of a waveguide
reflector. The main track appears and disappears as the kinematic
parameters (such as the pitch angle) change as a result of collisions
with background gas particles.

In the presence of a reflector on one end of the waveguide,
as described in Sec. IV, the distance between the trap and the
reflector will also impact the power distribution as shown in
Fig. 8. In realistic experiments, this is further complicated as
tracks with suppressed power will be indistinguishable from
noise.

VII. EXTRACTION OF KINEMATIC PARAMETERS FROM
AMEASURED SPECTRUM

The previous sections show that the primary observable
parameters of a CRES signal are the frequency of the main
track, the frequency separating the sidebands, the power in
both the main track and sidebands, and the slope of the main
track.

For a given configuration of trapping field and waveguide,
these parameters are completely determined by the electron’s
kinetic energy and pitch angle. However, the converse is not
in general true. The axial frequency in a real magnetic trap
is double valued with respect to the pitch angle whenever the
floor of the trap is flatter than harmonic. This is because the
axial frequency is relatively low both for small amplitudes and
for amplitudes that almost eject the electron over the trap-field
maxima, and it reaches a broad maximum for intermediate
amplitudes. Other ambiguities arise when resonant structures
such as those described in Sec. IV cause the slope to have mul-
tiple values. These ambiguities can be mitigated at the design
stage and by making use of all the available information in
the signal. We will now give a concrete example of predicting
the observable parameters from a particular trapping field and
then speculate on the observations needed to reconstruct the
electron’s initial kinetic energy.

For our example in Fig. 9, we will use a bathtub trap
with an L0 of 35 cm and an L1 of 0.5 cm in a 1.07-cm-wide
rectangular waveguide. We consider a short on one end of the
waveguide, a distance 0.6 cm away from the trap center, and
a 1T background magnetic field. We will examine predicted
signals from electrons with 30 keV of kinetic energy and with
different pitch angles. We find the power in the nth harmonic
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FIG. 9. Spectral features of the CRES signal for 30-keV elec-
trons with different values of pitch angle and single radial position at
ρ = 0 cm, trapped in an ideal baththub trap described by Eq. (63)
with L0 = 35 cm and L1 = 0.5 cm, in a 1-T background field
including the effect of a short. An electron with a pitch angle
of 90◦ has a start frequency of 26.44 GHz while electrons with
lower pitch angles are subject to pitch-angle effects which increase
their start frequencies. This shift can systematically affect energy
measurements in CRES experiments. The above plots illustrate how
different measurable quantities in a CRES experiment can be used to
correct for this frequency shift.

for this situation using Eq. (45), which includes the short,
using the power from Eq. (41), which is for the rectangular
waveguide. The Fourier coefficients for the bathtub trap are
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FIG. 10. Simulation of the energy spectrum of electrons sampled
from a 60-eV wide Lorentzian, centered at 30 keV, in a 1-T back-
ground magnetic field. In blue (light gray in black and white print),
the spectrum of the extracted start frequencies for an idealized case
where the magnetic field is flat and all electrons have a 90◦ pitch
angle. In red (dark gray in black and white print), the actual line
shape when the electrons have an isotropic momentum distribution
and are confined in a 4-mT deep ideal harmonic trap as given in
Eq. (52). The blue histogram is scaled down, so it can be compared
with the red one.

found in Appendix C. Therefore we have

Pλ(ω) = Z10e2v2
0

πwh
cos2

(πxc
w

)

×
∞∑

n=−∞
|an(kλ)|2 cos2 [(zt − zs)kλ]

× {δ[ω − (�0 + n�a)] + δ(ω + �0 + n�a)}.
(70)

Of the observables, the start frequency of the main track
is the most strongly related to the electron’s kinetic energy.
The cyclotron frequency of a 30-keV electron, with a pitch
angle of 90◦ at the center of the trap, is 26.44 GHz. However,
this frequency is increased by the electron’s pitch angle as
described in Sec. II D. The distortion of the distribution of
main track frequencies by pitch angle is shown in Fig. 10.

The other signal parameters can be used to correct for
the pitch-angle effect and recover the true kinetic energy of
the electron. Decreasing the pitch angle will simultaneously
increase the start frequency and effects the other parameters
discussed above. In principle, only a subset of the parameters
are needed to find the pitch angle and recover the correct
energy.

A sufficiently precise measurement of the axial frequency
alone can be used to correct the main track frequency, yielding
the cyclotron frequency at the center of the trap. However,
extraction of the axial frequency is possible only for pitch
angles for which there are at least two visible tracks above
the noise level.

In other cases, other parameters must be used. Track power
carries valuable information, though typically power measure-
ments in CRES experiments are less precise than frequency

measurements and may not be possible if the noise level is
high. Furthermore, the power is double valued for nonshallow
trap geometries that can trap electrons with smaller pitch an-
gles. Determining a track’s slope is a frequency measurement,
measurable even if the main track or sidebands are absent,
and therefore is a most reliable parameter for correction.
However, the slope is double valued for this example. The
precise algorithm for combining the parameters to achieve a
high-resolution energy measurement will, therefore, depend
on the particular geometry and signal-to-noise of the CRES
experiment.

VIII. CONCLUSION

We have found that electrons in a CRES experiment un-
dergo nontrivial but predictable motion within a magnetic
bottle, and this motion affects the detected cyclotron signal.
We identified the carrier and sideband structure of the signal
and have shown that these features encode the entirety of the
electron’s kinematic parameters. Following the results derived
here, a sufficiently precise measurement of these features
should allow complete reconstruction of the electron’s kinetic
energy, which is necessary for proposed CRES experiments
to achieve their desired sensitivity. In fact, the measurable
features overconstrain the kinematic parameters and may be
able to calibrate some of the detector configuration as well.
Notably, we point out that for configurations where the elec-
tron undergoes axial motion larger than a half wavelength of
cyclotron radiation, the modulation is such that detection and
interpretation of sidebands is necessary to detect all trapped
electrons.

The results here should be directly useful in improving
the energy resolution of β-decay energies measured with the
CRES technique. The practicalities of signal detection and
reconstruction will depend on the particular apparatus design
and detection scheme, in particular the signal-to-noise ratio
of the sidebands, and we leave a discussion of the precise
reconstruction algorithm and ultimate resolution to future
work.
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APPENDIX A: PROPERTY OF THE FOURIER
COEFFICIENTS IN A SYMMETRIC TRAP

In a trap where the magnetic field distortion is symmetric
with respect to the center of the trap, we expect the same
amplitude of radiation to propagate in both directions in the
waveguide. This means that we need to show that

|an(−kλ)|2 = |an(kλ)|2. (A1)

Two useful expressions in symmetric traps will assist us in
deriving this relation. The first relates to the periodicity of the
electron’s position, z0, in a symmetric trap, given by

−[z0(t ) − zt ] = z0

(
t + Ta

2

)
− zt , (A2)

in which zt is the axial position of the center of the trap.
Furthermore, a symmetric trap forces the cyclotron frequency
to be periodic, with period equal to half of the axial motion’s
period. Therefore the cyclotron phase satisfies

�c

(
t + Ta

2

)
= �0

Ta
2

+ �c(t ). (A3)

Utilizing Eq. (A2) for �c(t ) and Eq. (A3) to rewrite
kλz0(t ), we can write

�c(t ) − kλz0(t ) = �c

(
t + Ta

2

)
− �0

Ta
2

+ kλz0

(
t + Ta

2

)
− 2kλzt . (A4)

Therefore we have

ei�c (t )−ikλz0(t ) = e−i�0
Ta
2 −2ikλzt ei�c (t+ Ta

2 )+ikλz0(t+ Ta
2 ). (A5)

Using Eq. (34), we expand the second exponent to get

ei�c (t )−ikλz0(t ) = e−2ikλzt−i�0
Ta
2

∞∑
n=−∞

an(kλ)e
i(�0+n�a )(t+ Ta

2 )

= e−2ikλzt
∞∑

n=−∞
(−1)nan(kλ)e

i(�0+n�a )t . (A6)

By equating the coefficients with those of the first expres-
sion in Eq. (36), we arrive at the form

an(−kλ) = (−1)ne−2ikλzt an(kλ), (A7)

which is consistent with our expectation of equal power
propagating in both directions, since

|an(−kλ)|2 = |an(kλ)|2. (A8)

APPENDIX B: P0,λ CALCULATION FOR TWO SPECIFIC
WAVEGUIDE GEOMETRIES

The power amplitude, P0,λ, was introduced in Eq. (39) as a
measurement of an electron’s coupling to a waveguide mode.
The calculation details for two particularly relevant cases are
shown here.

1. Rectangular waveguide TE10 mode

The first example is the fundamental mode of a rectangular
waveguide. For such a waveguide, with w being its longer
dimension (defined to be along the x axis) and h the smaller
one (along the y axis), the electric field has the form

Ey(x) = K cos

(
πx

w

)
ŷ. (B1)

Equation (15) can now be used to find the normalization
factor, giving∫

A
K2 cos2

(
πx

w

)
dxdy = 1 ⇒ K =

√
2

wh
. (B2)

With the normalized field, the expression for P0,TE10 fol-
lows from the definition in Eq. (39) and is found to be

P0,TE10 = Z10e2v2
0

8

[√
2

wh
cos

(
πxc
w

)]2

= Z10e2v2
0

4wh
cos2

(
πxc
w

)
. (B3)

2. Circular waveguide TE11 mode

The second example to consider is that of a circular waveg-
uide with radius R. The TE11 mode has the lowest cutoff
frequency in a circular waveguide and the associated wave
number is kc = 1.841

R . This mode consists of two degenerate
modes for which the electric field can be found in Ref. [17],

E1ρ (ρ, φ) = K
−iωμ

k2cρ
cos(φ)J1(kcρ),

E1φ (ρ, φ) = K
iωμ

kc
sin(φ)J ′

1(kcρ), (B4)

E1z(ρ, φ) = 0

and

E2ρ (ρ, φ) = K ′ −iωμ

k2cρ
sin(φ)J1(kcρ),

E2φ (ρ, φ) = K ′ iωμ

kc
cos(φ)J ′

1(kcρ), (B5)

E2z(ρ, φ) = 0.

The same technique is used to find the normalized fields,

1 =
∫
A

[
E2
1ρ (ρ, φ) + E2

1φ (ρ, φ)
]
ρdρdφ

= −K2π
ω2μ2

2k2c

∫ R

0

[
J21 (kcρ)

k2cρ
2

+ J ′2
1 (kcρ)

]
ρdρ. (B6)

055501-12



ELECTRON RADIATED POWER IN CYCLOTRON … PHYSICAL REVIEW C 99, 055501 (2019)

Hence the normalization factor can be found to be

K = K ′ = ikc
ωμ

√
πα

(B7)

in which

α =
∫ R

0

[
J21 (kcρ)

k2cρ
2

+ J ′2
1 (kcρ)

]
ρdρ. (B8)

The calculation of the coefficients P0,TE11 follows the rect-
angular waveguide calculation with one difference. That is, to
find the power in the waveguide, the two degenerate modes’
powers should be added together. This gives us

P0,TE11 = Z11e2v2
0

8

[
E2
1φ + E2

1ρ + E2
2φ + E2

2ρ

]
= Z11e2v2

0

8πα

[
J ′2
1 (kcρc) + 1

k2cρ
2
c

J21 (kcρc)

]
. (B9)

APPENDIX C: BATHTUB TRAP CALCULATION

The “bathtub” trapping geometry was introduced in Sec. V.
Here we present detailed calculations of both the phase and
the axial motion Fourier expansion coefficients, defined by
Eq. (32) and Eq. (33), respectively.

First, we define the frequency difference between the aver-
age cyclotron and the frequency at the bottom of the trap using
Eq. (64),

�� ≡ �0 − eB0

γme
= �c

2

z2max

L2
0

(
1 + L1

πL0
tan θ

)−1

= �c

2

z2max

L2
0

�a

ωa
. (C1)

The perturbation to the average cyclotron phase can be
written as

�c(t ) − �0t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−��t 0 < t < t1
�� ωa

�a
(t − t1) − ��

2�a
sin[2ωa(t − t1)] − ��t t1 < t < t2

−��(t − t2) t2 < t < t3
�� ωa

�a
(t − t3) − ��

2�a
sin[2ωa(t − t3)] − ��(t − t2) t3 < t < T

. (C2)

The coefficients, αn, can then be found to be

αn = 1

T

∫ T

0
ei�c (t )−i�0t e−in�at dt . (C3)

The integral can be computed by splitting it into four
pieces as

αn = 1

T
(An + Bn +Cn + Dn), (C4)

in which

An =
∫ t1

0
ei�c (t )−i�0t e−in�at dt

= t1e
−i(��+n�a )

t1
2 sinc

[
(�� + n�a)

t1
2

]
, (C5)

Bn =
∫ t2

t1

ei�c (t )−i�0t e−in�at dt

= π

ωa
e−i(��+n�a )t1/2

∞∑
m=−∞

Jm

(
��

2�a

)
e−in π

2

× sinc

(
��

t1
2

− nπ

2

�a

ωa
+ mπ

)
, (C6)

Cn =
∫ t3

t2

ei�c (t )−i�0t e−in�at dt = (−1)nAn, (C7)

Dn =
∫ T

t3

ei�c (t )−i�0t e−in�at dt = (−1)nBn. (C8)

Note that for odd values of n the coefficient αn is zero.

The determination of βn follows in a similar manner. The
electron’s equation of motion [Eq. (65)] gives

βn = 1

T

∫ T

0
eikλz(t )e−in�at dt = 1

T
(En + Fn + Gn + Hn),

(C9)
where

En =
∫ t1

0
eikλz(t )e−in�at dt

= t1e
−in�a

t1
2 sinc

[
(kλvz0 − n�a)

t1
2

]
, (C10)

Fn =
∫ t2

t1

eikλz(t )e−in�at dt

= eikλL1/2
π

ωa
e−in�at1/2

×
∞∑

m=−∞
Jm(kλzmax)i

m−nsinc

(
mπ

2
− nπ

2

�a

ωa

)
, (C11)

Gn =
∫ t3

t2

eikλz(t )e−in�at dt

= (−1)n t1e
−in�a

t1
2 sinc

[
(kλvz0 + n�a)

t1
2

]
, (C12)

Hn =
∫ T

t3

eikλz(t )e−in�at dt

= (−1)ne−ikλL1/2
π

ωa
e−in�at1/2

×
∞∑

m=−∞
Jm(kλzmax)i

−m−nsinc

(
mπ

2
− nπ

2

�a

ωa

)
.

(C13)
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The coefficients αn and βn can be used to find an as defined
in Eq. (35). These an coefficients are a measure of the relative

power in the nth peak of the power spectrum, according to
Eq. (38).
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[10] D. Počanić, R. Alarcon, L. Alonzi, S. Baeßler, S. Balascuta, J.
Bowman, M. Bychkov, J. Byrne, J. Calarco, V. Cianciolo, C.
Crawford, E. Frlež, M. Gericke, G. Greene, R. Grzywacz, V.
Gudkov, F. Hersman, A. Klein, J. Martin, S. Page, A. Palladino,
S. Penttilä, K. Rykaczewski, W. Wilburn, A. Young, and G.
Young, Nucl. Instrum. Methods A 611, 211 (2009).

[11] H. Dehmelt and P. Ekstrom, Bull. Am. Phys. Soc. 18, 727
(1973).

[12] T. Sekhar, Communication Theory, Electrical and Electronic
Series (Tata McGraw-Hill, New York, 2005).

[13] T. G. Northrop, The Adiabatic Motion of Particles (Interscience
Publishers, New York, 1963).

[14] R. Fitzpatrick, Introduction to Plasma Physics (CRC Press,
Boca Raton, FL, 2014).

[15] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[16] R. Collin, IEEE Trans. Microwave Theory Tech. 13, 413
(1965).

[17] D. Pozar, Microwave Engineering (Wiley, New York, 2004).

055501-14

https://doi.org/10.1016/S0031-8914(36)80313-9
https://doi.org/10.1016/S0031-8914(36)80313-9
https://doi.org/10.1016/S0031-8914(36)80313-9
https://doi.org/10.1016/S0031-8914(36)80313-9
https://doi.org/10.1103/PhysRevLett.100.120801
https://doi.org/10.1103/PhysRevLett.100.120801
https://doi.org/10.1103/PhysRevLett.100.120801
https://doi.org/10.1103/PhysRevLett.100.120801
https://doi.org/10.1103/RevModPhys.58.233
https://doi.org/10.1103/RevModPhys.58.233
https://doi.org/10.1103/RevModPhys.58.233
https://doi.org/10.1103/RevModPhys.58.233
https://doi.org/10.1103/PhysRevD.80.051301
https://doi.org/10.1103/PhysRevD.80.051301
https://doi.org/10.1103/PhysRevD.80.051301
https://doi.org/10.1103/PhysRevD.80.051301
https://doi.org/10.1103/PhysRevLett.114.162501
https://doi.org/10.1103/PhysRevLett.114.162501
https://doi.org/10.1103/PhysRevLett.114.162501
https://doi.org/10.1103/PhysRevLett.114.162501
https://doi.org/10.1088/1361-6471/aa5b4f
https://doi.org/10.1088/1361-6471/aa5b4f
https://doi.org/10.1088/1361-6471/aa5b4f
https://doi.org/10.1088/1361-6471/aa5b4f
https://doi.org/10.1088/0034-4885/71/8/086201
https://doi.org/10.1088/0034-4885/71/8/086201
https://doi.org/10.1088/0034-4885/71/8/086201
https://doi.org/10.1088/0034-4885/71/8/086201
https://doi.org/10.1103/PhysRevC.96.042501
https://doi.org/10.1103/PhysRevC.96.042501
https://doi.org/10.1103/PhysRevC.96.042501
https://doi.org/10.1103/PhysRevC.96.042501
https://doi.org/10.1016/j.nima.2009.07.065
https://doi.org/10.1016/j.nima.2009.07.065
https://doi.org/10.1016/j.nima.2009.07.065
https://doi.org/10.1016/j.nima.2009.07.065
https://doi.org/10.1109/TMTT.1965.1126021
https://doi.org/10.1109/TMTT.1965.1126021
https://doi.org/10.1109/TMTT.1965.1126021
https://doi.org/10.1109/TMTT.1965.1126021

