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This article is the third in the series begun with [8, 10], devoted to the
analysis and construction of finite-dimensional representations of the skein
algebra of a surface. See also [6] for a description of the corresponding
program.

The Kauffman bracket skein algebra S4(S) of an oriented surface S
of finite topological type takes its origins in the construction of the Jones
polynomial invariant [22, 23, 25, 26] of knots and links. It can be interpreted
[38, 11, 12, 33] as a quantization of the character variety

RsL,(c)(S) = {group homomorphisms r: 71 (S) — SL2(C)} /SL2(C)

with respect to its Atiyah-Bott-Goldman [2, 18, 19] Poisson structure. More
accurately, the points of such a quantization are representations of the
algebra S4(9).

When the parameter A =e is a root of unity, a celebrated example
of finite-dimensional representation of the skein algebra S4(S) arises from
Witten’s quantum field interpretation of the Jones polynomial [40], and
more precisely from the Witten-Reshetikhin-Turaev topological quantum
field theory associated to the fundamental representation of the quantum
group Ug,(sly) [40, 34, 3, 39, 9]. In the current article, we construct a large

—mih

family of new finite-dimensional representations of S#(S), while providing
a converse to the results of [8].

This article is mostly concerned with the case where the surface S is
closed. The case where S has at least one puncture is much easier (at least
assuming the results of [7] and [8]), and was treated in [10]. The current
closed surface case requires many more ideas, and also involves several very
surprising properties.

More specifically, when A? is a primitive N-root of unity with N
odd, we identified in [8] certain invariants for irreducible representations
p: SA(S) — End(E). It is easier to restrict attention to the case where
AN = —1; this is no loss of generality, as [10, §5] indicates how to
deduce the case AN = 41 from this one, by using spin structures on the
surface. When the surface is closed, there is only one invariant, consisting
of a point in the character variety Rgp,(c)(S). By definition [29] of the
geometric invariant theory quotient involved in the definition of Rgr,, (c)(S5),
two homomorphisms 7, ’: 71(S) — SL2(C) represent the same point of
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Rsi,(c)(S) if and only if they induce the same trace functions, namely if
and only if Trr(y) = Trr/(y) for every v € m1(S5).

Theorem 1 ([8]). Let S be a closed oriented surface, let A be a primitive
N-root of —1 with N odd, and let Ty (x) be the N-th normalized Chebyshev
polynomial of the first kind, characterized by the trigonometric identity that
2cos N0 = Tx(2cos@). For every irreducible finite-dimensional representa-
tion p: SA(S) — End(FE) of the Kauffman bracket skein algebra, there exists
a unique character r, € Rgr,c)(S) such that

Ty (([K0) = — (Trry(K))1d

for every framed knot K C S x [0,1] whose projection to S has no crossing
and whose framing is vertical. O

The character 7, € Rgr,(c) is the classical shadow of the irreducible
representation p: S4(S) — End(F). In [8] we prove a stronger version of
Theorem 1, which is valid for all framed links K C S x [0,1] and involves
the element [K7V] € S4(9) defined by threading the Chebyshev polynomial
Ty along all components of K. The above version is easier to state and
sufficient for our purposes.

See also [27] for a different approach to the key results underlying
Theorem 1.

The main result of this article is the following converse statement.

Theorem 2 (Realization Theorem). Let S be a closed oriented surface,
and let A be a primitive N-root of —1 with N odd. Then, every charac-
ter r € RSLQ(@)(S) is the classical shadow of an irreducible representation

pr: SA(S) — End(E).

For the classical example of the Witten-Reshetikhin-Turaev represen-
tation pwrr: SA(S) — End(Wwrr), also defined when A is a primitive
2N-root of unity with N odd, the classical shadow of pwgrr is the trivial
character [9]. We therefore construct a much broader family of representa-
tions of the skein algebra S4(S) than this historic example.

As explained in Theorem 4 below, our construction is natural in the
sense that it provides a representation p,: SA(S) — End(E) that depends
only on the homomorphism r: m1(S) — SL2(C), up to isomorphism and
other symmetries of the data. In earlier versions of this article we con-
jectured that, when the character belongs to a Zariski dense open subset
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of the character variety Rgp,(c)(S), the representation p, is the only irre-
ducible representation of $4(S) with classical shadow r € Rgr,(c)(S). This
conjecture is now proved [17] See [37] for explicit proof for small punctured
surfaces, such as the one-puncture torus or the four-puncture sphere. The
property is definitely false without the genericity hypothesis, as can for
instance be proved by combining the results of [20] with the techniques of
[37].

The strategy for proving Theorem 2 is somewhat unconventional. In
addition to using classical hyperbolic geometry as a guide for quantum
topology constructions, it relies on the fact that punctured surfaces are
easier to deal with than closed surfaces, and follows the slogan “drill,
baby, drill”!. Namely, we drill punctures from the closed surface S to
obtain a punctured surface Sy, by removing from S the vertices of a
triangulation A, and the more punctures the better. If we are given
a homomorphism r: m1(S) — SL2(C) representing the character r €
Rsi,c)(S) and if the triangulation A is complicated enough, we can then
choose additional data at the punctures of Sy (called a A-enhancement
of the homomorphism ) and apply the results of [10] to the punctured
surface Sy. This provides a representation py: S4(Sy) — End(E)) of the
skein algebra of the punctured surface Sy, whose classical shadow is equal
to the character ry € Rgp,(c)(Sx) induced by r € Rgr,c)(S) in the sense
that

Ty (pa([K))) = —(Trrs (K))Idg, = —(Trr(K))Idg,

for every framed knot K C S x [0, 1] whose projection to Sy has no crossing
and whose framing is vertical. This last property, proved in [10], heavily
relies on the miraculous cancellations of [8].

However, there is no reason for py to induce a representation of the skein
algebra S4(S) of the closed surface S. Namely, if the two framed links K,
K' C Sy x [0,1] are isotopic in S x [0, 1], by an isotopy sweeping through
the punctures of Sy, the two endomorphisms py ([K]), pa([K']) € End(E))
will in general be different. Nevertheless, we are able to identify a subspace
F\ C E\ where p,([K]) and px([K']) do coincide. This subspace F\ C E
is called the total off-diagonal kernel, for reasons that are explained in §§4.1
and 4.2.

! Popularized during the 2008 United States presidential campaign [32, §3], when the
ideas behind this article were beginning to take shape.
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Theorem 3. Let the punctured surface Sy be obtained from the closed surface
S by removing the vertices of the triangulation \ of S, and let F\ C E) be
the total off-diagonal kernel of the representation py: S(S)) — End(E))
introduced above. Then

(1) Fy is invariant under the image px(S*(Sx)) C End(Ey);

(2) if the two framed links K, K' C Sy x [0,1] are isotopic in S x [0, 1], the
induced endomorphisms

PA(IK]) g, = pA([K]) p, € End(F)

are equal.

The definition of the total off-diagonal kernel F was devised by wishful
thinking, as the largest subspace where the second conclusion of Theorem 3
could hold. The really unexpected properties are that this subspace is non-
trivial (see Theorem 5 below) and that Fy is invariant under the image
of px. Indeed, although py = py o Tr{: S4(S)) — End(E)) is defined as a
composition of the quantum trace homomorphism Tr{ : S4(Sy) — Z¥(\) of
[7] with an irreducible representation py: Z¢(\) — End(E)) of the balanced
Chekhov-Fock algebra Z¢(\) of the triangulation A, the invariance of Fy
shows that the representation p) is reducible. This reducibility property for
px = px o Tr§ would be false if we replaced uy by an arbitrary irreducible
representation of Z¢(\).

Theorem 3 is proved in §4.3 and §4.4 when the triangulation A is
sufficiently complicated, and in §5.3 for general triangulations.

A consequence of Theorem 3 is that the representation py: S4(S)) —
End(E)) induces a representation py: SA(S) — End(F)) of the skein
algebra of the closed surface S. This representation has a classical shadow
equal to the character r € Rgp,(c)(5), in the sense that

Tn (pa([K])) = —(Trr(K))Idp,

for every framed knot K C S x [0, 1] whose projection to S has no crossing
and whose framing is vertical.

The following property shows that our construction is very natural.
For most homomorphisms r: m1(S) — SLy(C), this result states that the
representation g, is unique up to isomorphism. However, an additional
ambiguity can arise for special characters that admit internal symmetries
called sign-reversal symmetries. The cohomology group H'(S;Zs) acts
on the character variety Rsp,c)(S) and on the skein algebra S4(S);
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see §2. A sign-reversal symmetry for the character r € Rgp,()(S) is a
class ¢ € H'(S;Zs) that fixes r; characters that admit non-trivial sign-
reversal symmetries are rare, and form a high codimension subset of the
character variety Rsi,c)(S). If p: SA(S) — End(E) is a representation
with classical shadow r, composing it with the action of a sign-reversal
symmetry ¢ € H'(S;7Zs) on S4(S) gives another representation p o ¢ with
classical shadow er = r € Rgr,,(c)(S). Therefore, sign-reversal symmetries
of 7 € Rgr,)(S) are intrinsic symmetries of the problem of finding
representations of S#(.S) with classical shadow r.

Theorem 4 (Naturality Theorem). Up to isomorphism and up to sign-
reversal symmetry of the character r € R, c)(S) (if any exists), the repre-
sentation py: SA(S) — End(Fy) depends only on the group homomorphism
r: m(S) — SLa(C), not on the choice of the triangulation X\ or of the A\—
enhancement £ used in the construction.

In particular, although the dimension of E) grows exponentially with
the number of punctures of the drilled surface Sy, the dimension of the
off-diagonal kernel F) is independent of the topology of A\. A consequence
is that the construction is natural with respect to the action of the mapping
class group of S.

The proof of Theorem 4, given in §5.4, relies on invariance under Pachner
moves to go from one triangulation to another. It is a good illustration of
the “drill, baby, drill” philosophy, as showing that two triangulations A and
X induce the isomorphic representations of S4(S) usually involves surfaces
with many more punctures than Sy and Sy/. Here, the invariance under
the face subdivision move considered in §5.1, which adds one vertex to the
triangulation but does not change the representation, is probably the most
surprising.

Conjugating r by an element of SLy(C) also leaves ) unchanged, up
to isomorphism. For a generic character r € Rgp,c)(S), two homomor-
phisms 7 (S) — SL2(C) representing r are always conjugate by an element
of SLy(C) and therefore determine the same representation of S#4(S). How-
ever, for those special characters for which the property fails (namely re-
ducible characters), we do not know if the representation g depends only
on the character r € Rgy,c)(S), or on subtler properties of the specific
homomorphism 71 (S) — SL2(C) representing r that we used in the con-
struction.
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It is also quite possible that the need to consider sign-reversal sym-
metries is an artifact of our proof, and of its reliance on insights from the
character variety Rpgr,,(c)(S). Indeed, the characters that admit non-trivial
sign-reversal symmetries are precisely the branch points of the projection
Rsr,(c)(S) = Rpsw, ) (S). It appears that composing our representation
px with a sign-reversal symmetry of its classical shadow r € Rgy,(c)(S)
often produces a representation py oe that is isomorphic to py, but we have
not been able to confirm this fact in full generality.

At this point, we still have a major problem, which is that we do not
know that the off-diagonal kernel F) is different from 0. This property
may even seem unlikely at first, as the off-diagonal kernel F) is defined as
an intersection of kernels of endomorphisms of the vector space Fy. This
question is addressed in §6, and provides another one of the surprising
twists in this article.

Theorem 5. If the closed oriented surface S has genus g, the representation
pr: SA(S) — End(F\) with classical shadow r € Rgi,c)(S) provided by
Theorem 3 has dimension

N3@=1  fg>2
dimFy > < N ifg=1
1 ifg=0.

The above inequality is an equality for r € Rgy,(c)(S) generic, namely for r
in an explicit Zariski dense open subset of Rgy,(c)(S).

In particular, the representation py: S4(S) — End(F)) is non-trivial.
It may be reducible. In fact, although we conjecture that gy is irreducible
for generic 7 € Rgp,(c)(S), it is definitely reducible for highly non-generic
homomorphisms r: 71(S) — SL2(C) such as the trivial homomorphism.
However, restricting p, to an irreducible component proves our main
Theorem 2.

We suspect that the inequalities of Theorem 5 are always equalities.
Our proof of Theorem 5 departs from the “drill, baby, drill” and “more
punctures is better” philosophy, and is based on a careful analysis of explicit
triangulations A with a very small number of vertices.

The results and methodology of this article were announced in [6]. The
more recent articles and preprints [1, 15, 16] develop another construction
of representations of S4(S) with a given classical shadow r € Ry, c)(9),
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valid for r in a Zariski dense open subset of Rgr,,(c)(S). The construction of
[1, 15] is simpler, but ours is more explicit. We also believe that many of the
ideas introduced in this paper are susceptible to have further applications
in other contexts.

Acknowledgement. The authors are very grateful to the referee for a
careful reading of our manuscript, and for helpful suggestions.

1. The Kauffman bracket skein algebra

Let S be an oriented surface of finite topological type without boundary.
The Kauffman bracket skein algebra S*(S) depends on a parameter A =
e~™" ¢ C — {0}, and is defined as follows: One first considers the vector
space freely generated by all isotopy classes of framed links in the thickened
surface S x [0,1], and then one takes the quotient of this space by two
relations. The first and main relation is the skein relation, which states
that

[K1] = A7 o] + A[K o]

whenever the three links K3, Ky and Ko, C S x [0,1] differ only in a little
ball where they are as represented in Figure 1, and where [K| denotes the
class of S4(S) represented by the framed link K. The second relation is
the trivial knot relation, which asserts that

[KUO] = —(A? + A ?)[K]

whenever O is the boundary of a disk D € K x [0,1] disjoint from K, and
is endowed with a framing transverse to D.

XX

K Ko
Figure 1. A Kauffman triple

The algebra multiplication is provided by the operation of superposition,
where the product [K] - [L] is represented by the union [K’U L] where
K' C §x[0,3] and L' C S x [4,1] are respectively obtained by rescaling

the framed links K C S x [0,1] and L' C S x [0, 1].



Representations of the skein algebra: closed surfaces 9
2. Sign-reversal symmetries

The character variety Rgr,,(c)(S) and the skein algebra S#(S) both admit
natural actions of the cohomology group H!(S;Zs). Indeed, for a character
7 € Rgr,(c)(S) represented by a homomorphism r: m(S) — SLz(C) and a
cohomology class ¢ € H'(S;Z,), its image er € Rgr,(c)(9) is represented
by the homomorphism er defined by

er(y) = (-1)*@r() € SLz(C)

for every v € m1(S). The action of H'(S;Z,) on SA(S) is similarly defined
by the property that

elK] = [(-1)*"K] € 84(5)

for every framed link K C S x [0,1] and ¢ € H'(S;Zs).

If the character r € Rgr,)(S) is fixed under the action of some
e € H(S;Zy), we say that e € H'(S;Zs) is a sign-reversal symmetry for the
character r € Rgy,(c)(S). This is equivalent to the property that the trace
Trr(y) is equal to 0 for every v € m(S) with e(v) # 0.

Because of our assumption that N is odd, the Chebyshev polynomial
Tn(z) is a sum of monomials of odd degree. It follows that, if the
representation p: S#(S) — End(E) has classical shadow r € Rgp,c)(9),
its composition p o ¢ with the action of ¢ € H'(S;Z;) on S4(S) has
classical shadow er € Rgr,(c)(S). In particular, if the classical shadow
r € Rsr,(c)(S) of the representation p: S4(S) — End(E) has a sign-reversal
symmetry € € H(S;Zy), the representation p o ¢ also has classical shadow
er = r. Sign-reversal symmetries of a character r € Rgr,c)(S) are therefore
intrinsic symmetries of the problem of finding representations of §4(S) with
classical shadow r, which explains why they will occur in many statements
of our article.

Characters with non-trivial sign-reversal symmetries exist, but are rare.
For instance, they form an algebraic subset of complex dimension 2g — 2 in
the (6g — 6)-dimensional character variety Rg,,(c)(S), where g is the genus
of the surface S; see [10, §5.1].

3. Constructing representations for punctured surfaces

Throughout the article, A will be a primitive N-root of —1 with N odd.
Namely, AN = —1 and N is the smallest positive integer with this property
(and N is odd). We also use a choice of square root w = v A~1.
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3.1. The balanced Chekhov-Fock algebra of a triangulation. Let A
be a triangulation of the closed oriented surface S. For most of the article,
we are allowing an edge to go from one vertex to itself, as well as two
edges to have the same endpoints. However, we will always require that
the sides of a face of A correspond to three distinct edges, for reasons that
will become apparent in Remark 6.

We will sometimes restrict attention to triangulations where each edge
has distinct endpoints, and where distinct edges have distinct pairs of
endpoints. In this case, we will say that the triangulation is combinatorial,
since this corresponds to the usual convention of combinatorial piecewise
linear topology.

Let ey, es, ..., e, be the edges of \. After choosing an auxiliary number
w such that w? = A~ the Chekhov-Fock algebra of X is the algebra T (\)
defined by generators Zlil, Z;El, ..., ZF1 respectively associated to the
edges eq, eo, ..., e, of A, and by the relations

2005 7. 7.
ZZ'Z]‘ = w Z]Zl.

where 0;; = a;; —aj; € {-2,-1,0,1,2} and where a; € {0,1,2} is the
number of times an end of the edge e; immediately succeeds an end of e;
when going counterclockwise around a vertex of .

An element of the Chekhov-Fock algebra 7% (\) is a linear combination
of monomials Z¥ Z%2 .. Zk~ in the generators Z;, with ki, ko, ..., k, € Z.
Such a monomial ZZ}2 ... ZF is balanced if its exponents k; satisfy the
following parity condition: for every triangle T; of the ideal triangulation
A, the sum k;, + k;, + k;, of the exponents of the generators Z;,, Z;,, Z;,
associated to the sides of T} is even.

The balanced Chekhov-Fock algebra Z“(\) of the triangulation A is the
subalgebra of 7%(\) generated by all monomials satisfying this parity
condition.

There are two reasons to be interested in the balanced Chekhov-Fock
algebra Z“()), whose combination is particularly useful for our purposes.
The first one is the existence of an injective algebra homomorphism

Trg : SA(Sy) — 2“(N)

from the skein algebra of the punctured surface Sy = S — V), obtained
by removing from S the set V) of vertices of A, to the algebra Z¢(\);
this quantum trace homomorphism Try is constructed in [7]. The second
reason is that the algebraic structure of Z“()\) is fairly simple, so that its



Representations of the skein algebra: closed surfaces 11

representations are easily classified (see [10, §2], and the next section). This
enables us to obtain representations of S4(Sy) by composing the quantum
trace homomorphism Try with suitable representations of Z“(\). We will
then show that these representations of the skein algebra SA4(Sy) of the
punctured surface S induce representations of the skein algebra S*(S) of
the closed surface S, which is the object of interest to us.

Because of the skew-commutativity relations Z;Z; = w?iZ;Z;, the
order of the variables in a monomial Z'Z7*...Z;" is quite important.
We will make heavy use of the following symmetrization trick. The Weyl
quantum ordering for Z* Z'* ... Z" is the monomial

[Zﬂl VAG Z-nl] = w Ducy Mo Tiy iy 7N 702 AL
iy Liy Ly, is Lig -4y,

The formula is specially designed that [Z]'' Z}'> ... Z]"] € T () is invariant
under any permutation of the Z;'*.

3.2. Enhanced homomorphisms from 71 (S) to SL2(C). We are given
a character r € Rgr,(c)(S), represented by a homomorphism r: 71(S) —
SLy(C), and a triangulation A of the closed surface S. Let S be the universal
covering of S, and let X be the triangulation of S induced by A\. Let V, C S
and Vy C S be the respective vertex sets of A and A

A A—enhancement for the group homomorphism r: 71 (S) — SLa(C) is a
map &: Vy — CP' such that:

(1) € is r—equivariant, in the sense that £(y0) = r()£(0) for every v € Vj
and every v € m(S) (for the standard action of SLy(C) on the
projective line CP');

(2) for every edge € of X, the elements ¢(7) and £(7) € CP' respectively
associated to the end points v and v’ of € are distinct.

Remark 6. Note an easy consequence of our assumption that the sides
of each face of a triangulation A\ correspond to three distinct edges. If e
is an edge of A whose endpoints are equal to the same vertex v, an Euler
characteristic argument shows that the closed loop formed by e cannot
bound a disk in S. As a consequence every edge ¢ of X has distinct
endpoints, which makes Condition (2) above more likely. Also, for the
same reason, every edge e of A\ whose endpoints are equal determines a
non-trivial element of 7 (S), well-defined up to conjugation.
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Lemma 7. Consider a triangulation A of the surface S and a group homo-
morphismr: w1 (S) — SLa(C) satisfying the following property: for every edge
e of A whose endpoints are equal to the same vertez v, the element r(e) is dif-
ferent from +Id in SLo(C). Then the homomorphism r: m(S) — SLy(C)
admits a A—enhancement.

Note that, in particular, the hypotheses of Lemma 7 are automatically
satisfied if every edge of A has distinct endpoints, or if r is injective by
Remark 6.

Proof. To construct an r—equivariant map &: Vi — CP', we proceed orbit
by orbit for the action of m;(S) on the vertex set Vj.

For a vertex v € Vj, pick a point o € Vj in its preimage. As a first
approximation, define £(v) to be an arbitrary point of the projective line
CP'. Then there is a unique way to r—equivariantly extend ¢ to the whole
preimage of v, namely to the orbit 71(S)v of ¥ under the action of 7 (5):
define ¢ on this orbit by the property that £(yv) = r(v)&(v) for every
v € m(S).

Performing this operation for each vertex v of A defines an r—equivariant
map &: Vy — CP.

In addition, we can require that, at each step, the initial point £(v) € CP!
is chosen to satisfy the following two conditions: £(v) is not in the image
under ¢ of the orbits considered in earlier steps; for every edge e of A whose
endpoints are both equal to v, the point £(v) is not fixed by the image
under r of any conjugate of e € m(S). Because of our hypothesis that
r(e) # £Id in the second case, these two conditions are easily satisfied by
suitably choosing £(7) € CP' outside of a countable number of forbidden
values.

It is then immediate that the map &: Vy — CP' so constructed in a
A—enhancement. O

A Menhancement ¢: Vy — CP! for the homomorphism r: m(S) —
SL(C) assigns a non-zero complex weight z; € C* = C — {0} to the i~
th edge e; of A\ as follows. Lift e; to an edge €; of the triangulation X of the
universal covering S. Arbitrarily orient €;, and let ¥;” and ¥; be the positive
and negative endpoints of €;. Consider the two faces of X that are adjacent
to &, let 0% be the third vertex of the face to the left, and let 75" be
the third vertex of the face to the right. Then, x; is defined as minus the
crossratio of the four points £(7), £(T7), £(T°%), £(T/8") € CP'. More

% %
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precisely, for the standard identification CP' = C U {0},

(6(@T) = £@) (€™™) — £(57)) '
(@) — £(@7) (€(@%™) - £(@))

Note that reversing the orientation of €; leaves x; unchanged. Also, the
two conditions in the definition of A-enhancements guarantee that x; is a
well-defined element of C* and is independent of the choice of the lift €; of
e, by invariance of crossratios under the action of SLy(C) on CP'.

3.3. Representations of the balanced Chekhov-Fock algebra. We
will use the results of [10] to associate to each group homomorphism
r: m(S) — SLy(C), endowed with a A-enhancement &: Vi — CP', a
representation py: Z“(\) — End(E) of the balanced Chekhov-Fock algebra
ZY(N).

This representation py will be uniquely determined up to isomorphism,
but also up to sign-reversal symmetry of the character r € Rgr,,c)(S). To
make sense of this property, note that a monomial 7, = Z{“Zé€2 o Zkn e
Z“(X\) uniquely determines a homology class [k] € H;(Sx;Z2) in the
punctured surface Sy, by the property that the algebraic intersection
number of [k] with each edge e; has the same parity as the exponent k;
of the corresponding generator Z;; see [10, Lemma 9]. A cohomology class
e € H'(Sx;Zy) then acts on 2“()\) by sending each Zj to (—1)*(x) 7. By
restriction, this defines an action of H'(S;Zz) on Z*(\).

Also, a vertex v of A\ determines an element
H, =20 zk | ZFn] = w= T kikioa gk ghe - gkn o zo())

where k; € {0, 1,2} is the number of endpoints of the edge e; that are equal
to v, and where [ | denotes the Weyl quantum ordering defined in §3.1.
This element H, is central in Z“()\), as proved in [5, §3] or [10, §2.2].

A final observation is that the generator Z; € T*(\) associated to the
edge e; of A does not belong to the balanced Chekhov-Fock algebra Z¢(\),
as it does not satisfy the required exponent parity condition. However, its
square Z? € Z¢(\) does.

We will make repeated use of the following result, borrowed from [10].
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Proposition 8. For a triangulation \ of the surface S, consider a group
homomorphism r: w1 (S) — SLy(C) endowed with a A—enhancement &: Vy —
CP'. Then, up to isomorphism and up to the action of a sign-reversal symme-
try of 1 € R, () (S) (if r admits any), there exists a unique representation
pxn: Z¢(\) — End(E\) of the balanced Chekhov-Fock algebra Z“(X\) with the

following properties.

(1) The dimension of Ey is equal to N39TPx=3 where g is the genus of the
surface S and where py is the number of vertices of the triangulation .

(2) For every edge e; of A, let x; € C* be the crossratio weight associated
to e; by the enhancement & as above, and let Z; be the corresponding
generator of the Chekhov-Fock algebra T“(X). Then,

u,\(ZEN) = I IdEA

(3) For every vertex v of X\ with associated central element H, € Z¥(\),

u)\(Hv) = —w4 IdEk

(4) The representation py = uy o Try: SA(S\) — End(E)) has classical
shadow r € Rgr,,(c)(S), in the sense that

Ty (pa([K])) = —Trr(K) Idp,

for every framed knot K C Sy x [0,1] whose projection to Sy has no
crossing and whose framing is vertical.

In addition, py is irreducible.

Proof. This is a special case of the combination of Propositions 22 and 23 of
[10]. The only minor difference is that these results are expressed in terms
of pleated surfaces instead of A-enhancements.

To connect the two viewpoints, note that the triangulation A can also be
interpreted as an ideal triangulation of the punctured surface Sy = S — V),
obtained by removing from S the vertex set V) of A. Similarly, the lift A
of A to the universal covering S of S gives an ideal trlangulatlon of the
preimage S N = =S - V,\ of Sy in S. The A-enhancement &: V,\ — CP! then
determines an r—equivariant pleated surface f,\ S\ — H3 that sends each
face T of X with vertices ¥y, Ua, 03 € Vi to the ideal triangle fx(T) C H3
with vertices £(21), £(T2), £(03) € CP' = 9,,H3. We can then lift fy to
an ry—equivariant pleated surface f,\ S,\ — H3, where S,\ is the universal
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cover of the punctured surface Sy and where ry: m1(S\) — SL2(C) is the
composition of r: 7 (S) — SLy(C) with the homomorphism 71 (Sy) — m1(S)
induced by the inclusion map.

The pleated surface (f)\, ry) is exactly the setup needed to apply Proposi-
tion 23 of [10] to the punctured surface Sy. By construction, the shearbend
parameter associated by this pleated surface to the edge e; of A is exactly
the crossratio weight x; defined as above by the A—enhancement &.

Proposition 23 of [10] has an additional degree of freedom for each
puncture v of Sy. Specifically, the hypotheses of that statement require
that we choose an N-root h, = u¢(H,)~ for a certain number uc(H,) € C*
provided by [10, Proposition 22] (using the notation of [10]). In addition,
this number p¢(H,) is such that pe(Hy,) + pe(Hy) ™t = —=Trr(P,), where P,
is a small loop going around the puncture v of Sy. In our case ry(FP,) is the
identity and consequently has trace equal to 2, so that uc(H,) = —1.

We can therefore apply [10, Proposition 23] to the N-root h, = —w?
of uc(H,) = —1, since N is odd and w*¥ = A=2N = 1. This provides a
representation uy: Z“(\) — End(F)) satisfying the conclusions of Propo-
sition 8.

The uniqueness parts of Propositions 22 and 23 of [10] show that p, is
unique up to isomorphism and up to the action of a sign-reversal symmetry
Ex € Hl(S)\; Zg) of the restriction r, € RSLZ((C)(SA) of r € RSLZ(C)(S)-
For every puncture v of Sy, Trry(P,) = 2 # 0 and the sign-reversal
symmetry €, is consequently trivial on the loop P, going around v. It
follows that ) is the restriction of a sign-reversal symmetry e € H'(S;Zs) of
7 € RsL,(c)(S). This proves the uniqueness statement for the representation
pa: Z2¢(\) — End(E)y). O

Remark 9. As indicated in the above discussion, we could have replaced
Conclusion (3) of Proposition 8 by the property that ux(H,) = h,Idg,
for an arbitrary N—root h, of —1. However our subsequent applications of
Proposition 8 will require that h, = —w?* in a crucial way.

Complement 10. The representation uy of Proposition 8 continuously de-
pends on the enhanced homomorphism (r,&) as follows. For each edge e; of
A, consider the corresponding crossratio weight x; € C — {0} as a function of
the pair (r,§), and let u; = 2Y/x; be a local determination of the 2N ~root of
x; defined for (r,€) in an open subset U of the space of all such pairs. Then
the representation py: Z¥(\) — End(E\) can be chosen so that, for every
monomial Z¥' 752 ... Zk» € 29(N),
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[L)\(Zfl 252 . ZS") = UlfluIQCQ . uﬁ" Alﬁkz...kn
for some linear isomorphism Ak, k,. r, € End(E)) independent of (r,€) € U.

Proof. This is an immediate consequence of the proofs of Propositions 15,
22 and 23 in [10] (where Proposition 15 is a key step in the proof of
Proposition 23). O

3.4. Representing the skein algebra of the punctured surface S.
We now begin our construction of an irreducible representation of the
skein algebra S“(S) whose classical shadow is equal to the character
7 € Rsry(c) (S)-

Represent the character r € Rgr,)(S) by a group homomorphism
r: m(S) — SLa(C). Let X be a triangulation of S for which this homo-
morphism r admits a A—enhancement £. For instance, any combinatorial
triangulation has this property by Lemma 7. Let Sy = S — V) be the
punctured surface obtained by removing the vertex set of A from S.

We can then consider the representation uy: Z¢(\) — End(F)) associ-
ated to the enhanced homomorphism (r,€&) by Proposition 8. Composing
py with the quantum trace homomorphism Tr{: SA(Sy) — 2¢(\) of [7]
now defines a representation

px = py o Ty : SA(SA) — End(E)).

This is only a representation of the skein algebra S4(S,) of the punc-
tured surface Sy, whereas we want to represent the skein algebra S4(S) of
the closed surface S. The rest of the article is devoted to showing how pj
induces a non-trivial representation of S4(S).

4. The off-diagonal kernels

4.1. The classical off-diagonal term of a vertex. This section is in-
tended to motivate the definition of the next section.

Consider a vertex v of the triangulation A. Let e;,, €;,, ..., €;, be the
edges of A that emanate from v, indexed in counterclockwise order around
v, and with possible repetitions when the two endpoints of an edge are
equal to v. As in §3.2, let x; € C* be the crossratio weight associated to
the edge e; of A by the enhancement &.
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Lemma 11.
14tz +zizi, + -+ 25,24, 24, _, = 0

Proof. Let P, be a small loop going around the vertex v, oriented coun-
terclockwise. A standard computation (see for instance Exercises 8.5-8.7
and 10.14 in [4]) enables us to compute the image of any element of 71 (.Sy)
under the homomorphism ry: w1 (Sx) — SLy(C) induced by r, namely the
homomorphism r) obtained by composing r: 71(S) — SL2(C) with the ho-
momorphism 71 (Sy) — m1(S) induced by the inclusion map. For P,, this
gives that, up to conjugation,

(1 1\ [z ON[/1 1\ [z O 1 1\ [z, O
”(P’“)i<0 1><0 z;1><0 1)(0 z;1>"'<0 1><0 zi_u1>

-1_-1 -1

u
ZiiRig ++ - R4 : Zi1 R4 o0 s Ris_1R;. Ris e 2
- ( o Bmi Bt B P ) € SLy(C)
zZ

_12_
i1 Tig " iy

for arbitrary choices of square roots z; = \/x;. The £ sign depends on these
choices of square roots.

Since P, is homotopic to 0 in S, ry(P,) = r(P,) = Id € SLy(C).
Therefore, z;,2;, ...z, = £1 and the off-diagonal term

u
§ : -1 _-1 —1

Zi1Rig « -+ Zij—lzz’j Zij+1 NN Ziu
Jj=1

u
_ 1 1 -1 2,2 2
=2 %y %, <E zilzi2...zij1)
J=1

:i<1+zi21+z-zz-2 422222 )

11712 1172 ty—1

= i(l T Xiy F X Xy, T, Ty xzu1>
is equal to 0. O

We will consider a quantum analogue of the equation
1 —|—.Z'Z‘1 -+ Ty Ty + -+ L1 Ly« v T4y = O
or, equivalently,

Lb 22 42222 ot 22el 2 =0

11712 11712 Tu—1 =
for the representation py: Z“(\) — End(E)) of Proposition 8. The major
difference is that this equation will not be realized everywhere, but only on
a subspace F, of E).
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4.2. The off-diagonal term and kernel of a vertex. As in the previous
section, we consider a vertex v of the triangulation A, and we index the
edges of \ emerging from v as e;,, e;,, ..., €, in counterclockwise order
around v.

Note that the indexing of the e;; depends on our choice of the first edge
e;,. For this choice of indexing, the off-diagonal term of the puncture v is

the element

u—1
_ —45 72 72 2
Q=Y w7272 .. .7}
7=0

=1+w 2} +wBZ222 +- +w e bZz2 722 72
of Z¥(\). The term corresponding to j = 0 is here 1 by convention.

For the representation py: Z“(\) — End(FE)) of Proposition 8, the off-
diagonal kernel of the vertex v for the representation u) is the subspace
F, = ker ux(Q,) of E. To relate this definition to the relation of Lemma 11,
observe that the off-diagonal kernel F, is the set of vectors w € E) such
that

pn(l+w™ 22 + w822 22+ dw e Z2 22 22 ) (w) =0,
Note the analogy with the last displayed equation of §4.1.

The total off-diagonal kernel of uy is the intersection F)\ = mvEVA F, of
the off-diagonal kernels of all vertices of A.

The off-diagonal term @, € Z“(\) clearly depends of the indexing of
the edges of A around v. We will show in Lemma 14 below that, on the
contrary, the off-diagonal kernel F,, C E) depends only on the vertex v. As
a first step towards the proof of that statement, we begin with a preliminary
lemma.

By invariance of the Weyl quantum ordering under permutation, the
central element H, € Z“(\) associated to the vertex v can be written as
H, =1[Z;,Z;,...Z;,]. We want to compute the precise quantum ordering
coefficient in this expression.

Lemma 12. Let the edges of A emerging from the vertexr v be indezed as e;,,

€iys ---, €i, In counterclockwise order around v. Then, the central element

H, € Z¥(X\) associated to v is equal to
H,=w""Z, Zi, ... Z;

w*
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Proof. The proof is straightforward when the edges e;, are all distinct, and
in particular when the triangulation A is combinatorial. Indeed, in this
case, sz ZikJrl = WQZik+1Zik whenever 1 < k < u, Z,-lZiu = sz,-uZi
and all other pairs of generators Z;,, Z; commute. The general case
could be deduced from this one with the change of triangulation techniques
developed in §§5.1 and 5.2, but we prefer to give a combinatorial proof right
away. See also the very indirect argument that we used in the proof of [10,
Lemma 18].

19

By definition of the Weyl quantum ordering,

Hv = [Zi1Zi2 s ZZu] =w Elgkdgu Tikt Zi1Zi2 e Zz

u

where the skew commutativity coefficient o;; € {0,+1, 42} is defined as in
§3.1, and in particular is such that Z;Z; = w??ii Z; Z;.
By definition of o;;, we can write

Z Oipi; = Z e(k,l,a)

u
1<k<i<u =2 1<k<l and

a angular sector

from €y, to €,
where, for every angular sector a of a triangle 7} that is locally bounded by
the edges e;, and e;, near the vertex of a, e(k, [, a) is equal to +1 if one goes
from e;, to e; counterclockwise at a, and is equal to —1 otherwise. The
angular sectors a contributing to this sum include the angular sectors a,
as, ..., a, that are adjacent to v, indexed in such a way that ay is locally
bounded by the edges e;, and e;  , near v. There may be contributions
from additional angular sectors when the edges e;, are not distinct.

Fixing an index [, we want to analyze its contribution o(l) = >-, ,e(k,l,a)
of the edge e;, to the above sum. If an index k contributes to o(l), then
the edge e;, is contained in a face of A that also contains e;,, and one of the
two edges e;, ., is also contained in the same face. Analyzing the possible
configurations in the union of the two faces of A containing e;,, we see that
most of the couples (k, a) contributing to the sum can be grouped into pairs

(1) {(k,a}),(k+1,a})} when the angular sector aj, is opposite e;, in a face
of A, and where aj, and a) are the other two angular sectors of this
face;

(2) {(k—1,ak-1),(k+1,ax)} when e;, =e;,.

The first type of pair {(k,a}),(k + 1,a})} contributes e(k,l,a}) + e(k +
1,1,a}) = +1—1 = 0. The second type {(k—1,ax_1), (k+1, ax)} contributes
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e(k,l—1,a;-1) +e(k,l+1,a;) =1 —1=0. In particular, the corresponding
terms cancel out.

The only terms that do not cancel out in such a pair are those where the
potential pair would involve an index that is not in the interval [1,1 — 1].
This always occurs for e(l — 1,1,a;—1) = +1, and for (1, u,a,) = —1 when
I = u. A more special instance arises when the angular sector a,, is opposite
e;, in a face of A, in which case £(1,1,a!/) = 1 cannot be cancelled by a term
e(u,l,al,) = —1. Similarly, when e; = e; or e; = e;, with [ < u, the
terms £(2,l,a1) = —1 or e(1,1,a,) = —1, respectively, are not cancelled by
another term.

Using our convention that the three sides of each face of the triangulation
A are all distinct, one easily sees that these are the only terms that do
not cancel out. Note that, outside of e(I — 1,1,a;—1) = +1, all the other
exceptions occur precisely when the face of A containing the angular sector
a, also contains the edge e;. Summing over [ and combining the above
observations, it follows that

g Oigi; = U — 14+ n1 —no

1<k<I<u

where ny € {0, 1,2} is the number of indices I € [2, u] for which the edge ¢;, is
opposite the angular sector a,, in the face that contains it, and ny € {1, 2, 3}
is the number of indices [ € [2, u] for which the edge ¢;, is adjacent to a,.

Now, consider the face of A that contains the angular sector a,. There
are three cases to consider, according to whether 1, 2 or 3 of the vertices
of this face are equal to v. An immediate count gives that no = n; + 1 in
all three cases. This proves that

E O'ikZ‘L:u—Q

1<k<I<u

and completes the proof of Lemma 12. O

This combinatorial proof of Lemma 12 also enables us to compute the
Weyl quantum ordering of monomials similar to the central element H,.
These computations will be used in §6.
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Lemma 13. Let the edges of A emerging from the vertex v be indexed as
€iys €ins - - - €4, N counterclockwise order around v. Then, for every ko with
1< kg <u,

—kotly. 7. ) if e . . .
W2 Ziy o Ly, if €y, # €0y and ey, F €,
g ] = —ko+2 . _
(Zi, Ziy - - Ziy )| = w022, Z;, .. Zi,  if €i, = €4

—koy. 7. ) if o — e
WLy Ly - - Ly, if €igy i1 = €iy-

In particular, [Z;, Z;, ... Z,

kg

| =w kot Z, Zi, ..., Ziy, if the triangulation
A is combinatorial.

Proof. By definition of the Weyl quantum ordering,
ZiZiy ... Z

_ i
ing] = W 2i<k<i<ig Wi s Do 2

irg
The same arguments as in the proof of Lemma 12 then give that

Z Tivip = ko — 14+ n1 —ng
1<k<i<ko
where ny € {0, 1,2} is the number of indices [ € [2, ko] for which the edge
e;, is opposite the angular sector a, in a face of A, and ny € {0,1,2} is the
number of indices | € [2, ko] for which the edge e;, is adjacent to ay.

The fact that indices are truncated at k¢ introduces minor differences
with the case of Lemma 12. More precisely, the case-by-case analysis now
gives that

n if €iy, # e;, and €iry 1 # €5,
ng=4<n,+1 if €i, = €iy
np—1 if €ipgr1 = Ciy-

The stated computation immediately follows. O

We are now ready to prove the promised result, that the off-diagonal
kernel F,, C F) depends only on the vertex v.

Lemma 14. The off-diagonal kernel F, = ker ux(Q.) of v is independent of
the counterclockwise indexing of the edges e;,, €, ..., €i,, €., = €, of A

around the vertex v.

Proof. We can clearly restrict attention to the case where we shift the
indexing by 1, and start at the last edge e;, instead. Then the off-diagonal
term

Qu=1+w 22 +w 227} +.. +w e Nz272 7}

Tu—1
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gets replaced by

Q,=1+w12? +w 2 22 +w P22 22 72 + ...
w2 7272 72
=1+w 2} Q,—w M2z 222} ... Z} 7} .
We now have to remember that uy(H,) = —w*Idg, by choice of the
representation py in Proposition 8, so that

pa(w™ vz 22 72 .22 72 ) = pua(w PH?) =1dg,

ty—2"tu—1

by Lemma 12. It follows that

ux(Qy) = dg, +pa (w27 Qu) — Idg, = w™*ux(Z7)) o pr(Qu).

The element Z? is invertible in Z¥(X). Therefore px(Z}) is invertible
in End(FE)) and it follows that ker ) (Q),) = ker ux(Q,), as desired. O

4.3. Invariance under the action of the skein algebra. The off-
diagonal kernel F, C E, cannot be invariant under py(Z“())), since
the representation puy: Z¢(\) — End(E)) is irreducible. However, it is
invariant under the image of the representation py = uy o Tr§: S4(Sy) —
End(E,\).

In this section, we restrict attention to the case where the triangulation A
is combinatorial. We will later see, in §5.3, that the property holds without
this hypothesis.

Proposition 15. Suppose that the triangulation A is combinatorial, in the
sense that every edge has distinct endpoints and that no two distinct edges
have the same endpoints. Then, the off-diagonal kernel F, of each vertex v of
A is invariant under px(S?(Sx)) C End(Ey).

Proof. Let N(v) C S be the neighborhood of the vertex v that is the
union of the faces of A containing v. Because of our hypothesis that A
is combinatorial, there are no identifications on the boundary of N (v),
and N (v) is homeomorphic to a disk. We already indexed the edges of
A emanating from v as e;,, €;,, ..., €;,, going counterclockwise around v.
Let ek, €y, ..., er, denote the edges forming the boundary of the star
neighborhood N (v), in such a way that e;,, e;,_
A. See Figure 2.

, and ey, cobound a face of
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€k,
Figure 2. The star neighborhood N (v) of the vertex v

Let K be a framed link in Sy x [0,1]. We want to show that py([K]) =
pa o Tr§ ([K]) respects F, and, for this, we first need to understand the
quantum trace Tr§ ([K]) € Z“(X). The precise construction of Tr§ ([K]) in
[7] can be somewhat elaborate, and we first isotop K to a position where
the quantum trace is easier to analyze.

Because there are no identifications on the boundary of the neighbor-
hood N (v), we can arrange by an isotopy that the intersection of K with
N (v) x [0,1] consists of finitely many horizontal arcs a; x {*}, as x {x},
...y ap x {*}, where each ¢; C N(v) is an embedded arc that turns around
one of the boundary vertices of N'(v), in the sense that a; goes from some
boundary edge ey, of N(v) to the next ey,

Ji+17
in one point, and meets no other edge of A (with the convention that

crosses the internal edge
eijl
kyt1 = k1). See Figure 2. In addition, we can arrange that these horizontal
arcs a; X {*} sit at increasing elevations * € [0, 1] as [ goes from 1 to t.

Then the State Sum Formula of [7] expresses Tr§ ([K]) as a sum of terms
of the form

AjAs ... AtB € ZW()\)

where each term corresponds to a state for the boundary of K N (N (v) x
[0,1]), where A; is the contribution of the arc a;, and where B is the
contribution of the complement of K N (N(v) x [0,1]) in K. In addition,
each non-zero A; can be of only three types

Al = UJQijl ZZ'J.[
or Ay = Zy Ziy, Zyy s + Zi,, Zi) 2

g1 il g+t

Zi.

g1+1

or Ay =Wz Z7 7!
J1

a Tkg+
according to the state considered, and B involves only generators Z;
corresponding to edges e; of A that are not in N (v).
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This expression has the unfortunate feature that, although the terms
A; and B are elements of the Chekhov-Fock algebra 7 ()), they do not
satisfy the exponent parity condition necessary to make them elements
of the balanced Chekhov-Fock algebra Z“()). In particular, we cannot
directly apply the representation puy, since terms like uy(A;) and py(B) are
not defined.

To circumvent this problem, we factor out of A;As ... A,B the product
C = ZhlZ_ . .Zj_wl, where e;,, €j,, ..., €, are the edges of A crossed
by K (with possible repetitions). Note that the arc a; contributes, up to
permutation, a term Z,_ 1Z le_ 41 to this product C' = Zj_lle_ ZJ_
Set

Ay =7y, 2} Z3

or Ay =w'z? 72 4+ 7}

i R+l
or Aj=1

Ji+1

according to which of the above three types A; belongs to. This is specially
designed so that 4; = w*A}Z 1Zzank_ 41 for some a € Z depending on
whether the edges €k;, and €k;,+1 are contained in the same face of A (outside

of N(v)) or not.
In addition, the term Zk_lei;lle_ler1 w—commutes with each AJ,, in the

l 1
sense that Z, 1Z 1Zk_ Ay =wPALZ IZ%lek_ 4 for some 3 € Z. (The
472 72 2
only case that requires some thought is when A4;, = w zZ; /Z’%/H + Z’%/H’
in which case it suffices to note that Z,_ ,1Zilek_1+1 commutes with Zi2, )
g1 Y g1 I

This enables us to rewrite
AjAs .. . ALB = AA, ... A\B'C.

where B’ involves only generators Z; corresponding to edges e; of A that
are outside of N(v).

By construction, C' belongs to the balanced Chekhov-Fock algebra
Z“(X). Each 4] is also an element of Z“(\) since all its exponents are
even. Since A A, ... A;B belongs to Z¥(\) by construction of the quantum
trace, it follows that B’ is also in Z“()). In particular, we can now consider
the endomorphisms px(C), pr(A4;), pa(B’) € End(Ey). We want to show
that all these endomorphisms respect the off-diagonal kernel F,.

Since the expression of B’ involves only generators Z; corresponding
to edges e; of A that are not in the neiborhood N(v) of v, it commutes
with each of the generators Z;, corresponding to edges emanating from
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the vertex v. As a consequence, B’ commutes with the off-diagonal term
Q. = Z;.‘;Ol wYZ2 72 ... Z2. Tt follows that ux(B') € End(E)) respects
the off-diagonal kernel F, = ker u)(Qy)-

In C = Z_lZ_ . Z_1 the contribution Z, lz- lZ_ » of each arc a;

K3
commutes Wlth each of the generators Z;, correspondilng to edges emanating
from the vertex v. The remaining terms of C involve only generators Z;
associated to edges of A that are not in M(v), and therefore also commute
with the Z;,. It follows that C' also commutes with the off-diagonal term
Q.. This again implies that u(C) € End(E)) respects the off-diagonal
kernel F,.

For px(A;]), we need to distinguish cases. There is nothing to prove
when A] = 1, since p(A]) = Idg, clearly respects F,. Also, when
A = Z,%jl Z?jl Z,?J_l“, it commutes with all generators Z;, corresponding
to edges e;; emanating from the vertex v, and therefore commutes with the
off-diagonal term Q, = ZJ 0 L4 7} 77 ... Z7; therefore iy(A]) respects
the off-diagonal kernel F, in this case as well.

The case A} = w4Z2 Z,? . —I—Z,%j ., requires more work. Remember from
!

Lemma 14 that we have some flexibility in the choice of @,. In particular,
F, is also the kernel of

o —472 —8 72 2 e Mu2) 2 2 2
Q,=14+w Zz I ZZJ JrlZ,le+2 + Zlu+1Zijl+2 e Zijl_2
—4(u—1) 2 2 2 2
Tw Zm+1Zia‘l+2 T Zijl% i —1

Because there are no identifications between the edges on the boundary
of N(v), we observe that Z7  Zp == w®Z}  Z? . and that Z}
1 +1 1+1 i +1 1 +1 1 +1

commutes with all Z;, with j ;é Ji, ji + 1. Therefore

Q,-1)Z, ., =22, (Q,-1)

and

Q/ 22 — CU'8Z]3

vk 41

/ 8 2
jl+1Qv +(l-w )ijl+1

Similarly, Z7 Z 2j

b commutes with all but the last term of @/, and
1+

(Q) —wMu=Yg2 72 72 7% 72

g1 TGy 42 by -1/ T g4

=72 Z,fle(Q’ w2 g2 72

15, i 417 v +2 i —1
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Reordering terms, we conclude that

! 72 2 __ 72 2 l
szijl ijﬁrl - Zijl Z’mﬂQv

_ =8, —4(u—1) »2 2 2 2 2
+(1-w®w A Y
72 72 ’ =8\ —4 2 2
- Zijl ijl+1 Q’U + (1 w )w ijl+1HU
— ) . ) ) — oy ut2p ) ) . i
where H, = [Z,jl Zijys1Zigyn - Zlnfl] =w Zij, Zis1 Zigyn -+ Zigy 4 18

the central element of Z“(\) associated to the vertex v.
Therefore, for every vector w € F,, = ker ux(Q?),

1A (Q5) o pa (A7) (w)
= W' (@) o ma(Z 22, ) (w) + pa(@,) o pa (2, ) (w)

’le

—wtin(22 22, ) o ma(QU)(w) + (1 —w ®ua(Z2, ) o ja(H2)(w)

+wtua(Z2, ) o (@) (w) + (1 — (22, )(w)
= (- w ™ a(22, )W) + (1 - )2, ) (w) = 0

since ) (Q))(w) = 0 and pux(H,) = —w*Idy. As a consequence, the image
of w e F, = ker u»(Q;,) under py(A;) is also in F,.

This proves that py(A)) respects the off-diagonal kernel F), in all three
cases.

As a summary, for every skein [K] € S4(S)), we showed that the linear
map py([K]) € End(E)) is a sum of terms

pa (A7) o px(As) 00 pua(A) o pa(B') o ux(C)

such that each factor in this composition respects the off-diagonal kernel
F,. This proves that the image p) (SA(SA)) C End(FE)) respects F,, and
completes the proof of Proposition 15. O

Remark 16. Although the hypotheses of Proposition 15 require that the
triangulation A be combinatorial, the proof shows that this statement is
valid under the weaker hypothesis that no edge of A connects the vertex v
to itself, and that no two distinct edges connect v to the same vertex of .
We will use this observation in §5.1.

4.4. Constructing a representation of the skein algebra S4(S). We
now consider the total off-diagonal kernel F = ﬂUGVA F, C E\.

Let py = px o Tr§: SA(S)) — End(E)) be the representation asso-
ciated in §3.4 to a homomorphism r: m1(S) — SL2(C) endowed with a
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A—enhancement £. Assuming that the triangulation A is combinatorial,
Proposition 15 shows that the total off-diagonal kernel F is invariant under
the image px(S4(Sx)) C End(E,). For every framed link K C Sy x [0, 1],
we can therefore consider the restriction py([K]) . € End(F)).

We now show that p ([K]) P
K by an isotopy in S x [0, 1], not just in Sy x [0, 1].

| Fx

€ End(F)) remains invariant if we modify

Proposition 17. Suppose that the triangulation X\ is combinatorial, in the
sense that each edge has distinct endpoints and that no two distinct edges
have the same endpoints. Let the two framed links K, K' C Sy x [0,1] be
isotopic in S x [0,1]. Then ,0>\([K])|FA = p>\([K'])|FA in End(Fy).

Again, the hypothesis that A\ is combinatorial is here only to simplify
the proof, and the property holds without this condition; see Theorem 35
in §5.3.

Proof. We can choose the isotopy from K to K’ so that it sweeps through
punctures of Sy at only finitely many times. This reduces the problem to
the case where the isotopy sweeps only once through a puncture. Let v be
the vertex of the triangulation A corresponding to this puncture.

We will be using the same labeling conventions as in the proof of
Proposition 15. In particular, AM(v) denotes the union of the faces of A
that contain v. The edges emanating from v are indexed as e;,, e, ...,
e;, in counterclockwise order around v. The edges of the boundary of N/ (v)
are €g,, €y, - - - 5 €k, , Where ey, is the third side of the face containing e;;
and e;;. See Figure 3.

1

Since the skeins [K], [K'] € S#(S)\) are invariant under isotopy in
Sy x [0,1], we can restrict attention to the case of Figure 3, where the
two pieces of K and K’ represented are endowed with the vertical framing,
and where the remaining portions of K and K’ coincide and are located in
Sy x [0,1] at lower elevations than the pieces represented.

These elevation conventions greatly simplify the computation of the
quantum trace Tr{ ([K]), because we do not have to worry about correction
factors coming from biangles. The construction of the quantum trace in [7]
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€k

1

Figure 3. Sweeping through a puncture

then gives that

Tr3 ([K]) =B+ 2, <w3_“ZilZi2 7

i1 742 i

u—1
VWY 2 2y 202 20 Zzl)zkl
Jj=1

u—1
+ By_Zy, <w5“ > ZiZiy.. 207 Z0 Zf1> Z!

I LT 42 tu
Jj=1

+B_. 7.} (wl_“ZilZiz i W Tz Z Lz

an

Gjp1 742 tu

u—1
‘WY 2 2y 232 2 Zf1> Zn,
Jj=1
+B__7;! <w3—uzi—llz;21 2

u—1
+wt N 2 7y 220 25 Zij) Z!
j=1
where the terms B4y are contributions of the parts of the link K that are
not represented on Figure 3. The domino diagrams of Exercises 8.5-8.7
and 10.14 in [4] may be here useful to list all possible terms. The order of
terms is dictated by our condition on relative elevations.

We now move all terms Zj, together. Because of our hypothesis that A
is combinatorial, there are no extraneous identifications between the edges
represented in Figure 3. It follows that Z, commutes with all Z; with
1 < j <wu, and that Z,Z;, = w=2Z;, Zy, and Zy,Z;, = w?Z; Zx,. This
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gives:

u

TI';‘\J([K]) = B++ZI%1 <w3_uZi1 Ziz s Zz

L4172 2"

u—1
FWTY 7 iy 25,2 2 ...Z<1>
j=1

u—1
+B+_(w1“ Zis iy 2 25 25 ...Z.—l)

L Li+1 42 tu
Jj=1

Ty

+B_, <w1—“zilzi2 Ty W Tz Z 2

L4172 2"

u—1
FWTY 7 iy 25,2 2 ...Z<1>
=1

Ty

+B__Z;” (w?’—“Z;llZ;l Lzt

Bj+1 72 iy

u—1
+wmt ZZilziQ 22 7 ...Z-1>.
j=1

We now recognize several of the terms in this sum. For instance, the
central element H, € Z¥(\) associated to the vertex v is
H,=1[ZiZi,... Z;)) = w* " Zi, Zi, ... Zs,.
Similarly,
H'=[z]'Z'.. z;1=w"2'Z ... Z; "

Also.
u—1
> ZiZiy.. . Zi, 27 20t 2
Ti+1 42 Tu
j=1

u—1
= (Z w =D 72 72 ...Z?>Zflzf1 N/
1 12 15 11 12 (2

j=1

- (Z w2 z2 72 ijl)w“—2H;1
=2
— wu-‘rQ(QU _ 1)Hv_1

where @, is the off-diagonal term of the vertex v defined in §4.2.



30 F. Bonahon and H. Wong

This gives
Ty ([K]) =B4+ 2, (wH, + w’(Qu — 1)H, ") 4+ By_w*(Q, — 1)H, !
+B_y(w'Hy+w T Hy 4+ w0 (Qy — 1)H )
+B__ 7 (wH, ' +w(Qy— 1)H, ).

Note that all the terms arising in this expression belong to the balanced
Chekhov-Fock algebra Z¥()\). We can therefore apply the representation
px: 29(\) — End(E)). Remembering that uy(H,) = —w*Idg,,
pA([K]) =pr o T ([K])

=px(By1 ZE) o (—0°ua(Qu)) + pa(By—) o (—w ™' pa(Qu) + w ™ 'dg,)
+un(B-y) o (w0’ Idg, —w’ur(Qu))
+ ux(B-—Z;. %) o (—w ™2 ua(Qu))-

This expression greatly simplifies when we restrict it to the total off-

diagonal kernel Fy C ker px(Q,), and

PA(E]) p, = ™ a(Bio) i, — @™ A (B—t) 5y -

We now perform the same computations for the skein [K'] € S4(S)o).
The principles are the same, but everything is much simpler because the
framed knot K’ meets many fewer edges of A. In particular, the expression
of Tr§ ([K]) is much less cumbersome, and gives

TS ([K']) = By—Zi, (w2 + By Z  (—w™°) 2, =w "By —w™B_y

where the terms By, are contributions of the parts of the link K’ that are
not represented on Figure 3, and are the same as those that appeared in
the computation of Trf ([K]) since these “hidden parts” of the links K and
K’ coincide.

As a consequence,

PA(IK) = tx 0 TS ([K7]) = w ™ pia (B )iy — w0 pia(B— )y -

Comparing the two formulas, we see that p,\([K])‘FA = p)\([K’])‘Fk,
which completes the proof of Proposition 17. O

Remark 18. As in Remark 16, the proof of Proposition 17 is valid under
a weaker hypothesis than the requirement that the triangulation A be
combinatorial. Indeed, the following condition is sufficent for the statement
to hold: no edge of A connects the vertex v to itself, and no two distinct
edges connect v to the same vertex of A\. We will use this observation in
§5.1.
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A consequence of Proposition 17 is that the representation py : SA(Sy) —
End(E)) induces a representation py: SA(S) — End(F)) by the property
that

pr([K]) = pa(IK0) , € End(Fy).

Proposition 19. The above representation py: S*(S) — End(F)) has
classical shadow r € RSLQ(@)(S), in the sense that

Ty (pr([K])) = ~Trr(K)Idp,

for every framed knot K C Sy x [0, 1] whose projection to Sy has no crossing
and whose framing s vertical.

Proof. Let K C Sy x [0,1] be a framed knot whose projection to S, has no
crossing and whose framing is vertical. By definition of the representation
ux: Z29(A) — End(FE)) and of py = py o Try, and in particular by
Condition (4) of Proposition 8,

Ty (pa([K])) = —Tr r(K) 1dp,
In particular, by restriction to the off-diagonal kernel F},
Tn (pA([K])) = T (pA([K])) fp, = —Trr(K) Idp,. O

At this point, it looks like we are almost done with the proof of
Theorem 2. The only problem is that we do not know that the total off-

diagonal kernel F\ = F, is non-trivial. In fact, we don’t even know

veVy
that any of the off-diagonal kernels F;, is non-trivial. The rest of the article
is devoted to estimating the dimension of F). At the same time, we will
prove that the representation py is, up to isomorphism, independent of all

the choices that we have made.

5. Changing triangulations

In this section, we introduce two moves that modify the triangulation A
without changing the isomorphism class of the representation py: S4(S) —
End(F)) constructed above. We will then use these moves to prove that,
up to isomorphism and sign-reversal symmetry, g, is independent of the
choice of A and of the A—enhancement &.

Unlike in the previous section, the triangulations that we are considering
here are not assumed any more to be combinatorial.
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5.1. Subdividing faces. Let A be a triangulation of the surface S. Let \
be the triangulation obtained from A by subdividing the face T into three
triangles as in Figure 4. In particular, the vertex set of A\’ consists of the
vertices of A plus one vertex vg in the interior of T.

€3 €2

€1

(a)
Figure 4. Subdividing a face

For convenience in the notation, index the edges eq, es, ..., e, of X\ and
the edges ¢/, €5, ..., e;, ;3 of X in such a way that:

(1) the sides of the face T of A are e, es, e3, in this order as one goes
counterclockwise around T

(2) for i < n, the edge e} of \' coincides with the edge e; of X;

(3) €41, €ntas €43 are the “new” edges of X’ that are not edges of A, and
each ), ; is opposite €/ in T as in Figure 4(b), in the sense that no

face of A" contains both e;,, ; and e}.

j

We assume that we are given a A -enhancement ¢: Vi — CP' for
the homomorphism r: 71(S) — SL2(C). By restriction, £ defines a \-
enhancement &: Vi — CP' for r.

We want to compare the two irreducible representations py: Z“(\) —
End(E)) and py: Z2¥(N) — End(E\ ) respectively associated to the en-
hanced homomorphisms (r,£) and (r,&’) by Proposition 8. For this, we
first construct a natural algebra homomorphism Z“(\) — Z¢(\).

Let ®: Z¥(\) — 2¢“()) be the linear map defined by the property that

katkg—ki  kitkz—ky | kitka—k3
2 2 2

O([zpr 25> ... 2k = [z zhke Lz Z) Zy s Zy s

n

for every monomial [ZF Z¥2 .. Zk»] € 29()\) (where [ ] denotes the Weyl
quantum ordering). By definition of the Weyl quantum ordering, this is
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equivalent to the property that

k1 r7ka kn\ _ , kiks—kiko—koks r7/ k1 7/ k2 1 ky
Oz Zy2 . Z) =w A A

s katks—ky  kyjtksz—ky  kjtky—k3
2 2 2

[Zn+l n+2 n+3 )

which is a little easier to handle since this second formula does not require
us to consider the skew-commutativity properties of the Z; and Z! with
1 < i < n. The definition may look rather mysterious at this point, but
will become clearer with the proof of Lemma 20 below.

Note that the definition makes sense because, if the exponents (k1, k2, . .., kn)
satisfy the parity condition required for Z{“Zfz ... Zk» to be in the balanced
Chekhov-Fock algebra Z¢(\), the parity of the exponents

kotks—ki kitks—ks kitko—k
(khk% ’kn, 2+23 1 1+23 2 1+22 3)

T k1 ol ke & y katks—ky  kitks—ky  kijtka—kg
also guarantees that Z,"Z,"...Z/"Z, | °> Z,.,°> Z,.3° be-

longs to Z¢(X).
Lemma 20. The map ®: Z¥(\) — Z¥(X) is an algebra homomorphism.

Proof. This is a simple consequence of the description, given in [10, §2.2], of
the algebraic structure of Z“()) in terms of the Thurston intersection form
on a train track 7, associated to A. The train track 7, C S is defined by the
property that, on each face of A, it consists of three edges as in Figure 5(a).
In particular, there is a one-to-one correspondence between the switches of
7» and the edges e; of A.

(a) (b)
Figure 5. The train tracks 7, and 7y
In [10, §2], we interpret the monomials [Z}1ZF2 ... ZF] € 2Z¥()\) as

integer edge weight systems for 7, satisfying the usual switch conditions.
Namely, at the switch of 7, located on the edge e; of A, the weights of the



34 F. Bonahon and H. Wong

two edges of 7, incoming on one side of that switch are required to add
up to the same number k; as the weights of the two edges outgoing on
the other side. The exponents (ky, ko, ..., k,) of Z11Z52 ... ZF satisfy the
parity condition required for Z* Z52 ... Z¥» to be in the balanced Chekhov-
Fock algebra Z“()\) if and only if they are associated in this way to an
integer edge weight system for 7,; in addition, the edge weight system is
then uniquely determined.

This enables us to identify the set W(7\;Z) of integer edge weight
systems for 7, to the set of exponent n—tuples k = (ky, ko, ..., k,,) satisfying
the required parity condition, and therefore to the set of Weyl quantum
ordered monomials [Z* Z5> ... Zk»] € Z¥()\).

The set W(7x;Z) of edge weight systems for a train track carries a
natural bilinear form, the Thurston intersection form, which provides an
antisymmetric bilinear form

Q: W(Tr;Z) x W(Ta; Z) — Z.

Lemma 10 of [10] then describes the algebraic structure of Z¢(\) by the
property that

2k ZE> 2k (25255 L Zin] = PR [gi R gty ghethn)

for every k = (ki1, ko, ..., ky,) and k' = (ki kb, ... k],) € W(T\; Z).

The key observation is now that there is a natural embedding 7, —
Ty, identifying 7, to the complement in 7\, of the three edges that are
adjacent to the central vertex vy € T. This embedding provides a map
w: W(rx;Z) — W(7n; Z), which is expressed in terms of switch weights as

— kotks—ki kit+ks—ks ki+ko—k:
(P(kl)kQ)"'vkn)_(klakQa”')knv 2 23 15 . 2d 2) . 22 3)'

for every (ki,ko,...,kn) € W(N). As a consequence, identifying each ele-

ment (ki, ko, ..., kn) € W(Tx; Z) to the corresponding monomial [Z}* Z5> ... Zkn] €

Z“(X), the map ®: Z¥(\) — Z¥()) is the unique linear extension of .
Because ¢: W(7x;Z) — W(7a; Z) is induced by the embedding 7y — 7/,

the classical homological interpretation of the Thurston intersection form

as a homological intersection number in an orientation covering (see for

instance Lemma 28 of [10]) shows that ¢ sends the Thurston form of 7 to

the Thurston form of /. From the description of the algebraic structure of

Z“(X) and Z“(X) in terms of Thurston intersection forms, it follows that

® is an algebra homomorphism. O
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Now that we know that ® is an algebra homomorphism, we can consider
the composition
Hx © o Zw()\) — El’ld(E)\/)

of ® with the representation py : Z¥(\) — End(F\ ) associated by Propo-
sition 8 to the M'—enhancement &'

Recall that vy is the vertex of X that is not a vertex of A\, namely the
one that was added in the interior of the face T of A.

Lemma 21. The image py o ®(Z% (X)) C End(E\) respects the off-diagonal
kernel F,, C Exr of the vertex vy € Vi — V.

Proof. By the exponent parity condition defining Z“()), each monomial of
2%“()\) is a product of constants, monomials of the form Z, Z, Z Z%s ... Zkn
Z\Z3Zka ks  Zkn ZaZszkezks | ZFn € 29()N) and their inverses. It
therefore suffices to show that the image of each of these elementary
monomials respects I, .

Consider for instance Z = Z, ZoZy* ZE5 ... Z¥». Tts image under ® is

O(2) = ®(Z1 2o 25425 ... ZF) =wrz 24 2 Zlks 2k 7).

As a consequence, ®(Z) commutes with each of the elements Z,7,, Z}2,
and Z/%25 € Z“(XN) associated to the edges of X' emanating from the
vertex vg. In particular, ®(Z) commutes with the off-diagonal term
Qu, = 1+w™Z/2 | +w™82/2 Z/2 , of the vertex vy. It follows that y 0®(Z2)
respects the kernel ) of px(Qu,).

The same argument holds for the other two monomial types Z; Z37 f“ Z §5 ..

and
ZngZf‘*Z;f"’ ... Zkn and proves the required result. O

The following result plays a critical role in our arguments. Its proof
uses the non-quantum context, and in particular the off-diagonal equality
of Lemma 11, in a crucial way.

Lemma 22. The dimension of the off-diagonal kernel Féo C FEy s equal to
the dimension N39tPx=3 of E\, where g is the genus of the surface S and py
is the number of vertices of the triangulation X.

Proof. By construction of the representation pys by Proposition 8, dim Ey, =
N?9+Py =3 Since py = pa — 1, it therefore suffices to show that F) has
dimension % dim FEy..

k,
. Zn n
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Consider the off-diagonal term

—4 712 —8 712 12
QUO — 1 +w Zn+1 +UJ ZTL+IZ’FL+2’

12 8
Because 7,7, w

—commutes with Z/2,Z/2, and because w® = A™* is a
primitive N-root of unity (we here use the fact that N is odd), the Quantum

Binomial Formula (see for instance [24, §IV.2]) gives that
(Que — DY = (w23, + w_8Z;13—12;13-2)N = 2,28 + 2,28 2,25,
Applying py then gives that

i (@Quy = DN = i (Z3) + nv (23 23)
= lde,, + 2,127 olde,, = —ldg,,,

where the x € C* are the crossratio weights associated by the enhancement
¢’ to the edges e} of X', and where the last equality comes from Lemma 11.

It follows that px (Qu, — 1) € End(FE\/) is diagonalizable, and that its
eigenvalues are N-roots of —1, namely are all of the form —w®* with k € Z.

Now consider the element Z)? € Z¢()\) associated to the edge €
of M. Since Z5?(Qu, — 1) = w™8(Qu, — 1)Z4?, the linear isomorphism
px (Z4%) € End(Ey) sends the (—w®F)—eigenspace of uy (Q,, — 1) to the
(—wB+8)—eigenspace. It follows that all numbers —w8* occur as eigenvalues
of ux(Qu, — 1), and that the corresponding eigenspaces all have the
same dimension. Since there are N such eigenspaces, their dimension is

% dim E)\/ .
In particular, F) = ker iy (Qu,) has dimension 3; dim Ey/, since it is
the (—1)—eigenspace of py (Qy, — 1). This concludes the proof. O

At this point, we have two representations S#4(Sy/) — End(Ey/). The
first one is our usual

px = pia 0 Tr s SA(Sy) — End(Ey).
The second representation comes from the composition
Tr§

SA(Sy) - SA(Sy) = 29(A) -2 2(\) 2% End(Ey),

where the first homomorphism I: S4(Sy/) — S4(S)) is induced by the
inclusion map Sy — S). This gives a new representation

P = px 0 ®oTr{ o I: S(Sy) — End(Ey).



Representations of the skein algebra: closed surfaces 37

Note that Lemma 20 is here required to guarantee that py, is an algebra
homomorphism.

The images of these two representations respect the off-diagonal kernel
F!, C Ex, by Lemma 21 for py» and by Proposition 15 for py/. Actually,
because )\ is not necessarily combinatorial, we need to refer here to the
strengthened version of Proposition 15 provided by Remark 16.

As a consequence, py and py induce two representations S4(Sy) —

End(F}, ). We now show that these induced representations coincide.

Lemma 23. The two representations px:, pa: SA(Sx) — End(E\) above
are such that

2% ([K])\F/ - 'BN([K])IF/

v v

for every framed link K C Sy x [0, 1].

Proof. As in the proof of Proposition 15, we can arrange that the projection

of K to S meets the face T of A along a family of arcs aq, as, ..., a;, where

" +or(3) of X, for a cyclic permutation

oy of the indices {1, 2,3}. Namely, the situation is as illustrated in Figure 2

with v = 3. Then, still as in the proof of Proposition 15, the quantum trace
5 ([K]) € 29(X) is a sum of terms of the form

a; meets only the edges e, (1), €s,(2), €

AVAL . ALB'C e Z¥(N)
where each term correspond to a state for the boundary of K N7 x [0, 1],
where C’ is equal to C' = [Z],'Z/, " ... Z/7'] if K crosses the edges €irs
1 2 w’
6;,2, e e’i,/ of X, where B’ involves only generators Z; with 4 < i < n
(corresponding to edges e, of X contained in the complement of T'), and

where Aj is the contribution of the arc a; and is of one of the following
three types:
I 712 12 12
Al - Zol(l)Zal(Z)Zn+ol(3)
_ 2 2 2
or & =W o0y Dons) T Zoa)

or A =1.
Similarly, Tr§ ([K]) € Z“()) is a sum of terms
AjAsy. . . A:BC € Zw()\)

corresponding to states for the boundary of K NT x [0, 1], where C' is equal
to C=1[2;'Z;' ... Z; '] if K crosses the edges €;,, €, ..., €;, of A, where
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B involves only generators Z; with 4 < i < n (corresponding to edges e; of
A contained in the complement of T'), and where A; is the contribution of
the arc a; and is of one of the following three types:

_ 472 2
Al = w Zal(l)Za'l(Q)
or Al - 231(2)
or A; =1.

In order to show that p,\/([K])lF, = py © Tr“/\”/([K])lF, is equal to
vo vo
oy ([K)) gy = v o® o Trf ([K]) PR will compare the respective contri-
’1)0 v

butions to these quantities of the terms ALA, . AB'C" and A1 Ay ... AL BC
associated to the same state for the boundary of K NT x [0, 1].

Let AjAS ... A;B'C' € Z¥(X) and A1Ay... A BC € Z¥(\) be the terms
of Tr$, ([K]) and Trf ([K]) respectively associated to the same state for the
boundary of K NT x [0, 1].

From the definition of the homomorphism ®: Z“(\) — Z<()\), is
is immediate that ®(B) = B’. From the observation that each arc
a; contributes a monomial Z;&i)Z;ié)Zq’;;(g) to €' and a monomial
Z;}I)Z;lb) to C, it also easily follows from the definition of ® that ®(C) =
C'. As a consequence, iy (B’)|F40 = ) o <I>(B)|F40 and H/\/(C/)|F;O =
px 0 ®(C)ipy,

We need to compare each juy/ (A7), Fy, to the corresponding pix0®(A;), Fy -

In the case when A) =1, then A; =1 and of course ®(4;) = ®(1) =1 =
Aj. In particular, (A§)|F{]0 is equal to the corresponding uy/ o @(Al)\pg)o
in this simple case.

The case where A = Z/2, 2.2 5, 2,7 (3
the corresponding term is A; = w Zg,(1)Za,(2)‘ Indeed, ®(A4;) = Aj, so that

7Y (A;)|Fé0 = fiy © <I>(Al)|pé0 in this case as well.

is barely more complicated, as

The case where 4] = “-’742(/,—12(2)21101(3) + Z</712(2) and A4; = Zgl@) is much

z ' Z ] looks

more interesting, because ®(A4;) = Zc,f?(z) Z rtor(3)

/
n+o;(1) “n+o,(2)
very different from Aj. We can rewrite these terms as

_ 2 —4 712 =72 872 2 ’
Al = Z(',L(Q)(l 1w Z;z+cn(3)) = Z(',L(Q)QLO —w Zél(z)Z;z+al(3)Z7/z+oz(1)
and ®(A4,) = w_4H1/,U_IZ/?(2)2;13-01(3)2;13-m(1)

g,

for the off-diagonal term @Q; = 1+ w*4Z7’13_UZ(3) + wfgz,ﬁgl(:a)zr/ziaz(l)

and the central element H}, = [Z] . 1\Z} 1 5, (2)%)10,(3)] @ssociated to the

vertex vg. Using the properties that MA’(Qvo)\F;O = 0 and px(H,,) =
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—w'ldg,,, it follows that
MX(AE)\F;O = M/\'(—W_gz;lz(z)zﬁm(3)Zq,qial(1))|F,§0 = KN ((I)(Al))lFéo'
This proves that
px (AL AL L. .A;B’C")‘EZ0 =pxoP(A1As. .. AtBC)|F,gO

whenever the terms 4] A} ... A;B'C" € Z¥(X) of TY¥, ([K]) and A1 A, ... A,BC €
Z“(X\) of Tr{([K]) correspond to the same state for the boundary of
KNT x[0,1]. As a consequence,

p)\,([K])‘F{;O = :U')\’OTI“S\J’ ([K])‘Féo = /'LXO@OTI‘O).\)([K]MF{)O = ﬁA/([K])|F£O. O

We now return to the irreducible representations py: Z“(\) — End(E))
and py : Z29(N) — End(E) ), respectively associated by Proposition 8 to
the A—enhancement ¢: V3 — CP' and the N'—enhancement ¢': Vi, — CP* for
the homomorphism 7: 71 (S) — SLa(C). Recall that ¢ is just the restriction
of ¢ to ‘7}\ C ‘7)\/.

By Lemma 21, the composition py o ®: Z2¥(\) — End(FE\/) respects
the off-diagonal kernel F) C FE)/, and therefore induces a representation
fix: Z¥(A) — End(Fy)) by the property that zix(Z) = px o ®(Z)F, for
every Z € Z¥(\).

Lemma 24. After pre-composing uy with the action of a sign-reversal symme-
try of r € R, (c)(S) if necessary, the representations py: 2 (X) — End(E))
and fix: 2*(\) — End(F),)) are isomorphic.

Proof. By the uniqueness statement in Proposition 8, it suffices to check

that fix: Z9(\) — End(F} ) satisfies the following four properties, which

characterize puy:

(1) dim F), = N3stpr =3,

(2) ax(Z7Y) = 2;1dF;, for each i =1, 2, ..., n, where ; is the crossratio
weight associated to the edge e; of A by the A-enhancement &;

(3) pr(H,) = —w? Idp; for every vertex v of A;

(4) Ty (ﬁ)\ o Tr‘/‘(([K])) = —Trr(K)Idp, for every framed knot K C

Sy % [0,1] whose projection to K has no crossing and whose framing
is vertical.
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The first property (1) is proved in Lemma 22.

For the second property (2) the case where ¢ > 3, namely the case where
the edge ¢e; is not a side of the face T' that is being subdivided, is somewhat
trivial. Indeed, ﬂ,\(ZlQN) = Uy © @(ZEN) = ,uX(Z;QN) = x; IszCU =x; IdFﬂgo
as the enhancements ¢ and ¢’ associate the same crossratio weight z; =
to the edge e;.

The cases where i < 3 require a geometric argument. For instance,

IA(ZEN) = o 0 (2 Y ey, = i (20N 2N NS0

_ 12N rz1 —2N 171 N _ ror—1
= ,UX(Zl Zn-i—l H o )|Fz§0 = —xlxn_H IquﬂO

v

since py (Z12N) = 2 Wdpy, pv(Z,2) = 27,41 1dpy, o (H),) = —wIdgy

and w* = 1. Going back to the definition of the crossratio weights, a
computation shows that 22/, ] = —z1. It follows that i) (Z?") = 21 Id Fl s
as required.

Identical computations show that fix(Z3Y) = z51dp; and j,(Z3V) =
x31d Fy, and complete the proof of (2) in all cases.

By definition of the homomorphism @, it sends the central element
H, € Z“(\) associated to a vertex v of X to the central element H), € Z“(\)
associated to v considered as a vertex of X. It follows that pux(H,) =
pxn (H!) = —w? Idp; . This proves the third property (3).

Finally, (4) is a consequence of Lemma 23. Indeed, for every framed
knot K C Sy x [0,1] whose projection to K has no crossing and whose
framing is vertical

T (i 0 T ([K)) ) = ix o T3 (T (K1) ) = v (7 ([K0))
=ox (T (KD))

=1TnN (ux o TTUAJ/([K]))

IFl,

= px o Tr%, (TN([K]))

7,

= -Tr ’I“(K) IdF/
7Y, "
where the first and fifth equalities come from the fact that all maps involved
are algebra homomorphisms, where the second equality comes from the
definitions of the representations py and iy, where the third equality is
provided by Lemma 23, and where the last equality is part of the definition
of uy by Proposition 8.

This proves that the representation fiy: Z¥(\) — End(F} ) satisfies
the properties (1-4) listed above. By Proposition 8, it follows that [y
is isomorphic to py. O
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Our last step is to show that the isomorphism provided by Lemma 24
is compatible with off-diagonal kernels.

Lemma 25. For a vertex v of the triangulation X, let F,, C Ex and F), C Ey/
be the respective off-diagonal kernels of v for the representations py and
Wy, defined by considering v as a vertex of both X and X\. Then, the
isomorphism E\ — F)  between the representations py: Z¥(\) — End(E))
and fix: 2*(\) — End(F),) provided by Lemma 24 sends F, to F, N F) .

Proof. We first simplify the situation a little. The representation py: Z“(\) —
End(FE)) is only defined up to isomorphism and up to sign-reversal symme-
try by Proposition 8. Modifying it by a sign-reversal symmetry if necessary,
and by the isomorphism of Lemma 24, we can consequently assume that
it is equal, not just isomorphic, to fiy: Z¥(\) — End(F} ). In particular,
Ex = F, , px = pix and the isomorphism is the identity.

Note that the modification of uy by a sign-reversal symmetry does not
change the off-diagonal kernel F,, as the off-diagonal term @, € Z“()\)
involves only even powers of the generators Z;. We consequently have to
show that F, = I, N F) once we have arranged that the representations
ux and fiy coincide.

If v is not one of the vertices of the face T' of A that is being subdivided,
the expression of the off-diagonal term @, € Z“(\) involves only generators
Z; with ¢ > 3, and ®(Q,) € Z2¥(XN) is obtained from @, € Z“(\) by
replacing each generator Z; by Z;. As a consequence, we can choose the
off-diagonal term Q! € Z¥(\') to be equal to (Q,). Then,

F, = ker px(Q,) = ker ix(Qy) = ker puys o (I)(QU)IF;O
= ker pux (Q,) 1y, = (ker ux (@) N Fy, = Fy N Fy .

When v belongs to the face T of A, this case splits into three subcases
according to whether v corresponds to 1, 2 or 3 vertices of the triangle
T. We restrict our discussion to the subcase where v corresponds to two
vertices of T. The other two subcases are very similar.

Without loss of generality, we can choose the edge indexing of Figure 4
so that both endpoints of the edge e; are equal to the vertex v. Then, the
off-diagonal term of v starting at the edge e; can be written as

Q,=1+w 722+ Z37}B + Z373CZ} + Z3Z3CZ} Z3D



42 F. Bonahon and H. Wong

where B, C and D are polynomials in the variables Z? with 4 < i < n;
namely, these Z? correspond to edges of A that are not contained in the
face T.
Similarly, if we start from the edge €}, the off-diagonal term of the vertex
vin Z9(N) is
Q=1 4w BRI T I I B
+ w2222 2O 2 4 w2 22 2P C 202 202
+w 2y 22 s 22 C 2 ) 5 752 D
where B’, C', D' € Z¥()\') are respectively obtained from B, C, D € Z“()\)
by replacing each Z? with Z!2.
By definition of the homomorphism ®: Z¥(\) — Z«(X\'),
®(Z3) = W3ZQQZ;+1Z:;§Z:1+3 <I>(w74Zzsz) = W78Z§22L13Z12
O(Z7) =’ 222y 3201 Zns R(w T2 ZE) = 0L 200 257
®(B) =B’ o(C)=C" (D) =D".
Therefore,
®(Qu) =14w 2522, (2157 s +w 12222 212 B
+ WilZQQZ;@%F:’,ZPC/Z{QZ;@+3Z;1{Z;L+2
WS IR IO B LD
The above expressions of Q! and ®(Q,) share several terms, and their
difference can therefore be expressed as

Q, —2(Q.) = ZQQ(W% + wfgzvlz%a - WﬁlZ;HZvlzjr%Z;w?,)

+ ZQQZ;L%rsZiQC/Z{Q(W% + w_sZ;ﬁrz - w_lz%+3zélllziz+2)
= ZQQZ’:’L:—%(M_AlZ?,’LiQ + w_8Z7/7a>2Z7,’L2+3 - w_BZ'I/'L+2Z7/”L+1Z7,’L+3)

+ ZQQZ;LQHZ{QC/Z{QZ;L;? (W_4Z;EH + W_SZ;L%rqu/m%rz

- ‘U_324L+1Z;L+3Z;L+2)
= 25°7,35(Q, — 1 —w *Hy )
Z/ZZIZ Z/ZO/ZIQZ/72 "1 —4H/
+ 2 n+34<1 1 n+1(Qvo w vo)

for

/ —4 712 —8 712 12
Q’Uo =1 +w Zn+2 +w Zn+2Zn+3

" —4 712 —8 712 12
Quo =1+wZ, +w " Z,512,%

! —1 7/ / ! _ —1 77 / !
H’Uo =w Zn+2Zn+1Zn+3 =w Zn+1Zn+BZn+2'
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Note that Q;, and Q) € Z“()\’) are two off-diagonal terms for the vertex
vg, corresponding to different indexings of the edges around this vertex.
As a consequence, fiy/ (Q;O)lFéO = Ly (ng)\FéO = 0 while /‘/\/(Héo)\Fzﬁo =
—wt1d - It consequently follows from the above computation that

M/\/(QL)W;O — M\ 0 q>(Qu)|F,30 =0.

Then, as in the first case considered,

F, = kerﬂk(@v) = ker/j)\(Qv) = kerﬂx o (P(Q’U)F/

v

= ker pun (@) 1y, = (ker pux (@) N Fy, = Fy N Ey .

This concludes the proof of Lemma 25 when the vertex v corresponds
to two vertices of the triangle T. The cases where it corresponds to one
or three vertices of T are very similar, and we omit the corresponding
proofs. O

We now gather the results of this section in the following statement,
which we state in inductive form for later use in §5.3.

It is convenient to introduce some terminology. If the representation
px: SA(S\) — End(E)) respects the total off-diagonal kernel Fy C Ey, we
say that py induces a representation py: SA(S) — End(Fy) if p>\([K])|FA =
px ([K’ ])l , Whenever the two framed links K, K" C Sy x [0,1] are isotopic
in S x [0,1].

For instance, when the triangulation A is combinatorial, Proposition 15
shows that the representation py: S4(S\) — End(E)) respects Fy, and
Proposition 17 implies that py induces a representation py: SA(S) —
End(FA) .

Proposition 26. Let N be obtained from the triangulation \ of the surface S
by subdividing a face into three triangles as in Figure 4, let £': Vi — CP! be a
X —enhancement for the homomorphism r: m1(S) — SLy(C), and let &: Vy —
CP' be the \-enhancement defined by restriction of & to Vi C V. Let
pxa: 29(N) = End(E)) and py: Z¥(N) — End(Ey) be the representations
respectively associated to & and & by Proposition 8.
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Suppose in addition that py = px o Tr$, : SA(Sx) — End(Ey/) respects
the total off-diagonal kernel Fy» C Eyx of pux, and induces a representation
pa: SA(S) — End(Fy) as above. Then, py = py o Tr{: SA(S)) —
End(E)) respects the total off-diagonal kernel Fx C Ey of px, and induces
a representation py: SA(S) — End(Fy). Moreover, py is isomorphic to
after a possible pre-composition with the action of a sign-reversal symmetry

of 1 € Rsr,(c)(S) on SA(S).

Proof. After pre-composition with the action of a sign-reversal symmetry of
7 € Rsr,(c)(S) on Z“()), Lemma 24 provides an isomorphism between the
two representations py: 2“(A) — End(Ey) and fix: Z9(\) — End(F),).
Note that this modification of u, does not change its total off-diagonal
kernel F, as a sign-reversal symmetry respects each off-diagonal term
Qv € 2°(N).

As in the beginning of the proof of Lemma 25, we can arrange without
loss of generality that this isomorphism is the identity, so that puy = fy.
Under these conditions, we want to prove that F) = F\/, and that gy = py.

We first compare the two total off-diagonal kernels F and F),. Lemma 25
shows that F, = F; N F} for every vertex v of \. Then

Fx= () Fo=(ENFE)=F,n () F,= () F,=Fx.
veEV) veEV) vEV v’ €Vyr

Also, by our assumption that the isomorphism between )y and [iy is the
identity, Ex = F, C Ex. For every framed link K C Sy x [0,1], the fact
that uy = 1y and the definition of gy imply that

pr([K) = pix o Ti5 (IK]) = pov 0 @ 0 T (K) = e (IK])

where the last equality is provided by Lemma 23, and where we use the
same notation for the skeins [K] € S4(Sx) and [K] = I([K]) € S4(S)).

In particular, since py ([K]) € End(E\/) respects the total off-diagonal
kernel Fy by hypothesis, then py([K]) = px ([K])
F\=F\ C Féo Cc Ey.

The same equality px([K]) = p,\/([K])‘Féo shows that p,\([K])lFA =
,o,\/([K])ul,A since F\ C F; . Therefore, if K, K’ C Sy x [0,1] are isotopic
in S x [0,1],

pA([K])u:)\ = p>\’([KvD|FA = IO>\’<[‘K/])|FA = IOA([K/])|F>\

\Fr respects I since
vo
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where the second equality comes from the hypothesis that py, induces a
representation gy : SA(S) — End(Fy/) and the fact that F\ = Fy. As a
consequence, py induces a representation py: S4(S) — End(F)).

Finally, the properties that F, = Fy and p,\([K])va = px ([K])va show
that ﬁA = ,5)\/. O

5.2. Diagonal exchanges. Diagonal exchanges (also called flips) are tri-
angulation moves that occur in many different contexts. The arguments
in this section are very similar to those used for earlier results in quantum
Teichmiiller theory [14, 13, 5, 28|. In particular, this section is conceptually
and technically much simpler than the previous one.

Let A and ) be two triangulations of S which have the same vertices,
and which differ only in one edge. We can index the edges of A as ey, es,
..., en, and the edges of N as €], €}, ..., e/, in such a way that e; = ¢, when
i 2 2. Then, the two faces of A containing the edge e; form a “square” @
as in Figure 6, and ¢} is the other diagonal of the square @. In this case,
we say that A and )\ differ by a diagonal exchange.

€s e
e €
es 1 es ex 1 el
€4 A
The triangulation A The triangulation )\
Figure 6.

Let &: Vy, — CP' be a A-enhancement for the homomorphism r: m;(S) —
SLy(C).
We assume that the following conditions are satisfied:

(1) The A-enhancement ¢ is also a X -enhancement for r. Since the
triangulations A and )\ have the same vertex sets V), = V), C S, this
just means that ¢: Vi — CP? assigns distinct values to the endpoints
of an arbitrary lift of €].

(2) The four sides of the square @, formed by the two faces of A containing
the edge e, correspond to distinct edges of A.
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The second condition is not essential, but will simplify our exposition
by dispensing us from the need to consider many cases, as was required in
[5, 28]. Note that we are allowing identifications between the corners of
Q@ which, for instance, could very well correspond to the same vertex of \.
The first condition is really critical.

This second condition enables us to index the edges of A and )\’ so that
the sides of the square @ are ey = €, e3 = €5, eq = €}, e5 = e}, as in
Figure 6.

In [21, §6], Chris Hiatt constructs a natural isomorphism Oy : 2% (\) —
Z%()\) between the fraction algebras Z*(X) and Z¢(X) of the balanced
Chekhov-Fock algebras Z¢(X') and Z“()). The elements of Z%()) are for-
mal fractions UV ~! with U, V € 2*()\) and V # 0, and are manipulated
with the usual rules for fractions (except that the noncommutative con-
text can greatly complicate computations, in particular when one needs to
reduce two fractions to a common denominator in order to add them).

The homomorphism O,y : Z¥(\) — Z¥()) is defined as follows. Be-
cause of the exponent parity condition defining the balanced Chekhov-Fock
algebra, every monomial Z’' of Z“(\’) can be uniquely written as

7 = (B2, (B (225 27 220 B
for exponents k; € Z and for a monomial B’ involving only generators Z,
with ¢ > 5. Then O,/ is uniquely determined by the property that
O (Z2) = (W' 212224 + 2;12224)’“1 (W21 22 73)*2 (w21 Z4 75 )
(22 +w*2222)" (22 + ' 2222)" B
where B is obtained from B’ by replacing each generator Z! with i > 5 by Z;.

The fact that this really defines an algebra homomorphism O : 2‘”()\’ ) —
Z“()) is proved in [21].

Lemma 27.
O (21?) =772 O (Z25?) = (1+w'Z})Z3
O (25?) = (1 +w'z7?) " 23 O (Z3%) = (1 +w'2}) 2}
O (Z5%) = (1+ w4Z1_2)71Z52 and Oxn (Z/?) = Z? for every i > 5.

Proof. This is a simple computation based on the formula defining ©,,:
Use the property that 7,2 = wot4(Z, 24 24)2 2572 7,2, Z4? = wb=5(Z24,24)% 752
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and ZL2 = we9(Z,ZL)?Z, 72, where the integers a, b, ¢ € Z are deter-
mined by the faces of A\ that are adjacent to several sides of the square @
and are not contained in @ (and contribute additional terms to the skew-
commutativity relations between the Z/, and between the Z;). See also
[21, §6], which explains that ©,, was designed as a ‘square root’ of the
Chekhov-Fock coordinate change of [14, 13, 5, 28]. O

Let px: 29(A\) — End(E)) and py: Z2¥(N) — End(Ey ) be the repre-
sentations associated to the enhanced character (r,§) by Proposition 8. We
would like to consider the representation py o Oy : Z(N) — End(E)).
But this composition is not immediately defined, as ©,y: is valued in the
fraction algebra ZA“()\), whereas p) is only defined on the Chekhov-Fock
algebra Z+()\) C Z¢(\).

Lemma 28. There is a well-defined representation py o Oy : Z¥(N) —
End(E)), defined as follows.

(1) For every Z' € Z“(X'), there exists Uy, Vi, U, Vo € Z¥(X) such that
O (Z)=thVi =V, Uy € 29(N)

and px(V1) and px(Va) are invertible in End(Ey).
(2) For every decomposition Oxy (Z') = U V' =V, 'Us as above,

1 0 Oxn(Z') = pa(Un)pa(Vi) ™" = pa(Va) ' ua(Uz) € End(E}).

Proof. When Z' is a monomial (Z}Z}Z})* (Z524)k (24 2% )ks Z52% 7[**s B/
the non-monomial terms occurring in the definition of ©y)/(Z’) can be
written as

W21 2924 + 27 2o Zy = (1 + w2 27 2924
Zi + w2773 = (1 +w'27) 23
Zi+ w2773 = (1 +w'Z}) 73

The skew commutativity properties then enable us to write Oy (Z') =
UVt =V, U, for some Uy, Vi, Uy, Vo € 2¥()\) where the denominators
V; and V5 are products of terms 1 + w**Z2 with k € Z.

The same holds for any Z’ € Z“()\') by decomposing Z' as a sum of
monomials, applying the above argument to each monomial, and reducing
to a common denominator. (The reduction to a common denominator is
here trivial, because all denominators commute with each other.)



48 F. Bonahon and H. Wong

By definition of the representation uy in Proposition 8, ux(Z2)N =
x1 Idg, where z; is the crossratio weight associated to the edge e; of A by the
enhancement £. In particular, py(Z32) is diagonalizable and its eigenvalues
are N-roots of x1. Also, z; is different from —1 because ¢ sends the end
points of each lift of the edge ¢/ to different points of CP'. Because N is
odd, it follows that the eigenvalues of uy(Z?) are never of the form —w=4*
with k € Z, and therefore that uy(1 + w* Z?2) is invertible for each such k.

This proves that the image of each Z' € Z“(\) under O,y can be

decomposed as
O (Z) =hVit =V, 10, € 29(0)

for some Uy, Vi, Uz, Vo € Z¥(\) with ux(V1) and uy(V2) invertible in
End(E)\).

An elementary algebraic manipulation shows that gy (Up)ua(V1)~! is
equal to px(Va) tux(Usz) in End(E,), and that this endomorphism is
independent of the above decomposition. We can therefore define a map
wx 0 Oxy: ZY(N) — End(FE)) by the property that

fix 0 Oxn (Z') = px(U) pa (V) ™ = pun(Va) "t un (Us).

for every such Z' € Z¥(\).

The property that the map py o Oy : Z¥(N) — End(E)) is an algebra
homomorphism easily follows from a couple more easy algebraic manipula-
tions. O

Lemma 29. For a vertex v of the triangulations X\ and X', consider its
associated central elements H, € Z“(\) and H) € Z¥(XN). Then, the
triangulation change homomorphism Oy : Z°(N) — Z¥()\) sends H €
Z9(\) to Hy € Z°(\).

Proof. If we index the edges of )\ meeting v as ey, ey, ..., ey in
counterclockwise order around v and if we suitably choose the starting point
of this indexing, each corner of the square @ that is equal to v contributes
a block Z,Z5, Z571 7}, Z)ZL or ZLZ1Z4 to the expression

! —u+2 -yt / /
H), =w™ 27! 7! ... 7!

provided by Lemma 12.
A computation using the formula defining O,/ then shows that © .,/ (H))
is obtained from this expression by replacing each block Z4Z%, Z4Z17Z),
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Z)Z% or ZLZ Zh by w1 2921 73, wZ3Zy, w2471 Zs or wZ5Zo, respectively,
and by replacing each Z/ with i > 5 by Z;. For instance, for a block Z4Z] Z},

Z323 2y = w24 25 24) (23 25) 2y

where a € Z depends on the g—commutativity of Z}, Z%, Z}, namely on
the faces of A that are adjacent to several faces of the square @ and are
not contained in @ (and is equal to 0 if there are no such faces). In
the expression for @y (H!), this block w=2(Z}Z474)(Z,Z%)Z5 =2 is then
replaced by

WO WA 21 292y + 27 20 Z0) (W21 20 Z3) (22 + w22 Z2) 71
=w" N W ZE + 1) 2] 292421 2275752 (1 + W Z7) 7
R R AR A YAVAV YAV
= wl3/4.

The computation for the other blocks Z,Z%, ZiZ1Z), Z)ZL or ZLZ|Z) is
very similar.

The result immediately follows from this computation, and from the
application of Lemma 12 to H,. O

Lemma 30. After pre-composing px with the action on Z“(\') of a sign-
reversal symmetry of v € Rgr,(c)(S) if necessary, the representations i o
Oxn: Z¥(N) = End(Ey) and py: Z2°(N) — End(Ey/) are isomorphic.

Proof. By Proposition 8, the representation py : Z2¢(\) — End(E)y) is
characterized up to isomorphism and sign-reversal symmetry by the follow-
ing properties.

(1) The dimension of Ey/ is equal to N397P»' =3 where g is the genus of the
surface S and where py: is the number of vertices of the triangulation
N

(2) For every edge e} of X, let x} € C* be the crossratio weight associated

to e/ by the enhancement &, and let Z] be the corresponding generator
of the Chekhov-Fock algebra 7% (\). Then,

pn (Z72N) = @ 1d, .
(3) For every vertex v of N, with associated central element H, € Z¥(\),

125% (H{)) = —w4 IdEA/ .
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(4) The representation py = uy o Tr{,: S4(Sy) — End(E)) has classical
shadow r € Rgr,,(c)(S), in the sense that

Tn (pa([K])) = =Trr(K)1dg,,

for every knot K C Sy x [0, 1] whose projection to Sy has no crossing
and whose framing is vertical.

It therefore suffices to show that the representation pyo®y: Z¥(\) —
End(E,) satisfies the same conditions.

The triangulations A and A’ have the same vertex set, so that pyx = pa.
The dimension of the space E\ is equal to N39tPrx=3 = N39+pyv—3 hLy
Proposition 8 applied to uy, which proves the first condition.

The second condition is checked by several computations. The first
elementary computation is that the crossratio weights z; and x/ respectively
associated to the edges of A and ) by the enhancement £ are related by
the property that 2/ is equal to z7* if i = 1, to (1 + x1)zs if i = 2, to
(El(]. +x1)_1m3 if 1 = 3, to (1 +LU1).%’4 if 1 = 4, to .fL'l(]_ + 1’1)_1335 if 4 = 9,
and to x; if i > 5. See for instance [28, §2] or [5, §8].

Then, if a € {0, —1} is such that 7,74 = w?@tV 7247} (so that a = —1
only when there is a face of A that contains the edges e} and e} and is not
contained in the square @),

Ly © (__))\)\/(ZéQN) =y o @)\)\/ (w—QN(2N+1)(a+1)(Zézé)2Nzé72N)
= pp (w VOV (7, 2, 25)2N (22 + w23 23) )
= (2N BN BN+ BN 2

—1 /
= $1x2$3($2 + 131.1‘2) IdEA = xgldEA,

where the third equality uses the relation Z3(Z2Z3) = w*(Z323)Z3, the
Quantum Binomial Formula [24, §IV.2] and the fact that w? is a primitive
N-root of unity.

Similar computations show that iy o Oy (Z] VY = z/Idg, for every i.
See also [5, §§7-8]. This proves the second condition.

The third condition is an immediate consequence of Lemma 29.

Finally, the fourth condition is a consequence of the property, proved in
Theorem 28 of [7], that ©y o Try, = Try. O

Because the triangulations A and X have the same vertex sets V\ = V),
the associated punctured surfaces Sy = S —V, and Sy = S — V) are equal.
As a consequence, the homomorphisms py = py o Tr§ and py = py o Tr,
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associated to the enhanced character (r,&) provide representations of the
same skein algebra S4(S)) = S4(Sy).

Corollary 31. After pre-composing py with the action on Z“(\') of a
sign-reversal symmetry of r € RSL2(C)(S) if mecessary, the representations
px = pxnoTry: SA4(S)) — End(Ey) and py = py oTr¥,: SA(Sy) — End(E))
are tsomorphic.

Proof. This is an immediate consequence of Lemma 30 and of the fact,
proved in Theorem 28 of [7], that O,y o Try, = TrY. O

Lemma 32. FEvery isomorphism ¢: Ex — FE\ between the representa-
tions py o Oxy: ZY(N) — End(Ey) and py: Z9(N) — End(Ey), as in
Lemma 30, sends the off-diagonal kernel F,, C E\ of each vertexv € V) = Vy
to the off-diagonal kernel F) C E\.

Proof. There are again several cases to consider according to which corners
of the square @) correspond to the vertex v. We will give the proof in the
case when v corresponds to two corners of @), the one where ey and e3 meet
and the corner where es and e; meet. The reader may return to Figure 6

to remember the indexing convention for the edges e;.

As usual, index the edges of \" around the vertex v asej , e;,,..., €} ,in
counterclockwise order around v. We can choose the starting point of the

/ / /
12 1s—1 1s+1

for some index s. To avoid having to worry about whether s+ 1 = w or not,
it is convenient to shift the indexing by 1 and to consider the off-diagonal

indexing at €5, so that e} = e, €], =e3, ¢ =e5,¢; =€), ande = ¢

element
Qy=14wZ2+w 32272+ - +w MZ[2Z[?... Z]? € Z°(N).
Then,
Z03Q, =Z2Q, =Z?+w ' Z2Z2 v w B ZPZ2 22+ - w2222 22 2]
— Z§2 +w742§22§23/
tw T Z2 72 712 202 (Z A+ w2 2 + w2 20 2P
+w B ZR 27222 2R 2P 2

where B’, C' € Z“()\) are polynomials in the variables Z/? with i > 5,
corresponding to edges of X' that are not contained in the square Q.



52 F. Bonahon and H. Wong

Similarly, we can index the edges of A counterclockwise around v as e;,,
€,y - -+, €j,, in such a way that e;, = e2, ej, = €1, €;, = e3, e;, = e5, and

ei,., = ez. Then,

Z5Qu =27 Qv =25 +w 2327 + wtZ5 27 Z; B
‘w VB 7370 7Y (ZE 4wt 2R Z3)
+w M Z3ZIZ373 ... 7 ZEZ5C
where B, C' € Z“()) are respectively obtained from B’, C' € Z¥(X) by
replacing each term Z/? (with i > 5) with the corresponding Z?2.
The computations of Lemma 27 show that

O (25?) = Z5 + w2373 O (25225°%) = w25 27 73
Ow(Z2 +w T 2P B = 2 o242y = ' 232,

while ©,x(B’) = B and O, (C’) = C since O\ (Z/?) = Z? whenever
i > 5. It follows that O, (Z42Q)) = Z3Q..

As a consequence, the isomorphism ¢ sends the kernel of p)(Z3Q,) =
px © O (Z5%2Q)) to the kernel of py(Z4%Q)). Since Z3 is invertible in
Z@()\), the kernel of px(Z2Q,) = ur(Z3) o ux(Q,) is equal to the kernel of
ux(Qy), namely to the off-diagonal kernel F,, C E,. Similarly, the kernel of
px (Z42Q0) is equal to the off-diagonal kernel F!, C E,.

This concludes the proof in the case when v corresponds to the corners
of Q where e5 and e3 meet as well as to the corner where es and e; meet.
The other cases are essentially identical to this one. O

We summarize the discussion and results of this section in the following
statement. Let the triangulations A and )\ differ from each other by a
diagonal exchange as in Figure 6. Recall that we are assuming that the
sides of the square @ where the diagonal exchange takes place are distinct;
however, the triangulations A and X are not necessarily assumed to be
combinatorial. Since A and X have the same vertex set V), = V), the
punctured surfaces Sy = S — V) and Sy, =S — V) are equal.

Proposition 33. Let the triangulations A and X' differ from each other by a
diagonal exchange as in Figure 6, let &: VA = \7,\/ — CP* be stmultaneously a
A—and a X' —enhancement for the homomorphism r: m1(S) — SLa(C), and let
pxa: 29(\) = End(E)) and py: Z¥(N) — End(Ey) be the representations
associated to this data by Proposition 8.
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Suppose in addition that pyr = py o Tr§, : SA(Sx) — End(E\) respects
the total off-diagonal kernel Fy, C Ey of ux and induces a representation
P SA(S) — End(Fy), as defined above Proposition 26. Then, py =
px o Trg: SA(Sy) — End(E\) respects the total off-diagonal kernel F\ C E
of ux and induces a representation py: SA(S) — End(Fy). Moreover, py is
isomorphic to py after a possible pre-composition with the action of a sign-
reversal symmetry of r € Rsr,c)(S) on SA(S).

Proof. Lemma 30 provides an isomorphism ¢: Fy — FE) between the
Chekhov-Fock algebra representations puy o Oy : Z2“(\) — End(E,) and
s Z9(N') — End(E)y/). Also, Theorem 28 of [7] states that the quantum
trace homomorphisms Tr{: SA(S)) — Z¥(\) and Tr¥, : SA(Sy) — 2« (XN)
are compatible with the isomorphism O,y : Z¥(X) — Z¥(\) in the sense
that ©,y o Try, = Try. Therefore, ¢: E\x — Ey provides an isomorphism
between the representations py 0Oy 0 Try, = uxoTry = py and py oTrs, =
Px -

By Lemma 32, the isomorphism ¢: Ey — E): sends the total off-diagonal
kernel F\ = ¢y, Iy to the total off-diagonal kernel F)» = (0, cy, F}. Since
the representation py respects F, by hypothesis, it follows that py respects
F.

Finally, the property that py induces a representation py : S4(S) —
End(Fy) means that py ([K])lFA = px ([K’])‘FA whenever the two framed
links K, K’ C Sy x [0, 1] are isotopic in S x [0, 1]. The isomorphism ¢ again
shows that the same property holds for py. O

5.3. Constructing representations of the skein algebra of a closed
surface using arbitrary triangulations.

Lemma 34. Let A be a triangulation of S. Then one can apply to A a sequence
of face subdivisions and diagonal exchanges, as in §§5.1 and 5.2, to obtain a
new triangulation N that is combinatorial, in the sense that each edge of N
has distinct endpoints and no two edges have the same endpoints.

In addition, any A—enhancement &: f/)\ — CP! for the group homomor-
phism r: m(S) — SLy(C) can be extended to a N -enhancement €': Vyr —
CP'. (Note that the vertex set Vy of X is contained in the vertex set Vi ).

Proof. By subdividing a few faces if necessary, we can arrange that any two
faces of A have at most one edge in common.

After this preliminary step, let A\ be obtained from A by subdividing
each face, and let \' be obtained by performing a diagonal exchange along
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each edge of N’ that is also an edge of \; see Figure 7. All edges of a
face of A\ are distinct by our general convention for triangulations, and we
had arranged at the beginning of the proof that any two faces have at
most one edge in common. It easily follows that each edge of the resulting
triangulation A’ joins, either a vertex of V) to a vertex of V\» — Vy, or two
distinct vertices of Vi, — V. As a consequence, )\ is combinatorial.

- N

Figure 7.

Using the properties that A’ is combinatorial and that each edge of
X touches at most one edge of V), the inductive process of the proof of
Lemma 7 then proves the second statement. O

Lemma 34 and the results of §§5.1 and 5.2 enable us to extend Propo-
sition 15 and 17 to triangulations that are not necessarily combinatorial.

Theorem 35. Given a triangulation A of the surface S and a A—enhancement
£: Vs — CP' for the group homomorphism r: m1(S) — SLo(C), let
ux: Z2¢(\) — End(E)) be the irreducible representation associated to this
data by Proposition 8. Then, the total off-diagonal kernel Fx C E\ of ux
is invariant under the representation py = uy o Tr{: SA(S\) — End(E))
constructed in §3.4, and py induces a representation py: SA(S) — End(F)).

Proof. By Lemma 34, there exists a sequence of triangulations A = Ag, A1,
o5 An—1, Ap = X such that )\ is combinatorial, and such that each \;iq
is obtained from A; by a face subdivision or by a diagonal exchange. In
addition, for every i, the A—enhancement &: Vi — CP' can be extended
to a A\;—enhancement &;: 17,\i — CP* for r, in such a way that each &1
restricts to & on 17,\
Since A is combinatorial, the property sought holds for A" by Proposi-
tions 15 and 17. Propositions 26 and 33 assert that the property will also
hold for \; if it holds for ;1. The result then follows by induction. O
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Theorem 36. The representation py: S*(S) — End(Fy) provided by Theo-
rem 35 has classical shadow equal to the character r € RSLQ(@)(S) represented
by the group homomorphism r: w1 (S) — SL2(C), in the sense that

Ty (pr([K])) = ~Trr(K)Idp,

for every knot K C S x [0, 1] whose projection to S has no crossing and whose
framing is vertical.

Proof. We again use a sequence of triangulations A = Ag, A1, ..., Ap_1,
An = X and \;—enhancements &;: Y~/>\ — CP* such that )\ is combinatorial,
each ;41 is obtained from A; by a face subdivision or by a diagonal
exchange, and each &;;; restricts to & on 17,\

Since A’ is combinatorial, Proposition 19 shows that py = py, has
classical shadow equal to r € Rgp,(c)(S). Propositions 26 and 33 then
inductively show that the gy, are all isomorphic, and consequently also
have classical shadow r € Rgy,,(c)(S). In particular, px = px, has classical
shadow 7 € Rgr, ) (9)- O

5.4. Independence of choices. We now prove that the construction of
the representation gy : S4(S) — End(F)) of Theorem 35 is very natural.

Lemma 37. Let X\ and N be two triangulations of S whose verter sets are
disjoint, and let £ : Vy — CP' and &' : Var — CP' be A— and N —enhancements,
respectively, for the homomorphism r: m(S) — SLa(C). Then A and X' can
be connected by a sequence of triangulations X = Ao, A\, ..., An—1, An = N,
each equipped with a \;—enhancement & : Vy, — CP! for r, such that:

(1) each \iy1 is obtained from \; by a face subdivision as introduced in §5.1,
the inverse of a face subdivision, or a diagonal exchange as in §5.2;

(2) o=¢ and & = ¢';

(3) for every i, & and &1 coincide on the intersection VM N YN/MH.
For the third condition, note that the vertex sets Vy, and Vy

.., differ by
at most one vertex, so that V,, and V)

differ by at most one 7 (S)-orbit.

i+1

Proof. By Lemma 34, we can assume without loss of generality that A
and )\ are combinatorial. The existence of the sequence A = Ao, A1, ..
An—1, A = X in this combinatorial setup is then the 2-dimensional case of
Pachner’s theorem [30, 31] (which of course predates the full generality of

)
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Pachner’s theorem by many decades). In addition, the \; provided by this
statement are all combinatorial.

To construct the enhancements &;, note that 71 (S) acts on each ‘7&:7 and
therefore on the union |J;__, \7,\i. Extend £ and £’ to an r—equivariant map
¢": P, Va, — CP' (this is where we use the fact that the vertex sets Vy
and V), are disjoint), orbit by orbit as in the proof of Lemma 7. In this
construction, we can require that distinct m(S)-orbits in (J;_, ‘7&- have
disjoint images in CP', since we only need to avoid countably many values
at each step. Then, the restriction &; of £’ to 17&. is a A;,—enhancement for r;
indeed, because \; is combinatorial, the endpoints of each edge of its lift N
to the universal cover S belong to distinct m1(S)-orbits, and in particular
have distinct images under £”. O

Theorem 38. Up to isomorphism and up to the action of a sign-reversal
symmetry of 1 € Rsr,c)(S) on SA(S), the representation px: SA(S) —
End(F)) provided by Theorem 35 depends only on the group homomorphism
r: m(S) — SLa(C), not on the triangulation X or the A—enhancement & used
in the construction.

Proof. Consider two triangulations A and )\, with respective enhancements
€:Vy - CP' and ¢ : Vyy — CP' for the homomorphism r: m(S) —
SLy(C). Modifying A’ by a small isotopy does not change the associated
representations py: Z¢(N) — End(Ey) and py: SA(S) — End(Fy), so
we can assume that the vertex sets V) and V). are disjoint. We can
then consider the sequences of triangulations A = Ag, A1, ..., Ap_1,
An = X and \;—enhancement & : V), — CP' provided by Lemma 37.
Theorem 35 associates to each triangulation A\; and \;—enhancement &; a
representation py,: S4(S) — End(F;). Propositions 26 and 33 show that
each py,: S4(S) — End(F;) is isomorphic to py,,,: SA(S) — End(Fi11)
after possible composition with a sign-reversal symmetry. It follows that
pr: SA(S) — End(F)) is isomorphic to py: SA(S) — End(Fy) after
possible composition with a sign-reversal symmetry. O

Remark 39. Conjugating the homomorphism r: m1(S) — SL2(C) by an
element 6 € SLy(C) also leaves the isomorphism class of the representation
pa: SA(S) — End(F)) invariant; indeed, the A-enhancement 6¢: Vy — CP
for 9r0~! induces the same edge weights z; as ¢ in the construction of
pxa: Z29(\) — End(FE)) in Proposition 8. For irreducible homomorphisms
r: m(S) — SLy(C), being conjugate by an element of SL(C) is equivalent
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to defining the same character r € Rgp,(c)(S). However, for reducible
homomorphisms r, we do not know if the representation py: SA(S) —
End(F)) depends only on the induced character r € Rgy,,(c)(S) or on subtler
properties of the conjugacy class of r: m1(S) — SL2(C).

6. The dimension of the total off-diagonal kernel

We now have associated to each group homomorphism 7: 71(S) — SLy(C)
as representation py: SA(S) — End(F)) of the skein algebra S4(S), with
classical shadow equal to the character r € Rgp,(c)(S) represented by r.
This construction is very natural as, up to isomorphism, p, is independent
of the triangulation A and of the A—enhancement &.

However, we still do not know that this representation is non-trivial,
namely that the total off-diagonal kernel F) is non-trivial. This section is
devoted to proving the non-triviality of F), and to estimate its dimension.

Theorem 40. Let py: SA(S) — End(Fy) be the representation of the
Kauffman bracket skein algebra of the closed oriented surface S associated
to the group homomorphism r: m1(S) — SLao(C) by Theorem 35. Then, the
dimension of the off-diagonal kernel F, is such that

N36=1  fg>2
dimF\ =2 < N ifg=1
1 ifg=0

where g is the genus of S. In addition, the above inequality is an equality when
the character r € RSL2(C)(S) represented by r is sufficiently generic, in the
sense that it belongs to an explicit Zariski open dense subset of RSLQ(C)(S).

When the surface S is not the sphere, the proof of Theorem 40 is based
on explicit computations for triangulations A that have only one vertex. In
particular, these triangulations cannot be combinatorial. This proof is the
only reason why we struggled to include non-combinatorial triangulations
in the previous sections.

6.1. Proof of Theorem 40 when the surface S has genus g > 2. Let
A be a triangulation of the surface S with only one vertex v. In particular,
every edge of \ is a loop. Because S has genus g > 2, we can choose X so
that, in addition, there is an edge e;, of A that separates the surface S into
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two subsurfaces S; and S;. Because of our conventions for triangulations,
the three sides of each face of \ are distinct, and an Euler characteristic
argument shows that each of S; and S, has positive genus.

We first consider the case where the homomorphism 7: 71 (S) — SLy(C)
admits a A-enhancement ¢. By Lemma 7, this is equivalent to the prop-
erty that r(e;) # =+Id for every edge e; of the triangulation A. Let
wux: Z2¥(\) — End(FE)) be the representation associated to the enhanced
homomorphism (r,&) by Proposition 8, and consider the representation
px = px o Tr§: SA4(S)) — End(E)) as in §3.4. Note that Sy is here the
punctured surface S — {v}, obtained by removing from S the vertex v of
A. In particular, the total off-diagonal kernel F, C E) of u) is equal to the
off-diagonal kernel F,, of v.

Let K; C S; be the closed curve obtained by pushing the edge loop
, inside of the subsurface Si, and let Ky C Sy be similarly defined.
In particular, K; and K5 are both contained in the punctured surface
Sx =S — {v}. When endowed with the vertical framing, K; and K, define
skeins [K1], [K2] € SA(Sy).

)

Lemma 41. The off-diagonal kernel F\ = ker ux(Q,) is equal to the kernel
of pA([K1]) — pa([Kz]).

Proof. Since K7 and Ky are isotopic in S x [0, 1], Theorem 35 shows that
the restrictions py ([K1]) ™
I, is therefore contained in the kernel of pA([Kl]) — pA([KQD.

Because A is not combinatorial, our proof of Theorem 35 relied on
the “drill, baby, drill” strategy to reduce the problem to a combinatorial
triangulation, where we could apply Proposition 17. To prove that F) is
exactly equal to the kernel of py ([K1]) — pa([K2]), we will here use a careful
examination of an analogue of Proposition 17 for the non-combinatorial
triangulation A.

We first need to compute Tr§ ([K;]) and Trf([K>]). For this, index
the edges around the vertex v as e;,, €, €iy, ... €5 €igy €15 €joy o€l

= pr([K2)) \, coincide. The off-diagonal kernel

counterclockwise in this order, so that all edges e;, are contained in the
subsurface S; and all edges ej, are contained in Ss. See Figure 8(a).

The computation of Tr{ ([K1]) given by [7] can be somewhat compli-
cated, because the projection of K; to S cuts some edges of A more than
once; this usually introduces correction factors in bigon neighborhoods of
these edges. A convenient way to avoid these correction factors is to isotop
K to a framed knot K} C Sy x [0, 1] whose projection to S coincides with
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Ky

Figure 8.

the projection of K; for most of its length, except for a small interval that
is pushed across the edge e;, to create a small bigon B C S; bounded by an
arc in e;, and an arc in the projection of K7. In particular, the projection
of K] to S cuts the edge ¢;, in two points p and ¢ occuring in this order
for the orientation of e;, coming from the boundary orientation of K;. See
Figure 8(b).

In addition, we can arrange that the elevation on K; C Sy %[0, 1] steadily
increases as one goes around K; from p to ¢, crossing the preimage of the
edges e;,, €, ...e;,, and then steeply goes down from ¢ to p along the
bigon B to return to the starting point p.

Then, there is no need for correction terms, except for the contribution
of the bigon B. More precisely, the construction of the quantum trace in
[7] gives in this case:

k41" Tk+42

t
T (K1) = T ((K7]) =w™ ' w ™22, ... 2,2, 250 . 2, 25
k=0

t
_ -1 o —1,—1
=w 'Y ZiZi, . 2 200 2 25
k=0
where the factor w™! is the contribution of the bigon B.
We will use the computation of Weyl quantum orderings in Lemma 13
to rearrange this expression. By the first case of Lemma 13,

[Z’ioZi1 e sz] - wikZiOZil e Zikv
(ZiZiy .- Zi ) P =2 2z =0z 2 2
0 21 1k 20 71 Tk

and (Z;Zi, ... 23, )P = (222} ... 22 =w 22 22 ... 22
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It follows that

ZiyZiy ... 2

041 iy — wk[ZioZil s Zik]
= wk[ZiUZil e Zik]Q[ZiUZil P Zik]il

—w 22 22 27

1011 23

This enables us to write

t
Ti§ ([K1]) = w™ (Zw‘*’czfozfl ...ka> (252t 207
k=0

t
= (Zw_4k2302i21 . ..ka)zi—ol[zi—ll L ZiNZ
k=0

where the second equality follows from an application of the third case of
Lemma 13 to [Z;'... Z; | =w™'Z; " ... Z; "

1t

Consider the term [Z;, Z;, ... Z;,]. First of all, note that its exponents
satisfy the parity condition required to belong to the balanced Chekhov-
Fock algebra Z¢¥(\). Also, [Z;, Zi, ... Z;,] commutes with Z; ; indeed, the
only Z;, that do not commute with Z;, are Z;,, Z;,, and a pair of consecutive
elements Zikl = Z;, and Zikl—}—l = Z;, corresponding to the third vertex of
the face of A that is contained in the subsurface S; and is adjacent to the
edge e;,. It also commutes with all generators Z;, since the corresponding

edges are located in the interior of the surface Ss.

Similarly [Z;,Z,, ... Z;,] is an element of Z¢(\) that commutes with Z;,
and with all Z;, .

In particular, [Z;, Z;, ... Z;,), [Z;,Z;, ... Z;,] and Z;, commute with each

other, and the central element H, associated to the vertex v is equal to

H,=1[Zj,Zi ...Zi,ZiyZj, ... Zj,| = Zi20 (Zi,Ziy ... Z;,|| 2, Z;, - . . Zj,).

Returning to Tr§ ([K1]) and remembering that H, and [Z;,Z}, ... Z;,]
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commute with all Z;, , we conclude that

107 t1 72 0

t
Tr§ ([K1]) = (Zw‘4kZ2 7% 72 ...ka)zﬂ[zilzi L Z) !
k=0
t
— (Zw4kZiQOZlei22...Zi2k)HU1[Zj Zjy ... Z;]
k=0

t
=H,'Z;,Z;, . ..Zju]<zw4szozflzfz ) ..Z§k>
k=0

T u

t
=212, ... Z:,)7" Z; (Zw‘4k22 z: 7% . ..ka).
k=0

The same arguments applied to the framed knot Ky give

07T J17 02

T ([K2)) = (2, Z; ...Zju]—lzif(Zw—‘”Z? 72 72 ...Zfl).

=0

In particular,

t
(Zi, Ziy ... Zi,) TS ([K1]) = 1+ Zw_%ZlefQ 7
k=1

and

Z:,Z

g v -

- Zi,)Tr§ ([K2])

61

=7, %22, ... Z;) 20, Ziy ... 23] (Zw‘“zﬁozﬁzi ) ..Zfl>
=0

07117 )2

= H,'(Z;, Zi, ~--Zit]2<2w_4lZ»2 Z2 72 Zi)
1=0

_ -1 —4t—4l 72 72 2 72 r72 r72 2
= H, <Zw 727} ... 227} 73 7 ..Zjl)

07J1 702 "
=0

by using again the third case of Lemma 13, in addition to the fact that

(Zi, Ziy ... Z3,), |2, Z;, ... Zj,] and Z;, commute with each other.

This is beginning to look a lot like the off-diagonal term @, € Z“()\)
associated to the counterclockwise indexing of the edges of A around v as

€irs €igs vy Ciyy Cigy €1y €y - -+ 5 €4, €5y Indeed, this off-diagonal term can
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be written as

_ —4k r72 2 2 —4t—41+4 72 2 2 72 2 2 2
QU—1+ZW ZilziQ...ZikjLZw 7273 ... 72272773 ... 72
k=1 =0

If we apply the representation puy: Z¢(\) — End(FE)) and remember
that uy(H, ') = —w *dg,, this proves that

HA([Zilzi ---Zn]> ° (MA (Tl"f([Kﬂ)) — Hx (Trj’([Kﬂ))) = px(Qv)-

Since [Zi, Z;, . .. Z;,] is invertible in Z¢(\), the linear map g ([ZilZiz . Zit]) €
End(E,) is invertible. It follows that the kernel of uy (Tr“; ([Kl])) —

75y (Trj’ ([K 1])) is equal to the kernel of 1) (Q,), namely to the off-diagonal
kernel F\ = F, C FE,.
Since px = py o Try, this completes the proof of Lemma 41. O

We now consider the algebraic structure of the balanced Chekhov-Fock
algebra Z“(\) and of the irreducible representation py: Z¢(\) — End(E)).

Let A1 and \s be the triangulations of the surfaces S, and S, respectively
induced by the triangulation A. Define the balanced Chekhov-Fock algebra
Z%(A1) as the subalgebra of Z“()\) generated by all monomials in the
generators Z;,, Z,,, ..., Z;, satisfying the appropriate exponent parity
condition. Similarly, Z“(\2) C Z¢()\) is generated by all monomials in
the generators Z;,, Z;,, ..., Z;, with the appropriate exponent parity
condition.

Because each Z;, (with k& > 0) commutes with each Z; and because
the element H, is central, the inclusion maps Z“(\1) — Z“(\), Z¥(\2) —

Z%(\) and C[HF'] — 2%()) define an algebra homomorphism
Z“(\1) ® 2“(\g) @ C[HE] — 29(N).

Lemma 42. The above homomorphism defines an isomorphism
ZY(\) 2 2Y(\1) ® 2¥(\) ® CIHFY.

Proof. We need to show that the algebra homomorphism above is a linear
isomorphism.
The key observation for this is the following. For every monomial

AV ALY SNV ALY AV A A
T J1r T2 T T

0711 12
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of Z¥()\), the exponent parity condition defining the balanced Chekhov-
Fock algebra implies that the exponent n of Z;, is even, because the edge
eo separates the surface S. As a consequence, such a monomial can be
split as the product of a monomial of Z¥(A;), a monomial of Z¢(\z), and
a power of H, = [Z2 Z; Z;, ... Z;,Zj, Z;, ... Zj,); in addition, this splitting
is unique up to multiplicative constants.

Since these monomials 7} Z' Z;'2 ... Z Z7" Z72* ... Z" form a basis
for Z“(X), while the monomials Z]'' Z7'>... Z form a basis for Z“(\;)
and the monomials Z7" Z7* ... Z" form a basis for Z“()1), the result

immediately follows. O

The structure theorem provided by Lemma 42 enables us to split the irre-
ducible representation py: Z“(\) — End(E)) as a tensor product. Indeed,
by elementary linear algebra (see for instance [5, §4]) or a careful analy-
sis of the proof of Proposition 8, there exists irreducible representations
[ Zw()\l) — EHd(El), o Zw()\g) — EI’ld(EQ), Lo : (C[Hvil] — EI]d((C),
and an isomorphism E) = F; ® Ey for which u) corresponds to

1 @ e @ po: 29 (M) @ 2¥(\) @ C[HF!] — End(E; ® By ® C) = End(E)).

In fact, since uy(H,) = —wdg,, po is the unique algebra homomorphism
such that uo(H,) = —w*Idc.

We now return to the knots K, Ko C Sx[0,1]. The knot K; is contained
in Sq x[0,1], so that the quantum trace Tr§ ([K1]) belongs to the subalgebra
Z“(A1) C 2¥(\) corresponding to the subsurface S;. In particular,

pa([Ka]) = pa(Te5 ([K1])) = g (T ([K1])) @ Ids,
in End(E)) = End(E; ® E>) = End(F;) ® End(E>). Similarly,

pr([52) = (T (1)) = 1, © oa (15 ([K))).

By Lemma 41, the off-diagonal kernel F)\ C E) is equal to the kernel
of pA([Ki1]) — pa([K2]). The following statement is then an immediate
consequence of the above observations.

Lemma 43. The off-diagonal kernel F\ C E) = F1 ® Fsy is equal to
Fy = @ E£a) ® E;a)

acC
where, for each a € C, Ei(a) = {w € E,pu(T5([K:)))(w) = aw} is
the eigenspace of ,ui(Tr‘;\’([Ki])) € End(E)) corresponding to a if a is an
eigenvalue of this endomorphism, and is O otherwise. U
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This reduces the problem to the determination of the eigenvalues and
eigenspaces of the homomorphisms i (Tr§ ([K1])) and po (Tr§ ([K2]))-

Let us focus attention on the first homomorphism. The eigenvalues and
eigenspaces of py (Tr§ ([K1])) are easily deduced from those of py([K1]) =
1251 (TI‘L;\) ([Kl])) ® IdE2

Lemma 44. Suppose that the homomorphism r: 71(S) — SLy(C) is generic
enough that Trr(e;,) # +£2. Then the homomorphism py([K1]) € End(E,) is
diagonalizable, its eigenvalues are the N distinct solutions of the equation
Tn(z) = —Trr(Ky), and all of its eigenspaces have the same dimension
% dim Fy.

Proof. We begin with a simple observation about the Chebyshev polynomial
Tn(x). If y # +2, the equation Ty (z) = y has N distinct solutions. Indeed,
if we write y as y = b+ b~! for some b, the solutions to the equation

1 as a ranges over all N-roots of b.

Tn(xz) = y are of the form z = a+a~
A little algebraic manipulation shows that these solutions are all distinct
unless b = +1, which is excluded by our hypothesis that y # £2.

The fact that px([K1]) € End(E)) is diagonalizable is then an immediate
consequence of this observation and of the property, provided by Conclu-

sion (4) of Proposition 8, that
Ty (pa([K1])) = —=Trr(Ky) Idg, = —Trr(e;,) Idg,.

Indeed, this relation and our hypothesis that Trr(e;,) # +2 show that
the minimal polynomial of p,([K}]) has simple roots, so that px([K]) is
diagonalizable. In addition, all eigenvalues of pA([K 1]) are solutions of the
equation T (z) = —Trr(e;,).

Showing that all solutions of the above equation occur as eigenvalues,
and computing the dimension of the corresponding eigenspaces, will require
a more elaborate argument.

By Complement 10, if we vary the enhanced homomorphism (r,¢&)
over a small open subset in the space of such pairs, the representa-
tion py: Z“(\) — End(FE)) can be chosen so that, for every monomial
Z¥zhe  zk e 29(N),

u/\([Zlegz e Zﬁ"]) = u’flu’;? o A ke

where each u; = 2§/z; is a local determination of the 2N-root of the
crossratio weight z; defined by (r,¢), and where the endomorphisms
Akyks.. k, € End(E)) are independent of (r,¢&).
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We can now reverse the process and add more generality to it in order
to give ourselves some flexibility. Consider the space W = (C — {0})"
of weight systems M assigning a weight u; to each edge e; of A\, with no
specific relation between these edge weights. (The edge weights u; = 2y/z;
associated to an enhanced homomorphism (r,§) that we considered so far
were constrained by the relations of §4.1.) An edge weight system u € W
determines a representation uy: Z¥(\) — End(E)) by the property that

k1 7k kn ki, k kn
MK(Z11Z22 iy ) - u11u22 s Up Aklk2~-kn

for every monomial Z*Z5?...Zk € Z¢()), where the endomorphisms
Ak, ks k, € End(E)) are the ones occurring above.

This associates to u € W a representation p§ = u¥ o Tr{: S4(S)) —
End(E)), and the miraculous cancellations of [8] (as used in [10, §4]) provide
a homomorphism r*: 7 (S)) — SL2(C) such that

T (pR([K])) = T (13 0 TS ([K])) = =Trr*(K) Idg,

for every framed knot K C Sy x [0, 1] whose projection to Sy has no crossing
and whose framing is vertical.
In particular, if we return to the formula

t
T (K) =w ™'Y ZiZiy . 2,20 250 20 2

Tht1 " Th42
k=0

used in the proof of Lemma 41, this gives

pf\‘([Kl])—uA oTr)\ Kl Zulluzz. U Zkilu_l ...ui_tlAk

Tk+2

where A, € End(E)) is the product of a suitable term Ay, k,. x, with a
power of w. In particular, we will use the observation that for k = ¢

uiluiz . .uitAt == N;(w_tZiOZhZig e ZitZ;Ol) == M;([ZZ:[ZZQ e Zlf])

where the quantum ordering computation comes from Lemma 13 and the
fact that Z;, commutes with Z; Z;, ... Z;, in T*()). Similarly, for k£ = 0,

witut g Ao = S (w2, 20 2 2 2 = s (20 2 2 ),

21 (2 0“1, Tt

from which it follows that A9 = A; .
Also, by our determination of the algebraic structure of Z¢()\) in [10,
§2.2] (and in particular Lemma 10 of that article), [ZY Z) ... Z]] is central
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in Z¥(\) since wN = 1. By irreducibility of the representation p¥, there
consequently exists a number x € C* such that u} ([ZYNZY ... Z}] = 2 1dg, .
Taking the square of this equation and using the property that u%(Z2V) =
uN Idg, , we conclude that © = £ululY ... v and that

AN = u;lNqu...qu,u‘i([Zng...Zg]) = +ldg,.

12 1t

After these preliminary observations, we now return to the main line
of our proof. If Trr"(K;) # +2, the same argument as before shows
that p}([K1]) is diagonalizable, and that all its eigenvalues are solutions
of the equation T (z) = —Trr"(K;). Our strategy will be to determine
the dimension of the eigenspaces of p;‘([Kl]) for one specific value of u,
and then to conclude by a connectedness property that these dimensions
are the same for all u € W with Trr"(K;) # £2.

For this, we borrow two distinct ideas from Julien Roger [36, 35].
The first one is a result of [36, Lemma 19], where Roger considers
monomials of Z“()\) associated to simple closed curves in the punc-
tured surface Sy. In the case of Kj, the corresponding monomial is
[Ziy Zi, ... Z;,] and Roger produces a monomial B € T¥(A1) such that
B|Zi, Z:, ... Z;,| = wZi, Zi, ... Z;,)B. Taking the square B? to make sure
that we have an element of the balanced Chekhov-Fock algebra Z“(\),
applying the representation pY: Z¥(\) — End(E)) associated to u € W,
and remembering that u¥([Z;, Zi, ... Z;,]) = wi wi, - - . w5, Ay, it follows that
pY(B%)A; = wBA, p(B?). As a consequence, u3(B?) sends the eigenspace
of A; corresponding to the eigenvalue a to the eigenspace corresponding to
the eigenvalue w®a. Since we observed that AY = +Idg, and since w® is a
primitive N-root of unity (as A = w? is a primitive N-root of —1 and N is
odd), it follows that the eigenvalues of A; are all N-roots of +1, and that
its eigenspaces have the same dimension % dim E.

We now follow another idea first exploited in [36, §2.2] and [35, Appen-
dix B], except that the broader context of W enables us to use an explicit
argument without having to rely on results of [36, 35]. To construct a suit-
able edge weight system u € W, pick an arbitrary number ug € C — {0}
such that ug" # 1, and another number € € C — {0} close to 0. Then define
U to assign weight 4;, = uee to the edge e;,, weight 4;, = 7! to e;,, and
weight ©; = 1 to all other e;. Remember from the proof of Lemma 41 that
there exists an index k; such that the edge e;, is equal to e;, and e;, ., is
equal to e;, (as seen by consideration of the face of A whose sides are e,
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ei, and e;,). In particular, U;, = uge and U, ., =~ '. It follows that
ug?  ifk=0
e? if0<k<k
Uiy - g Uy LT =t ik =k
iy Uiy Uy Uy e Uy = Up€ 1 = K1

ude?  ifk <k<t
ud itk=t

Then, if ¢ is sufficiently small,

t
PR(EL]) = s, gyt agt g A
k=0

Tht1 tht2

is very close to
C =uy?Ag+uiA; = ug A7t +ulA, € End(E)).

We proved that the eigenvalues of A; are all N-roots of +1, where
+ is the sign such that AN = 4Idg,. Therefore, the eigenvalues of
C = ug?A; ' + ugA; are the numbers +(ugw=** + udw?) with k = 0, 1,
..., N—1. These N numbers are distinct by our assumption that ug" # 1.
The eigenspaces of C' are the eigenspaces of A;, which we proved all have
the same dimension 3 dim E).

Therefore, for u € W associated to ug and e as above, with & small
enough, the diagonalizable endomorphism p%([K;]) € End(E)) has N
distinct eigenvalues and the corresponding eigenspaces all have dimension
% dim E>\.

In the space W = (C*)" of edge weight systems for A, the subspace
W' consisting of those u € W with Trr"(K;) # +2 is connected, since
its complement has complex codimension 1. Note that the above point U
belongs to W’ since

Trr®(K1)Idg, = Tn (% ([K1]))
is very close to
TN(ungt_l +udAy) = u52NAt_N +utN AN = i(uE2N + w2V dg, .

Therefore, the trace Trr%(K;) is very close to +(ug?" + u3V), and is
consequently different from £2 by our assumption that ug® # 1.
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We saw that, for all u € W, the endomorphism p} ([K;]) is diagonaliz-
able and its eigenvalues are solutions of the equation Ty (z) = —Trr*(K3).
Since the solutions of that equation are always simple for u € W', the
dimension of the eigenspaces is a locally constant function of u, and is
therefore constant by connectedness of W. We found one point u € W
such that all eigenspaces of p§ ([K1]) have dimension + dim E). Therefore,
the eigenspaces of p} ([K1]) have dimension 3; dim E for every u € W'.

In particular, this property holds for u € W’ defined by the edge weights
u; = 23/x; associated to the enhanced homomorphism (r,¢) satisfying the
hypotheses of Lemma 44, which proves this statement. O

Proposition 45. Let S be a closed oriented surface of genus g > 2, and
consider a homomorphism r: 71 (S) — SLa(C). Suppose that there exists a
triangulation Ao of S with exactly one vertex v and with at least one separating
edge e;,, such that r(e;) # £1d for every edge e; of Ao and Trr(e;,) # +2.
Then, for every triangulation \ of S and every A—enhancement & for r, the
off-diagonal kernel F associated to this data has dimension

dim Fy, = N3(9—1),

Proof. The hypotheses on r and A\g guarantee that, by Lemma 7, » admits
at east one A\g—enhancement . By Theorem 38, the total off-diagonal
kernel F), is isomorphic to F) and we can consequently restrict attention
to the case where A = A\g and & = &.

Namely, we assume that A has exactly one vertex v, and that r admits
a A—enhancement ¢; in addition, an edge e;, of A separates S into two
subsurfaces S; and Si, and Trr(e;,) # £2. In this case and with the
notations of this section, recall that we have split the representation
px: 2¢(\) — End(FE)) associated to the enhanced homomorphism (r,¢)
as a tensor product

1 ® e @ po: 29 (M) ® 29(\) @ C[HE!] — End(E; ® By ® C) = End(E)).

of three irreducible representations p1: Z¢(\1) — End(E}), pe: Z¥(A2) —
End(Es), po: C[HF'] — End(C), for isomorphisms Z¥(\) & Z¥()\;) ®
Z¥(\2) ® C[HF!] and Ey\ 2 E; ® Ey. In addition, o is the unique algebra
homomorphism such that po(H,) = —w*Idc.

By Lemma 43

dim Fy = Y dim E{") dim E5").
a€cC
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where EZ-(a) is the eigenspace of p; (Tr§ ([K;])) corresponding to the eigen-
value a (and is 0 if @ is not an eigenvalue).

Since pa([K1]) = pa(Tr3([K1])) = pa(Tr5([K4])) ® Idg,, the a-
eigenspace of py([K1]) is equal to the tensor product Efa) ® Ey. By
Lemma 44, we conclude that

dim B dim By = L dim E\ = L dim E, dim E,

when Ty(a) = —Trr(K;), and E\* = 0 otherwise. As a consequence,
dim E%a) is equal to + dim E if Ty (a) = —Trr(K;) and to 0 otherwise.
Similarly, the dimension dim Eéa) is equal to +dimE, if Ty(a) =
—Trr(K>) and to 0 otherwise.
By hypothesis, Trr(K;) = Trr(Ks) # +2, so there are exactly N values
of a that have non-zero contributions to the sum

dim Fy = Y dim B{*) dim B = N (4 dim B1)(4 dim Ep) = 4 dim B, = N39~°
acC

since dim £, = N39-2 by Proposition 8. O

Remark 46. If we fix a triangulation Ay with exactly one vertex and
with at least one separating edge e;,, the homomorphisms r satisfying
the hypotheses of Proposition 45 form a Zariski open dense subset of the
space of all group homomorphisms 71 (S) — SLy(C). Indeed, for a simple
closed curve «, many possible arguments show that the set of characters
r € Rsr,)(S) such that Trr(y) # £2 is Zariski open and dense in

RsL, () (S)-

Proposition 47. Let S be a closed oriented surface of genus g > 2. Then, for
every homomorphism r: m1(S) — SLa(C) and for every triangulation A such
that v admits a A—enhancement &, the total off-diagonal kernel F defined by
this enhanced homomorphism (r,§) has dimension

dim Fy, > N3,

Proof. By Theorem 38, the dimension of F) depends only on the group
homomorphism r, not on the triangulation A or the enhancement £. In
particular, we can assume without loss of generality that A is combinatorial,
so that every homomorphism 7: 71 (S) — SL2(C) admits an enhancement &
by Lemma 7. If we locally vary r, the proof of Lemma 7 shows that we can
choose the enhancement £ so that it varies continuously with r. Then, the
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representation uy: Z¥(\) — End(E)) associated to (r,&) by Proposition 8
depends continuously on r by Complement 10.

The total off-diagonal kernel F) is defined as an intersection of kernels
ker 1) (Qy). Its dimension is therefore a lower semi-continuous function of
the representation py, thus of the homomorphism r. Proposition 45 (see
also Remark 46) asserts that the dimension of F) is equal to N39~2 for
generic homomorphisms r: 71(S) — SL2(C). By lower semi-continuity, it
follows that dim F)\ > N39=3 for all r. O

6.2. Proof of Theorem 40 when the surface S is the torus.

Proposition 48. Suppose that the surface S is a torus, and that the image
of the homomorphism 7: w1 (S) — PSLy(C) induced by r: m(S) — SL2(C)
has more than two elements. Then, for every triangulation A of S and every
A—enhancement & for r, the associated off-diagonal kernel has dimension

dim F\ = N.

Proof. By Theorem 38, the dimension of F) is independent of the triangu-
lation A and of the enhancement &£. This provides us with flexibility in the
choice of A to perform computations.

By hypothesis, the image of 7: m(S) — PSLy(C) is neither trivial
nor isomorphic to Zs. A simple algebraic manipulation then provides
a set of generators aj, as of m(S) = Z? such that 7(a;), 7(az) and
7(a1az) € PSLy(C) are non-trivial. Then there exists a triangulation A
with one vertex v, and whose edges e1, es and e3 respectively represent the
classes a1, az and ajay in 7 (S). By Lemma 7, this guarantees that there
exists a A—enhancement ¢ for r.

In the Chekhov-Fock algebra T“(\), let Z1, Zs, Z3 be the generators
respectively associated to the edges e;, e; and e3. Exchanging the roles of ey
and ey if necessary, we can assume that ey, es, es arise in this order clockwise
around each of the two faces of A. Then the skew-commutativity relations
satisfied by the Z; are that Z;Z;11 = w'Z;.1Z; for every i (considering
indices modulo 3).

The central element H, € Z“()\) associated to the vertex v is equal to

H,=[727272) = w 8727272
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while its off-diagonal term is

Qu=14+wZ2 4+ wB72272 4+ w 12727272
SR AVAY A VA SRR AV AV AV AV £
=(14+w 22323791 +w 2} + w827 73)
=(1+w*H,)1+w 2] +w?2173).

The representation py: Z¥(\) — End(E)) associated to the enhanced
homomorphism (r,§) by Proposition 8 has dimension dim F\ = N, and
sends H, to —w*ldg,. The above computation shows that 1y (Q,) = 0 €
End(E)). Therefore, the off-diagonal kernel is equal to

F)\ = keru,\(Qv) =ker(Q = E)\
and has dimension N. O

The hypotheses of Proposition 48 are realized on a Zariski open dense
subset of the space of homomorphisms r: 7m1(S) — SL2(C). The same lower
semi-continuity argument used in the proof of Proposition 47 gives the
following general statement.

Proposition 49. Suppose that the surface S is a torus. Then, for every
triangulation \ of the torus and every A—enhancement & for r, the associated
off-diagonal kernel F has dimension at least N. O

6.3. Proof of Theorem 40 when the surface S is the sphere. In this
case, every homomorphism r: 71 (S) — SL2(C) is of course trivial.

Proposition 50. Suppose that the surface S is a sphere. Then, for every tri-
angulation A of S and every A\—enhancement £ for the trivial homomorphism,
the associated total off-diagonal kernel Fy has dimension equal to 1.

Proof. By Theorem 38, it suffices to check this for any triangulation A for
which the trivial homomorphism admits a A-enhancement; in this case, this
just means that every edge of A has distinct endpoints. We use the smallest
such triangulation A, with exactly three vertices and two faces glued along
their boundary.

For this triangulation, the generators Z;, Zs, Z3 of the (unbalanced)
Chekhov-Fock algebra 7+ () commute, and the balanced Chekhov-Fock al-
gebra Z¢()) is isomorphic to the Laurent polynomial algebra C[Ht, Hy', HE),
where the H; = Z;,17; 5 are the central elements associated to the three
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vertices of A (counting indices modulo 3). In particular, the representation
wx provided by Proposition 8 is 1-dimensional, and is the unique represen-
tation sending each H; to —w*ldg, .

Each off-diagonal term is of the form Q; = 14+ w™Z? = 1 +
wH; 1 Hi oH;*. The off-diagonal kernel of each vertex is therefore
ker 1 (Q;) = ker 0 = E), and the total off-diagonal kernel F has dimension

3
dim Fy = dim (") ker 11 (Q;) = dim Ex =1 0
i=1
The combination of Propositions 45, 47, 48, 49 and 50 completes the
proof of Theorem 40.

6.4. Proof of the Realization Theorem 2. We are now ready to com-
plete the proof of the Realization Theorem 2.

Given a group homomorphism r: m;(S) — SLy(C) and a combinatorial
triangulation A of the surface S, Proposition 19 provided a representation
pr: SA(S) — End(F)) whose classical shadow is equal to the character
7 € Rsryc)(S). Theorem 40 shows that Fy is different from 0, so
that this representation is non-trivial. The representation p) may or
may not be irreducible, but it admits at least one irreducible component
pr: SA(S) — End(E) with E C F\. This irreducible representation satisfies
the conclusions of Theorem 2.
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