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Abstract. This is the third article in the series begun with [8, 10], devoted to finite-

dimensional representations of the Kauffman bracket skein algebra of an oriented

surface S. In [8] we associated a classical shadow to an irreducible representation

ρ of the skein algebra, which is a character rρ ∈ RSL2(C)(S) represented by a group

homomorphism π1(S) → SL2(C). The main result of the current article is that,

when the surface S is closed, every character r ∈ RSL2(C)(S) occurs as the classical

shadow of an irreducible representation of the Kauffman bracket skein algebra. We

also prove that the construction used in our proof is natural, and associates to each

group homomorphism r : π1(S)→ SL2(C) a representation of the skein algebra SA(S)

that is uniquely determined up to isomorphism.
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This article is the third in the series begun with [8, 10], devoted to the

analysis and construction of finite-dimensional representations of the skein

algebra of a surface. See also [6] for a description of the corresponding

program.

The Kauffman bracket skein algebra SA(S) of an oriented surface S

of finite topological type takes its origins in the construction of the Jones

polynomial invariant [22, 23, 25, 26] of knots and links. It can be interpreted

[38, 11, 12, 33] as a quantization of the character variety

RSL2(C)(S) = {group homomorphisms r : π1(S)→ SL2(C)}//SL2(C)

with respect to its Atiyah-Bott-Goldman [2, 18, 19] Poisson structure. More

accurately, the points of such a quantization are representations of the

algebra SA(S).

When the parameter A = e−πi~ is a root of unity, a celebrated example

of finite-dimensional representation of the skein algebra SA(S) arises from

Witten’s quantum field interpretation of the Jones polynomial [40], and

more precisely from the Witten-Reshetikhin-Turaev topological quantum

field theory associated to the fundamental representation of the quantum

group Uq(sl2) [40, 34, 3, 39, 9]. In the current article, we construct a large

family of new finite-dimensional representations of SA(S), while providing

a converse to the results of [8].

This article is mostly concerned with the case where the surface S is

closed. The case where S has at least one puncture is much easier (at least

assuming the results of [7] and [8]), and was treated in [10]. The current

closed surface case requires many more ideas, and also involves several very

surprising properties.

More specifically, when A2 is a primitive N–root of unity with N

odd, we identified in [8] certain invariants for irreducible representations

ρ : SA(S) → End(E). It is easier to restrict attention to the case where

AN = −1; this is no loss of generality, as [10, §5] indicates how to

deduce the case AN = +1 from this one, by using spin structures on the

surface. When the surface is closed, there is only one invariant, consisting

of a point in the character variety RSL2(C)(S). By definition [29] of the

geometric invariant theory quotient involved in the definition of RSL2(C)(S),

two homomorphisms r, r′ : π1(S) → SL2(C) represent the same point of
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RSL2(C)(S) if and only if they induce the same trace functions, namely if

and only if Tr r(γ) = Tr r′(γ) for every γ ∈ π1(S).

Theorem 1 ([8]). Let S be a closed oriented surface, let A be a primitive

N–root of −1 with N odd, and let TN (x) be the N–th normalized Chebyshev

polynomial of the first kind, characterized by the trigonometric identity that

2 cosNθ = TN (2 cos θ). For every irreducible finite-dimensional representa-

tion ρ : SA(S)→ End(E) of the Kauffman bracket skein algebra, there exists

a unique character rρ ∈ RSL2(C)(S) such that

TN
(
ρ([K])

)
= −

(
Tr rρ(K)

)
IdE

for every framed knot K ⊂ S × [0, 1] whose projection to S has no crossing

and whose framing is vertical. �

The character rρ ∈ RSL2(C) is the classical shadow of the irreducible

representation ρ : SA(S) → End(E). In [8] we prove a stronger version of

Theorem 1, which is valid for all framed links K ⊂ S × [0, 1] and involves

the element [KTN ] ∈ SA(S) defined by threading the Chebyshev polynomial

TN along all components of K. The above version is easier to state and

sufficient for our purposes.

See also [27] for a different approach to the key results underlying

Theorem 1.

The main result of this article is the following converse statement.

Theorem 2 (Realization Theorem). Let S be a closed oriented surface,

and let A be a primitive N–root of −1 with N odd. Then, every charac-

ter r ∈ RSL2(C)(S) is the classical shadow of an irreducible representation

ρr : SA(S)→ End(E).

For the classical example of the Witten-Reshetikhin-Turaev represen-

tation ρWRT : SA(S) → End(WWRT), also defined when A is a primitive

2N–root of unity with N odd, the classical shadow of ρWRT is the trivial

character [9]. We therefore construct a much broader family of representa-

tions of the skein algebra SA(S) than this historic example.

As explained in Theorem 4 below, our construction is natural in the

sense that it provides a representation ρr : SA(S) → End(E) that depends

only on the homomorphism r : π1(S) → SL2(C), up to isomorphism and

other symmetries of the data. In earlier versions of this article we con-

jectured that, when the character belongs to a Zariski dense open subset
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of the character variety RSL2(C)(S), the representation ρr is the only irre-

ducible representation of SA(S) with classical shadow r ∈ RSL2(C)(S). This

conjecture is now proved [17] See [37] for explicit proof for small punctured

surfaces, such as the one-puncture torus or the four-puncture sphere. The

property is definitely false without the genericity hypothesis, as can for

instance be proved by combining the results of [20] with the techniques of

[37].

The strategy for proving Theorem 2 is somewhat unconventional. In

addition to using classical hyperbolic geometry as a guide for quantum

topology constructions, it relies on the fact that punctured surfaces are

easier to deal with than closed surfaces, and follows the slogan “drill,

baby, drill”1. Namely, we drill punctures from the closed surface S to

obtain a punctured surface Sλ, by removing from S the vertices of a

triangulation λ, and the more punctures the better. If we are given

a homomorphism r : π1(S) → SL2(C) representing the character r ∈
RSL2(C)(S) and if the triangulation λ is complicated enough, we can then

choose additional data at the punctures of Sλ (called a λ–enhancement

of the homomorphism r) and apply the results of [10] to the punctured

surface Sλ. This provides a representation ρλ : SA(Sλ) → End(Eλ) of the

skein algebra of the punctured surface Sλ, whose classical shadow is equal

to the character rλ ∈ RSL2(C)(Sλ) induced by r ∈ RSL2(C)(S) in the sense

that

TN
(
ρλ([K])

)
= −

(
Tr rλ(K)

)
IdEλ = −

(
Tr r(K)

)
IdEλ

for every framed knot K ⊂ Sλ×[0, 1] whose projection to Sλ has no crossing

and whose framing is vertical. This last property, proved in [10], heavily

relies on the miraculous cancellations of [8].

However, there is no reason for ρλ to induce a representation of the skein

algebra SA(S) of the closed surface S. Namely, if the two framed links K,

K ′ ⊂ Sλ × [0, 1] are isotopic in S × [0, 1], by an isotopy sweeping through

the punctures of Sλ, the two endomorphisms ρλ
(
[K]
)
, ρλ

(
[K ′]

)
∈ End(Eλ)

will in general be different. Nevertheless, we are able to identify a subspace

Fλ ⊂ Eλ where ρλ
(
[K]
)

and ρλ
(
[K ′]

)
do coincide. This subspace Fλ ⊂ Eλ

is called the total off-diagonal kernel, for reasons that are explained in §§4.1

and 4.2.

1 Popularized during the 2008 United States presidential campaign [32, §3], when the

ideas behind this article were beginning to take shape.
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Theorem 3. Let the punctured surface Sλ be obtained from the closed surface

S by removing the vertices of the triangulation λ of S, and let Fλ ⊂ Eλ be

the total off-diagonal kernel of the representation ρλ : SA(Sλ) → End(Eλ)

introduced above. Then

(1) Fλ is invariant under the image ρλ
(
SA(Sλ)

)
⊂ End(Eλ);

(2) if the two framed links K, K ′ ⊂ Sλ × [0, 1] are isotopic in S × [0, 1], the

induced endomorphisms

ρλ
(
[K]
)
|Fλ

= ρλ
(
[K ′]

)
|Fλ
∈ End(Fλ)

are equal.

The definition of the total off-diagonal kernel Fλ was devised by wishful

thinking, as the largest subspace where the second conclusion of Theorem 3

could hold. The really unexpected properties are that this subspace is non-

trivial (see Theorem 5 below) and that Fλ is invariant under the image

of ρλ. Indeed, although ρλ = µλ ◦ Trωλ : SA(Sλ) → End(Eλ) is defined as a

composition of the quantum trace homomorphism Trωλ : SA(Sλ)→ Zω(λ) of

[7] with an irreducible representation µλ : Zω(λ)→ End(Eλ) of the balanced

Chekhov-Fock algebra Zω(λ) of the triangulation λ, the invariance of Fλ
shows that the representation ρλ is reducible. This reducibility property for

ρλ = µλ ◦ Trωλ would be false if we replaced µλ by an arbitrary irreducible

representation of Zω(λ).

Theorem 3 is proved in §4.3 and §4.4 when the triangulation λ is

sufficiently complicated, and in §5.3 for general triangulations.

A consequence of Theorem 3 is that the representation ρλ : SA(Sλ) →
End(Eλ) induces a representation ρ̌λ : SA(S) → End(Fλ) of the skein

algebra of the closed surface S. This representation has a classical shadow

equal to the character r ∈ RSL2(C)(S), in the sense that

TN
(
ρ̌λ([K])

)
= −

(
Tr r(K)

)
IdFλ

for every framed knot K ⊂ S × [0, 1] whose projection to S has no crossing

and whose framing is vertical.

The following property shows that our construction is very natural.

For most homomorphisms r : π1(S) → SL2(C), this result states that the

representation ρ̌λ is unique up to isomorphism. However, an additional

ambiguity can arise for special characters that admit internal symmetries

called sign-reversal symmetries. The cohomology group H1(S;Z2) acts

on the character variety RSL2(C)(S) and on the skein algebra SA(S);
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see §2. A sign-reversal symmetry for the character r ∈ RSL2(C)(S) is a

class ε ∈ H1(S;Z2) that fixes r; characters that admit non-trivial sign-

reversal symmetries are rare, and form a high codimension subset of the

character variety RSL2(C)(S). If ρ : SA(S) → End(E) is a representation

with classical shadow r, composing it with the action of a sign-reversal

symmetry ε ∈ H1(S;Z2) on SA(S) gives another representation ρ ◦ ε with

classical shadow εr = r ∈ RSL2(C)(S). Therefore, sign-reversal symmetries

of r ∈ RSL2(C)(S) are intrinsic symmetries of the problem of finding

representations of SA(S) with classical shadow r.

Theorem 4 (Naturality Theorem). Up to isomorphism and up to sign-

reversal symmetry of the character r ∈ RSL2(C)(S) (if any exists), the repre-

sentation ρ̌λ : SA(S) → End(Fλ) depends only on the group homomorphism

r : π1(S) → SL2(C), not on the choice of the triangulation λ or of the λ–

enhancement ξ used in the construction.

In particular, although the dimension of Eλ grows exponentially with

the number of punctures of the drilled surface Sλ, the dimension of the

off-diagonal kernel Fλ is independent of the topology of λ. A consequence

is that the construction is natural with respect to the action of the mapping

class group of S.

The proof of Theorem 4, given in §5.4, relies on invariance under Pachner

moves to go from one triangulation to another. It is a good illustration of

the “drill, baby, drill” philosophy, as showing that two triangulations λ and

λ′ induce the isomorphic representations of SA(S) usually involves surfaces

with many more punctures than Sλ and Sλ′ . Here, the invariance under

the face subdivision move considered in §5.1, which adds one vertex to the

triangulation but does not change the representation, is probably the most

surprising.

Conjugating r by an element of SL2(C) also leaves ρ̌λ unchanged, up

to isomorphism. For a generic character r ∈ RSL2(C)(S), two homomor-

phisms π1(S)→ SL2(C) representing r are always conjugate by an element

of SL2(C) and therefore determine the same representation of SA(S). How-

ever, for those special characters for which the property fails (namely re-

ducible characters), we do not know if the representation ρ̌λ depends only

on the character r ∈ RSL2(C)(S), or on subtler properties of the specific

homomorphism π1(S) → SL2(C) representing r that we used in the con-

struction.
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It is also quite possible that the need to consider sign-reversal sym-

metries is an artifact of our proof, and of its reliance on insights from the

character varietyRPSL2(C)(S). Indeed, the characters that admit non-trivial

sign-reversal symmetries are precisely the branch points of the projection

RSL2(C)(S) → RPSL2(C)(S). It appears that composing our representation

ρ̌λ with a sign-reversal symmetry of its classical shadow r ∈ RSL2(C)(S)

often produces a representation ρ̌λ ◦ε that is isomorphic to ρ̌λ, but we have

not been able to confirm this fact in full generality.

At this point, we still have a major problem, which is that we do not

know that the off-diagonal kernel Fλ is different from 0. This property

may even seem unlikely at first, as the off-diagonal kernel Fλ is defined as

an intersection of kernels of endomorphisms of the vector space Eλ. This

question is addressed in §6, and provides another one of the surprising

twists in this article.

Theorem 5. If the closed oriented surface S has genus g, the representation

ρ̌λ : SA(S) → End(Fλ) with classical shadow r ∈ RSL2(C)(S) provided by

Theorem 3 has dimension

dimFλ >


N3(g−1) if g > 2

N if g = 1

1 if g = 0.

The above inequality is an equality for r ∈ RSL2(C)(S) generic, namely for r

in an explicit Zariski dense open subset of RSL2(C)(S).

In particular, the representation ρ̌λ : SA(S) → End(Fλ) is non-trivial.

It may be reducible. In fact, although we conjecture that ρ̌λ is irreducible

for generic r ∈ RSL2(C)(S), it is definitely reducible for highly non-generic

homomorphisms r : π1(S) → SL2(C) such as the trivial homomorphism.

However, restricting ρ̌λ to an irreducible component proves our main

Theorem 2.

We suspect that the inequalities of Theorem 5 are always equalities.

Our proof of Theorem 5 departs from the “drill, baby, drill” and “more

punctures is better” philosophy, and is based on a careful analysis of explicit

triangulations λ with a very small number of vertices.

The results and methodology of this article were announced in [6]. The

more recent articles and preprints [1, 15, 16] develop another construction

of representations of SA(S) with a given classical shadow r ∈ RSL2(C)(S),
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valid for r in a Zariski dense open subset of RSL2(C)(S). The construction of

[1, 15] is simpler, but ours is more explicit. We also believe that many of the

ideas introduced in this paper are susceptible to have further applications

in other contexts.

Acknowledgement. The authors are very grateful to the referee for a

careful reading of our manuscript, and for helpful suggestions.

1. The Kauffman bracket skein algebra

Let S be an oriented surface of finite topological type without boundary.

The Kauffman bracket skein algebra SA(S) depends on a parameter A =

e−πi~ ∈ C − {0}, and is defined as follows: One first considers the vector

space freely generated by all isotopy classes of framed links in the thickened

surface S × [0, 1], and then one takes the quotient of this space by two

relations. The first and main relation is the skein relation, which states

that

[K1] = A−1[K0] +A[K∞]

whenever the three links K1, K0 and K∞ ⊂ S × [0, 1] differ only in a little

ball where they are as represented in Figure 1, and where [K] denotes the

class of SA(S) represented by the framed link K. The second relation is

the trivial knot relation, which asserts that

[K ∪O] = −(A2 +A−2)[K]

whenever O is the boundary of a disk D ⊂ K × [0, 1] disjoint from K, and

is endowed with a framing transverse to D.

K0K1 K∞

Figure 1. A Kauffman triple

The algebra multiplication is provided by the operation of superposition,

where the product [K] · [L] is represented by the union [K ′ ∪ L′] where

K ′ ⊂ S × [0, 1
2 ] and L′ ⊂ S × [1

2 , 1] are respectively obtained by rescaling

the framed links K ⊂ S × [0, 1] and L′ ⊂ S × [0, 1].
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2. Sign-reversal symmetries

The character variety RSL2(C)(S) and the skein algebra SA(S) both admit

natural actions of the cohomology group H1(S;Z2). Indeed, for a character

r ∈ RSL2(C)(S) represented by a homomorphism r : π1(S) → SL2(C) and a

cohomology class ε ∈ H1(S;Z2), its image εr ∈ RSL2(C)(S) is represented

by the homomorphism εr defined by

εr(γ) = (−1)ε(γ)r(γ) ∈ SL2(C)

for every γ ∈ π1(S). The action of H1(S;Z2) on SA(S) is similarly defined

by the property that

ε[K] = [(−1)ε(K)K] ∈ SA(S)

for every framed link K ⊂ S × [0, 1] and ε ∈ H1(S;Z2).

If the character r ∈ RSL2(C)(S) is fixed under the action of some

ε ∈ H1(S;Z2), we say that ε ∈ H1(S;Z2) is a sign-reversal symmetry for the

character r ∈ RSL2(C)(S). This is equivalent to the property that the trace

Tr r(γ) is equal to 0 for every γ ∈ π1(S) with ε(γ) 6= 0.

Because of our assumption that N is odd, the Chebyshev polynomial

TN (x) is a sum of monomials of odd degree. It follows that, if the

representation ρ : SA(S) → End(E) has classical shadow r ∈ RSL2(C)(S),

its composition ρ ◦ ε with the action of ε ∈ H1(S;Z2) on SA(S) has

classical shadow εr ∈ RSL2(C)(S). In particular, if the classical shadow

r ∈ RSL2(C)(S) of the representation ρ : SA(S)→ End(E) has a sign-reversal

symmetry ε ∈ H1(S;Z2), the representation ρ ◦ ε also has classical shadow

εr = r. Sign-reversal symmetries of a character r ∈ RSL2(C)(S) are therefore

intrinsic symmetries of the problem of finding representations of SA(S) with

classical shadow r, which explains why they will occur in many statements

of our article.

Characters with non-trivial sign-reversal symmetries exist, but are rare.

For instance, they form an algebraic subset of complex dimension 2g− 2 in

the (6g−6)–dimensional character variety RSL2(C)(S), where g is the genus

of the surface S; see [10, §5.1].

3. Constructing representations for punctured surfaces

Throughout the article, A will be a primitive N–root of −1 with N odd.

Namely, AN = −1 and N is the smallest positive integer with this property

(and N is odd). We also use a choice of square root ω =
√
A−1.
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3.1. The balanced Chekhov-Fock algebra of a triangulation. Let λ

be a triangulation of the closed oriented surface S. For most of the article,

we are allowing an edge to go from one vertex to itself, as well as two

edges to have the same endpoints. However, we will always require that

the sides of a face of λ correspond to three distinct edges, for reasons that

will become apparent in Remark 6.

We will sometimes restrict attention to triangulations where each edge

has distinct endpoints, and where distinct edges have distinct pairs of

endpoints. In this case, we will say that the triangulation is combinatorial,

since this corresponds to the usual convention of combinatorial piecewise

linear topology.

Let e1, e2, . . . , en be the edges of λ. After choosing an auxiliary number

ω such that ω2 = A−1, the Chekhov-Fock algebra of λ is the algebra T ω(λ)

defined by generators Z±1
1 , Z±1

2 , . . . , Z±1
n respectively associated to the

edges e1, e2, . . . , en of λ, and by the relations

ZiZj = ω2σijZjZi.

where σij = aij − aji ∈ {−2,−1, 0, 1, 2} and where ai ∈ {0, 1, 2} is the

number of times an end of the edge ej immediately succeeds an end of ei
when going counterclockwise around a vertex of λ.

An element of the Chekhov-Fock algebra T ω(λ) is a linear combination

of monomials Zk11 Zk22 . . . Zknn in the generators Zi, with k1, k2, . . . , kn ∈ Z.

Such a monomial Zk11 Zk22 . . . Zknn is balanced if its exponents ki satisfy the

following parity condition: for every triangle Tj of the ideal triangulation

λ, the sum ki1 + ki2 + ki3 of the exponents of the generators Zi1 , Zi2 , Zi3
associated to the sides of Tj is even.

The balanced Chekhov-Fock algebra Zω(λ) of the triangulation λ is the

subalgebra of T ω(λ) generated by all monomials satisfying this parity

condition.

There are two reasons to be interested in the balanced Chekhov-Fock

algebra Zω(λ), whose combination is particularly useful for our purposes.

The first one is the existence of an injective algebra homomorphism

Trωλ : SA(Sλ)→ Zω(λ)

from the skein algebra of the punctured surface Sλ = S − Vλ, obtained

by removing from S the set Vλ of vertices of λ, to the algebra Zω(λ);

this quantum trace homomorphism Trωλ is constructed in [7]. The second

reason is that the algebraic structure of Zω(λ) is fairly simple, so that its
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representations are easily classified (see [10, §2], and the next section). This

enables us to obtain representations of SA(Sλ) by composing the quantum

trace homomorphism Trωλ with suitable representations of Zω(λ). We will

then show that these representations of the skein algebra SA(Sλ) of the

punctured surface Sλ induce representations of the skein algebra SA(S) of

the closed surface S, which is the object of interest to us.

Because of the skew-commutativity relations ZiZj = ω2σijZjZi, the

order of the variables in a monomial Zn1
i1
Zn2
i2
. . . Znlil is quite important.

We will make heavy use of the following symmetrization trick. The Weyl

quantum ordering for Zn1
i1
Zn2
i2
. . . Znlil is the monomial

[Zn1
i1
Zn2
i2
. . . Znlil ] = ω−

∑
u<v nunvσiuivZn1

i1
Zn2
i2
. . . Znlil .

The formula is specially designed that [Zn1
i1
Zn2
i2
. . . Znlil ] ∈ T ω(λ) is invariant

under any permutation of the Znuiu .

3.2. Enhanced homomorphisms from π1(S) to SL2(C). We are given

a character r ∈ RSL2(C)(S), represented by a homomorphism r : π1(S) →
SL2(C), and a triangulation λ of the closed surface S. Let S̃ be the universal

covering of S, and let λ̃ be the triangulation of S̃ induced by λ. Let Vλ ⊂ S
and Ṽλ ⊂ S̃ be the respective vertex sets of λ and λ̃.

A λ–enhancement for the group homomorphism r : π1(S)→ SL2(C) is a

map ξ : Ṽλ → CP1 such that:

(1) ξ is r–equivariant, in the sense that ξ(γṽ) = r(γ)ξ(ṽ) for every ṽ ∈ Ṽλ
and every γ ∈ π1(S) (for the standard action of SL2(C) on the

projective line CP1);

(2) for every edge ẽ of λ̃, the elements ξ(ṽ) and ξ(ṽ′) ∈ CP1 respectively

associated to the end points ṽ and ṽ′ of ẽ are distinct.

Remark 6. Note an easy consequence of our assumption that the sides

of each face of a triangulation λ correspond to three distinct edges. If e

is an edge of λ whose endpoints are equal to the same vertex v, an Euler

characteristic argument shows that the closed loop formed by e cannot

bound a disk in S. As a consequence every edge ẽ of λ̃ has distinct

endpoints, which makes Condition (2) above more likely. Also, for the

same reason, every edge e of λ whose endpoints are equal determines a

non-trivial element of π1(S), well-defined up to conjugation.
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Lemma 7. Consider a triangulation λ of the surface S and a group homo-

morphism r : π1(S)→ SL2(C) satisfying the following property: for every edge

e of λ whose endpoints are equal to the same vertex v, the element r(e) is dif-

ferent from ±Id in SL2(C). Then the homomorphism r : π1(S) → SL2(C)

admits a λ–enhancement.

Note that, in particular, the hypotheses of Lemma 7 are automatically

satisfied if every edge of λ has distinct endpoints, or if r is injective by

Remark 6.

Proof. To construct an r–equivariant map ξ : Ṽλ → CP1, we proceed orbit

by orbit for the action of π1(S) on the vertex set Ṽλ.

For a vertex v ∈ Vλ, pick a point ṽ ∈ Ṽλ in its preimage. As a first

approximation, define ξ(ṽ) to be an arbitrary point of the projective line

CP1. Then there is a unique way to r–equivariantly extend ξ to the whole

preimage of v, namely to the orbit π1(S)ṽ of ṽ under the action of π1(S):

define ξ on this orbit by the property that ξ(γṽ) = r(γ)ξ(ṽ) for every

γ ∈ π1(S).

Performing this operation for each vertex v of λ defines an r–equivariant

map ξ : Ṽλ → CP1.

In addition, we can require that, at each step, the initial point ξ(ṽ) ∈ CP1

is chosen to satisfy the following two conditions: ξ(ṽ) is not in the image

under ξ of the orbits considered in earlier steps; for every edge e of λ whose

endpoints are both equal to v, the point ξ(ṽ) is not fixed by the image

under r of any conjugate of e ∈ π1(S). Because of our hypothesis that

r(e) 6= ±Id in the second case, these two conditions are easily satisfied by

suitably choosing ξ(ṽ) ∈ CP1 outside of a countable number of forbidden

values.

It is then immediate that the map ξ : Ṽλ → CP1 so constructed in a

λ–enhancement. �

A λ–enhancement ξ : Ṽλ → CP1 for the homomorphism r : π1(S) →
SL2(C) assigns a non-zero complex weight xi ∈ C∗ = C − {0} to the i–

th edge ei of λ as follows. Lift ei to an edge ẽi of the triangulation λ̃ of the

universal covering S̃. Arbitrarily orient ẽi, and let ṽ+
i and ṽ−i be the positive

and negative endpoints of ẽi. Consider the two faces of λ̃ that are adjacent

to ẽi, let ṽ left
i be the third vertex of the face to the left, and let ṽ right

i be

the third vertex of the face to the right. Then, xi is defined as minus the

crossratio of the four points ξ(ṽ+
i ), ξ(ṽ−i ), ξ(ṽ left

i ), ξ(ṽ right
i ) ∈ CP1. More
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precisely, for the standard identification CP1 ∼= C ∪ {∞},

xi = −
(
ξ(ṽ left

i )− ξ(ṽ+
i )
)(
ξ(ṽ right

i )− ξ(ṽ−i )
)(

ξ(ṽ left
i )− ξ(ṽ−i )

)(
ξ(ṽ right

i )− ξ(ṽ+
i )
) .

Note that reversing the orientation of ẽi leaves xi unchanged. Also, the

two conditions in the definition of λ–enhancements guarantee that xi is a

well-defined element of C∗ and is independent of the choice of the lift ẽi of

ei, by invariance of crossratios under the action of SL2(C) on CP1.

3.3. Representations of the balanced Chekhov-Fock algebra. We

will use the results of [10] to associate to each group homomorphism

r : π1(S) → SL2(C), endowed with a λ–enhancement ξ : Ṽλ → CP1, a

representation µλ : Zω(λ)→ End(E) of the balanced Chekhov-Fock algebra

Zω(λ).

This representation µλ will be uniquely determined up to isomorphism,

but also up to sign-reversal symmetry of the character r ∈ RSL2(C)(S). To

make sense of this property, note that a monomial Zk = Zk11 Zk22 . . . Zknn ∈
Zω(λ) uniquely determines a homology class [k] ∈ H1(Sλ;Z2) in the

punctured surface Sλ, by the property that the algebraic intersection

number of [k] with each edge ei has the same parity as the exponent ki
of the corresponding generator Zi; see [10, Lemma 9]. A cohomology class

ε ∈ H1(Sλ;Z2) then acts on Zω(λ) by sending each Zk to (−1)ε([k])Zk. By

restriction, this defines an action of H1(S;Z2) on Zω(λ).

Also, a vertex v of λ determines an element

Hv = [Zk11 Zk22 . . . Zknn ] = ω−
∑
i<j kikjσijZk11 Zk22 . . . Zknn ∈ Zω(λ)

where ki ∈ {0, 1, 2} is the number of endpoints of the edge ei that are equal

to v, and where [ ] denotes the Weyl quantum ordering defined in §3.1.

This element Hv is central in Zω(λ), as proved in [5, §3] or [10, §2.2].

A final observation is that the generator Zi ∈ T ω(λ) associated to the

edge ei of λ does not belong to the balanced Chekhov-Fock algebra Zω(λ),

as it does not satisfy the required exponent parity condition. However, its

square Z2
i ∈ Zω(λ) does.

We will make repeated use of the following result, borrowed from [10].
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Proposition 8. For a triangulation λ of the surface S, consider a group

homomorphism r : π1(S)→ SL2(C) endowed with a λ–enhancement ξ : Ṽλ →
CP1. Then, up to isomorphism and up to the action of a sign-reversal symme-

try of r ∈ RSL2(C)(S) (if r admits any), there exists a unique representation

µλ : Zω(λ)→ End(Eλ) of the balanced Chekhov-Fock algebra Zω(λ) with the

following properties.

(1) The dimension of Eλ is equal to N3g+pλ−3, where g is the genus of the

surface S and where pλ is the number of vertices of the triangulation λ.

(2) For every edge ei of λ, let xi ∈ C∗ be the crossratio weight associated

to ei by the enhancement ξ as above, and let Zi be the corresponding

generator of the Chekhov-Fock algebra T ω(λ). Then,

µλ(Z2N
i ) = xi IdEλ .

(3) For every vertex v of λ with associated central element Hv ∈ Zω(λ),

µλ(Hv) = −ω4 IdEλ .

(4) The representation ρλ = µλ ◦ Trωλ : SA(Sλ) → End(Eλ) has classical

shadow r ∈ RSL2(C)(S), in the sense that

TN
(
ρλ([K])

)
= −Tr r(K) IdEλ

for every framed knot K ⊂ Sλ × [0, 1] whose projection to Sλ has no

crossing and whose framing is vertical.

In addition, µλ is irreducible.

Proof. This is a special case of the combination of Propositions 22 and 23 of

[10]. The only minor difference is that these results are expressed in terms

of pleated surfaces instead of λ–enhancements.

To connect the two viewpoints, note that the triangulation λ can also be

interpreted as an ideal triangulation of the punctured surface Sλ = S − Vλ,

obtained by removing from S the vertex set Vλ of λ. Similarly, the lift λ̃

of λ to the universal covering S̃ of S gives an ideal triangulation of the

preimage S̃λ = S̃ − Ṽλ of Sλ in S̃. The λ–enhancement ξ : Ṽλ → CP1 then

determines an r–equivariant pleated surface f̃λ : S̃λ → H3 that sends each

face T̃ of λ̃ with vertices ṽ1, ṽ2, ṽ3 ∈ Ṽλ to the ideal triangle f̃λ(T̃ ) ⊂ H3

with vertices ξ(ṽ1), ξ(ṽ2), ξ(ṽ3) ∈ CP1 = ∂∞H3. We can then lift f̃λ to

an rλ–equivariant pleated surface f̂λ : Ŝλ → H3, where Ŝλ is the universal
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cover of the punctured surface Sλ and where rλ : π1(Sλ) → SL2(C) is the

composition of r : π1(S)→ SL2(C) with the homomorphism π1(Sλ)→ π1(S)

induced by the inclusion map.

The pleated surface (f̂λ, rλ) is exactly the setup needed to apply Proposi-

tion 23 of [10] to the punctured surface Sλ. By construction, the shearbend

parameter associated by this pleated surface to the edge ei of λ is exactly

the crossratio weight xi defined as above by the λ–enhancement ξ.

Proposition 23 of [10] has an additional degree of freedom for each

puncture v of Sλ. Specifically, the hypotheses of that statement require

that we choose an N–root hv = µζ(Hv)
1
N for a certain number µζ(Hv) ∈ C∗

provided by [10, Proposition 22] (using the notation of [10]). In addition,

this number µζ(Hv) is such that µζ(Hv)+µζ(Hv)−1 = −Tr r(Pv), where Pv
is a small loop going around the puncture v of Sλ. In our case rλ(Pv) is the

identity and consequently has trace equal to 2, so that µζ(Hv) = −1.

We can therefore apply [10, Proposition 23] to the N–root hv = −ω4

of µζ(Hv) = −1, since N is odd and ω4N = A−2N = 1. This provides a

representation µλ : Zω(λ) → End(Eλ) satisfying the conclusions of Propo-

sition 8.

The uniqueness parts of Propositions 22 and 23 of [10] show that µλ is

unique up to isomorphism and up to the action of a sign-reversal symmetry

ελ ∈ H1(Sλ;Z2) of the restriction rλ ∈ RSL2(C)(Sλ) of r ∈ RSL2(C)(S).

For every puncture v of Sλ, Tr rλ(Pv) = 2 6= 0 and the sign-reversal

symmetry ελ is consequently trivial on the loop Pv going around v. It

follows that ελ is the restriction of a sign-reversal symmetry ε ∈ H1(S;Z2) of

r ∈ RSL2(C)(S). This proves the uniqueness statement for the representation

µλ : Zω(λ)→ End(Eλ). �

Remark 9. As indicated in the above discussion, we could have replaced

Conclusion (3) of Proposition 8 by the property that µλ(Hv) = hv IdEλ
for an arbitrary N–root hv of −1. However our subsequent applications of

Proposition 8 will require that hv = −ω4 in a crucial way.

Complement 10. The representation µλ of Proposition 8 continuously de-

pends on the enhanced homomorphism (r, ξ) as follows. For each edge ei of

λ, consider the corresponding crossratio weight xi ∈ C− {0} as a function of

the pair (r, ξ), and let ui = 2N
√
xi be a local determination of the 2N–root of

xi defined for (r, ξ) in an open subset U of the space of all such pairs. Then

the representation µλ : Zω(λ) → End(Eλ) can be chosen so that, for every

monomial Zk11 Zk22 . . . Zknn ∈ Zω(λ),
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µλ(Zk11 Zk22 . . . Zknn ) = uk11 u
k2
2 . . . uknn Ak1k2...kn

for some linear isomorphism Ak1k2...kn ∈ End(Eλ) independent of (r, ξ) ∈ U .

Proof. This is an immediate consequence of the proofs of Propositions 15,

22 and 23 in [10] (where Proposition 15 is a key step in the proof of

Proposition 23). �

3.4. Representing the skein algebra of the punctured surface Sλ.

We now begin our construction of an irreducible representation of the

skein algebra SA(S) whose classical shadow is equal to the character

r ∈ RSL2(C)(S).

Represent the character r ∈ RSL2(C)(S) by a group homomorphism

r : π1(S) → SL2(C). Let λ be a triangulation of S for which this homo-

morphism r admits a λ–enhancement ξ. For instance, any combinatorial

triangulation has this property by Lemma 7. Let Sλ = S − Vλ be the

punctured surface obtained by removing the vertex set of λ from S.

We can then consider the representation µλ : Zω(λ) → End(Eλ) associ-

ated to the enhanced homomorphism (r, ξ) by Proposition 8. Composing

µλ with the quantum trace homomorphism Trωλ : SA(Sλ) → Zω(λ) of [7]

now defines a representation

ρλ = µλ ◦Trωλ : SA(Sλ)→ End(Eλ).

This is only a representation of the skein algebra SA(Sλ) of the punc-

tured surface Sλ, whereas we want to represent the skein algebra SA(S) of

the closed surface S. The rest of the article is devoted to showing how ρλ
induces a non-trivial representation of SA(S).

4. The off-diagonal kernels

4.1. The classical off-diagonal term of a vertex. This section is in-

tended to motivate the definition of the next section.

Consider a vertex v of the triangulation λ. Let ei1 , ei2 , . . . , eiu be the

edges of λ that emanate from v, indexed in counterclockwise order around

v, and with possible repetitions when the two endpoints of an edge are

equal to v. As in §3.2, let xi ∈ C∗ be the crossratio weight associated to

the edge ei of λ by the enhancement ξ.
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Lemma 11.

1 + xi1 + xi1xi2 + · · ·+ xi1xi2 . . . xiu−1 = 0

Proof. Let Pv be a small loop going around the vertex v, oriented coun-

terclockwise. A standard computation (see for instance Exercises 8.5–8.7

and 10.14 in [4]) enables us to compute the image of any element of π1(Sλ)

under the homomorphism rλ : π1(Sλ) → SL2(C) induced by r, namely the

homomorphism rλ obtained by composing r : π1(S)→ SL2(C) with the ho-

momorphism π1(Sλ) → π1(S) induced by the inclusion map. For Pv, this

gives that, up to conjugation,

rλ(Pk) = ±
(

1 1

0 1

)(
zi1 0

0 z−1
i1

)(
1 1

0 1

)(
zi2 0

0 z−1
i2

)
. . .

(
1 1

0 1

)(
ziu 0

0 z−1
iu

)
= ±

(
zi1zi2 . . . ziu

∑u
j=1 zi1zi2 . . . zij−1z

−1
ij
z−1
ij+1 . . . z

−1
iu

0 z−1
i1
z−1
i2
. . . z−1

iu

)
∈ SL2(C)

for arbitrary choices of square roots zi =
√
xi. The ± sign depends on these

choices of square roots.

Since Pv is homotopic to 0 in S, rλ(Pv) = r(Pv) = Id ∈ SL2(C).

Therefore, zi1zi2 . . . ziu = ±1 and the off-diagonal term
u∑
j=1

zi1zi2 . . . zij−1z
−1
ij
z−1
ij+1 . . . z

−1
iu

= z−1
i1
z−1
i2
. . . z−1

iu

( u∑
j=1

z2
i1z

2
i2 . . . z

2
ij−1

)

= ±
(

1 + z2
i1 + z2

i1z
2
i2 + · · ·+ z2

i1z
2
i2 . . . z

2
iu−1

)
= ±

(
1 + xi1 + xi1xi2 + · · ·+ xi1xi2 . . . xiu−1

)
is equal to 0. �

We will consider a quantum analogue of the equation

1 + xi1 + xi1xi2 + · · ·+ xi1xi2 . . . xiu−1 = 0

or, equivalently,

1 + z2
i1 + z2

i1z
2
i2 + · · ·+ z2

i1z
2
i2 . . . z

2
iu−1

= 0

for the representation µλ : Zω(λ) → End(Eλ) of Proposition 8. The major

difference is that this equation will not be realized everywhere, but only on

a subspace Fv of Eλ.
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4.2. The off-diagonal term and kernel of a vertex. As in the previous

section, we consider a vertex v of the triangulation λ, and we index the

edges of λ emerging from v as ei1 , ei2 , . . . , eiu in counterclockwise order

around v.

Note that the indexing of the eij depends on our choice of the first edge

ei1 . For this choice of indexing, the off-diagonal term of the puncture v is

the element

Qv =
u−1∑
j=0

ω−4jZ2
i1Z

2
i2 . . . Z

2
ij

= 1 + ω−4Z2
i1 + ω−8Z2

i1Z
2
i2 + · · ·+ ω−4(u−1)Z2

i1Z
2
i2 . . . Z

2
iu−1

of Zω(λ). The term corresponding to j = 0 is here 1 by convention.

For the representation µλ : Zω(λ) → End(Eλ) of Proposition 8, the off-

diagonal kernel of the vertex v for the representation µλ is the subspace

Fv = kerµλ(Qv) of Eλ. To relate this definition to the relation of Lemma 11,

observe that the off-diagonal kernel Fv is the set of vectors w ∈ Eλ such

that

µλ
(
1 + ω−4Z2

i1 + ω−8Z2
i1Z

2
i2 + · · ·+ ω−4(u−1)Z2

i1Z
2
i2 . . . Z

2
iu−1

)
(w) = 0.

Note the analogy with the last displayed equation of §4.1.

The total off-diagonal kernel of µλ is the intersection Fλ =
⋂
v∈Vλ Fv of

the off-diagonal kernels of all vertices of λ.

The off-diagonal term Qv ∈ Zω(λ) clearly depends of the indexing of

the edges of λ around v. We will show in Lemma 14 below that, on the

contrary, the off-diagonal kernel Fv ⊂ Eλ depends only on the vertex v. As

a first step towards the proof of that statement, we begin with a preliminary

lemma.

By invariance of the Weyl quantum ordering under permutation, the

central element Hv ∈ Zω(λ) associated to the vertex v can be written as

Hv = [Zi1Zi2 . . . Ziu ]. We want to compute the precise quantum ordering

coefficient in this expression.

Lemma 12. Let the edges of λ emerging from the vertex v be indexed as ei1 ,

ei2 , . . . , eiu in counterclockwise order around v. Then, the central element

Hv ∈ Zω(λ) associated to v is equal to

Hv = ω−u+2Zi1Zi2 . . . Ziu .
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Proof. The proof is straightforward when the edges eik are all distinct, and

in particular when the triangulation λ is combinatorial. Indeed, in this

case, ZikZik+1
= ω2Zik+1

Zik whenever 1 6 k < u, Zi1Ziu = ω2ZiuZi1 ,

and all other pairs of generators Zik , Zil commute. The general case

could be deduced from this one with the change of triangulation techniques

developed in §§5.1 and 5.2, but we prefer to give a combinatorial proof right

away. See also the very indirect argument that we used in the proof of [10,

Lemma 18].

By definition of the Weyl quantum ordering,

Hv = [Zi1Zi2 . . . Ziu ] = ω−
∑

16k<l6u σikilZi1Zi2 . . . Ziu

where the skew commutativity coefficient σij ∈ {0,±1,±2} is defined as in

§3.1, and in particular is such that ZiZj = ω2σijZjZi.

By definition of σij , we can write

∑
16k<l6u

σikil =
u∑
l=2

∑
16k<l and

a angular sector
from eik to eil

ε(k, l, a)

where, for every angular sector a of a triangle Tj that is locally bounded by

the edges eik and eil near the vertex of a, ε(k, l, a) is equal to +1 if one goes

from eik to eil counterclockwise at a, and is equal to −1 otherwise. The

angular sectors a contributing to this sum include the angular sectors a1,

a2, . . . , au that are adjacent to v, indexed in such a way that ak is locally

bounded by the edges eik and eik+1
near v. There may be contributions

from additional angular sectors when the edges eik are not distinct.

Fixing an index l, we want to analyze its contribution σ(l) =
∑
k,a ε(k, l, a)

of the edge eil to the above sum. If an index k contributes to σ(l), then

the edge eik is contained in a face of λ that also contains eil , and one of the

two edges eik±1
is also contained in the same face. Analyzing the possible

configurations in the union of the two faces of λ containing eil , we see that

most of the couples (k, a) contributing to the sum can be grouped into pairs

(1) {(k, a′k), (k+1, a′′k)} when the angular sector ak is opposite eil in a face

of λ, and where a′k and a′′k are the other two angular sectors of this

face;

(2) {(k − 1, ak−1), (k + 1, ak)} when eik = eil .

The first type of pair {(k, a′k), (k + 1, a′′k)} contributes ε(k, l, a′k) + ε(k +

1, l, a′′k) = +1−1 = 0. The second type {(k−1, ak−1), (k+1, ak)} contributes
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ε(k, l− 1, al−1) + ε(k, l+ 1, al) = 1− 1 = 0. In particular, the corresponding

terms cancel out.

The only terms that do not cancel out in such a pair are those where the

potential pair would involve an index that is not in the interval [1, l − 1].

This always occurs for ε(l − 1, l, al−1) = +1, and for ε(1, u, au) = −1 when

l = u. A more special instance arises when the angular sector au is opposite

eil in a face of λ, in which case ε(1, l, a′′u) = 1 cannot be cancelled by a term

ε(u, l, a′u) = −1. Similarly, when eil = ei1 or eil = eiu with l < u, the

terms ε(2, l, a1) = −1 or ε(1, l, au) = −1, respectively, are not cancelled by

another term.

Using our convention that the three sides of each face of the triangulation

λ are all distinct, one easily sees that these are the only terms that do

not cancel out. Note that, outside of ε(l − 1, l, al−1) = +1, all the other

exceptions occur precisely when the face of λ containing the angular sector

au also contains the edge eil . Summing over l and combining the above

observations, it follows that∑
16k<l6u

σikil = u− 1 + n1 − n2

where n1 ∈ {0, 1, 2} is the number of indices l ∈ [2, u] for which the edge eil is

opposite the angular sector au in the face that contains it, and n2 ∈ {1, 2, 3}
is the number of indices l ∈ [2, u] for which the edge eil is adjacent to au.

Now, consider the face of λ that contains the angular sector au. There

are three cases to consider, according to whether 1, 2 or 3 of the vertices

of this face are equal to v. An immediate count gives that n2 = n1 + 1 in

all three cases. This proves that∑
16k<l6u

σikil = u− 2

and completes the proof of Lemma 12. �

This combinatorial proof of Lemma 12 also enables us to compute the

Weyl quantum ordering of monomials similar to the central element Hv.

These computations will be used in §6.
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Lemma 13. Let the edges of λ emerging from the vertex v be indexed as

ei1 , ei2 , . . . , eiu in counterclockwise order around v. Then, for every k0 with

1 < k0 < u,

[Zi1Zi2 . . . Zik0 ] =


ω−k0+1Zi1Zi2 . . . Zik0 if eik0 6= ei1 and eik0+1

6= eiu

ω−k0+2Zi1Zi2 . . . Zik0 if eik0 = ei1

ω−k0Zi1Zi2 . . . Zik0 if eik0+1
= eiu .

In particular, [Zi1Zi2 . . . Zik0 ] = ω−k0+1Zi1Zi2 . . . , Zik0 if the triangulation

λ is combinatorial.

Proof. By definition of the Weyl quantum ordering,

[Zi1Zi2 . . . Zik0 ] = ω−
∑

16k<l6k0
σikilZi1Zi2 . . . Zik0 .

The same arguments as in the proof of Lemma 12 then give that∑
16k<l6k0

σikil = k0 − 1 + n1 − n2

where n1 ∈ {0, 1, 2} is the number of indices l ∈ [2, k0] for which the edge

eil is opposite the angular sector au in a face of λ, and n2 ∈ {0, 1, 2} is the

number of indices l ∈ [2, k0] for which the edge eil is adjacent to au.

The fact that indices are truncated at k0 introduces minor differences

with the case of Lemma 12. More precisely, the case-by-case analysis now

gives that

n2 =


n1 if eik0 6= ei1 and eik0+1

6= eiu

n1 + 1 if eik0 = ei1

n1 − 1 if eik0+1
= eiu .

The stated computation immediately follows. �

We are now ready to prove the promised result, that the off-diagonal

kernel Fv ⊂ Eλ depends only on the vertex v.

Lemma 14. The off-diagonal kernel Fv = kerµλ(Qv) of v is independent of

the counterclockwise indexing of the edges ei1 , ei2 , . . . , eiu , eiu+1 = ei1 of λ

around the vertex v.

Proof. We can clearly restrict attention to the case where we shift the

indexing by 1, and start at the last edge eiu instead. Then the off-diagonal

term

Qv = 1 + ω−4Z2
i1 + ω−8Z2

i1Z
2
i2 + · · ·+ ω−4(u−1)Z2

i1Z
2
i2 . . . Z

2
iu−1
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gets replaced by

Q′v = 1 + ω−4Z2
iu + ω−8Z2

iuZ
2
i1 + ω−12Z2

iuZ
2
i1Z

2
i2 + . . .

· · ·+ ω−4(u−1)Z2
iuZ

2
i1Z

2
i2 . . . Z

2
iu−2

= 1 + ω−4Z2
iuQv − ω

−4uZ2
iuZ

2
i1Z

2
i2 . . . Z

2
iu−2

Z2
iu−1

.

We now have to remember that µλ(Hv) = −ω4 IdEλ by choice of the

representation µλ in Proposition 8, so that

µλ(ω−4uZ2
iuZ

2
i1Z

2
i2 . . . Z

2
iu−2

Z2
iu−1

) = µλ(ω−8H2
v ) = IdEλ

by Lemma 12. It follows that

µλ(Q′v) = IdEλ + µλ(ω−4Z2
iuQv)− IdEλ = ω−4µλ(Z2

iu) ◦ µλ(Qv).

The element Z2
iu

is invertible in Zω(λ). Therefore µλ(Z2
iu

) is invertible

in End(Eλ) and it follows that kerµλ(Q′v) = kerµλ(Qv), as desired. �

4.3. Invariance under the action of the skein algebra. The off-

diagonal kernel Fv ⊂ Eλ cannot be invariant under µλ
(
Zω(λ)

)
, since

the representation µλ : Zω(λ) → End(Eλ) is irreducible. However, it is

invariant under the image of the representation ρλ = µλ ◦ Trωλ : SA(Sλ) →
End(Eλ).

In this section, we restrict attention to the case where the triangulation λ

is combinatorial. We will later see, in §5.3, that the property holds without

this hypothesis.

Proposition 15. Suppose that the triangulation λ is combinatorial, in the

sense that every edge has distinct endpoints and that no two distinct edges

have the same endpoints. Then, the off-diagonal kernel Fv of each vertex v of

λ is invariant under ρλ
(
SA(Sλ)

)
⊂ End(Eλ).

Proof. Let N (v) ⊂ S be the neighborhood of the vertex v that is the

union of the faces of λ containing v. Because of our hypothesis that λ

is combinatorial, there are no identifications on the boundary of N (v),

and N (v) is homeomorphic to a disk. We already indexed the edges of

λ emanating from v as ei1 , ei2 , . . . , eiu , going counterclockwise around v.

Let ek1 , ek2 , . . . , eku denote the edges forming the boundary of the star

neighborhood N (v), in such a way that eij , eij−1 and ekj cobound a face of

λ. See Figure 2.
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ei1eiu

ei2

ek1

ek2eku

eijlal

ekjl

K
ekjl+1

Figure 2. The star neighborhood N (v) of the vertex v

Let K be a framed link in Sλ × [0, 1]. We want to show that ρλ
(
[K]
)

=

µλ ◦ Trωλ
(
[K]
)

respects Fv and, for this, we first need to understand the

quantum trace Trωλ
(
[K]
)
∈ Zω(λ). The precise construction of Trωλ

(
[K]
)

in

[7] can be somewhat elaborate, and we first isotop K to a position where

the quantum trace is easier to analyze.

Because there are no identifications on the boundary of the neighbor-

hood N (v), we can arrange by an isotopy that the intersection of K with

N (v) × [0, 1] consists of finitely many horizontal arcs a1 × {∗}, a2 × {∗},
. . . , at × {∗}, where each al ⊂ N (v) is an embedded arc that turns around

one of the boundary vertices of N (v), in the sense that al goes from some

boundary edge ekjl of N (v) to the next ekjl+1 , crosses the internal edge

eijl in one point, and meets no other edge of λ (with the convention that

ku+1 = k1). See Figure 2. In addition, we can arrange that these horizontal

arcs al × {∗} sit at increasing elevations ∗ ∈ [0, 1] as l goes from 1 to t.

Then the State Sum Formula of [7] expresses Trωλ
(
[K]
)

as a sum of terms

of the form

A1A2 . . . AtB ∈ Zω(λ)

where each term corresponds to a state for the boundary of K ∩
(
N (v) ×

[0, 1]
)
, where Al is the contribution of the arc al, and where B is the

contribution of the complement of K ∩
(
N (v) × [0, 1]

)
in K. In addition,

each non-zero Al can be of only three types

Al = ω2ZkjlZijlZkjl+1

or Al = Z−1
kjl
ZijlZkjl+1 + Z−1

kjl
Z−1
ijl
Zkjl+1

or Al = ω2Z−1
kjl
Z−1
ijl
Z−1
kjl+1

according to the state considered, and B involves only generators Zi
corresponding to edges ei of λ that are not in N (v).
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This expression has the unfortunate feature that, although the terms

Al and B are elements of the Chekhov-Fock algebra T ω(λ), they do not

satisfy the exponent parity condition necessary to make them elements

of the balanced Chekhov-Fock algebra Zω(λ). In particular, we cannot

directly apply the representation µλ, since terms like µλ(Al) and µλ(B) are

not defined.

To circumvent this problem, we factor out of A1A2 . . . AvB the product

C = Z−1
j1
Z−1
j2

. . . Z−1
jw

, where ej1 , ej2 , . . . , eiw are the edges of λ crossed

by K (with possible repetitions). Note that the arc al contributes, up to

permutation, a term Z−1
kjl
Z−1
ijl
Z−1
kjl+1 to this product C = Z−1

j1
Z−1
j2

. . . Z−1
jw

.

Set

A′l = Z2
kjl
Z2
ijl
Z2
kjl+1

or A′l = ω4Z2
ijl
Z2
kjl+1

+ Z2
kjl+1

or A′l = 1

according to which of the above three types Al belongs to. This is specially

designed so that Al = ωαA′lZ
−1
kjl
Z−1
ijl
Z−1
kjl+1 for some α ∈ Z depending on

whether the edges ekjl and ekjl+1 are contained in the same face of λ (outside

of N (v)) or not.

In addition, the term Z−1
kjl
Z−1
ijl
Z−1
kjl+1 ω–commutes with each A′l′ , in the

sense that Z−1
kjl
Z−1
ijl
Z−1
kjl+1A

′
l′ = ωβA′l′Z

−1
kjl
Z−1
ijl
Z−1
kjl+1 for some β ∈ Z. (The

only case that requires some thought is when A′l′ = ω4Z2
ij
l′
Z2
kj
l′+1

+Z2
kj
l′+1

,

in which case it suffices to note that Z−1
kjl
Z−1
ijl
Z−1
kjl+1 commutes with Z2

ij
l′

.)

This enables us to rewrite

A1A2 . . . AtB = A′1A
′
2 . . . A

′
tB
′C.

where B′ involves only generators Zi corresponding to edges ei of λ that

are outside of N (v).

By construction, C belongs to the balanced Chekhov-Fock algebra

Zω(λ). Each A′l is also an element of Zω(λ) since all its exponents are

even. Since A1A2 . . . AtB belongs to Zω(λ) by construction of the quantum

trace, it follows that B′ is also in Zω(λ). In particular, we can now consider

the endomorphisms µλ(C), µλ(A′l), µλ(B′) ∈ End(Eλ). We want to show

that all these endomorphisms respect the off-diagonal kernel Fv.

Since the expression of B′ involves only generators Zi corresponding

to edges ei of λ that are not in the neiborhood N (v) of v, it commutes

with each of the generators Zij corresponding to edges emanating from
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the vertex v. As a consequence, B′ commutes with the off-diagonal term

Qv =
∑u−1
j=0 ω

−4jZ2
i1
Z2
i2
. . . Z2

ij
. It follows that µλ(B′) ∈ End(Eλ) respects

the off-diagonal kernel Fv = kerµλ(Qv).

In C = Z−1
j1
Z−1
j2

. . . Z−1
jw

, the contribution Z−1
kjl
Z−1
ijl
Z−1
kjl+1

of each arc al
commutes with each of the generators Zij corresponding to edges emanating

from the vertex v. The remaining terms of C involve only generators Zi
associated to edges of λ that are not in N (v), and therefore also commute

with the Zij . It follows that C also commutes with the off-diagonal term

Qv. This again implies that µλ(C) ∈ End(Eλ) respects the off-diagonal

kernel Fv.

For µλ(A′l), we need to distinguish cases. There is nothing to prove

when A′l = 1, since µ(A′l) = IdEλ clearly respects Fv. Also, when

A′l = Z2
kjl
Z2
ijl
Z2
kjl+1

, it commutes with all generators Zij corresponding

to edges eij emanating from the vertex v, and therefore commutes with the

off-diagonal term Qv =
∑u−1
j=0 ω

−4jZ2
i1
Z2
i2
. . . Z2

ij
; therefore µλ(A′l) respects

the off-diagonal kernel Fv in this case as well.

The case A′l = ω4Z2
ijl
Z2
kjl+1

+Z2
kjl+1

requires more work. Remember from

Lemma 14 that we have some flexibility in the choice of Qv. In particular,

Fv is also the kernel of

Q′v = 1 + ω−4Z2
ijl+1

+ ω−8Z2
ijl+1

Z2
ijl+2

+ · · ·+ ω−4(u−2)Z2
ijl+1

Z2
ijl+2

. . . Z2
ijl−2

+ ω−4(u−1)Z2
ijl+1

Z2
ijl+2

. . . Z2
ijl−2

Z2
ijl−1

Because there are no identifications between the edges on the boundary

of N (v), we observe that Z2
ijl+1

Z2
kjl+1

= ω8Z2
kjl+1

Z2
ijl+1

, and that Z2
kjl+1

commutes with all Zij with j 6= jl, jl + 1. Therefore

(Q′v − 1)Z2
kjl+1

= ω8Z2
kjl+1

(Q′v − 1)

and

Q′vZ
2
kjl+1

= ω8Z2
kjl+1

Q′v + (1− ω8)Z2
kjl+1

Similarly, Z2
ijl
Z2
kjl+1

commutes with all but the last term of Q′v, and

(Q′v − ω−4(u−1)Z2
ijl+1

Z2
ijl+2

. . . Z2
ijl−1

)Z2
ijl
Z2
kjl+1

= Z2
ijl
Z2
kjl+1

(Q′v − ω−4(u−1)Z2
ijl+1

Z2
ijl+2

. . . Z2
ijl−1

)
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Reordering terms, we conclude that

Q′vZ
2
ijl
Z2
kjl+1

= Z2
ijl
Z2
kjl+1

Q′v

+ (1− ω−8)ω−4(u−1)Z2
kjl+1

Z2
ijl
Z2
ijl+1

Z2
ijl+2

. . . Z2
ijl−1

= Z2
ijl
Z2
kjl+1

Q′v + (1− ω−8)ω−4Z2
kjl+1

H2
v

where Hv = [ZijlZijl+1Zijl+2 . . . Zijl−1 ] = ω−u+2ZijlZijl+1Zijl+2 . . . Zijl−1 is

the central element of Zω(λ) associated to the vertex v.

Therefore, for every vector w ∈ Fv = kerµλ(Q′v),

µλ(Q′v) ◦ µλ
(
A′l)(w)

= ω4µλ(Q′v) ◦ µλ
(
Z2
ijl
Z2
kjl+1

)
(w) + µλ(Q′v) ◦ µλ

(
Z2
kjl+1

)
(w)

= ω4µλ
(
Z2
ijl
Z2
kjl+1

)
◦ µλ(Q′v)(w) + (1− ω−8)µλ(Z2

kjl+1
) ◦ µλ(H2

v )(w)

+ ω8µλ(Z2
kjl+1

) ◦ µλ(Q′v)(w) + (1− ω8)µλ(Z2
kjl+1

)(w)

= (1− ω−8)µλ(Z2
kjl+1

)(ω8w) + (1− ω8)µλ(Z2
kjl+1

)(w) = 0

since µλ(Q′v)(w) = 0 and µλ(Hv) = −ω4IdV . As a consequence, the image

of w ∈ Fv = kerµλ(Q′v) under µλ(A′l) is also in Fv.

This proves that µλ(A′l) respects the off-diagonal kernel Fv in all three

cases.

As a summary, for every skein [K] ∈ SA(Sλ), we showed that the linear

map ρλ
(
[K]
)
∈ End(Eλ) is a sum of terms

µλ(A′1) ◦ µλ(A′2) ◦ · · · ◦ µλ(A′v) ◦ µλ(B′) ◦ µλ(C)

such that each factor in this composition respects the off-diagonal kernel

Fv. This proves that the image ρλ
(
SA(Sλ)

)
⊂ End(Eλ) respects Fv, and

completes the proof of Proposition 15. �

Remark 16. Although the hypotheses of Proposition 15 require that the

triangulation λ be combinatorial, the proof shows that this statement is

valid under the weaker hypothesis that no edge of λ connects the vertex v

to itself, and that no two distinct edges connect v to the same vertex of λ.

We will use this observation in §5.1.

4.4. Constructing a representation of the skein algebra SA(S). We

now consider the total off-diagonal kernel Fλ =
⋂
v∈Vλ Fv ⊂ Eλ.

Let ρλ = µλ ◦ Trωλ : SA(Sλ) → End(Eλ) be the representation asso-

ciated in §3.4 to a homomorphism r : π1(S) → SL2(C) endowed with a
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λ–enhancement ξ. Assuming that the triangulation λ is combinatorial,

Proposition 15 shows that the total off-diagonal kernel Fλ is invariant under

the image ρλ
(
SA(Sλ)

)
⊂ End(Eλ). For every framed link K ⊂ Sλ × [0, 1],

we can therefore consider the restriction ρλ
(
[K]
)
|Fλ
∈ End(Fλ).

We now show that ρλ
(
[K]
)
|Fλ
∈ End(Fλ) remains invariant if we modify

K by an isotopy in S × [0, 1], not just in Sλ × [0, 1].

Proposition 17. Suppose that the triangulation λ is combinatorial, in the

sense that each edge has distinct endpoints and that no two distinct edges

have the same endpoints. Let the two framed links K, K ′ ⊂ Sλ × [0, 1] be

isotopic in S × [0, 1]. Then ρλ
(
[K]
)
|Fλ

= ρλ
(
[K ′]

)
|Fλ

in End(Fλ).

Again, the hypothesis that λ is combinatorial is here only to simplify

the proof, and the property holds without this condition; see Theorem 35

in §5.3.

Proof. We can choose the isotopy from K to K ′ so that it sweeps through

punctures of Sλ at only finitely many times. This reduces the problem to

the case where the isotopy sweeps only once through a puncture. Let v be

the vertex of the triangulation λ corresponding to this puncture.

We will be using the same labeling conventions as in the proof of

Proposition 15. In particular, N (v) denotes the union of the faces of λ

that contain v. The edges emanating from v are indexed as ei1 , ei2 , . . . ,

eiu in counterclockwise order around v. The edges of the boundary of N (v)

are ek1 , ek2 , . . . , eku , where ekj is the third side of the face containing eij−1

and eij . See Figure 3.

Since the skeins [K], [K ′] ∈ SA(Sλ) are invariant under isotopy in

Sλ × [0, 1], we can restrict attention to the case of Figure 3, where the

two pieces of K and K ′ represented are endowed with the vertical framing,

and where the remaining portions of K and K ′ coincide and are located in

Sλ × [0, 1] at lower elevations than the pieces represented.

These elevation conventions greatly simplify the computation of the

quantum trace Trωλ
(
[K]
)
, because we do not have to worry about correction

factors coming from biangles. The construction of the quantum trace in [7]
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ei1eiu

eiu−1 ei2

ek1

ek2eku

K

K ′

Figure 3. Sweeping through a puncture

then gives that

Trωλ
(
[K]
)

=B++Zk1

(
ω3−uZi1Zi2 . . . Ziu

+ ω3−u
u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)
Zk1

+B+−Zk1

(
ω5−u

u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)
Z−1
k1

+B−+Z
−1
k1

(
ω1−uZi1Zi2 . . . Ziu + ω1−uZ−1

i1
Z−1
i2

. . . Z−1
iu

+ ω1−u
u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)
Zk1

+B−−Z
−1
k1

(
ω3−uZ−1

i1
Z−1
i2

. . . Z−1
iu

+ ω3−u
u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)
Z−1
k1

where the terms B±± are contributions of the parts of the link K that are

not represented on Figure 3. The domino diagrams of Exercises 8.5–8.7

and 10.14 in [4] may be here useful to list all possible terms. The order of

terms is dictated by our condition on relative elevations.

We now move all terms Zk1 together. Because of our hypothesis that λ

is combinatorial, there are no extraneous identifications between the edges

represented in Figure 3. It follows that Zk1 commutes with all Zij with

1 < j < u, and that Zk1Zi1 = ω−2Zi1Zk1 and Zk1Ziu = ω2ZiuZk1 . This
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gives:

Trωλ
(
[K]
)

= B++Z
2
k1

(
ω3−uZi1Zi2 . . . Ziu

+ ω7−u
u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)

+B+−

(
ω1−u

u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)

+B−+

(
ω1−uZi1Zi2 . . . Ziu + ω1−uZ−1

i1
Z−1
i2

. . . Z−1
iu

+ ω5−u
u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)

+B−−Z
−2
k1

(
ω3−uZ−1

i1
Z−1
i2

. . . Z−1
iu

+ ω−1−u
u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

)
.

We now recognize several of the terms in this sum. For instance, the

central element Hv ∈ Zω(λ) associated to the vertex v is

Hv = [Zi1Zi2 . . . Ziu ] = ω2−uZi1Zi2 . . . Ziu .

Similarly,

H−1
v = [Z−1

i1
Z−1
i2

. . . Z−1
iu

] = ω2−uZ−1
i1
Z−1
i2

. . . Z−1
iu
.

Also.

u−1∑
j=1

Zi1Zi2 . . . ZijZ
−1
ij+1

Z−1
ij+2

. . . Z−1
iu

=

(u−1∑
j=1

ω−4(j−1)Z2
i1Z

2
i2 . . . Z

2
ij

)
Z−1
i1
Z−1
i2

. . . Z−1
iu

=

( u∑
j=2

ω−4(j−2)Z2
i1Z

2
i2 . . . Z

2
ij−1

)
ωu−2H−1

v

= ωu+2(Qv − 1)H−1
v

where Qv is the off-diagonal term of the vertex v defined in §4.2.
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This gives

Trωλ
(
[K]
)

=B++Z
2
k1

(
ωHv + ω9(Qv − 1)H−1

v

)
+B+−ω

3(Qv − 1)H−1
v

+B−+

(
ω−1Hv + ω−1H−1

v + ω7(Qv − 1)H−1
v

)
+B−−Z

−2
k1

(
ωH−1

v + ω(Qv − 1)H−1
v

)
.

Note that all the terms arising in this expression belong to the balanced

Chekhov-Fock algebra Zω(λ). We can therefore apply the representation

µλ : Zω(λ)→ End(Eλ). Remembering that µλ(Hv) = −ω4 IdEλ ,

ρλ
(
[K]
)

=µλ ◦Trωλ
(
[K]
)

=µλ(B++Z
2
k1) ◦

(
−ω5µλ(Qv)

)
+ µλ(B+−) ◦

(
−ω−1µλ(Qv) + ω−1IdEλ

)
+ µλ(B−+) ◦

(
−ω−5 IdEλ − ω3µλ(Qv)

)
+ µλ(B−−Z

−2
k1

) ◦
(
−ω−3µλ(Qv)

)
.

This expression greatly simplifies when we restrict it to the total off-

diagonal kernel Fλ ⊂ kerµλ(Qv), and

ρλ
(
[K]
)
|Fλ

= ω−1µλ(B+−)|Fλ − ω
−5µλ(B−+)|Fλ .

We now perform the same computations for the skein [K ′] ∈ SA(S)0).

The principles are the same, but everything is much simpler because the

framed knot K ′ meets many fewer edges of λ. In particular, the expression

of Trωλ
(
[K ′]

)
is much less cumbersome, and gives

Trωλ
(
[K ′]

)
= B+−Zk1(ω−1)Z−1

k1
+B−+Z

−1
k1

(−ω−5)Zk1 = ω−1B+−−ω−5B−+

where the terms B±± are contributions of the parts of the link K ′ that are

not represented on Figure 3, and are the same as those that appeared in

the computation of Trωλ
(
[K]
)

since these “hidden parts” of the links K and

K ′ coincide.

As a consequence,

ρλ
(
[K ′]

)
|Fλ

= µλ ◦Trωλ
(
[K ′]

)
|Fλ

= ω−1µλ(B+−)|Fλ − ω
−5µλ(B−+)|Fλ .

Comparing the two formulas, we see that ρλ
(
[K]
)
|Fλ

= ρλ
(
[K ′]

)
|Fλ

,

which completes the proof of Proposition 17. �

Remark 18. As in Remark 16, the proof of Proposition 17 is valid under

a weaker hypothesis than the requirement that the triangulation λ be

combinatorial. Indeed, the following condition is sufficent for the statement

to hold: no edge of λ connects the vertex v to itself, and no two distinct

edges connect v to the same vertex of λ. We will use this observation in

§5.1.
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A consequence of Proposition 17 is that the representation ρλ : SA(Sλ)→
End(Eλ) induces a representation ρ̌λ : SA(S) → End(Fλ) by the property

that

ρ̌λ
(
[K]
)

= ρλ
(
[K]
)
|Fλ
∈ End(Fλ).

Proposition 19. The above representation ρ̌λ : SA(S) → End(Fλ) has

classical shadow r ∈ RSL2(C)(S), in the sense that

TN
(
ρ̌λ([K])

)
= −Tr r(K) IdFλ

for every framed knot K ⊂ Sλ × [0, 1] whose projection to Sλ has no crossing

and whose framing is vertical.

Proof. Let K ⊂ Sλ × [0, 1] be a framed knot whose projection to Sλ has no

crossing and whose framing is vertical. By definition of the representation

µλ : Zω(λ) → End(Eλ) and of ρλ = µλ ◦ Trωλ , and in particular by

Condition (4) of Proposition 8,

TN
(
ρλ([K])

)
= −Tr r(K) IdEλ .

In particular, by restriction to the off-diagonal kernel Fλ,

TN
(
ρ̌λ([K])

)
= TN

(
ρλ([K])

)
|Fλ

= −Tr r(K) IdFλ . �

At this point, it looks like we are almost done with the proof of

Theorem 2. The only problem is that we do not know that the total off-

diagonal kernel Fλ =
⋂
v∈Vλ Fv is non-trivial. In fact, we don’t even know

that any of the off-diagonal kernels Fv is non-trivial. The rest of the article

is devoted to estimating the dimension of Fλ. At the same time, we will

prove that the representation ρ̌λ is, up to isomorphism, independent of all

the choices that we have made.

5. Changing triangulations

In this section, we introduce two moves that modify the triangulation λ

without changing the isomorphism class of the representation ρ̌λ : SA(S)→
End(Fλ) constructed above. We will then use these moves to prove that,

up to isomorphism and sign-reversal symmetry, ρ̌λ is independent of the

choice of λ and of the λ–enhancement ξ.

Unlike in the previous section, the triangulations that we are considering

here are not assumed any more to be combinatorial.
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5.1. Subdividing faces. Let λ be a triangulation of the surface S. Let λ′

be the triangulation obtained from λ by subdividing the face T into three

triangles as in Figure 4. In particular, the vertex set of λ′ consists of the

vertices of λ plus one vertex v0 in the interior of T .

e1

e2e3

T

(a)

e′1

e′2e′3
e′n+1

e′n+2 e′n+3

(b)
Figure 4. Subdividing a face

For convenience in the notation, index the edges e1, e2, . . . , en of λ and

the edges e′1, e′2, . . . , e′n+3 of λ′ in such a way that:

(1) the sides of the face T of λ are e1, e2, e3, in this order as one goes

counterclockwise around T ;

(2) for i 6 n, the edge e′i of λ′ coincides with the edge ei of λ;

(3) e′n+1, e′n+2, e′n+3 are the “new” edges of λ′ that are not edges of λ, and

each e′n+j is opposite e′j in T as in Figure 4(b), in the sense that no

face of λ′ contains both e′n+j and e′j .

We assume that we are given a λ′–enhancement ξ′ : Ṽλ′ → CP1 for

the homomorphism r : π1(S) → SL2(C). By restriction, ξ′ defines a λ–

enhancement ξ : Ṽλ → CP1 for r.

We want to compare the two irreducible representations µλ : Zω(λ) →
End(Eλ) and µλ′ : Zω(λ′) → End(Eλ′) respectively associated to the en-

hanced homomorphisms (r, ξ) and (r, ξ′) by Proposition 8. For this, we

first construct a natural algebra homomorphism Zω(λ)→ Zω(λ′).

Let Φ: Zω(λ)→ Zω(λ′) be the linear map defined by the property that

Φ
(
[Zk11 Zk22 . . . Zknn ]

)
=
[
Z ′ k11 Z ′ k22 . . . Z ′ knn Z

′ k2+k3−k1
2

n+1 Z
′ k1+k3−k2

2
n+2 Z

′ k1+k2−k3
2

n+3

]
for every monomial [Zk11 Zk22 . . . Zknn ] ∈ Zω(λ) (where [ ] denotes the Weyl

quantum ordering). By definition of the Weyl quantum ordering, this is
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equivalent to the property that

Φ
(
Zk11 Zk22 . . . Zknn

)
= ωk1k3−k1k2−k2k3Z ′ k11 Z ′ k22 . . . Z ′ knn[

Z
′ k2+k3−k1

2
n+1 Z

′′ k1+k3−k2
2

n+2 Z
′ k1+k2−k3

2
n+3

]
,

which is a little easier to handle since this second formula does not require

us to consider the skew-commutativity properties of the Zi and Z ′i with

1 6 i 6 n. The definition may look rather mysterious at this point, but

will become clearer with the proof of Lemma 20 below.

Note that the definition makes sense because, if the exponents (k1, k2, . . . , kn)

satisfy the parity condition required for Zk11 Zk22 . . . Zknn to be in the balanced

Chekhov-Fock algebra Zω(λ), the parity of the exponents

(k1, k2, . . . , kn,
k2+k3−k1

2 , k1+k3−k2
2 , k1+k2−k3

2 )

also guarantees that Z ′ k11 Z ′ k22 . . . Z ′ knn Z
′ k2+k3−k1

2
n+1 Z

′ k1+k3−k2
2

n+2 Z
′ k1+k2−k3

2
n+3 be-

longs to Zω(λ′).

Lemma 20. The map Φ: Zω(λ)→ Zω(λ′) is an algebra homomorphism.

Proof. This is a simple consequence of the description, given in [10, §2.2], of

the algebraic structure of Zω(λ) in terms of the Thurston intersection form

on a train track τλ associated to λ. The train track τλ ⊂ S is defined by the

property that, on each face of λ, it consists of three edges as in Figure 5(a).

In particular, there is a one-to-one correspondence between the switches of

τλ and the edges ei of λ.

τλ

(a)

τλ′

(b)

Figure 5. The train tracks τλ and τλ′

In [10, §2], we interpret the monomials [Zk11 Zk22 . . . Zknn ] ∈ Zω(λ) as

integer edge weight systems for τλ satisfying the usual switch conditions.

Namely, at the switch of τλ located on the edge ei of λ, the weights of the
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two edges of τλ incoming on one side of that switch are required to add

up to the same number ki as the weights of the two edges outgoing on

the other side. The exponents (k1, k2, . . . , kn) of Zk11 Zk22 . . . Zknn satisfy the

parity condition required for Zk11 Zk22 . . . Zknn to be in the balanced Chekhov-

Fock algebra Zω(λ) if and only if they are associated in this way to an

integer edge weight system for τλ; in addition, the edge weight system is

then uniquely determined.

This enables us to identify the set W(τλ;Z) of integer edge weight

systems for τλ to the set of exponent n–tuples k = (k1, k2, . . . , kn) satisfying

the required parity condition, and therefore to the set of Weyl quantum

ordered monomials [Zk11 Zk22 . . . Zknn ] ∈ Zω(λ).

The set W(τλ;Z) of edge weight systems for a train track carries a

natural bilinear form, the Thurston intersection form, which provides an

antisymmetric bilinear form

Ω: W(τλ;Z)×W(τλ;Z)→ Z.

Lemma 10 of [10] then describes the algebraic structure of Zω(λ) by the

property that

[Zk11 Zk22 . . . Zknn ] [Z
k′1
1 Z

k′2
2 . . . Z

k′n
n ] = ω2Ω(k,k′)[Z

k1+k′1
1 Z

k2+k′2
2 . . . Z

kn+k′n
n ]

for every k = (k1, k2, . . . , kn) and k′ = (k′1, k
′
2, . . . , k

′
n) ∈ W(τλ;Z).

The key observation is now that there is a natural embedding τλ →
τλ′ , identifying τλ to the complement in τλ′ of the three edges that are

adjacent to the central vertex v0 ∈ T . This embedding provides a map

ϕ : W (τλ;Z)→W(τλ′ ;Z), which is expressed in terms of switch weights as

ϕ(k1, k2, . . . , kn) =
(
k1, k2, . . . , kn,

k2+k3−k1
2 , k1+k3−k2

2 , k1+k2−k3
2

)
.

for every (k1, k2, . . . , kn) ∈ W(λ). As a consequence, identifying each ele-

ment (k1, k2, . . . , kn) ∈ W(τλ;Z) to the corresponding monomial [Zk11 Zk22 . . . Zknn ] ∈
Zω(λ), the map Φ: Zω(λ)→ Zω(λ′) is the unique linear extension of ϕ.

Because ϕ : W (τλ;Z)→W(τλ′ ;Z) is induced by the embedding τλ → τλ′ ,

the classical homological interpretation of the Thurston intersection form

as a homological intersection number in an orientation covering (see for

instance Lemma 28 of [10]) shows that ϕ sends the Thurston form of τλ to

the Thurston form of τλ′ . From the description of the algebraic structure of

Zω(λ) and Zω(λ′) in terms of Thurston intersection forms, it follows that

Φ is an algebra homomorphism. �
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Now that we know that Φ is an algebra homomorphism, we can consider

the composition

µλ′ ◦Φ: Zω(λ)→ End(Eλ′)

of Φ with the representation µλ′ : Zω(λ′)→ End(Eλ′) associated by Propo-

sition 8 to the λ′–enhancement ξ′.

Recall that v0 is the vertex of λ′ that is not a vertex of λ, namely the

one that was added in the interior of the face T of λ.

Lemma 21. The image µλ′ ◦Φ
(
Zω(λ)

)
⊂ End(Eλ′) respects the off-diagonal

kernel F ′v0 ⊂ Eλ′ of the vertex v0 ∈ Vλ′ − Vλ.

Proof. By the exponent parity condition defining Zω(λ), each monomial of

Zω(λ) is a product of constants, monomials of the form Z1Z2Z
k4
4 Zk55 . . . Zknn ,

Z1Z3Z
k4
4 Zk55 . . . Zknn , Z2Z3Z

k4
4 Zk55 . . . Zknn ∈ Zω(λ′) and their inverses. It

therefore suffices to show that the image of each of these elementary

monomials respects F ′v0 .

Consider for instance Z = Z1Z2Z
k4
4 Zk55 . . . Zknn . Its image under Φ is

Φ(Z) = Φ
(
Z1Z2Z

k4
4 Zk55 . . . Zknn

)
= ω−1Z ′1Z

′
2Z
′ k4
4 Z ′ k55 . . . Z ′ knn Z ′n+3.

As a consequence, Φ(Z) commutes with each of the elements Z ′ 2n+1, Z ′ 2n+2

and Z ′ 2n+3 ∈ Zω(λ′) associated to the edges of λ′ emanating from the

vertex v0. In particular, Φ(Z) commutes with the off-diagonal term

Qv0 = 1+ω−4Z ′ 2n+1+ω−8Z ′ 2n+1Z
′ 2
n+2 of the vertex v0. It follows that µλ′◦Φ(Z)

respects the kernel F ′v0 of µλ′(Qv0).

The same argument holds for the other two monomial types Z1Z3Z
k4
4 Zk55 . . . Zknn

and

Z2Z3Z
k4
4 Zk55 . . . Zknn , and proves the required result. �

The following result plays a critical role in our arguments. Its proof

uses the non-quantum context, and in particular the off-diagonal equality

of Lemma 11, in a crucial way.

Lemma 22. The dimension of the off-diagonal kernel F ′v0 ⊂ Eλ′ is equal to

the dimension N3g+pλ−3 of Eλ, where g is the genus of the surface S and pλ
is the number of vertices of the triangulation λ.

Proof. By construction of the representation µλ′ by Proposition 8, dimEλ′ =

N3g+pλ′−3. Since pλ = pλ′ − 1, it therefore suffices to show that F ′v0 has

dimension 1
N dimEλ′ .
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Consider the off-diagonal term

Qv0 = 1 + ω−4Z ′ 2n+1 + ω−8Z ′ 2n+1Z
′ 2
n+2.

Because Z ′ 2n+1 ω8–commutes with Z ′ 2n+1Z
′ 2
n+2 and because ω8 = A−4 is a

primitive N–root of unity (we here use the fact that N is odd), the Quantum

Binomial Formula (see for instance [24, §IV.2]) gives that

(Qv0 − 1)N =
(
ω−4Z ′ 2n+1 + ω−8Z ′ 2n+1Z

′ 2
n+2

)N
= Z ′ 2Nn+1 + Z ′ 2Nn+1Z

′ 2N
n+2 .

Applying µλ′ then gives that

µλ′(Qv0 − 1)N = µλ′(Z
′ 2N
n+1) + µλ′(Z

′ 2N
n+1Z

′ 2N
n+2)

= x′n+1 IdEλ′ + x′n+1x
′
n+2IdEλ′ = −IdEλ′ ,

where the x′i ∈ C∗ are the crossratio weights associated by the enhancement

ξ′ to the edges e′i of λ′, and where the last equality comes from Lemma 11.

It follows that µλ′(Qv0 − 1) ∈ End(Eλ′) is diagonalizable, and that its

eigenvalues are N–roots of −1, namely are all of the form −ω8k with k ∈ Z.

Now consider the element Z ′ 22 ∈ Zω(λ′) associated to the edge e′2
of λ′. Since Z ′ 22 (Qv0 − 1) = ω−8(Qv0 − 1)Z ′ 22 , the linear isomorphism

µλ′(Z ′ 22 ) ∈ End(Eλ′) sends the (−ω8k)–eigenspace of µλ′(Qv0 − 1) to the

(−ω8k+8)–eigenspace. It follows that all numbers −ω8k occur as eigenvalues

of µλ′(Qv0 − 1), and that the corresponding eigenspaces all have the

same dimension. Since there are N such eigenspaces, their dimension is
1
N dimEλ′ .

In particular, F ′v0 = kerµλ′(Qv0) has dimension 1
N dimEλ′ , since it is

the (−1)–eigenspace of µλ′(Qv0 − 1). This concludes the proof. �

At this point, we have two representations SA(Sλ′) → End(Eλ′). The

first one is our usual

ρλ′ = µλ′ ◦Trωλ′ : SA(Sλ′)→ End(Eλ′).

The second representation comes from the composition

SA(Sλ′)
I−→ SA(Sλ)

Trωλ−→ Zω(λ)
Φ−→ Zω(λ′)

µλ′−→ End(Eλ′),

where the first homomorphism I : SA(Sλ′) → SA(Sλ) is induced by the

inclusion map Sλ′ → Sλ. This gives a new representation

ρ̂λ′ = µλ′ ◦Φ ◦Trωλ ◦ I : SA(Sλ′)→ End(Eλ′).
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Note that Lemma 20 is here required to guarantee that ρ̂λ′ is an algebra

homomorphism.

The images of these two representations respect the off-diagonal kernel

F ′v0 ⊂ Eλ′ , by Lemma 21 for ρ̂λ′ and by Proposition 15 for ρλ′ . Actually,

because λ′ is not necessarily combinatorial, we need to refer here to the

strengthened version of Proposition 15 provided by Remark 16.

As a consequence, ρλ′ and ρ̂λ′ induce two representations SA(Sλ′) →
End(F ′v0). We now show that these induced representations coincide.

Lemma 23. The two representations ρλ′ , ρ̂λ′ : SA(Sλ′) → End(Eλ′) above

are such that

ρλ′
(
[K]
)
|F ′v0

= ρ̂λ′
(
[K]
)
|F ′v0

for every framed link K ⊂ Sλ′ × [0, 1].

Proof. As in the proof of Proposition 15, we can arrange that the projection

of K to S meets the face T of λ along a family of arcs a1, a2, . . . , at, where

al meets only the edges eσl(1), eσl(2), e
′
n+σl(3) of λ′, for a cyclic permutation

σl of the indices {1, 2, 3}. Namely, the situation is as illustrated in Figure 2

with u = 3. Then, still as in the proof of Proposition 15, the quantum trace

Trωλ′
(
[K]
)
∈ Zω(λ′) is a sum of terms of the form

A′1A
′
2 . . . A

′
tB
′C ′ ∈ Zω(λ′)

where each term correspond to a state for the boundary of K ∩ T × [0, 1],

where C ′ is equal to C ′ = [Z ′ −1
i′1

Z ′ −1
i′2

. . . Z ′ −1
i′
w′

] if K crosses the edges e′i′1
,

e′i′2
, . . . , e′i′

w′
of λ′, where B′ involves only generators Z ′i with 4 6 i 6 n

(corresponding to edges e′i of λ′ contained in the complement of T ), and

where A′l is the contribution of the arc al and is of one of the following

three types:

A′l = Z ′ 2σl(1)Z
′ 2
σl(2)Z

′ 2
n+σl(3)

or A′l = ω−4Z ′ 2σl(2)Z
′ 2
n+σl(3) + Z ′ 2σl(2)

or A′l = 1.

Similarly, Trωλ
(
[K]
)
∈ Zω(λ) is a sum of terms

A1A2 . . . AtBC ∈ Zω(λ)

corresponding to states for the boundary of K ∩T × [0, 1], where C is equal

to C = [Z−1
i1
Z−1
i2

. . . Z−1
iw

] if K crosses the edges ei1 , ei2 , . . . , eiw of λ, where
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B involves only generators Zi with 4 6 i 6 n (corresponding to edges ei of

λ contained in the complement of T ), and where Al is the contribution of

the arc al and is of one of the following three types:

Al = ω4Z2
σl(1)Z

2
σl(2)

or Al = Z2
σl(2)

or Al = 1.

In order to show that ρλ′
(
[K]
)
|F ′v0

= µλ′ ◦ Trωλ′
(
[K]
)
|F ′v0

is equal to

ρ̂λ′
(
[K]
)
|F ′v0

= µλ′ ◦Φ◦Trωλ
(
[K]
)
|F ′v0

, we will compare the respective contri-

butions to these quantities of the terms A′1A
′
2 . . . A

′
tB
′C ′ and A1A2 . . . AtBC

associated to the same state for the boundary of K ∩ T × [0, 1].

Let A′1A
′
2 . . . A

′
tB
′C ′ ∈ Zω(λ′) and A1A2 . . . AtBC ∈ Zω(λ) be the terms

of Trωλ′
(
[K]
)

and Trωλ
(
[K]
)

respectively associated to the same state for the

boundary of K ∩ T × [0, 1].

From the definition of the homomorphism Φ: Zω(λ) → Zω(λ′), is

is immediate that Φ(B) = B′. From the observation that each arc

al contributes a monomial Z ′ −1
σl(1)Z

′ −1
σl(2)Z

′ −1
n+σl(3) to C ′ and a monomial

Z−1
σl(1)Z

−1
σl(2) to C, it also easily follows from the definition of Φ that Φ(C) =

C ′. As a consequence, µλ′(B′)|F ′v0
= µλ′ ◦ Φ(B)|F ′v0

and µλ′(C ′)|F ′v0
=

µλ′ ◦Φ(C)|F ′v0
We need to compare each µλ′(A′l)|F ′v0

to the corresponding µλ′◦Φ(Al)|F ′v0
.

In the case when A′l = 1, then Al = 1 and of course Φ(Al) = Φ(1) = 1 =

A′l. In particular, µλ′(A′l)|F ′v0
is equal to the corresponding µλ′ ◦ Φ(Al)|F ′v0

in this simple case.

The case where A′l = Z ′ 2σl(1)Z
′ 2
σl(2)Z

′ 2
n+σl(3) is barely more complicated, as

the corresponding term is Al = ω4Z2
σl(1)Z

2
σl(2). Indeed, Φ(Al) = A′l, so that

µλ′(A′l)|F ′v0
= µλ′ ◦Φ(Al)|F ′v0

in this case as well.

The case where A′l = ω−4Z ′ 2σl(2)Z
′ 2
n+σl(3) +Z ′ 2σl(2) and Al = Z2

σl(2) is much

more interesting, because Φ(Al) = Z ′ 2σl(2)[Z
′
n+σl(1)Z

′ −1
n+σl(2)Z

′
n+σl(3)] looks

very different from A′l. We can rewrite these terms as

A′l = Z ′ 2σl(2)(1 + ω−4Z ′ 2n+σl(3)) = Z ′ 2σl(2)Q
′
v0 − ω

−8Z ′ 2σl(2)Z
′ 2
n+σl(3)Z

′ 2
n+σl(1)

and Φ(Al) = ω−4H ′ −1
v0 Z ′ 2σl(2)Z

′ 2
n+σl(3)Z

′ 2
n+σl(1)

for the off-diagonal term Q′v0 = 1 + ω−4Z ′ 2n+σl(3) + ω−8Z ′ 2n+σl(3)Z
′ 2
n+σl(1)

and the central element H ′v0 = [Z ′n+σl(1)Z
′
n+σl(2)Z

′
n+σl(3)] associated to the

vertex v0. Using the properties that µλ′(Qv0)|F ′v0
= 0 and µλ′(H ′v0) =
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−ω4IdEλ′ , it follows that

µλ′(A
′
l)|F ′v0

= µλ′(−ω−8Z ′ 2σl(2)Z
′ 2
n+σl(3)Z

′ 2
n+σl(1))|F ′v0

= µλ′
(
Φ(Al)

)
|F ′v0

.

This proves that

µλ′(A
′
1A
′
2 . . . A

′
tB
′C ′)|F ′v0

= µλ′ ◦Φ(A1A2 . . . AtBC)|F ′v0

whenever the terms A′1A
′
2 . . . A

′
tB
′C ′ ∈ Zω(λ′) of Trωλ′

(
[K]
)

and A1A2 . . . AtBC ∈
Zω(λ) of Trωλ

(
[K]
)

correspond to the same state for the boundary of

K ∩ T × [0, 1]. As a consequence,

ρλ′
(
[K]
)
|F ′v0

= µλ′◦Trωλ′
(
[K]
)
|F ′v0

= µλ′◦Φ◦Trωλ
(
[K]
)
|F ′v0

= ρ̂λ′
(
[K]
)
|F ′v0

. �

We now return to the irreducible representations µλ : Zω(λ)→ End(Eλ)

and µλ′ : Zω(λ′) → End(Eλ′), respectively associated by Proposition 8 to

the λ–enhancement ξ : Ṽλ → CP1 and the λ′–enhancement ξ′ : Ṽλ′ → CP1 for

the homomorphism r : π1(S)→ SL2(C). Recall that ξ is just the restriction

of ξ′ to Ṽλ ⊂ Ṽλ′ .
By Lemma 21, the composition µλ′ ◦ Φ: Zω(λ) → End(Eλ′) respects

the off-diagonal kernel F ′v0 ⊂ Eλ′ , and therefore induces a representation

µ̄λ : Zω(λ) → End(F ′v0) by the property that µ̄λ(Z) = µλ′ ◦ Φ(Z)F ′v0 for

every Z ∈ Zω(λ).

Lemma 24. After pre-composing µλ with the action of a sign-reversal symme-

try of r ∈ RSL2(C)(S) if necessary, the representations µλ : Zω(λ)→ End(Eλ)

and µ̄λ : Zω(λ)→ End(F ′v0) are isomorphic.

Proof. By the uniqueness statement in Proposition 8, it suffices to check

that µ̄λ : Zω(λ) → End(F ′v0) satisfies the following four properties, which

characterize µλ:

(1) dimF ′v0 = N3g+pλ−3;

(2) µ̄λ(Z2N
i ) = xi IdF ′v0 for each i = 1, 2, . . . , n, where xi is the crossratio

weight associated to the edge ei of λ by the λ–enhancement ξ;

(3) µ̄λ(Hv) = −ω4 IdF ′v0 for every vertex v of λ;

(4) TN

(
µ̄λ ◦ Trωλ

(
[K]
))

= −Tr r(K) IdF ′v0 for every framed knot K ⊂
Sλ × [0, 1] whose projection to K has no crossing and whose framing

is vertical.
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The first property (1) is proved in Lemma 22.

For the second property (2) the case where i > 3, namely the case where

the edge ei is not a side of the face T that is being subdivided, is somewhat

trivial. Indeed, µ̄λ(Z2N
i ) = µλ′ ◦ Φ(Z2N

i ) = µλ′(Z ′ 2Ni ) = x′i IdF ′v0 = xi IdF ′v0
as the enhancements ξ and ξ′ associate the same crossratio weight xi = x′i
to the edge ei.

The cases where i 6 3 require a geometric argument. For instance,

µ̄λ(Z2N
1 ) = µλ′ ◦Φ(Z2N

1 )|F ′v0
= µλ′

(
[Z ′ 2N1 Z ′ −Nn+1 Z

′N
n+2Z

′N
n+3]

)
|F ′v0

= µλ′
(
Z ′ 2N1 Z ′ −2N

n+1 H ′Nv0
)
|F ′v0

= −x′1x′ −1
n+1 IdF ′v0

since µλ′(Z ′ 2N1 ) = x′1 IdE′λ , µλ′(Z ′ 2Nn+1) = x′n+1 IdE′λ , µλ′(H ′v0) = −ω4 IdE′λ
and ω4N = 1. Going back to the definition of the crossratio weights, a

computation shows that x′1x
′ −1
n+1 = −x1. It follows that µ̄λ(Z2N

1 ) = x1 IdF ′v0 ,

as required.

Identical computations show that µ̄λ(Z2N
2 ) = x2 IdF ′v0 and µ̄λ(Z2N

3 ) =

x3 IdF ′v0 , and complete the proof of (2) in all cases.

By definition of the homomorphism Φ, it sends the central element

Hv ∈ Zω(λ) associated to a vertex v of λ to the central element H ′v ∈ Zω(λ′)

associated to v considered as a vertex of λ′. It follows that µ̄λ(Hv) =

µλ′(H ′v) = −ω4 IdF ′v0 . This proves the third property (3).

Finally, (4) is a consequence of Lemma 23. Indeed, for every framed

knot K ⊂ Sλ′ × [0, 1] whose projection to K has no crossing and whose

framing is vertical

TN

(
µ̄λ ◦Trωλ

(
[K]
))

= µ̄λ ◦Trωλ

(
TN
(
[K]
))

= ρ̂λ′
(
TN
(
[K]
))
|F ′v0

= ρλ′
(
TN
(
[K]
))
|F ′v0

= µλ′ ◦Trωλ′
(
TN
(
[K]
))
|F ′v0

= TN

(
µλ′ ◦Trωλ′

(
[K]
))
|F ′v0

= −Tr r(K) IdF ′v0

where the first and fifth equalities come from the fact that all maps involved

are algebra homomorphisms, where the second equality comes from the

definitions of the representations ρ̂λ′ and µ̄λ, where the third equality is

provided by Lemma 23, and where the last equality is part of the definition

of µλ′ by Proposition 8.

This proves that the representation µ̄λ : Zω(λ) → End(F ′v0) satisfies

the properties (1–4) listed above. By Proposition 8, it follows that µ̄λ
is isomorphic to µλ. �
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Our last step is to show that the isomorphism provided by Lemma 24

is compatible with off-diagonal kernels.

Lemma 25. For a vertex v of the triangulation λ, let Fv ⊂ Eλ and F ′v ⊂ Eλ′
be the respective off-diagonal kernels of v for the representations µλ and

µλ′ , defined by considering v as a vertex of both λ and λ′. Then, the

isomorphism Eλ → F ′v0 between the representations µλ : Zω(λ) → End(Eλ)

and µ̄λ : Zω(λ)→ End(F ′v0) provided by Lemma 24 sends Fv to F ′v ∩ F ′v0 .

Proof. We first simplify the situation a little. The representation µλ : Zω(λ)→
End(Eλ) is only defined up to isomorphism and up to sign-reversal symme-

try by Proposition 8. Modifying it by a sign-reversal symmetry if necessary,

and by the isomorphism of Lemma 24, we can consequently assume that

it is equal, not just isomorphic, to µ̄λ : Zω(λ) → End(F ′v0). In particular,

Eλ = F ′v0 , µλ = µ̄λ and the isomorphism is the identity.

Note that the modification of µλ by a sign-reversal symmetry does not

change the off-diagonal kernel Fv, as the off-diagonal term Qv ∈ Zω(λ)

involves only even powers of the generators Zi. We consequently have to

show that Fv = F ′v ∩ F ′v0 once we have arranged that the representations

µλ and µ̄λ coincide.

If v is not one of the vertices of the face T of λ that is being subdivided,

the expression of the off-diagonal term Qv ∈ Zω(λ) involves only generators

Zi with i > 3, and Φ(Qv) ∈ Zω(λ′) is obtained from Qv ∈ Zω(λ) by

replacing each generator Zi by Z ′i. As a consequence, we can choose the

off-diagonal term Q′v ∈ Zω(λ′) to be equal to Φ(Qv). Then,

Fv = kerµλ(Qv) = ker µ̄λ(Qv) = kerµλ′ ◦Φ(Qv)|F ′v0

= kerµλ′(Q
′
v)|F ′v0

=
(
kerµλ′(Q

′
v)
)
∩ F ′v0 = F ′v ∩ F ′v0 .

When v belongs to the face T of λ, this case splits into three subcases

according to whether v corresponds to 1, 2 or 3 vertices of the triangle

T . We restrict our discussion to the subcase where v corresponds to two

vertices of T . The other two subcases are very similar.

Without loss of generality, we can choose the edge indexing of Figure 4

so that both endpoints of the edge e1 are equal to the vertex v. Then, the

off-diagonal term of v starting at the edge e2 can be written as

Qv = 1 + ω−4Z2
2 + Z2

2Z
2
1B + Z2

2Z
2
1CZ

2
1 + Z2

2Z
2
1CZ

2
1Z

2
3D
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where B, C and D are polynomials in the variables Z2
i with 4 6 i 6 n;

namely, these Z2
i correspond to edges of λ that are not contained in the

face T .

Similarly, if we start from the edge e′2, the off-diagonal term of the vertex

v in Zω(λ′) is

Q′v = 1 + ω−4Z ′ 22 + ω−8Z ′ 22 Z ′ 2n+3 + ω−4Z ′ 22 Z ′ 2n+3Z
′ 2
1 B′

+ ω−4Z ′ 22 Z ′ 2n+3Z
′ 2
1 C ′Z ′ 21 + ω−8Z ′ 22 Z ′ 2n+3Z

′ 2
1 C ′Z ′ 21 Z ′ 2n+2

+ ω−8Z ′ 22 Z ′ 2n+3Z
′ 2
1 C ′Z ′ 21 Z ′ 2n+2Z

′ 2
3 D′

where B′, C ′, D′ ∈ Zω(λ′) are respectively obtained from B, C, D ∈ Zω(λ)

by replacing each Z2
i with Z ′ 2i .

By definition of the homomorphism Φ: Zω(λ)→ Zω(λ′),

Φ(Z2
2) = ω3Z ′ 22 Z ′n+1Z

′ −1
n+2Z

′
n+3 Φ(ω−4Z2

2Z
2
1) = ω−8Z ′ 22 Z ′ 2n+3Z

′ 2
1

Φ(Z2
1) = ω3Z ′ 21 Z ′n+3Z

′ −1
n+1Z

′
n+2 Φ(ω−4Z2

1Z
2
3) = ω−8Z ′ 21 Z ′ 2n+2Z

′ 2
3

Φ(B) = B′ Φ(C) = C ′ Φ(D) = D′.

Therefore,

Φ(Qv) = 1 + ω−1Z ′ 22 Z ′n+1Z
′ −1
n+2Z

′
n+3 + ω−4Z ′ 22 Z ′ 2n+3Z

′ 2
1 B′

+ ω−1Z ′ 22 Z ′ 2n+3Z
′ 2
1 C ′Z ′ 21 Z ′n+3Z

′ −1
n+1Z

′
n+2

+ ω−8Z ′ 22 Z ′ 2n+3Z
′ 2
1 C ′Z ′ 21 Z ′ 2n+2Z

′ 2
3 D′.

The above expressions of Q′v and Φ(Qv) share several terms, and their

difference can therefore be expressed as

Q′v −Φ(Qv) = Z ′ 22 (ω−4 + ω−8Z ′ 2n+3 − ω−1Z ′n+1Z
′ −1
n+2Z

′
n+3)

+ Z ′ 22 Z ′ 2n+3Z
′ 2
1 C ′Z ′ 21 (ω−4 + ω−8Z ′ 2n+2 − ω−1Z ′n+3Z

′ −1
n+1Z

′
n+2)

= Z ′ 22 Z ′ −2
n+2(ω−4Z ′ 2n+2 + ω−8Z ′ 2n+2Z

′ 2
n+3 − ω−3Z ′n+2Z

′
n+1Z

′
n+3)

+ Z ′ 22 Z ′ 2n+3Z
′ 2
1 C ′Z ′ 21 Z ′ −2

n+1(ω−4Z ′ 2n+1 + ω−8Z ′ 2n+1Z
′ 2
n+2

− ω−3Z ′n+1Z
′
n+3Z

′
n+2)

= Z ′ 22 Z ′ −2
n+2(Q′v0 − 1− ω−4H ′v0)

+ Z ′ 22 Z ′ 2n+3Z
′ 2
1 C ′Z ′ 21 Z ′ −2

n+1(Q′′v0 − 1− ω−4H ′v0)

for

Q′v0 = 1 + ω−4Z ′ 2n+2 + ω−8Z ′ 2n+2Z
′ 2
n+3

Q′′v0 = 1 + ω−4Z ′ 2n+1 + ω−8Z ′ 2n+1Z
′ 2
n+2

H ′v0 = ω−1Z ′n+2Z
′
n+1Z

′
n+3 = ω−1Z ′n+1Z

′
n+3Z

′
n+2.
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Note that Q′v0 and Q′′v0 ∈ Z
ω(λ′) are two off-diagonal terms for the vertex

v0, corresponding to different indexings of the edges around this vertex.

As a consequence, µλ′(Q′v0)|F ′v0
= µλ′(Q′′v0)|F ′v0

= 0 while µλ′(H ′v0)|F ′v0
=

−ω4 IdF ′v0 . It consequently follows from the above computation that

µλ′(Q
′
v)|F ′v0

− µλ′ ◦Φ(Qv)|F ′v0
= 0.

Then, as in the first case considered,

Fv = kerµλ(Qv) = ker µ̄λ(Qv) = kerµλ′ ◦Φ(Qv)F ′v0

= kerµλ′(Q
′
v)|F ′v0

=
(
kerµλ′(Q

′
v)
)
∩ F ′v0 = F ′v ∩ F ′v0 .

This concludes the proof of Lemma 25 when the vertex v corresponds

to two vertices of the triangle T . The cases where it corresponds to one

or three vertices of T are very similar, and we omit the corresponding

proofs. �

We now gather the results of this section in the following statement,

which we state in inductive form for later use in §5.3.

It is convenient to introduce some terminology. If the representation

ρλ : SA(Sλ) → End(Eλ) respects the total off-diagonal kernel Fλ ⊂ Eλ, we

say that ρλ induces a representation ρ̌λ : SA(S)→ End(Fλ) if ρλ
(
[K]
)
|Fλ

=

ρλ
(
[K ′]

)
|Fλ

whenever the two framed links K, K ′ ⊂ Sλ × [0, 1] are isotopic

in S × [0, 1].

For instance, when the triangulation λ is combinatorial, Proposition 15

shows that the representation ρλ : SA(Sλ) → End(Eλ) respects Fλ, and

Proposition 17 implies that ρλ induces a representation ρ̌λ : SA(S) →
End(Fλ).

Proposition 26. Let λ′ be obtained from the triangulation λ of the surface S

by subdividing a face into three triangles as in Figure 4, let ξ′ : Ṽλ′ → CP1 be a

λ′–enhancement for the homomorphism r : π1(S)→ SL2(C), and let ξ : Ṽλ →
CP1 be the λ–enhancement defined by restriction of ξ′ to Ṽλ ⊂ Ṽλ′ . Let

µλ : Zω(λ) → End(Eλ) and µλ′ : Zω(λ′) → End(Eλ′) be the representations

respectively associated to ξ and ξ′ by Proposition 8.
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Suppose in addition that ρλ′ = µλ′ ◦ Trωλ′ : SA(Sλ′) → End(Eλ′) respects

the total off-diagonal kernel Fλ′ ⊂ Eλ′ of µλ′ , and induces a representation

ρ̌λ′ : SA(S) → End(Fλ′) as above. Then, ρλ = µλ ◦ Trωλ : SA(Sλ) →
End(Eλ) respects the total off-diagonal kernel Fλ ⊂ Eλ of µλ, and induces

a representation ρ̌λ : SA(S) → End(Fλ). Moreover, ρ̌λ is isomorphic to ρ̌λ′

after a possible pre-composition with the action of a sign-reversal symmetry

of r ∈ RSL2(C)(S) on SA(S).

Proof. After pre-composition with the action of a sign-reversal symmetry of

r ∈ RSL2(C)(S) on Zω(λ), Lemma 24 provides an isomorphism between the

two representations µλ : Zω(λ) → End(Eλ) and µ̄λ : Zω(λ) → End(F ′v0).

Note that this modification of µλ does not change its total off-diagonal

kernel Fλ, as a sign-reversal symmetry respects each off-diagonal term

Qv ∈ Zω(λ).

As in the beginning of the proof of Lemma 25, we can arrange without

loss of generality that this isomorphism is the identity, so that µλ = µ̄λ.

Under these conditions, we want to prove that Fλ = Fλ′ , and that ρ̌λ = ρ̌λ′ .

We first compare the two total off-diagonal kernels Fλ and Fλ′ . Lemma 25

shows that Fv = F ′v ∩ F ′v0 for every vertex v of λ. Then

Fλ =
⋂
v∈Vλ

Fv =
⋂
v∈Vλ

(F ′v ∩ F ′v0) = F ′v0 ∩
⋂
v∈Vλ

F ′v =
⋂

v′∈Vλ′

F ′v′ = Fλ′ .

Also, by our assumption that the isomorphism between µλ and µ̄λ is the

identity, Eλ = F ′v0 ⊂ Eλ′ . For every framed link K ⊂ Sλ′ × [0, 1], the fact

that µλ = µ̄λ and the definition of µ̄λ imply that

ρλ
(
[K]
)

= µλ ◦Trωλ
(
[K]
)

= µλ′ ◦Φ ◦Trωλ
(
[K]
)
|F ′v0

= ρλ′
(
[K]
)
|F ′v0

,

where the last equality is provided by Lemma 23, and where we use the

same notation for the skeins [K] ∈ SA(Sλ′) and [K] = I
(
[K]
)
∈ SA(Sλ).

In particular, since ρλ′
(
[K]
)
∈ End(Eλ′) respects the total off-diagonal

kernel Fλ′ by hypothesis, then ρλ
(
[K]
)

= ρλ′
(
[K]
)
|F ′v0

respects Fλ since

Fλ = Fλ′ ⊂ F ′v0 ⊂ Eλ′ .
The same equality ρλ

(
[K]
)

= ρλ′
(
[K]
)
|F ′v0

shows that ρλ
(
[K]
)
|Fλ

=

ρλ′
(
[K]
)
|Fλ

since Fλ ⊂ F ′v0 . Therefore, if K, K ′ ⊂ Sλ′ × [0, 1] are isotopic

in S × [0, 1],

ρλ
(
[K]
)
|Fλ

= ρλ′
(
[K]
)
|Fλ

= ρλ′
(
[K ′]

)
|Fλ

= ρλ
(
[K ′]

)
|Fλ
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where the second equality comes from the hypothesis that ρλ′ induces a

representation ρ̌λ′ : SA(S) → End(Fλ′) and the fact that Fλ = Fλ′ . As a

consequence, ρλ induces a representation ρ̌λ : SA(S)→ End(Fλ).

Finally, the properties that Fλ = Fλ′ and ρλ
(
[K]
)
|Fv

= ρλ′
(
[K]
)
|Fv

show

that ρ̌λ = ρ̌λ′ . �

5.2. Diagonal exchanges. Diagonal exchanges (also called flips) are tri-

angulation moves that occur in many different contexts. The arguments

in this section are very similar to those used for earlier results in quantum

Teichmüller theory [14, 13, 5, 28]. In particular, this section is conceptually

and technically much simpler than the previous one.

Let λ and λ′ be two triangulations of S which have the same vertices,

and which differ only in one edge. We can index the edges of λ as e1, e2,

. . . , en, and the edges of λ′ as e′1, e′2, . . . , e′n in such a way that ei = e′i when

i > 2. Then, the two faces of λ containing the edge e1 form a “square” Q

as in Figure 6, and e′1 is the other diagonal of the square Q. In this case,

we say that λ and λ′ differ by a diagonal exchange.

e1

e2

e3

e4

e5

The triangulation λ

e′1

e′2

e′3

e′4

e′5

The triangulation λ′

Figure 6.

Let ξ : Ṽλ → CP1 be a λ–enhancement for the homomorphism r : π1(S)→
SL2(C).

We assume that the following conditions are satisfied:

(1) The λ–enhancement ξ is also a λ′–enhancement for r. Since the

triangulations λ and λ′ have the same vertex sets Vλ = Vλ′ ⊂ S, this

just means that ξ : Ṽλ → CP1 assigns distinct values to the endpoints

of an arbitrary lift of e′1.

(2) The four sides of the square Q, formed by the two faces of λ containing

the edge e1, correspond to distinct edges of λ.
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The second condition is not essential, but will simplify our exposition

by dispensing us from the need to consider many cases, as was required in

[5, 28]. Note that we are allowing identifications between the corners of

Q which, for instance, could very well correspond to the same vertex of λ.

The first condition is really critical.

This second condition enables us to index the edges of λ and λ′ so that

the sides of the square Q are e2 = e′2, e3 = e′3, e4 = e′4, e5 = e′5, as in

Figure 6.

In [21, §6], Chris Hiatt constructs a natural isomorphism Θλλ′ : Ẑω(λ′)→
Ẑω(λ) between the fraction algebras Ẑω(λ′) and Ẑω(λ) of the balanced

Chekhov-Fock algebras Zω(λ′) and Zω(λ). The elements of Ẑω(λ) are for-

mal fractions UV −1 with U , V ∈ Zω(λ) and V 6= 0, and are manipulated

with the usual rules for fractions (except that the noncommutative con-

text can greatly complicate computations, in particular when one needs to

reduce two fractions to a common denominator in order to add them).

The homomorphism Θλλ′ : Ẑω(λ′) → Ẑω(λ) is defined as follows. Be-

cause of the exponent parity condition defining the balanced Chekhov-Fock

algebra, every monomial Z ′ of Zω(λ′) can be uniquely written as

Z ′ = (Z ′1Z
′
2Z
′
4)k1(Z ′2Z

′
3)k2(Z ′4Z

′
5)k3Z ′ 2k42 Z ′ 2k54 B′

for exponents ki ∈ Z and for a monomial B′ involving only generators Z ′i
with i > 5. Then Θλλ′ is uniquely determined by the property that

Θλλ′(Z
′) =

(
ω4Z1Z2Z4 + Z−1

1 Z2Z4

)k1
(ωZ1Z2Z3)k2(ωZ1Z4Z5)k3(

Z2
2 + ω4Z2

1Z
2
2

)k4(
Z2

4 + ω4Z2
1Z

2
4

)k5
B

where B is obtained from B′ by replacing each generator Z ′i with i > 5 by Zi.

The fact that this really defines an algebra homomorphism Θλλ′ : Ẑω(λ′)→
Ẑω(λ) is proved in [21].

Lemma 27.

Θλλ′(Z
′ 2
1 ) = Z−2

1 Θλλ′(Z
′ 2
2 ) =

(
1 + ω4Z2

1

)
Z2

2

Θλλ′(Z
′ 2
3 ) =

(
1 + ω4Z−2

1

)−1
Z2

3 Θλλ′(Z
′ 2
4 ) =

(
1 + ω4Z2

1

)
Z2

4

Θλλ′(Z
′ 2
5 ) =

(
1 + ω4Z−2

1

)−1
Z2

5 and Θλλ′(Z
′ 2
i ) = Z2

i for every i > 5.

Proof. This is a simple computation based on the formula defining Θλλ′ :

Use the property that Z ′ 21 = ωa+4(Z ′1Z
′
2Z
′
4)2Z ′ −2

2 Z ′ −2
4 , Z ′ 23 = ωb−6(Z ′2Z

′
3)2Z ′ −2

2
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and Z ′ 25 = ωc−6(Z ′4Z
′
5)2Z ′ −2

4 , where the integers a, b, c ∈ Z are deter-

mined by the faces of λ that are adjacent to several sides of the square Q

and are not contained in Q (and contribute additional terms to the skew-

commutativity relations between the Z ′i, and between the Zi). See also

[21, §6], which explains that Θλλ′ was designed as a ‘square root’ of the

Chekhov-Fock coordinate change of [14, 13, 5, 28]. �

Let µλ : Zω(λ) → End(Eλ) and µλ′ : Zω(λ′) → End(Eλ′) be the repre-

sentations associated to the enhanced character (r, ξ) by Proposition 8. We

would like to consider the representation µλ ◦ Θλλ′ : Zω(λ′) → End(Eλ).

But this composition is not immediately defined, as Θλλ′ is valued in the

fraction algebra Ẑω(λ), whereas µλ is only defined on the Chekhov-Fock

algebra Zω(λ) ⊂ Ẑω(λ).

Lemma 28. There is a well-defined representation µλ ◦ Θλλ′ : Zω(λ′) →
End(Eλ), defined as follows.

(1) For every Z ′ ∈ Zω(λ′), there exists U1, V1, U2, V2 ∈ Zω(λ) such that

Θλλ′(Z
′) = U1V

−1
1 = V −1

2 U2 ∈ Ẑω(λ)

and µλ(V1) and µλ(V2) are invertible in End(Eλ).

(2) For every decomposition Θλλ′(Z ′) = U1V
−1
1 = V −1

2 U2 as above,

µλ ◦Θλλ′(Z
′) = µλ(U1)µλ(V1)−1 = µλ(V2)−1µλ(U2) ∈ End(Eλ).

Proof. When Z ′ is a monomial (Z ′1Z
′
2Z
′
4)k1(Z ′2Z

′
3)k2(Z ′4Z

′
5)k3Z ′ 2k43 Z ′ 2k55 B′,

the non-monomial terms occurring in the definition of Θλλ′(Z ′) can be

written as

ω4Z1Z2Z4 + Z−1
1 Z2Z4 = (1 + ω4Z2

1)Z−1
1 Z2Z4

Z2
2 + ω4Z2

1Z
2
2 = (1 + ω4Z2

1)Z2
2

Z2
4 + ω4Z2

1Z
2
4 = (1 + ω4Z2

1)Z2
4

The skew commutativity properties then enable us to write Θλλ′(Z ′) =

U1V
−1
1 = V −1

2 U2 for some U1, V1, U2, V2 ∈ Zω(λ) where the denominators

V1 and V2 are products of terms 1 + ω4kZ2
1 with k ∈ Z.

The same holds for any Z ′ ∈ Zω(λ′) by decomposing Z ′ as a sum of

monomials, applying the above argument to each monomial, and reducing

to a common denominator. (The reduction to a common denominator is

here trivial, because all denominators commute with each other.)
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By definition of the representation µλ in Proposition 8, µλ(Z2
1)N =

x1 IdEλ where x1 is the crossratio weight associated to the edge e1 of λ by the

enhancement ξ. In particular, µλ(Z2
1) is diagonalizable and its eigenvalues

are N–roots of x1. Also, x1 is different from −1 because ξ sends the end

points of each lift of the edge e′1 to different points of CP1. Because N is

odd, it follows that the eigenvalues of µλ(Z2
1) are never of the form −ω−4k

with k ∈ Z, and therefore that µλ(1 + ω4kZ2
1) is invertible for each such k.

This proves that the image of each Z ′ ∈ Zω(λ) under Θλλ′ can be

decomposed as

Θλλ′(Z
′) = U1V

−1
1 = V −1

2 U2 ∈ Ẑω(λ)

for some U1, V1, U2, V2 ∈ Zω(λ) with µλ(V1) and µλ(V2) invertible in

End(Eλ).

An elementary algebraic manipulation shows that µλ(U1)µλ(V1)−1 is

equal to µλ(V2)−1µλ(U2) in End(Eλ), and that this endomorphism is

independent of the above decomposition. We can therefore define a map

µλ ◦Θλλ′ : Zω(λ′)→ End(Eλ) by the property that

µλ ◦Θλλ′(Z
′) = µλ(U1)µλ(V1)−1 = µλ(V2)−1µλ(U2).

for every such Z ′ ∈ Zω(λ′).

The property that the map µλ ◦Θλλ′ : Zω(λ′)→ End(Eλ) is an algebra

homomorphism easily follows from a couple more easy algebraic manipula-

tions. �

Lemma 29. For a vertex v of the triangulations λ and λ′, consider its

associated central elements Hv ∈ Zω(λ) and H ′v ∈ Zω(λ′). Then, the

triangulation change homomorphism Θλλ′ : Ẑω(λ′) → Ẑω(λ) sends H ′v ∈
Zω(λ′) to Hv ∈ Zω(λ).

Proof. If we index the edges of λ′ meeting v as ei′1 , ei′2 , . . . , ei′u in

counterclockwise order around v and if we suitably choose the starting point

of this indexing, each corner of the square Q that is equal to v contributes

a block Z ′2Z
′
3, Z ′3Z

′
1Z
′
4, Z ′4Z

′
5 or Z ′5Z

′
1Z
′
2 to the expression

H ′v = ω−u+2Z ′i1Z
′
i2 . . . Z

′
iu

provided by Lemma 12.

A computation using the formula defining Θλλ′ then shows that Θλλ′(H ′v)

is obtained from this expression by replacing each block Z ′2Z
′
3, Z ′3Z

′
1Z
′
4,
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Z ′4Z
′
5 or Z ′5Z

′
1Z
′
2 by ω−1Z2Z1Z3, ωZ3Z4, ω−1Z4Z1Z5 or ωZ5Z2, respectively,

and by replacing each Z ′i with i > 5 by Zi. For instance, for a block Z ′3Z
′
1Z
′
4,

Z ′3Z
′
1Z
′
4 = ωa−2(Z ′1Z

′
2Z
′
4)(Z ′2Z

′
3)Z ′ −2

2

where a ∈ Z depends on the q–commutativity of Z ′2, Z ′3, Z ′4, namely on

the faces of λ that are adjacent to several faces of the square Q and are

not contained in Q (and is equal to 0 if there are no such faces). In

the expression for Θλλ′(H ′v), this block ωa−2(Z ′1Z
′
2Z
′
4)(Z ′2Z

′
3)Z ′ −2

2 is then

replaced by

ωa−2(ω4Z1Z2Z4 + Z−1
1 Z2Z4)(ωZ1Z2Z3)(Z2

2 + ω4Z2
1Z

2
2)−1

= ωa−1(ω4Z2
1 + 1)Z−1

1 Z2Z4Z1Z2Z3Z
−2
2 (1 + ω4Z2

1)−1

= ωa−1Z−1
1 Z2Z4Z1Z2Z3Z

−2
2

= ωZ3Z4.

The computation for the other blocks Z ′2Z
′
3, Z ′3Z

′
1Z
′
4, Z ′4Z

′
5 or Z ′5Z

′
1Z
′
2 is

very similar.

The result immediately follows from this computation, and from the

application of Lemma 12 to Hv. �

Lemma 30. After pre-composing µλ′ with the action on Zω(λ′) of a sign-

reversal symmetry of r ∈ RSL2(C)(S) if necessary, the representations µλ ◦
Θλλ′ : Zω(λ′)→ End(Eλ) and µλ′ : Zω(λ′)→ End(Eλ′) are isomorphic.

Proof. By Proposition 8, the representation µλ′ : Zω(λ′) → End(Eλ′) is

characterized up to isomorphism and sign-reversal symmetry by the follow-

ing properties.

(1) The dimension of Eλ′ is equal to N3g+pλ′−3, where g is the genus of the

surface S and where pλ′ is the number of vertices of the triangulation

λ′;

(2) For every edge e′i of λ′, let x′i ∈ C∗ be the crossratio weight associated

to e′i by the enhancement ξ, and let Z ′i be the corresponding generator

of the Chekhov-Fock algebra T ω(λ). Then,

µλ′(Z
′ 2N
i ) = x′i IdEλ′ .

(3) For every vertex v of λ′, with associated central element H ′v ∈ Zω(λ′),

µλ′(H
′
v) = −ω4 IdEλ′ .
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(4) The representation ρλ′ = µλ′ ◦ Trωλ′ : SA(Sλ) → End(Eλ) has classical

shadow r ∈ RSL2(C)(S), in the sense that

TN
(
ρλ′([K])

)
= −Tr r(K) IdEλ′

for every knot K ⊂ Sλ′ × [0, 1] whose projection to Sλ′ has no crossing

and whose framing is vertical.

It therefore suffices to show that the representation µλ ◦Θλλ′ : Zω(λ′)→
End(Eλ) satisfies the same conditions.

The triangulations λ and λ′ have the same vertex set, so that pλ = pλ′ .

The dimension of the space Eλ is equal to N3g+pλ−3 = N3g+pλ′−3 by

Proposition 8 applied to µλ, which proves the first condition.

The second condition is checked by several computations. The first

elementary computation is that the crossratio weights xi and x′i respectively

associated to the edges of λ and λ′ by the enhancement ξ are related by

the property that x′i is equal to x−1
1 if i = 1, to (1 + x1)x2 if i = 2, to

x1(1 + x1)−1x3 if i = 3, to (1 + x1)x4 if i = 4, to x1(1 + x1)−1x5 if i = 5,

and to xi if i > 5. See for instance [28, §2] or [5, §8].

Then, if a ∈ {0,−1} is such that Z ′2Z
′
3 = ω2(a+1)Z ′3Z

′
2 (so that a = −1

only when there is a face of λ that contains the edges e′2 and e′3 and is not

contained in the square Q),

µλ ◦Θλλ′(Z
′ 2N
3 ) = µλ ◦Θλλ′

(
ω−2N(2N+1)(a+1)(Z ′2Z

′
3)2NZ ′ −2N

2

)
= µλ

(
ω−2N(2N+1)(a+1)(ωZ1Z2Z3)2N (Z2

2 + ω4Z2
1Z

2
2)−N

)
= µλ

(
Z2N

1 Z2N
2 Z2N

3 (Z2N
2 + Z2N

1 Z2N
2 )−1

)
= x1x2x3(x2 + x1x2)−1IdEλ = x′3IdEλ ,

where the third equality uses the relation Z2
2(Z2

1Z
2
2) = ω4(Z2

1Z
2
2)Z2

2 , the

Quantum Binomial Formula [24, §IV.2] and the fact that ω4 is a primitive

N–root of unity.

Similar computations show that µλ ◦ Θλλ′(Z ′ 2Ni ) = x′iIdEλ for every i.

See also [5, §§7–8]. This proves the second condition.

The third condition is an immediate consequence of Lemma 29.

Finally, the fourth condition is a consequence of the property, proved in

Theorem 28 of [7], that Θλλ′ ◦Trωλ′ = Trωλ . �

Because the triangulations λ and λ′ have the same vertex sets Vλ = Vλ′ ,

the associated punctured surfaces Sλ = S−Vλ and Sλ′ = S−Vλ′ are equal.

As a consequence, the homomorphisms ρλ = µλ ◦ Trωλ and ρλ′ = µλ′ ◦ Trωλ′
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associated to the enhanced character (r, ξ) provide representations of the

same skein algebra SA(Sλ) = SA(Sλ′).

Corollary 31. After pre-composing µλ′ with the action on Zω(λ′) of a

sign-reversal symmetry of r ∈ RSL2(C)(S) if necessary, the representations

ρλ = µλ◦Trωλ : SA(Sλ)→ End(Eλ) and ρλ′ = µλ′ ◦Trωλ′ : SA(Sλ)→ End(Eλ)

are isomorphic.

Proof. This is an immediate consequence of Lemma 30 and of the fact,

proved in Theorem 28 of [7], that Θλλ′ ◦Trωλ′ = Trωλ . �

Lemma 32. Every isomorphism ϕ : Eλ → Eλ′ between the representa-

tions µλ ◦ Θλλ′ : Zω(λ′) → End(Eλ) and µλ′ : Zω(λ′) → End(Eλ′), as in

Lemma 30, sends the off-diagonal kernel Fv ⊂ Eλ of each vertex v ∈ Vλ = Vλ′

to the off-diagonal kernel F ′v ⊂ Eλ′ .

Proof. There are again several cases to consider according to which corners

of the square Q correspond to the vertex v. We will give the proof in the

case when v corresponds to two corners of Q, the one where e2 and e3 meet

and the corner where e5 and e2 meet. The reader may return to Figure 6

to remember the indexing convention for the edges ei.

As usual, index the edges of λ′ around the vertex v as e′i1 , e′i2 , . . . , e′iu , in

counterclockwise order around v. We can choose the starting point of the

indexing at e′2, so that e′i1 = e′2, e′i2 = e′3, e′is−1
= e′5, e′is = e′1, and e′is+1

= e′2
for some index s. To avoid having to worry about whether s+1 = u or not,

it is convenient to shift the indexing by 1 and to consider the off-diagonal

element

Q′v = 1 + ω−4Z ′ 2i2 + ω−8Z ′ 2i2 Z
′ 2
i3 + · · ·+ ω−4uZ ′ 2i2 Z

′ 2
i3 . . . Z

′ 2
iu ∈ Z

ω(λ′).

Then,

Z ′ 22 Q′v = Z ′ 2i1 Q
′
v = Z ′ 2i1 + ω−4Z ′ 2i1 Z

′ 2
i2 + ω−8Z ′ 2i1 Z

′ 2
i2 Z

′ 2
i3 + · · ·+ ω−4uZ ′ 2i1 Z

′ 2
i2 Z

′ 2
i3 . . . Z

′ 2
iu

= Z ′ 22 + ω−4Z ′ 22 Z ′ 23 B′

+ ω−4(s−2)Z ′ 22 Z ′ 23 Z ′ 2i3 . . . Z
′ 2
is−2

(Z ′ 25 + ω−4Z ′ 25 Z ′ 21 + ω−8Z ′ 25 Z ′ 21 Z ′ 22 )

+ ω−4sZ ′ 22 Z ′ 23 Z ′ 2i3 . . . Z
′ 2
is−2

Z ′ 25 Z ′ 21 Z ′ 22 C ′

where B′, C ′ ∈ Zω(λ′) are polynomials in the variables Z ′ 2i with i > 5,

corresponding to edges of λ′ that are not contained in the square Q.
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Similarly, we can index the edges of λ counterclockwise around v as ej1 ,

ej2 , . . . , eju , in such a way that ej1 = e2, ej2 = e1, ej3 = e3, eis = e5, and

eis+1 = e2. Then,

Z2
2Qv = Z2

j1Qv = Z2
2 + ω−4Z2

2Z
2
1 + ω−8Z2

2Z
2
1Z

2
3B

+ ω−4(s−1)Z2
2Z

2
1Z

2
3Z

2
j4 . . . Z

2
js−1

(Z2
5 + ω−4Z2

5Z
2
2)

+ ω−4sZ2
2Z

2
1Z

2
3Z

2
j4 . . . Z

2
js−1

Z2
5Z

2
2C

where B, C ∈ Zω(λ) are respectively obtained from B′, C ′ ∈ Zω(λ′) by

replacing each term Z ′ 2i (with i > 5) with the corresponding Z2
i .

The computations of Lemma 27 show that

Θλλ′(Z
′ 2
2 ) = Z2

2 + ω−4Z2
2Z

2
1 Θλλ′(Z

′ 2
2 Z ′ 23 ) = ω−4Z2

2Z
2
1Z

2
3

Θλλ′(Z
′ 2
5 + ω−4Z ′ 25 Z ′ 21 ) = Z2

5 Θλλ′(Z
′ 2
5 Z ′ 21 Z ′ 22 ) = ω4Z2

5Z
2
2 ,

while Θλλ′(B′) = B and Θλλ′(C ′) = C since Θλλ′(Z ′2i ) = Z2
i whenever

i > 5. It follows that Θλλ′(Z ′ 22 Q′v) = Z2
2Qv.

As a consequence, the isomorphism ϕ sends the kernel of µλ(Z2
2Qv) =

µλ ◦ Θλλ′(Z ′ 22 Q′v) to the kernel of µλ′(Z ′ 22 Q′v). Since Z2
2 is invertible in

Zω(λ), the kernel of µλ(Z2
2Qv) = µλ(Z2

2) ◦ µλ(Qv) is equal to the kernel of

µλ(Qv), namely to the off-diagonal kernel Fv ⊂ Eλ. Similarly, the kernel of

µλ′(Z ′ 22 Q′v) is equal to the off-diagonal kernel F ′v ⊂ Eλ′ .
This concludes the proof in the case when v corresponds to the corners

of Q where e2 and e3 meet as well as to the corner where e5 and e2 meet.

The other cases are essentially identical to this one. �

We summarize the discussion and results of this section in the following

statement. Let the triangulations λ and λ′ differ from each other by a

diagonal exchange as in Figure 6. Recall that we are assuming that the

sides of the square Q where the diagonal exchange takes place are distinct;

however, the triangulations λ and λ′ are not necessarily assumed to be

combinatorial. Since λ and λ′ have the same vertex set Vλ = Vλ′ , the

punctured surfaces Sλ = S − Vλ and Sλ′ = S − Vλ′ are equal.

Proposition 33. Let the triangulations λ and λ′ differ from each other by a

diagonal exchange as in Figure 6, let ξ : Ṽλ = Ṽλ′ → CP1 be simultaneously a

λ– and a λ′–enhancement for the homomorphism r : π1(S)→ SL2(C), and let

µλ : Zω(λ) → End(Eλ) and µλ′ : Zω(λ′) → End(Eλ′) be the representations

associated to this data by Proposition 8.
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Suppose in addition that ρλ′ = µλ′ ◦ Trωλ′ : SA(Sλ′) → End(Eλ) respects

the total off-diagonal kernel Fλ′ ⊂ Eλ′ of µλ′ and induces a representation

ρ̌λ′ : SA(S) → End(Fλ′), as defined above Proposition 26. Then, ρλ =

µλ ◦Trωλ : SA(Sλ)→ End(Eλ′) respects the total off-diagonal kernel Fλ ⊂ Eλ
of µλ and induces a representation ρ̌λ : SA(S) → End(Fλ). Moreover, ρ̌λ is

isomorphic to ρ̌λ′ after a possible pre-composition with the action of a sign-

reversal symmetry of r ∈ RSL2(C)(S) on SA(S).

Proof. Lemma 30 provides an isomorphism ϕ : Eλ → Eλ′ between the

Chekhov-Fock algebra representations µλ ◦ Θλλ′ : Zω(λ′) → End(Eλ) and

µλ′ : Zω(λ′)→ End(Eλ′). Also, Theorem 28 of [7] states that the quantum

trace homomorphisms Trωλ : SA(Sλ) → Zω(λ) and Trωλ′ : SA(Sλ) → Zω(λ′)

are compatible with the isomorphism Θλλ′ : Ẑω(λ′) → Ẑω(λ) in the sense

that Θλλ′ ◦ Trωλ′ = Trωλ . Therefore, ϕ : Eλ → Eλ′ provides an isomorphism

between the representations µλ◦Θλλ′ ◦Trωλ′ = µλ◦Trωλ = ρλ and µλ′ ◦Trωλ′ =

ρλ′ .

By Lemma 32, the isomorphism ϕ : Eλ → Eλ′ sends the total off-diagonal

kernel Fλ =
⋂
v∈Vλ Fv to the total off-diagonal kernel Fλ′ =

⋂
v∈Vλ F

′
v. Since

the representation ρλ′ respects Fλ′ by hypothesis, it follows that ρλ respects

Fλ.

Finally, the property that ρλ′ induces a representation ρ̄λ′ : SA(S) →
End(Fλ′) means that ρλ′

(
[K]
)
|Fλ

= ρλ′
(
[K ′]

)
|Fλ

whenever the two framed

links K, K ′ ⊂ Sλ× [0, 1] are isotopic in S× [0, 1]. The isomorphism ϕ again

shows that the same property holds for ρλ. �

5.3. Constructing representations of the skein algebra of a closed

surface using arbitrary triangulations.

Lemma 34. Let λ be a triangulation of S. Then one can apply to λ a sequence

of face subdivisions and diagonal exchanges, as in §§5.1 and 5.2, to obtain a

new triangulation λ′ that is combinatorial, in the sense that each edge of λ′

has distinct endpoints and no two edges have the same endpoints.

In addition, any λ–enhancement ξ : Ṽλ → CP1 for the group homomor-

phism r : π1(S) → SL2(C) can be extended to a λ′–enhancement ξ′ : Ṽλ′ →
CP1. (Note that the vertex set Vλ of λ is contained in the vertex set Vλ′).

Proof. By subdividing a few faces if necessary, we can arrange that any two

faces of λ have at most one edge in common.

After this preliminary step, let λ′′ be obtained from λ by subdividing

each face, and let λ′ be obtained by performing a diagonal exchange along
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each edge of λ′′ that is also an edge of λ; see Figure 7. All edges of a

face of λ are distinct by our general convention for triangulations, and we

had arranged at the beginning of the proof that any two faces have at

most one edge in common. It easily follows that each edge of the resulting

triangulation λ′ joins, either a vertex of Vλ to a vertex of Vλ′ − Vλ, or two

distinct vertices of Vλ′ − Vλ. As a consequence, λ′ is combinatorial.

λ λ′λ′′

Figure 7.

Using the properties that λ′ is combinatorial and that each edge of

λ′ touches at most one edge of Vλ, the inductive process of the proof of

Lemma 7 then proves the second statement. �

Lemma 34 and the results of §§5.1 and 5.2 enable us to extend Propo-

sition 15 and 17 to triangulations that are not necessarily combinatorial.

Theorem 35. Given a triangulation λ of the surface S and a λ–enhancement

ξ : Ṽλ → CP1 for the group homomorphism r : π1(S) → SL2(C), let

µλ : Zω(λ) → End(Eλ) be the irreducible representation associated to this

data by Proposition 8. Then, the total off-diagonal kernel Fλ ⊂ Eλ of µλ
is invariant under the representation ρλ = µλ ◦ Trωλ : SA(Sλ) → End(Eλ)

constructed in §3.4, and ρλ induces a representation ρ̌λ : SA(S)→ End(Fλ).

Proof. By Lemma 34, there exists a sequence of triangulations λ = λ0, λ1,

. . . , λn−1, λn = λ′ such that λ′ is combinatorial, and such that each λi+1

is obtained from λi by a face subdivision or by a diagonal exchange. In

addition, for every i, the λ–enhancement ξ : Ṽλ → CP1 can be extended

to a λi–enhancement ξi : Ṽλi → CP1 for r, in such a way that each ξi+1

restricts to ξi on Ṽλi .

Since λ′ is combinatorial, the property sought holds for λ′ by Proposi-

tions 15 and 17. Propositions 26 and 33 assert that the property will also

hold for λi if it holds for λi+1. The result then follows by induction. �
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Theorem 36. The representation ρ̌λ : SA(S)→ End(Fλ) provided by Theo-

rem 35 has classical shadow equal to the character r ∈ RSL2(C)(S) represented

by the group homomorphism r : π1(S)→ SL2(C), in the sense that

TN
(
ρ̌λ([K])

)
= −Tr r(K) IdFλ

for every knot K ⊂ S× [0, 1] whose projection to S has no crossing and whose

framing is vertical.

Proof. We again use a sequence of triangulations λ = λ0, λ1, . . . , λn−1,

λn = λ′ and λi–enhancements ξi : Ṽλi → CP1 such that λ′ is combinatorial,

each λi+1 is obtained from λi by a face subdivision or by a diagonal

exchange, and each ξi+1 restricts to ξi on Ṽλi .

Since λ′ is combinatorial, Proposition 19 shows that ρ̌λ′ = ρ̌λn has

classical shadow equal to r ∈ RSL2(C)(S). Propositions 26 and 33 then

inductively show that the ρ̌λi are all isomorphic, and consequently also

have classical shadow r ∈ RSL2(C)(S). In particular, ρ̌λ = ρ̌λ0 has classical

shadow r ∈ RSL2(C)(S). �

5.4. Independence of choices. We now prove that the construction of

the representation ρ̌λ : SA(S)→ End(Fλ) of Theorem 35 is very natural.

Lemma 37. Let λ and λ′ be two triangulations of S whose vertex sets are

disjoint, and let ξ : Ṽλ → CP1 and ξ′ : Ṽλ′ → CP1 be λ– and λ′–enhancements,

respectively, for the homomorphism r : π1(S) → SL2(C). Then λ and λ′ can

be connected by a sequence of triangulations λ = λ0, λ1, . . . , λn−1, λn = λ′,

each equipped with a λi–enhancement ξi : Vλi → CP1 for r, such that:

(1) each λi+1 is obtained from λi by a face subdivision as introduced in §5.1,

the inverse of a face subdivision, or a diagonal exchange as in §5.2;

(2) ξ0 = ξ and ξn = ξ′;

(3) for every i, ξi and ξi+1 coincide on the intersection Ṽλi ∩ Ṽλi+1 .

For the third condition, note that the vertex sets Vλi and Vλi+1 differ by

at most one vertex, so that Ṽλi and Ṽλi+1 differ by at most one π1(S)–orbit.

Proof. By Lemma 34, we can assume without loss of generality that λ

and λ′ are combinatorial. The existence of the sequence λ = λ0, λ1, . . . ,

λn−1, λn = λ′ in this combinatorial setup is then the 2–dimensional case of

Pachner’s theorem [30, 31] (which of course predates the full generality of
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Pachner’s theorem by many decades). In addition, the λi provided by this

statement are all combinatorial.

To construct the enhancements ξi, note that π1(S) acts on each Ṽλi , and

therefore on the union
⋃n
i=1 Ṽλi . Extend ξ and ξ′ to an r–equivariant map

ξ′′ :
⋃n
i=1 Ṽλi → CP1 (this is where we use the fact that the vertex sets Vλ

and Vλ′ are disjoint), orbit by orbit as in the proof of Lemma 7. In this

construction, we can require that distinct π1(S)–orbits in
⋃n
i=1 Ṽλi have

disjoint images in CP1, since we only need to avoid countably many values

at each step. Then, the restriction ξi of ξ′′ to Ṽλi is a λi–enhancement for r;

indeed, because λi is combinatorial, the endpoints of each edge of its lift λ̃i
to the universal cover S̃ belong to distinct π1(S)–orbits, and in particular

have distinct images under ξ′′. �

Theorem 38. Up to isomorphism and up to the action of a sign-reversal

symmetry of r ∈ RSL2(C)(S) on SA(S), the representation ρ̌λ : SA(S) →
End(Fλ) provided by Theorem 35 depends only on the group homomorphism

r : π1(S)→ SL2(C), not on the triangulation λ or the λ–enhancement ξ used

in the construction.

Proof. Consider two triangulations λ and λ′, with respective enhancements

ξ : Ṽλ → CP1 and ξ′ : Ṽλ′ → CP1 for the homomorphism r : π1(S) →
SL2(C). Modifying λ′ by a small isotopy does not change the associated

representations µλ′ : Zω(λ′) → End(Eλ′) and ρ̌λ′ : SA(S) → End(Fλ′), so

we can assume that the vertex sets Vλ and Vλ′ are disjoint. We can

then consider the sequences of triangulations λ = λ0, λ1, . . . , λn−1,

λn = λ′ and λi–enhancement ξi : Vλi → CP1 provided by Lemma 37.

Theorem 35 associates to each triangulation λi and λi–enhancement ξi a

representation ρ̌λi : SA(S) → End(Fi). Propositions 26 and 33 show that

each ρ̌λi : SA(S) → End(Fi) is isomorphic to ρ̌λi+1 : SA(S) → End(Fi+1)

after possible composition with a sign-reversal symmetry. It follows that

ρ̌λ : SA(S) → End(Fλ) is isomorphic to ρ̌λ′ : SA(S) → End(Fλ′) after

possible composition with a sign-reversal symmetry. �

Remark 39. Conjugating the homomorphism r : π1(S) → SL2(C) by an

element θ ∈ SL2(C) also leaves the isomorphism class of the representation

ρ̌λ : SA(S)→ End(Fλ) invariant; indeed, the λ–enhancement θξ : Ṽλ → CP1

for θrθ−1 induces the same edge weights xi as ξ in the construction of

µλ : Zω(λ) → End(Eλ) in Proposition 8. For irreducible homomorphisms

r : π1(S)→ SL2(C), being conjugate by an element of SL2(C) is equivalent
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to defining the same character r ∈ RSL2(C)(S). However, for reducible

homomorphisms r, we do not know if the representation ρ̌λ : SA(S) →
End(Fλ) depends only on the induced character r ∈ RSL2(C)(S) or on subtler

properties of the conjugacy class of r : π1(S)→ SL2(C).

6. The dimension of the total off-diagonal kernel

We now have associated to each group homomorphism r : π1(S)→ SL2(C)

as representation ρ̌λ : SA(S) → End(Fλ) of the skein algebra SA(S), with

classical shadow equal to the character r ∈ RSL2(C)(S) represented by r.

This construction is very natural as, up to isomorphism, ρ̌λ is independent

of the triangulation λ and of the λ–enhancement ξ.

However, we still do not know that this representation is non-trivial,

namely that the total off-diagonal kernel Fλ is non-trivial. This section is

devoted to proving the non-triviality of Fλ, and to estimate its dimension.

Theorem 40. Let ρ̌λ : SA(S) → End(Fλ) be the representation of the

Kauffman bracket skein algebra of the closed oriented surface S associated

to the group homomorphism r : π1(S) → SL2(C) by Theorem 35. Then, the

dimension of the off-diagonal kernel Fλ is such that

dimFλ >


N3(g−1) if g > 2

N if g = 1

1 if g = 0

where g is the genus of S. In addition, the above inequality is an equality when

the character r ∈ RSL2(C)(S) represented by r is sufficiently generic, in the

sense that it belongs to an explicit Zariski open dense subset of RSL2(C)(S).

When the surface S is not the sphere, the proof of Theorem 40 is based

on explicit computations for triangulations λ that have only one vertex. In

particular, these triangulations cannot be combinatorial. This proof is the

only reason why we struggled to include non-combinatorial triangulations

in the previous sections.

6.1. Proof of Theorem 40 when the surface S has genus g > 2. Let

λ be a triangulation of the surface S with only one vertex v. In particular,

every edge of λ is a loop. Because S has genus g > 2, we can choose λ so

that, in addition, there is an edge ei0 of λ that separates the surface S into
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two subsurfaces S1 and S2. Because of our conventions for triangulations,

the three sides of each face of λ are distinct, and an Euler characteristic

argument shows that each of S1 and S2 has positive genus.

We first consider the case where the homomorphism r : π1(S)→ SL2(C)

admits a λ–enhancement ξ. By Lemma 7, this is equivalent to the prop-

erty that r(ei) 6= ±Id for every edge ei of the triangulation λ. Let

µλ : Zω(λ) → End(Eλ) be the representation associated to the enhanced

homomorphism (r, ξ) by Proposition 8, and consider the representation

ρλ = µλ ◦ Trωλ : SA(Sλ) → End(Eλ) as in §3.4. Note that Sλ is here the

punctured surface S − {v}, obtained by removing from S the vertex v of

λ. In particular, the total off-diagonal kernel Fλ ⊂ Eλ of µλ is equal to the

off-diagonal kernel Fv of v.

Let K1 ⊂ S1 be the closed curve obtained by pushing the edge loop

ei0 inside of the subsurface S1, and let K2 ⊂ S2 be similarly defined.

In particular, K1 and K2 are both contained in the punctured surface

Sλ = S − {v}. When endowed with the vertical framing, K1 and K2 define

skeins [K1], [K2] ∈ SA(Sλ).

Lemma 41. The off-diagonal kernel Fλ = kerµλ(Qv) is equal to the kernel

of ρλ
(
[K1]

)
− ρλ

(
[K2]

)
.

Proof. Since K1 and K2 are isotopic in S × [0, 1], Theorem 35 shows that

the restrictions ρλ
(
[K1]

)
|Fλ

= ρλ
(
[K2]

)
|Fλ

coincide. The off-diagonal kernel

Fλ is therefore contained in the kernel of ρλ
(
[K1]

)
− ρλ

(
[K2]

)
.

Because λ is not combinatorial, our proof of Theorem 35 relied on

the “drill, baby, drill” strategy to reduce the problem to a combinatorial

triangulation, where we could apply Proposition 17. To prove that Fλ is

exactly equal to the kernel of ρλ
(
[K1]

)
−ρλ

(
[K2]

)
, we will here use a careful

examination of an analogue of Proposition 17 for the non-combinatorial

triangulation λ.

We first need to compute Trωλ
(
[K1]

)
and Trωλ

(
[K2]

)
. For this, index

the edges around the vertex v as ei0 , ei1 , ei2 , . . . eit , ei0 , ej1 , ej2 , . . . eju ,

counterclockwise in this order, so that all edges eik are contained in the

subsurface S1 and all edges ejk are contained in S2. See Figure 8(a).

The computation of Trωλ
(
[K1]

)
given by [7] can be somewhat compli-

cated, because the projection of K1 to S cuts some edges of λ more than

once; this usually introduces correction factors in bigon neighborhoods of

these edges. A convenient way to avoid these correction factors is to isotop

K1 to a framed knot K ′1 ⊂ Sλ × [0, 1] whose projection to S coincides with
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K1

K2

(a)

ei0

ei1
ei2

eit

ej1

ej2

eju

K ′1

(b)

ei0

ei1
ei2

eit

p

q

B

Figure 8.

the projection of K1 for most of its length, except for a small interval that

is pushed across the edge ei0 to create a small bigon B ⊂ S2 bounded by an

arc in ei0 and an arc in the projection of K ′1. In particular, the projection

of K ′1 to S cuts the edge ei0 in two points p and q occuring in this order

for the orientation of ei0 coming from the boundary orientation of K1. See

Figure 8(b).

In addition, we can arrange that the elevation on K1 ⊂ Sλ×[0, 1] steadily

increases as one goes around K1 from p to q, crossing the preimage of the

edges ei1 , ei2 , . . . eit , and then steeply goes down from q to p along the

bigon B to return to the starting point p.

Then, there is no need for correction terms, except for the contribution

of the bigon B. More precisely, the construction of the quantum trace in

[7] gives in this case:

Trωλ
(
[K1]

)
= Trωλ

(
[K ′1]

)
= ω−1

t∑
k=0

ω−t+1Zi0Zi1 . . . ZikZ
−1
ik+1

Z−1
ik+2

. . . Z−1
it
Z−1
i0

= ω−t
t∑

k=0

Zi0Zi1 . . . ZikZ
−1
ik+1

Z−1
ik+2

. . . Z−1
it
Z−1
i0

where the factor ω−1 is the contribution of the bigon B.

We will use the computation of Weyl quantum orderings in Lemma 13

to rearrange this expression. By the first case of Lemma 13,

[Zi0Zi1 . . . Zik ] = ω−kZi0Zi1 . . . Zik ,

[Zi0Zi1 . . . Zik ]−1 = [Z−1
i0
Z−1
i1

. . . Z−1
ik

] = ω−kZ−1
i0
Z−1
i1

. . . Z−1
ik
,

and [Zi0Zi1 . . . Zik ]2 = [Z2
i0Z

2
i1 . . . Z

2
ik

] = ω−4kZ2
i0Z

2
i1 . . . Z

2
ik
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It follows that

Zi0Zi1 . . . Zik = ωk[Zi0Zi1 . . . Zik ]

= ωk[Zi0Zi1 . . . Zik ]2[Zi0Zi1 . . . Zik ]−1

= ω−4kZ2
i0Z

2
i1 . . . Z

2
ik
Z−1
i0
Z−1
i1

. . . Z−1
ik
.

This enables us to write

Trωλ
(
[K1]

)
= ω−t

( t∑
k=0

ω−4kZ2
i0Z

2
i1 . . . Z

2
ik

)(
Z−1
i0
Z−1
i1

. . . Z−1
it
Z−1
i0

)
=

( t∑
k=0

ω−4kZ2
i0Z

2
i1 . . . Z

2
ik

)
Z−1
i0

[Z−1
i1

. . . Z−1
it

]Z−1
i0
,

where the second equality follows from an application of the third case of

Lemma 13 to [Z−1
i1

. . . Z−1
it

] = ω−tZ−1
i1

. . . Z−1
it

.

Consider the term [Zi1Zi2 . . . Zit ]. First of all, note that its exponents

satisfy the parity condition required to belong to the balanced Chekhov-

Fock algebra Zω(λ). Also, [Zi1Zi2 . . . Zit ] commutes with Zi0 ; indeed, the

only Zik that do not commute with Zi0 are Zi1 , Zit , and a pair of consecutive

elements Zik1 = Zi1 and Zik1+1
= Zit corresponding to the third vertex of

the face of λ that is contained in the subsurface S1 and is adjacent to the

edge ei0 . It also commutes with all generators Zjl since the corresponding

edges are located in the interior of the surface S2.

Similarly [Zj1Zj2 . . . Zju ] is an element of Zω(λ) that commutes with Zi0
and with all Zik .

In particular, [Zi1Zi2 . . . Zit ], [Zj1Zj2 . . . Zju ] and Zi0 commute with each

other, and the central element Hv associated to the vertex v is equal to

Hv = [Zi0Zi1 . . . ZitZi0Zj1 . . . Zju ] = Z2
i0 [Zi1Zi2 . . . Zit ][Zj1Zj2 . . . Zju ].

Returning to Trωλ
(
[K1]

)
and remembering that Hv and [Zj1Zj2 . . . Zju ]



Representations of the skein algebra: closed surfaces 61

commute with all Zik , we conclude that

Trωλ
(
[K1]

)
=

( t∑
k=0

ω−4kZ2
i0Z

2
i1Z

2
i2 . . . Z

2
ik

)
Z−2
i0

[Zi1Zi2 . . . Zit ]
−1

=

( t∑
k=0

ω−4kZ2
i0Z

2
i1Z

2
i2 . . . Z

2
ik

)
H−1
v [Zj1Zj2 . . . Zju ]

= H−1
v [Zj1Zj2 . . . Zju ]

( t∑
k=0

ω−4kZ2
i0Z

2
i1Z

2
i2 . . . Z

2
ik

)

= [Zi1Zi2 . . . Zit ]
−1Z−2

i0

( t∑
k=0

ω−4kZ2
i0Z

2
i1Z

2
i2 . . . Z

2
ik

)
.

The same arguments applied to the framed knot K2 give

Trωλ
(
[K2]

)
= [Zj1Zj2 . . . Zju ]−1Z−2

i0

( u∑
l=0

ω−4lZ2
i0Z

2
j1Z

2
j2 . . . Z

2
jl

)
.

In particular,

[Zi1Zi2 . . . Zit ]Trωλ
(
[K1]

)
= 1 +

t∑
k=1

ω−4kZ2
i1Z

2
i2 . . . Z

2
ik

and

[Zi1Zi2 . . . Zit ]Trωλ
(
[K2]

)
= Z−2

i0
[Zj1Zj2 . . . Zju ]−1[Zi1Zi2 . . . Zit ]

( u∑
l=0

ω−4lZ2
i0Z

2
j1Z

2
j2 . . . Z

2
jl

)

= H−1
v [Zi1Zi2 . . . Zit ]

2

( u∑
l=0

ω−4lZ2
i0Z

2
j1Z

2
j2 . . . Z

2
jl

)

= H−1
v

( u∑
l=0

ω−4t−4lZ2
i1Z

2
i2 . . . Z

2
itZ

2
i0Z

2
j1Z

2
j2 . . . Z

2
jl

)

by using again the third case of Lemma 13, in addition to the fact that

[Zi1Zi2 . . . Zit ], [Zj1Zj2 . . . Zju ] and Zi0 commute with each other.

This is beginning to look a lot like the off-diagonal term Qv ∈ Zω(λ)

associated to the counterclockwise indexing of the edges of λ around v as

ei1 , ei2 , . . . , eit , ei0 , ej1 , ej2 , . . . , eju , ei0 . Indeed, this off-diagonal term can
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be written as

Qv = 1+
t∑

k=1

ω−4kZ2
i1Z

2
i2 . . . Z

2
ik

+
u∑
l=0

ω−4t−4l+4Z2
i1Z

2
i2 . . . Z

2
itZ

2
i0Z

2
j1Z

2
j2 . . . Z

2
jl

If we apply the representation µλ : Zω(λ) → End(Eλ) and remember

that µλ(H−1
v ) = −ω−4IdEλ , this proves that

µλ

(
[Zi1Zi2 . . . Zit ]

)
◦
(
µλ

(
Trωλ

(
[K1]

))
− µλ

(
Trωλ

(
[K1]

)))
= µλ(Qv).

Since [Zi1Zi2 . . . Zit ] is invertible in Zω(λ), the linear map µλ
(

[Zi1Zi2 . . . Zit ]
)
∈

End(Eλ) is invertible. It follows that the kernel of µλ

(
Trωλ

(
[K1]

))
−

µλ

(
Trωλ

(
[K1]

))
is equal to the kernel of µλ(Qv), namely to the off-diagonal

kernel Fλ = Fv ⊂ Eλ.

Since ρλ = µλ ◦Trωλ , this completes the proof of Lemma 41. �

We now consider the algebraic structure of the balanced Chekhov-Fock

algebra Zω(λ) and of the irreducible representation µλ : Zω(λ)→ End(Eλ).

Let λ1 and λ2 be the triangulations of the surfaces S1 and S2 respectively

induced by the triangulation λ. Define the balanced Chekhov-Fock algebra

Zω(λ1) as the subalgebra of Zω(λ) generated by all monomials in the

generators Zi1 , Zi2 , . . . , Zit satisfying the appropriate exponent parity

condition. Similarly, Zω(λ2) ⊂ Zω(λ) is generated by all monomials in

the generators Zj1 , Zj2 , . . . , Zju with the appropriate exponent parity

condition.

Because each Zik (with k > 0) commutes with each Zjl and because

the element Hv is central, the inclusion maps Zω(λ1)→ Zω(λ), Zω(λ2)→
Zω(λ) and C[H±1

v ]→ Zω(λ) define an algebra homomorphism

Zω(λ1)⊗Zω(λ2)⊗ C[H±1
v ]→ Zω(λ).

Lemma 42. The above homomorphism defines an isomorphism

Zω(λ) ∼= Zω(λ1)⊗Zω(λ2)⊗ C[H±1
v ].

Proof. We need to show that the algebra homomorphism above is a linear

isomorphism.

The key observation for this is the following. For every monomial

Zni0Z
m1
i1
Zm2
i2

. . . Zmtit
Zn1
j1
Zn2
j2
. . . Znuju
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of Zω(λ), the exponent parity condition defining the balanced Chekhov-

Fock algebra implies that the exponent n of Zi0 is even, because the edge

e0 separates the surface S. As a consequence, such a monomial can be

split as the product of a monomial of Zω(λ1), a monomial of Zω(λ2), and

a power of Hv = [Z2
i0
Zi1Zi2 . . . ZitZj1Zj2 . . . Zju ]; in addition, this splitting

is unique up to multiplicative constants.

Since these monomials Zni0Z
n1
i1
Zn2
i2
. . . Zntit Z

m1
j1
Zm2
j2

. . . Zmuju
form a basis

for Zω(λ), while the monomials Zn1
i1
Zn2
i2
. . . Zntit form a basis for Zω(λ1)

and the monomials Zm1
j1
Zm2
j2

. . . Zmuju
form a basis for Zω(λ1), the result

immediately follows. �

The structure theorem provided by Lemma 42 enables us to split the irre-

ducible representation µλ : Zω(λ)→ End(Eλ) as a tensor product. Indeed,

by elementary linear algebra (see for instance [5, §4]) or a careful analy-

sis of the proof of Proposition 8, there exists irreducible representations

µ1 : Zω(λ1) → End(E1), µ2 : Zω(λ2) → End(E2), µ0 : C[H±1
v ] → End(C),

and an isomorphism Eλ ∼= E1 ⊗ E2 for which µλ corresponds to

µ1 ⊗ µ2 ⊗ µ0 : Zω(λ1)⊗Zω(λ2)⊗C[H±1
v ]→ End(E1 ⊗E2 ⊗C) = End(Eλ).

In fact, since µλ(Hv) = −ω4IdEλ , µ0 is the unique algebra homomorphism

such that µ0(Hv) = −ω4IdC.

We now return to the knots K1, K2 ⊂ S×[0, 1]. The knot K1 is contained

in S1×[0, 1], so that the quantum trace Trωλ
(
[K1]

)
belongs to the subalgebra

Zω(λ1) ⊂ Zω(λ) corresponding to the subsurface S1. In particular,

ρλ
(
[K1]

)
= µλ

(
Trωλ

(
[K1]

))
= µ1

(
Trωλ

(
[K1]

))
⊗ IdE2

in End(Eλ) = End(E1 ⊗ E2) = End(E1)⊗ End(E2). Similarly,

ρλ
(
[K2]

)
= µλ

(
Trωλ

(
[K2]

))
= IdE1 ⊗ µ2

(
Trωλ

(
[K2]

))
.

By Lemma 41, the off-diagonal kernel Fλ ⊂ Eλ is equal to the kernel

of ρλ
(
[K1]

)
− ρλ

(
[K2]

)
. The following statement is then an immediate

consequence of the above observations.

Lemma 43. The off-diagonal kernel Fλ ⊂ Eλ = E1 ⊗ E2 is equal to

Fλ =
⊕
a∈C

E
(a)
1 ⊗ E(a)

2

where, for each a ∈ C, E
(a)
i =

{
w ∈ Ei, µi

(
Trωλ

(
[Ki]

))
(w) = aw

}
is

the eigenspace of µi
(
Trωλ

(
[Ki]

))
∈ End(Eλ) corresponding to a if a is an

eigenvalue of this endomorphism, and is 0 otherwise. �
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This reduces the problem to the determination of the eigenvalues and

eigenspaces of the homomorphisms µ1

(
Trωλ

(
[K1]

))
and µ2

(
Trωλ

(
[K2]

))
.

Let us focus attention on the first homomorphism. The eigenvalues and

eigenspaces of µ1

(
Trωλ

(
[K1]

))
are easily deduced from those of ρλ

(
[K1]

)
=

µ1

(
Trωλ

(
[K1]

))
⊗ IdE2 .

Lemma 44. Suppose that the homomorphism r : π1(S)→ SL2(C) is generic

enough that Tr r(ei0) 6= ±2. Then the homomorphism ρλ
(
[K1]

)
∈ End(Eλ) is

diagonalizable, its eigenvalues are the N distinct solutions of the equation

TN (x) = −Tr r(K1), and all of its eigenspaces have the same dimension
1
N dimEλ.

Proof. We begin with a simple observation about the Chebyshev polynomial

TN (x). If y 6= ±2, the equation TN (x) = y has N distinct solutions. Indeed,

if we write y as y = b + b−1 for some b, the solutions to the equation

TN (x) = y are of the form x = a + a−1 as a ranges over all N–roots of b.

A little algebraic manipulation shows that these solutions are all distinct

unless b = ±1, which is excluded by our hypothesis that y 6= ±2.

The fact that ρλ
(
[K1]

)
∈ End(Eλ) is diagonalizable is then an immediate

consequence of this observation and of the property, provided by Conclu-

sion (4) of Proposition 8, that

TN
(
ρλ
(
[K1]

))
= −Tr r(K1) IdEλ = −Tr r(ei0) IdEλ .

Indeed, this relation and our hypothesis that Tr r(ei0) 6= ±2 show that

the minimal polynomial of ρλ
(
[K1]

)
has simple roots, so that ρλ

(
[K1]

)
is

diagonalizable. In addition, all eigenvalues of ρλ
(
[K1]

)
are solutions of the

equation TN (x) = −Tr r(ei0).

Showing that all solutions of the above equation occur as eigenvalues,

and computing the dimension of the corresponding eigenspaces, will require

a more elaborate argument.

By Complement 10, if we vary the enhanced homomorphism (r, ξ)

over a small open subset in the space of such pairs, the representa-

tion µλ : Zω(λ) → End(Eλ) can be chosen so that, for every monomial

Zk11 Zk22 . . . Zknn ∈ Zω(λ),

µλ
(
[Zk11 Zk22 . . . Zknn ]

)
= uk11 u

k2
2 . . . uknn Ak1k2...kn

where each ui = 2N
√
xi is a local determination of the 2N–root of the

crossratio weight xi defined by (r, ξ), and where the endomorphisms

Ak1k2...kn ∈ End(Eλ) are independent of (r, ξ).
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We can now reverse the process and add more generality to it in order

to give ourselves some flexibility. Consider the space W = (C − {0})n
of weight systems u assigning a weight ui to each edge ei of λ, with no

specific relation between these edge weights. (The edge weights ui = 2N
√
xi

associated to an enhanced homomorphism (r, ξ) that we considered so far

were constrained by the relations of §4.1.) An edge weight system u ∈ W
determines a representation µu

λ : Zω(λ)→ End(Eλ) by the property that

µu
λ(Zk11 Zk22 . . . Zknn ) = uk11 u

k2
2 . . . uknn Ak1k2...kn

for every monomial Zk11 Zk22 . . . Zknn ∈ Zω(λ), where the endomorphisms

Ak1k2...kn ∈ End(Eλ) are the ones occurring above.

This associates to u ∈ W a representation ρuλ = µu
λ ◦ Trωλ : SA(Sλ) →

End(Eλ), and the miraculous cancellations of [8] (as used in [10, §4]) provide

a homomorphism ru : π1(Sλ)→ SL2(C) such that

TN
(
ρuλ
(
[K]
))

= TN
(
µu
λ ◦Trωλ

(
[K]
))

= −Tr ru(K) IdEλ

for every framed knot K ⊂ Sλ×[0, 1] whose projection to Sλ has no crossing

and whose framing is vertical.

In particular, if we return to the formula

Trωλ
(
[K1]

)
= ω−t

t∑
k=0

Zi0Zi1 . . . ZikZ
−1
ik+1

Z−1
ik+2

. . . Z−1
it
Z−1
i0

used in the proof of Lemma 41, this gives

ρuλ
(
[K1]

)
= µu

λ ◦Trωλ
(
[K1]

)
=

t∑
k=0

ui1ui2 . . . uiku
−1
ik+1

u−1
ik+2

. . . u−1
it
Ak

where Ak ∈ End(Eλ) is the product of a suitable term Ak1k2...kn with a

power of ω. In particular, we will use the observation that for k = t

ui1ui2 . . . uitAt = µu
λ

(
ω−tZi0Zi1Zi2 . . . ZitZ

−1
i0

)
= µu

λ

(
[Zi1Zi2 . . . Zit ]

)
where the quantum ordering computation comes from Lemma 13 and the

fact that Zi0 commutes with Zi1Zi2 . . . Zit in T ω(λ). Similarly, for k = 0,

u−1
i1
u−1
i2
. . . u−1

it
A0 = µu

λ

(
ω−tZi0Z

−1
i1
Z−1
i2

. . . Z−1
it
Z−1
i0

)
= µu

λ

(
[Z−1
i1
Z−1
i2

. . . Z−1
it

]
)
,

from which it follows that A0 = A−1
t .

Also, by our determination of the algebraic structure of Zω(λ) in [10,

§2.2] (and in particular Lemma 10 of that article), [ZNi1Z
N
i2
. . . ZNit ] is central
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in Zω(λ) since ω4N = 1. By irreducibility of the representation µu
λ, there

consequently exists a number x ∈ C∗ such that µu
λ

(
[ZNi1Z

N
i2
. . . ZNit ] = x IdEλ .

Taking the square of this equation and using the property that µu
λ(Z2N

i ) =

u2N
i IdEλ , we conclude that x = ±uNi1u

N
i2
. . . uNit and that

ANt = u−Ni1 u−Ni2 . . . u−Nit µu
λ

(
[ZNi1Z

N
i2 . . . Z

N
it ]
)

= ±IdEλ .

After these preliminary observations, we now return to the main line

of our proof. If Tr ru(K1) 6= ±2, the same argument as before shows

that ρuλ
(
[K1]

)
is diagonalizable, and that all its eigenvalues are solutions

of the equation TN (x) = −Tr ru(K1). Our strategy will be to determine

the dimension of the eigenspaces of ρuλ
(
[K1]

)
for one specific value of u,

and then to conclude by a connectedness property that these dimensions

are the same for all u ∈ W with Tr ru(K1) 6= ±2.

For this, we borrow two distinct ideas from Julien Roger [36, 35].

The first one is a result of [36, Lemma 19], where Roger considers

monomials of Zω(λ) associated to simple closed curves in the punc-

tured surface Sλ. In the case of K1, the corresponding monomial is

[Zi1Zi2 . . . Zit ] and Roger produces a monomial B ∈ T ω(λ1) such that

B[Zi1Zi2 . . . Zit ] = ω4[Zi1Zi2 . . . Zit ]B. Taking the square B2 to make sure

that we have an element of the balanced Chekhov-Fock algebra Zω(λ),

applying the representation µu
λ : Zω(λ) → End(Eλ) associated to u ∈ W,

and remembering that µu
λ

(
[Zi1Zi2 . . . Zit ]

)
= ui1ui2 . . . uitAt, it follows that

µu
λ(B2)At = ω8At µ

u
λ(B2). As a consequence, µu

λ(B2) sends the eigenspace

of At corresponding to the eigenvalue a to the eigenspace corresponding to

the eigenvalue ω8a. Since we observed that ANt = ±IdEλ and since ω8 is a

primitive N–root of unity (as A = ω2 is a primitive N–root of −1 and N is

odd), it follows that the eigenvalues of At are all N–roots of ±1, and that

its eigenspaces have the same dimension 1
N dimEλ.

We now follow another idea first exploited in [36, §2.2] and [35, Appen-

dix B], except that the broader context of W enables us to use an explicit

argument without having to rely on results of [36, 35]. To construct a suit-

able edge weight system û ∈ W, pick an arbitrary number u0 ∈ C − {0}
such that u4N

0 6= 1, and another number ε ∈ C−{0} close to 0. Then define

û to assign weight ûi1 = u0ε to the edge ei1 , weight ûit = ε−1 to eit , and

weight ûi = 1 to all other ei. Remember from the proof of Lemma 41 that

there exists an index k1 such that the edge eik1 is equal to ei1 and eik1+1
is

equal to eit (as seen by consideration of the face of λ whose sides are e0,
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ei1 and eit). In particular, ûik1 = u0ε and ûik1+1
= ε−1. It follows that

ûi1 . . . ûik û
−1
ik+1

û−1
ik+2

. . . û−1
it

=



u−2
0 if k = 0

ε2 if 0 < k < k1

u2
0ε

4 if k = k1

u2
0ε

2 if k1 < k < t

u2
0 if k = t

Then, if ε is sufficiently small,

ρûλ
(
[K1]

)
=

t∑
k=0

ûi1 . . . ûik û
−1
ik+1

û−1
ik+2

. . . û−1
it
Ak

is very close to

C = u−2
0 A0 + u2

0At = u−2
0 A−1

t + u2
0At ∈ End(Eλ).

We proved that the eigenvalues of At are all N–roots of ±1, where

± is the sign such that ANt = ±IdEλ . Therefore, the eigenvalues of

C = u−2
0 A−1

t + u2
0At are the numbers ±(u−2

0 ω−4k + u2
0ω

4k) with k = 0, 1,

. . . , N −1. These N numbers are distinct by our assumption that u4N
0 6= 1.

The eigenspaces of C are the eigenspaces of At, which we proved all have

the same dimension 1
N dimEλ.

Therefore, for û ∈ W associated to u0 and ε as above, with ε small

enough, the diagonalizable endomorphism ρûλ
(
[K1]

)
∈ End(Eλ) has N

distinct eigenvalues and the corresponding eigenspaces all have dimension
1
N dimEλ.

In the space W ∼= (C∗)n of edge weight systems for λ, the subspace

W ′ consisting of those u ∈ W with Tr ru(K1) 6= ±2 is connected, since

its complement has complex codimension 1. Note that the above point û

belongs to W ′ since

Tr rû(K1) IdEλ = TN
(
ρûλ
(
[K1]

))
is very close to

TN (u−2
0 A−1

t + u2
0At) = u−2N

0 A−Nt + u2N
0 ANt = ±(u−2N

0 + u2N
0 )IdEλ .

Therefore, the trace Tr rû(K1) is very close to ±(u−2N
0 + u2N

0 ), and is

consequently different from ±2 by our assumption that u4N
0 6= 1.
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We saw that, for all u ∈ W ′, the endomorphism ρuλ
(
[K1]

)
is diagonaliz-

able and its eigenvalues are solutions of the equation TN (x) = −Tr ru(K1).

Since the solutions of that equation are always simple for u ∈ W ′, the

dimension of the eigenspaces is a locally constant function of u, and is

therefore constant by connectedness of W ′. We found one point û ∈ W
such that all eigenspaces of ρûλ

(
[K1]

)
have dimension 1

N dimEλ. Therefore,

the eigenspaces of ρuλ
(
[K1]

)
have dimension 1

N dimEλ for every u ∈ W ′.
In particular, this property holds for u ∈ W ′ defined by the edge weights

ui = 2N
√
xi associated to the enhanced homomorphism (r, ξ) satisfying the

hypotheses of Lemma 44, which proves this statement. �

Proposition 45. Let S be a closed oriented surface of genus g > 2, and

consider a homomorphism r : π1(S) → SL2(C). Suppose that there exists a

triangulation λ0 of S with exactly one vertex v and with at least one separating

edge ei0 , such that r(ei) 6= ±Id for every edge ei of λ0 and Tr r(ei0) 6= ±2.

Then, for every triangulation λ of S and every λ–enhancement ξ for r, the

off-diagonal kernel Fλ associated to this data has dimension

dimFλ = N3(g−1).

Proof. The hypotheses on r and λ0 guarantee that, by Lemma 7, r admits

at east one λ0–enhancement ξ0. By Theorem 38, the total off-diagonal

kernel Fλ0 is isomorphic to Fλ and we can consequently restrict attention

to the case where λ = λ0 and ξ = ξ0.

Namely, we assume that λ has exactly one vertex v, and that r admits

a λ–enhancement ξ; in addition, an edge ei0 of λ separates S into two

subsurfaces S1 and S2, and Tr r(ei0) 6= ±2. In this case and with the

notations of this section, recall that we have split the representation

µλ : Zω(λ) → End(Eλ) associated to the enhanced homomorphism (r, ξ)

as a tensor product

µ1 ⊗ µ2 ⊗ µ0 : Zω(λ1)⊗Zω(λ2)⊗C[H±1
v ]→ End(E1 ⊗E2 ⊗C) = End(Eλ).

of three irreducible representations µ1 : Zω(λ1) → End(E1), µ2 : Zω(λ2) →
End(E2), µ0 : C[H±1

v ] → End(C), for isomorphisms Zω(λ) ∼= Zω(λ1) ⊗
Zω(λ2)⊗ C[H±1

v ] and Eλ ∼= E1 ⊗ E2. In addition, µ0 is the unique algebra

homomorphism such that µ0(Hv) = −ω4IdC.

By Lemma 43

dimFλ =
∑
a∈C

dimE
(a)
1 dimE

(a)
2 .
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where E
(a)
i is the eigenspace of µi

(
Trωλi

(
[Ki]

))
corresponding to the eigen-

value a (and is 0 if a is not an eigenvalue).

Since ρλ
(
[K1]

)
= µλ

(
Trωλ

(
[K1]

))
= µ1

(
Trωλ

(
[K1]

))
⊗ IdE2 , the a–

eigenspace of ρλ
(
[K1]

)
is equal to the tensor product E

(a)
1 ⊗ E2. By

Lemma 44, we conclude that

dimE
(a)
1 dimE2 = 1

N dimEλ = 1
N dimE1 dimE2

when TN (a) = −Tr r(K1), and E
(a)
1 = 0 otherwise. As a consequence,

dimE
(a)
1 is equal to 1

N dimE1 if TN (a) = −Tr r(K1) and to 0 otherwise.

Similarly, the dimension dimE
(a)
2 is equal to 1

N dimE2 if TN (a) =

−Tr r(K2) and to 0 otherwise.

By hypothesis, Tr r(K1) = Tr r(K2) 6= ±2, so there are exactly N values

of a that have non-zero contributions to the sum

dimFλ =
∑
a∈C

dimE
(a)
1 dimE

(a)
2 = N( 1

N dimE1)( 1
N dimE2) = 1

N dimEλ = N3g−3

since dimEλ = N3g−2 by Proposition 8. �

Remark 46. If we fix a triangulation λ0 with exactly one vertex and

with at least one separating edge ei0 , the homomorphisms r satisfying

the hypotheses of Proposition 45 form a Zariski open dense subset of the

space of all group homomorphisms π1(S) → SL2(C). Indeed, for a simple

closed curve γ, many possible arguments show that the set of characters

r ∈ RSL2(C)(S) such that Tr r(γ) 6= ±2 is Zariski open and dense in

RSL2(C)(S).

Proposition 47. Let S be a closed oriented surface of genus g > 2. Then, for

every homomorphism r : π1(S)→ SL2(C) and for every triangulation λ such

that r admits a λ–enhancement ξ, the total off-diagonal kernel Fλ defined by

this enhanced homomorphism (r, ξ) has dimension

dimFλ > N
3(g−1).

Proof. By Theorem 38, the dimension of Fλ depends only on the group

homomorphism r, not on the triangulation λ or the enhancement ξ. In

particular, we can assume without loss of generality that λ is combinatorial,

so that every homomorphism r : π1(S)→ SL2(C) admits an enhancement ξ

by Lemma 7. If we locally vary r, the proof of Lemma 7 shows that we can

choose the enhancement ξ so that it varies continuously with r. Then, the
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representation µλ : Zω(λ) → End(Eλ) associated to (r, ξ) by Proposition 8

depends continuously on r by Complement 10.

The total off-diagonal kernel Fλ is defined as an intersection of kernels

kerµλ(Qv). Its dimension is therefore a lower semi-continuous function of

the representation µλ, thus of the homomorphism r. Proposition 45 (see

also Remark 46) asserts that the dimension of Fλ is equal to N3g−3 for

generic homomorphisms r : π1(S) → SL2(C). By lower semi-continuity, it

follows that dimFλ > N3g−3 for all r. �

6.2. Proof of Theorem 40 when the surface S is the torus.

Proposition 48. Suppose that the surface S is a torus, and that the image

of the homomorphism r̄ : π1(S) → PSL2(C) induced by r : π1(S) → SL2(C)

has more than two elements. Then, for every triangulation λ of S and every

λ–enhancement ξ for r, the associated off-diagonal kernel has dimension

dimFλ = N.

Proof. By Theorem 38, the dimension of Fλ is independent of the triangu-

lation λ and of the enhancement ξ. This provides us with flexibility in the

choice of λ to perform computations.

By hypothesis, the image of r̄ : π1(S) → PSL2(C) is neither trivial

nor isomorphic to Z2. A simple algebraic manipulation then provides

a set of generators a1, a2 of π1(S) ∼= Z2 such that r̄(a1), r̄(a2) and

r̄(a1a2) ∈ PSL2(C) are non-trivial. Then there exists a triangulation λ

with one vertex v, and whose edges e1, e2 and e3 respectively represent the

classes a1, a2 and a1a2 in π1(S). By Lemma 7, this guarantees that there

exists a λ–enhancement ξ for r.

In the Chekhov-Fock algebra T ω(λ), let Z1, Z2, Z3 be the generators

respectively associated to the edges e1, e2 and e3. Exchanging the rôles of e1

and e2 if necessary, we can assume that e1, e2, e3 arise in this order clockwise

around each of the two faces of λ. Then the skew-commutativity relations

satisfied by the Zi are that ZiZi+1 = ω4Zi+1Zi for every i (considering

indices modulo 3).

The central element Hv ∈ Zω(λ) associated to the vertex v is equal to

Hv = [Z2
1Z

2
2Z

2
3 ] = ω−8Z2

1Z
2
2Z

2
3 .
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while its off-diagonal term is

Qv = 1 + ω−4Z2
1 + ω−8Z2

1Z
2
2 + ω−12Z2

1Z
2
2Z

2
3

+ ω−12Z2
1Z

2
2Z

2
3Z

2
1 + ω−12Z2

1Z
2
2Z

2
3Z

2
1Z

2
2

= (1 + ω−12Z2
1Z

2
2Z

2
3)(1 + ω−4Z2

1 + ω−8Z2
1Z

2
2)

= (1 + ω−4Hv)(1 + ω−4Z2
1 + ω−8Z2

1Z
2
2).

The representation µλ : Zω(λ) → End(Eλ) associated to the enhanced

homomorphism (r, ξ) by Proposition 8 has dimension dimEλ = N , and

sends Hv to −ω4IdEλ . The above computation shows that µλ(Qv) = 0 ∈
End(Eλ). Therefore, the off-diagonal kernel is equal to

Fλ = kerµλ(Qv) = ker 0 = Eλ

and has dimension N . �

The hypotheses of Proposition 48 are realized on a Zariski open dense

subset of the space of homomorphisms r : π1(S)→ SL2(C). The same lower

semi-continuity argument used in the proof of Proposition 47 gives the

following general statement.

Proposition 49. Suppose that the surface S is a torus. Then, for every

triangulation λ of the torus and every λ–enhancement ξ for r, the associated

off-diagonal kernel Fλ has dimension at least N . �

6.3. Proof of Theorem 40 when the surface S is the sphere. In this

case, every homomorphism r : π1(S)→ SL2(C) is of course trivial.

Proposition 50. Suppose that the surface S is a sphere. Then, for every tri-

angulation λ of S and every λ–enhancement ξ for the trivial homomorphism,

the associated total off-diagonal kernel Fλ has dimension equal to 1.

Proof. By Theorem 38, it suffices to check this for any triangulation λ for

which the trivial homomorphism admits a λ–enhancement; in this case, this

just means that every edge of λ has distinct endpoints. We use the smallest

such triangulation λ, with exactly three vertices and two faces glued along

their boundary.

For this triangulation, the generators Z1, Z2, Z3 of the (unbalanced)

Chekhov-Fock algebra T ω(λ) commute, and the balanced Chekhov-Fock al-

gebra Zω(λ) is isomorphic to the Laurent polynomial algebra C[H±1
1 , H±1

2 , H±1
3 ],

where the Hi = Zi+1Zi+2 are the central elements associated to the three



72 F. Bonahon and H. Wong

vertices of λ (counting indices modulo 3). In particular, the representation

µλ provided by Proposition 8 is 1–dimensional, and is the unique represen-

tation sending each Hi to −ω4IdEλ .

Each off-diagonal term is of the form Qi = 1 + ω−4Z2
i = 1 +

ω−4Hi+1Hi+2H
−1
i . The off-diagonal kernel of each vertex is therefore

kerµλ(Qi) = ker 0 = Eλ, and the total off-diagonal kernel Fλ has dimension

dimFλ = dim
3⋂
i=1

kerµλ(Qi) = dimEλ = 1 �

The combination of Propositions 45, 47, 48, 49 and 50 completes the

proof of Theorem 40.

6.4. Proof of the Realization Theorem 2. We are now ready to com-

plete the proof of the Realization Theorem 2.

Given a group homomorphism r : π1(S) → SL2(C) and a combinatorial

triangulation λ of the surface S, Proposition 19 provided a representation

ρ̌λ : SA(S) → End(Fλ) whose classical shadow is equal to the character

r ∈ RSL2(C)(S). Theorem 40 shows that Fλ is different from 0, so

that this representation is non-trivial. The representation ρ̌λ may or

may not be irreducible, but it admits at least one irreducible component

ρr : SA(S)→ End(E) with E ⊂ Fλ. This irreducible representation satisfies

the conclusions of Theorem 2.
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