

1 **EXTRATROPICAL CYCLONES: A CENTURY OF RESEARCH ON METEOROLOGY'S**
2 **CENTERPIECE**
3

4 DAVID M. SCHULTZ
5 *Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester,*
6 *United Kingdom*

8 LANCE F. BOSART
9 *Department of Atmospheric and Environmental Sciences, University at Albany, State University of New*
10 *York, Albany, New York*

12 BRIAN A. COLLE
13 *School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York*

15 Huw C. DAVIES
16 *Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland*

18 CHRISTOPHER DEARDEN

19 *Centre of Excellence for Modelling the Atmosphere and Climate, School of Earth and Environment,*
20 *University of Leeds, United Kingdom*

22 DANIEL KEYSER
23 *Department of Atmospheric and Environmental Sciences, University at Albany, State University of New*
24 *York, Albany, New York*

26 OLIVIA MARTIUS
27 *Oeschger Centre for Climate Change Research, Institute of Geography, University of Bern, Bern,*
28 *Switzerland*

30 PAUL J. ROEBBER

31 *Atmospheric Science Group, Department of Mathematical Sciences, University of Wisconsin–Milwaukee,*
32 *Milwaukee, Wisconsin*

34 W. JAMES STEENBURGH

35 *Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah*

37 HANS VOLKERT
38 *Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen,*
39 *Germany*

41 ANDREW C. WINTERS
42 *Department of Atmospheric and Environmental Sciences, University at Albany, State University of New*
43 *York, Albany, New York*

45
46 Chapter 17 in *A Century of Progress in Atmospheric and Related Sciences: Celebrating the*
47 *American Meteorological Society Centennial*

48
49 Submitted 23 April 2018; Revised 19 August 2018

50
51 Corresponding author: Prof. David M. Schultz, david.schultz@manchester.ac.uk

ABSTRACT

55 The year 1919 was important in meteorology, not only because it was the year that the American
56 Meteorological Society was founded, but also for two other reasons. One of the foundational
57 papers in extratropical cyclone structure by Jakob Bjerknes was published in 1919, leading to what
58 is now known as the Norwegian cyclone model. Also that year, a series of meetings was held that
59 led to the formation of organizations that promoted the international collaboration and scientific
60 exchange required for extratropical-cyclone research, which by necessity involves spatial scales
61 spanning national borders. This chapter describes the history of scientific inquiry into the structure,
62 evolution, and dynamics of extratropical cyclones, their constituent fronts, and their attendant jet
63 streams and storm tracks. We refer to these phenomena collectively as the *centerpiece of*
64 *meteorology* because of their central role in fostering meteorological research during this period.
65 This extremely productive century in extratropical-cyclone research has been possible because of
66 (a) the practical challenges of addressing poor forecasts that had large socio-economic
67 consequences, (b) the intermingling of theory, observations, and diagnosis (including dynamical
68 modeling) to provide improved physical understanding and conceptual models, and (c) strong
69 international cooperation. Conceptual frameworks for cyclones arise from a desire to classify and
70 understand cyclones; they include the Norwegian cyclone model and its sister the Shapiro–Keyser
71 cyclone model. The challenge of understanding the dynamics of cyclones led to such theoretical
72 frameworks as quasigeostrophy, baroclinic instability, semigeostrophy, and frontogenesis. The
73 challenge of predicting explosive extratropical cyclones in particular led to new theoretical
74 developments such as potential-vorticity thinking and downstream development. Deeper
75 appreciation of the limits of predictability has resulted from an evolution from determinism to

76 chaos. Finally, observational insights led to detailed cyclone and frontal structure, storm tracks,
77 and the classification of rainbands.

78

79

80 **1. The continua of the atmosphere and history**

81

82 The atmosphere and history can both be viewed from a common perspective. Both are continua
83 with a multitude of processes acting simultaneously and at a variety of time and space scales. To
84 make sense of either the atmosphere or history, we humans have the habit of defining categories
85 to provide focus—be they atmospheric scales, physical processes, theory, and observations, or
86 historically defined separations between epochs (e.g., Discovery of America, First World War,
87 Treaty of Versailles, End of Second World War, atomic era).

88

89 Within this atmospheric continuum, we focus on extratropical cyclones, low-pressure systems that
90 are frequently born of and evolve with the jet stream, producing in some midlatitude locations as
91 much as 85–90% of the annual precipitation (Hawcroft et al. 2012) and as many as 80% of extreme
92 precipitation events (Pfahl and Wernli 2012). Although extratropical anticyclones are the
93 counterpart to extratropical cyclones, for the purposes of this chapter, we focus only on the
94 cyclonic sibling.

95

96 Within this historical continuum, our focus for this chapter is nominally 1919 to 2018. In addition
97 to the founding of the AMS, 1919 was important to this chapter for two other reasons. The first
98 reason was the publication of the first widely accepted conceptual model for the structure of the

99 extratropical cyclone by the Bergen School of Meteorology (Bjerknes 1919). Understanding
100 extratropical cyclones—their dynamics, structure, and evolution—was the big advance that came
101 from the Bergen School meteorologists, which makes this chapter extra pertinent to the AMS 100th
102 anniversary. The energy and enthusiasm coming from the Bergen School was ignited by the
103 leadership of Vilhelm Bjerknes and his colleagues in Norway following World War I, constituting
104 a dramatic paradigm shift within the meteorological community and providing the foundation for
105 the rise of modern synoptic meteorology (e.g., Friedman 1989, 1999; Jewell 2017). For synoptic
106 meteorology, the development of what we now call the *Norwegian cyclone model* and
107 accompanying *polar-front theory* proposed by Bjerknes (1919), and further developed in Bjerknes
108 and Solberg (1921, 1922) and Bjerknes (1930), provided a common framework and language by
109 which researchers and forecasters could communicate. Although this model had its roots in earlier
110 research by Vilhelm Bjerknes and German scientists (e.g., Volkert 1999), it was its blending of
111 theoretical and practical research, as well as its focus on operational forecasting that made it so
112 influential. Much of the terminology introduced in the cyclone model is still in use today (e.g.,
113 cold front, warm sector, occlusions, polar front), and, as we will see later, some ideas that were
114 introduced at that time were lost and rediscovered (e.g., seclusion, bent-back front). Later,
115 applying physical principles to polar-front theory allowed quantitative analysis and testing of the
116 mechanisms for cyclogenesis, culminating in the discovery of baroclinic instability (Charney
117 1947; Eady 1949). These reasons are why we refer to extratropical cyclones as the centerpiece of
118 meteorology.

119
120 Despite its immense utility as a conceptual model for routine synoptic analysis, polar-front theory
121 was adopted slowly in the United States. The early development of the Norwegian cyclone model

122 was covered extensively in *Monthly Weather Review*, which was published by the U.S. Weather
123 Bureau at that time. Specifically, *Monthly Weather Review* was one of the two journals that printed
124 Bjerknes (1919)¹ and reported on American Anne Louise Beck's year-long fellowship at the
125 Bergen School (Beck 1922). Despite these efforts by early career scientists to sell the Norwegian
126 cyclone model to American forecasters (e.g., Meisinger 1920; Beck 1922), the management at the
127 U.S. Weather Bureau resisted (e.g., Namias 1981, 1983; Newton and Rodebush Newton 1999;
128 Fleming 2016, pp. 52–59). For example, *Monthly Weather Review* Editor Alfred Henry (1922b,c)
129 reviewed Bjerknes and Solberg (1921, 1922), arguing that the Norwegian cyclone model was not
130 necessarily applicable to weather systems in the United States because of their different
131 geographies and the much larger number of surface observing stations needed in the United States
132 to achieve data densities rivaling that of Norway (Henry 1922a,b). Following the arrival of Carl-
133 Gustaf Rossby to the United States in 1926, the ascent to leadership of the Bureau by Bergen-
134 trained Francis Reichelderfer in 1938, and the subsequent birth of meteorology programs at U.S.
135 universities during World War II helmed by Bergen-trained academics, polar-front theory
136 established stronger roots within the U.S. meteorological community (Namias 1981, 1983; Newton
137 and Rodebush Newton 1999).

138

139 Similarly, the United Kingdom also faced similar challenges to adoption of the Bergen School

¹ The reason why the 1919 paper was published simultaneously in two different journals is a bit of a mystery. Because Jakob was young, it is likely that Vilhelm chose the options for the journals. Vilhelm was more aware of the need to get the preliminary findings published quickly. *Geofysiske Publikationer* was brand new and aimed to reach both sides of a scientific world split by the post-War environment. Still, the new journal was as yet unproven in its ability to serve as a vehicle for path-breaking research. Vilhelm probably saw *Monthly Weather Review* as the most reliable venue because its publication was relatively unaffected by the war and probably the least provocative to Germans and Austrians. Vilhelm had previously turned to *Monthly Weather Review* in line with his past connections with Cleveland Abbe, as well as his connections with the Carnegie Institution in Washington, D.C. (R. M. Friedman 2018, personal communication).

140 methods (e.g., Douglas 1952; Sutcliffe 1982; Ashforth 1992). In *Meteorologische Zeitschrift*, the
141 leading German-language meteorological research journal in Europe, Ficker (1923) compiled an
142 in-depth critical review of the Bergen school publications before 1922. He lauded the introduction
143 of a compact analysis scheme with clear and memorable diagrams, as well as the short and
144 characteristic names for the relevant phenomena, but he strongly disagreed that a radical new
145 theory had been presented.

146

147 The second reason why 1919 is important to this chapter was the creation of a new system of
148 international cooperation through a series of meetings in Brussels in July 1919, where international
149 bodies such as the International Association of Meteorology came into formal existence (Ismail-
150 Zadeh and Beer 2009; Ismail-Zadeh 2016). International cooperation is a key theme that runs
151 through this chapter. Members of the Bergen School and its disciples came from various countries,
152 travelled to various countries to found meteorology programs, collaborated internationally on their
153 research, and collected data during international field programs (e.g., Bjerknes 1935; Bjerknes and
154 Palmén 1937). Although Bergen School meteorologists were effective at pursuing international
155 cooperation (Fig. 1), there were a few bumps along the way. One bump was the signing of the
156 Treaty of Versailles on 28 June 1919, bringing to a close World War I. One of its immediate
157 consequences for international research cooperation occurred at a 28 July 1919 meeting in Brussels
158 (Ismail-Zadeh 2016) during which the International Research Council (IRC; later renamed ICSU)
159 was founded containing, for example, the International Union of Geodesy and Geophysics
160 (IUGG), which in turn was composed of six sections (later, associations), among them the
161 International Association of Meteorology (IAM; later IAMAP and now IAMAS; International
162 Association of Meteorology and Atmospheric Physics/Sciences). The treaty also meant that the

163 Central Powers were explicitly excluded from membership in any of the bodies mentioned above,
164 a glaring example of how international cooperation was not always such a positive experience.
165 Nevertheless, these nongovernmental international organizations and learned societies (e.g., AMS)
166 in some ways resemble the global and synoptic scales in the social networks akin to those in the
167 atmospheric continuum (Volkert 2017). In addition, individual scientists and their employers (e.g.,
168 universities, governmental laboratories, national hydrometeorological services) often obtain
169 energy, inspiration, and motivation from such nonprofit networks on these different scales. The
170 progress reported in all the chapters of this monograph should be viewed within the context of
171 these important cooperative structures.

172

173 During the 100 years since 1919, extratropical cyclone research stayed center stage for the
174 international atmospheric-science community, not least because it combined basic research efforts
175 in dynamical meteorology with applied forecasting endeavors using synoptic-scale data analyses
176 and later numerical weather prediction (NWP) techniques. The progress achieved during the past
177 century is traced throughout this chapter in a series of sections by an ensemble of authors and their
178 personal perspectives. For a comparison with previous syntheses, we refer to the AMS-sponsored
179 volumes *Compendium of Meteorology* (Malone 1951), *Extratropical Cyclones*, *The Erik Palmén*
180 *Memorial Volume* (Newton and Holopainen 1990), and *The Life Cycles of Extratropical Cyclones*
181 (Shapiro and Grönås 1999).

182

183 The *Compendium of Meteorology* was written at the middle of the 20th century for "taking stock
184 of the present position of meteorology ... as we are on the threshold of an exciting era of
185 meteorological history" (Malone 1951, p. v). Five chapters summarized the state of science on

186 extratropical cyclones at that time. Bjerknes (1951) reviewed the then-current state of polar-front
187 theory and exemplified its relevance through a juxtaposition with the life cycle of the storm over
188 North America during 7–10 November 1948. Palmén (1951) presented three-dimensional manual
189 analyses from observational data including fronts, providing evidence for "the role of extratropical
190 disturbances as links in the general atmospheric circulation as cells for the meridional exchange of
191 air masses" (p. 599). The problem of cyclone development in early efforts of numerical forecasting
192 was also referred to by Eady (1951) and Charney (1951). Finally, Fultz (1951) reviewed his own
193 and previous efforts to obtain, among other things, cyclonic eddies in rotating tank experiments
194 and frontal movement in a stratified environment. These chapters highlighted the need for closer
195 correspondence between theory and observations, with Palmén (1951, pp. 618, 619) concluding,
196 "Meteorologists are still in disagreement about many fundamental aspects of the cyclone problem."
197 and "If the complexity of the cyclone problem is considered, it does not seem likely that any
198 satisfactory theoretical solution can be achieved in the near future."

199

200 During the 1970s and early 1980s, the promise of operational NWP faced a severe challenge.
201 Operational forecast systems frequently failed to predict rapidly developing cyclones (Sanders and
202 Gyakum 1980; Bosart 1981; Gyakum 1983a,b; Anthes et al. 1983). Reed and Albright (1986)
203 described an especially egregious forecast of explosive cyclogenesis over the eastern Pacific by
204 the Limited Area Fine Mesh Model (LFM), which completely missed the storm development and
205 resulted in a 55-hPa central pressure error. These failures sparked a fertile period of cyclone
206 research in the 1970s, 1980s, and 1990s that included major field programs such as Cyclonic
207 Extratropical Storms (CYCLES; Hobbs et al. 1980), Genesis of Atlantic Lows Experiment
208 (GALE; Dirks et al. 1988), Experiment on Rapidly Intensifying Cyclones over the Atlantic

209 (ERIC; Hadlock and Kreitzberg 1988), Alaskan Storm Program (Douglas et al. 1991), and Fronts
210 and Atlantic Storm-Track Experiment (FASTEX; Joly et al. 1997, 1999). These field programs
211 revealed the structure and evolution of cyclones, as well as their attendant fronts and precipitation.
212 Concurrently, advances in computer infrastructure, model resolution, and model physics led to
213 idealized and real-data simulations capable of resolving these structures. These improvements in
214 models and computer hardware also allowed operational forecasting of the intensification rate of
215 explosive cyclones to improve considerably during this time. The groundwork was laid for a fresh
216 perspective on frontal-cyclone evolution. The seminal nature of this body of research becomes
217 evident from the prominent celebrations of Erik Palmén resulting in *Extratropical Cyclones, The*
218 *Erik Palmén Memorial Volume* (Newton and Holopainen 1990) and of the 75th anniversary of
219 Bjerknes (1919) resulting in *The Life Cycles of Extratropical Cyclones* (Shapiro and Grønås 1999).

220
221 This chapter advances the narrative in the 20 years since Shapiro and Grønås (1999) while bringing
222 a 100-year perspective to the topic. We are influenced by the conceptual model for scientific
223 inquiry introduced by Shapiro et al. (1999) (Fig. 2), which embodies the evolution of research on
224 cyclones during the 100 years that have elapsed since the introduction of polar-front theory.
225 Shapiro et al.'s (1999) model involves theoretical, diagnostic (including dynamical modeling), and
226 observational approaches, swirling cyclonically and then ascending to produce improved physical
227 understanding and conceptual models. The following sections honor this mixing process through
228 the organization of the remainder of this chapter.

229
230 **Section 2** (written by Roebber and Bosart) describes how the depiction of extratropical cyclones
231 have changed over the past century, using East Coast cyclones as an example. **Section 3** (written

232 by Davies) presents an overview of theories of cyclone development including the divergence
233 hypotheses of Dines and Sutcliffe, frontal-wave instability, baroclinic instability, quasigeostrophic
234 and semigeostrophic theories, potential-vorticity thinking, and deterministic chaos. Given these
235 theories for cyclogenesis, Section 4 (written by Martius and Bosart) describes where on Earth
236 cyclones are found (i.e., within midlatitude polar jet streams) and the processes that maintain the
237 jet strength as cyclones repeatedly draw energy from them. Section 5 (written by Winters, Dearden,
238 and Keyser) examines the accoutrements associated with the cyclone, the fronts. This section
239 presents the observations, theory, and diagnosis of fronts and frontogenesis. Section 6 (written by
240 Steenburgh and Dearden) synthesizes the observations and theory of fronts and cyclones into the
241 conceptual models of fronts in relation to cyclone evolution, starting with the model presented by
242 the Bergen School, its modifications over the years, the introduction of new conceptual models,
243 and the structure of frontal rainbands within the cyclones. Section 7 (written by Colle and Bosart)
244 discusses how the prediction of cyclones has evolved in the NWP era, revealing the importance of
245 model improvements, higher resolution, and data assimilation to cyclone prediction, as well as
246 future opportunities for progress. Finally, section 8 (written by Volkert and Schultz) highlights
247 the lessons learned from the last 100 years, revealing what has made this century so productive,
248 and looks forward to the next century of progress.

249

250

251 **2. Extratropical cyclones—The Forrest Gump of the atmosphere**

252

253 In the popular feature film *Forrest Gump*, the titular character says “Life is like a box of chocolates.
254 You never know what you are going to get.” During the film, which covers the period from the

255 mid 1940s through the early 1980s, Forrest Gump encounters a wide variety of American popular
256 culture icons ranging from Elvis Presley to two U.S. Presidents (Kennedy and Nixon) and
257 experiences—and sometimes influences—notable events such as the Vietnam War, the opening of
258 diplomatic relations with China, the Watergate scandal, and the early days of Apple Computer.
259 Similarly, one can randomly select one cyclone event or another and find that each one is different,
260 owing to the complex interplay of baroclinic and diabatic processes in their development.
261 Likewise, as detailed by Lorenz (1967; discussed in [section 4](#) of this chapter), the instability of the
262 general circulation to baroclinic disturbances necessitates their ubiquity and inevitability, just as
263 Forrest Gump appears everywhere, influencing a half-century of American life.

264

265 A succinct and direct definition of an extratropical cyclone², proffered by Fred Sanders and which
266 he attributed to Jule Charney, is that a cyclone is a *process* not a thing. By that, Sanders and
267 Charney are referencing the formation and growth of transient baroclinic eddies though dynamic
268 and thermodynamic processes, whose surface manifestation as a pressure minimum is what we
269 recognize as a cyclone. Cyclones were perhaps initially recognized as pressure minima when the
270 first crude synoptic analyses were able to be constructed, which in real-time occurred following
271 the introduction of the telegraph and corresponding synoptic observing systems (Kutzbach 1979).
272 The collection of these surface observations led to the production of surface synoptic weather maps
273 (e.g., Reed 1977). Petterssen (1969) presented several examples of early cyclone models resulting
274 from analysis of surface synoptic maps: the 1861 opposing currents model of Master Mariner

² The technical term *cyclone* for an area of helical winds around a center of relative calm was coined by the English merchant captain Henry Piddington (1848) and referred to tropical storms affecting shipping routes from Europe to India and China. In 1887, Ralph Abercromby introduced the distinction between *extratropical* cyclones and their tropical counterparts in the title of a broad review published by the Royal Society, which provided detailed observational evidence from different parts of the British Empire and beyond.

275 Jimman, Fitzroy's 1863 model of cyclonic whirls, the 1883 cyclone weather distribution model of
276 Abercromby, and Shaw's (1911) cyclone model (Fig. 3). It was the Bergen School, however, that
277 advanced understanding of these systems by setting forth these observations in the form of a four-
278 dimensional picture that is the now-famous frontal cyclone model (Bjerknes 1919; Bjerknes and
279 Solberg 1922; Fig. 4). Eliassen (1999) and Volkert (1999) present further details of advances in
280 European understanding.

281

282 As one example of a region with high-impact extratropical cyclones that ties the sections in this
283 chapter together, we consider Northeastern United States snowstorms (or nor'easters). The high
284 population density combined with lots of meteorologists living in this region and the occasional
285 big snowstorm was an excellent recipe for a “perfect storm” of meteorological awareness and
286 weather lore (Kocin and Uccellini 2004) that goes back to the 19th century, as evidenced by the
287 legendary East Coast blizzards of 1888 and 1899 (Kocin 1983; Kocin et al. 1988). Characteristic
288 northeastern U.S. storm tracks parallel to the Atlantic coast and from the Ohio Valley
289 northeastward down the St. Lawrence River Valley were described in an atlas prepared by Bowie
290 and Weightman (1914). Austin (1941) and Petterssen (1941) provided illustrative examples of
291 typical northeastern U.S. cyclones. Miller (1946) documented two types of East Coast cyclones,
292 which he termed Type A and Type B. Type A cyclones typically originated along a frontal
293 boundary near the coast, whereas Type B coastal secondary cyclones formed in conjunction with
294 the death of a primary cyclone west of the Appalachians.³ Type B cyclones represented a greater
295 forecast challenge because of uncertainties associated with the forecast location and timing of
296 secondary cyclone development, a challenge that remains today. A famous example of a Type A

³ Not to be confused with Petterssen Type A and Type B cyclones (Petterssen et al. 1962; Petterssen and Smeybe 1971).

297 cyclone was the New York City blizzard of 26–27 December 1947 (Uccellini et al. 2008). Snowfall
298 amounts of about 67 cm in less than 24 h were reported in New York City with higher amounts in
299 the suburbs (Bureau 1948). This storm brought New York City to a standstill.

300

301 Although getting the synoptic-scale location and structures of these cyclones were critical to
302 getting the forecast correct, nor'easters also produce important mesoscale structures that could
303 cause large changes in hazardous weather over short distances, further frustrating forecasters. Spar
304 (1956) showed an example of a Type A cyclone that contained embedded areas of high winds near
305 the surface warm front that could be associated with downward momentum mixing and discrete
306 warm-front propagation. Bosart et al. (1972) and Bosart (1975) first documented the existence of
307 mesoscale coastal fronts ahead of Atlantic coastal cyclones. He showed that coastal fronts served
308 as a locus of surface frontogenesis and cyclonic vorticity generation and that northeastward-
309 propagating coastal cyclones tended to track along a pre-existing coastal front. Coastal fronts
310 served as boundaries between frozen and unfrozen precipitation with the heaviest precipitation
311 falling along and on the cold side of the boundary. The impact of enhanced diabatic heating due
312 to precipitation along and toward the cold of coastal fronts impacted the cyclogenesis process
313 through enhanced low-level convergence and cyclonic vorticity generation (e.g., Keshishian and
314 Bosart 1987). Tracton (1973) and Ellenton and Danard (1979) showed that unrepresented diabatic
315 heating and the associated low-level convergence and cyclonic vorticity generation in NWP
316 models could be a source of significant model forecast error in northeastern U.S. cyclones, a
317 finding that could also be linked to coastal-frontogenesis processes. Furthermore, stratified air
318 masses on the cold side of coastal fronts proved to be effective in providing wave ducts for the
319 passage of long-lived, large-amplitude mesoscale inertia-gravity waves (e.g., Bosart and Sanders

320 1986; Bosart and Seimon 1988; Bosart et al. 1998; Uccellini and Koch 1987). An excellent
321 example of a long-lived, large-amplitude mesoscale inertia-gravity wave and “snowbomb”
322 associated with a strong Atlantic coastal cyclone occurred on 4 January 1994 (Bosart et al. 1998)
323 (Fig. 5).

324
325 The catastrophic failure of then-operational forecast models to predict the infamous Presidents’
326 Day coastal storm of 19 February 1979 (Bosart 1981; Bosart and Lin 1984; Uccellini 1990;
327 Uccellini et al. 1984, 1985) had a major impact on operational NWP. Bosart (1981) showed that
328 the then-NMC (predecessor to NCEP) operational LFM-II forecast model had nary a clue about
329 the intensity and location of the eventual Presidents’ Day storm. A strong coastal front that was
330 associated with the storm enabled it to hug the coast and intensify rapidly in an environment
331 favorable for strong latent heating, low-level convergence, and cyclonic vorticity generation
332 (Bosart 1981). The then-operational LFM-II had no parameterization for latent-heat flux as was
333 evident from a comparison of the observed and predicted coastal planetary boundary layer
334 structure (Fig. 22 in Bosart 1981). The absence of assimilation of significant-level sounding data
335 into the NMC operational forecast system at that time likely further contributed to the deficient
336 operational forecasts of the storm (Bosart 1981). The forecast debacle that was the Presidents’
337 Day storm in the Washington, DC, area was a watershed moment that helped to usher in significant
338 advances to the then NMC operational forecasting enterprise in subsequent years. Another
339 important NMC operational model forecast failure occurred in conjunction with an early season
340 coastal storm occurred on 4 October 1987. This storm dumped more than 50 cm of snow on
341 portions of interior eastern New York and western New England and was investigated by Bosart

342 and Sanders (1991). They showed that the forecast failure could likely be linked to an improperly
343 analyzed low-level wind field and vertically integrated moisture field.

344

345 The Presidents' Day storm coupled with the publication of the first comprehensive climatology of
346 "bomb" cyclones by Sanders and Gyakum (1980) opened the floodgates to further studies of now
347 famous Atlantic coast storms such as the Megalopolitan storm (Sanders and Bosart 1985a,b), the
348 *QE II* storm (Gyakum 1983a,b; Uccellini 1986), the eastern Ohio Valley bomb cyclone of 25–26
349 January 1978 (e.g., Hakim et al. 1995), the "perfect storms" of late October and early November
350 1991 (e.g., Cordeira and Bosart 2010, 2011), and the 13–14 March 1993 Superstorm (e.g.,
351 Uccellini et al. 1995; Bosart et al. 1996; Dickinson et al. 1997). The importance of upstream
352 precursor disturbances on western Atlantic cyclogenesis cases was also identified (e.g., Sanders
353 1986a, 1987; Lackmann et al. 1997; Cordeira and Bosart 2010). Results from field programs such
354 as GALE in 1986 (Dirks et al. 1988) and ERICA in 1988–1989 (Hadlock and Kreitzberg 1988)
355 solidified the importance of previously neglected diabatic heating processes during intense oceanic
356 cyclogenesis and illustrated the importance of upstream precursors to downstream cyclogenesis.

357

358 Statistical analyses and climatologies of explosively deepening western North Atlantic cyclones
359 motivated by these field experiments established the existence of a skewed distribution of
360 explosively deepening extratropical cyclones toward the rapid deepening end (e.g., Roebber 1984,
361 1989). Further numerical investigations of explosively deepening extratropical cyclones by
362 Roebber and Schumann (2011, p. 2778) has revealed "that the strongest maritime storms are the
363 result of the baroclinic dynamics of the relative few being preferentially enhanced through
364 feedback with the available moisture. Strong baroclinic forcing, in the absence of this moisture

365 availability and resultant latent heating, does not produce the skewed rapid deepening tail
366 behavior." These results indicate that very rapidly deepening intense oceanic extratropical
367 cyclones are the result of a fundamentally distinct pattern of behavior characteristic of maritime
368 cyclones compared to continental cyclones, and that this behavior is the result of process
369 interactions (i.e., baroclinic dynamics and latent-heat release). These results further indicate that
370 the combination of diabatic forcing associated with latent-heat release in a highly baroclinic
371 environment can account for the skew on the right side of the cyclone intensity distribution,
372 pointing the way towards future research on rapidly intensifying oceanic cyclones and associated
373 atmospheric predictability studies.

374

375 Using an example of a nor'easter, one measure of how much cyclone knowledge and its graphical
376 representation has advanced in 100 years is to compare the idealized depictions of cyclones (Figs.
377 3–4) with a modern depiction of a real extratropical cyclone from gridded model analyses (Fig. 6).
378 A strong, sub 965-hPa cyclone lay off the East Coast of North America at 1200 UTC 4 January
379 2018 (Fig. 6a). This cyclone easily met the Sanders and Gyakum (1980) condition for a bomb
380 cyclone, with rapid intensification occurring between the favored equatorward entrance region of
381 the jet streak to the north and the poleward exit region of the jet streak to the south. The cyclone
382 was located near the thermal ridge in the 1000–500-hPa thickness field with strong warm-air
383 advection to the north and east and strong cold-air advection to the south and west. The strong sea
384 level pressure gradient on the southwestern side of the storm was associated with exceptionally
385 strong surface westerly winds estimated to have exceeded 40 m s^{-1} . The cruise ship *Norwegian*
386 *Breakaway* was caught in these strong winds, with resulting injuries to passengers and crew and

387 considerable damage to the vessel (<http://newyork.cbslocal.com/2018/01/05/cruise-through->
388 [storm/](#)).

389

390 The 4 January 2018 storm can be illustrated in a modern dynamical perspective through a
391 dynamical-tropopause view (Fig. 6b) and an analysis of upper-level potential vorticity (PV) and
392 upper-level divergent irrotational wind outflow (Fig. 6c), representing the underlying physical
393 processes in the extratropical cyclone in a way that the conceptual models in Figs. 3–4 cannot. A
394 classic signature of an explosively deepening extratropical cyclone is a *PV hook* as evidenced by
395 potential temperature values less than 310 K approaching the cyclone center (Fig. 6b) and
396 accompanying layer-mean 925–850-hPa relative vorticity along the bent-back front as the cyclone
397 approaches its occluded stage. Good agreement exists between the location of the bent-back 925–
398 850-hPa vorticity in Fig. 6b with the 600–400-hPa layer-mean ascent in Fig. 6c. Diabatically
399 generated outflow from the deep ascent in the northern semicircle of the storm is manifest by a
400 starburst pattern in which negative PV advection by the irrotational wind acts to strengthen the PV
401 gradient from the southwestern to northeastern side of the storm with an associated tightening of
402 the horizontal PV gradient and a strengthening of the downstream jet to over 100 m s^{-1} (not shown).

403

404 With this background and perspective on extratropical cyclones, we turn to their dynamics and the
405 theoretical frameworks during the past century that have helped advance our understanding of the
406 development of cyclones.

407

408

409 **3. Theories of cyclones and cyclogenesis**

410

411 The dominating presence of cyclones and anticyclones within the atmosphere's chaotic
412 extratropical flow prompts fundamental theoretical questions related to their *raison d'être*,
413 ubiquity, variety, and characteristic space–time scales. Not surprisingly then, the quest to
414 understand the day-to-day development of synoptic-scale flow and to formulate perceptive theories
415 for extratropical cyclogenesis has been one of meteorology's long-standing objectives. Indeed,
416 Margules in his parting contribution to meteorology identified extratropical cyclogenesis as one of
417 the discipline's grand challenges and avowed, "I consider it unlikely that observations alone will
418 suffice to provide a useful model of cyclogenesis. An individual equipped with sufficient
419 knowledge of the observations and endowed with imagination and abundant patience may attain
420 this goal" (Margules 1906, p. 497).

421

422 The response to this grand challenge has been chronicled in several studies overviewing theories
423 of cyclogenesis (e.g., Hoskins 1990; Reed 1990; Pierrehumbert and Swanson 1995; Davies 1997;
424 Thorpe 2002). In this section, a digest is provided of the iconic theories that have been advanced
425 from around the time of the AMS's founding with consideration being given to each theory's
426 essence, emergence, and explanatory power.

427

428 The period around 1919 was a propitious time to address the Margulesian challenge. The
429 disputations of the mid 1800s between protagonists favoring James Pollard Espy's thermal versus
430 William Redfield's mechanical conception of cyclones and cyclogenesis had long since abated
431 (e.g., Kutzbach 1979), quasi real-time surface synoptic datasets were accruing from the newly
432 established but sparsely spaced observational networks, limited upper-air soundings were

433 becoming available, and the key classical laws of physics pertinent for atmospheric flow had been
434 established (e.g., Abbe 1901). Furthermore, case-study analyses were beginning to tease out
435 inchoate characteristics of a cyclone's low-level features from the seeming morass of mildly
436 related surface observations. More trenchantly at this time, two nascent hypotheses for
437 cyclogenesis were being advanced. Thus, like Robert Frost's traveler, the meteorological
438 community was confronted in 1919 with "two paths diverging...," and the theme of *divergence*
439 was also to permeate the subsequent history of cyclogenesis.

440

441 *a. Two nascent hypotheses*

442

443 The central theme of the first of the nascent hypotheses was indeed *horizontal divergence*. The
444 hypothesis is encapsulated in the following statement: "...a cyclone is produced by the withdrawal
445 laterally of the air at a height of from 8 to 10 kilometres" (Dines 1912, p. 46). The features
446 identified by Dines were the result of a prodigious feat of inspired analysis conducted with the
447 available meager data (Fig. 7). It revealed the distinctive structure of mature cyclones near the
448 tropopause with a cold central core located beneath a lowered tropopause that was itself
449 surmounted by a warm core in the lower stratosphere.

450

451 The hypothesis correctly eschewed the inference, asserted by some, that the surface low had a
452 stratospheric cause, but rather pointed to tropopause-level divergence as the mediator of the overall
453 vertical structure. However, the hypothesis neither established a determining process for the
454 divergence nor accounted for the earlier perceptive observational detection by Ley (1879) and
455 Bigelow (1902) that a growing cyclone's center of low pressure tilted upstream with increasing

456 height in the lower troposphere.

457

458 Furthering this hypothesis was hampered by two factors. First, there was a lack of adequate upper-
459 air data to shed light on the space–time development of the cyclone’s vertical structure.
460 Notwithstanding, Ficker (1920) provided a prescient illustration of a surface low pressure center
461 developing as a major flow feature (i.e., an upper-level trough) advanced toward a secondary
462 feature (i.e., a surface trough). Observations acquired in the subsequent decades revealed an
463 empirical link between certain recurring upper-air flow patterns such as the delta-shaped jet exit
464 region with surface cyclogenesis, and suggestive, but incomplete, arguments were advanced to
465 account for this linkage by Scherhag (1934) (as discussed by Volkert 2016) and Namias and Clapp
466 (1949). The second major limiting factor was that this nascent theory’s emphasis on horizontal
467 divergence highlighted an Achilles heel of atmospheric dynamics that was to bedevil progress for
468 decades. Margules (1904) had deduced that its accurate computation with the available data would
469 be challenging, and Jeffreys (1919) noted that geostrophic flow implied weak horizontal
470 divergence, thwarting attempts at direct calculation of the divergence.

471

472 The other nascent hypothesis was that associated with the Bergen School under the leadership of
473 Vilhelm Bjerkenes. The Bergen School’s contribution can be viewed as comprising two
474 components related respectively to the morphology of surface weather patterns and to the
475 occurrence of cyclogenesis. First, the Bergen School came to conceive synoptic-scale atmospheric
476 flow as being dominated by an elongated sloping frontal boundary separating air masses of
477 different temperature, and the interface itself was depicted as deforming into alternate cold and
478 warm frontal segments (sections 5 and 6). This portrayal of surface weather patterns was an

479 amalgam of a reconstituted synthesis of earlier studies and a brilliant conceptualization of the
480 extant surface observational data. Its crisp depiction of cold and warm fronts remains (with some
481 refinements) a staple ingredient of synoptic analysis charts to this day.

482

483 The second component arose from the Bergen School's observation that the frontal interface was
484 the seat for wave undulations that subsequently evolved to form a train of cyclones (Bjerknes and
485 Solberg 1922; Fig. 8). They hypothesized that these undulations were attributable to the instability
486 of the sloping frontal interface, and an attempt was made to determine the stability of a basic state
487 comprising a uniformly sloping interface separating two homogeneous incompressible fluids of
488 different uniform densities and velocities. This setting replicated that already proposed by
489 Margules (1906), and the hypothesis would yield striking explanatory power provided the most
490 unstable perturbations of the interface were to correspond to the characteristic space–time scale of
491 observed frontal-wave cyclones. However, numerous studies, based upon variants of the
492 Margulesian front, conducted first by the Bergen School (Bjerknes and Godske 1936) and
493 subsequently by many others have not yielded fully persuasive support for the hypothesis. Thus,
494 like the hypothesis for upper-level driven cyclogenesis, the Bergen School's hypothesis of frontal
495 instability lacked firm theoretical underpinning.

496

497 *b. Two substantive theories*

498

499 By the mid 20th century, two substantive theories emerged that were to exert an enduring influence
500 upon studies of cyclogenesis. A hallmark of both theories was their distinctive approach to
501 divergence. One theory focused explicitly on estimating the divergent component of the flow,

502 whereas the other avoided its direct consideration. Key to both approaches were (a) a refined
503 interpretation of divergence, as embodied in the term *quasigeostrophy* coined by Durst and
504 Sutcliffe (1938, p. 240), "...departures of the wind velocity from the geostrophic value...are
505 generally small...(so that the whole motion can be described as quasigeostrophic) but they are of
506 fundamental dynamical significance" and (b) the realization that a simplified version of the
507 equation for the vertical component of the vorticity was appropriate for synoptic-scale flow
508 (Rossby 1940).

509

510 The first theory (Sutcliffe 1938, 1947) set out to diagnose the weaker ageostrophic (or divergent)
511 flow component from a knowledge of the geostrophic component itself. It proved possible to infer
512 qualitatively (using conventional geopotential and thermal charts) the sign of the difference
513 between upper- and lower-level horizontal divergence, and thereby identify preferred regions for
514 cyclogenesis (and anticyclogenesis) along with the direction of translation of pressure systems
515 (Fig. 9). Sutcliffe (1947, p. 383) concluded with seeming diffidence that, "Since the arguments
516 and deductions are susceptible both to physical interpretation and to practical test, they may have
517 some acceptable virtue."

518

519 This theory amplified Dines' hypothesis, provided a tool for estimating flow development (i.e.,
520 the evolution of weather patterns), and was readily applicable. The theory also helped fuse synoptic
521 and dynamic meteorology. Its virtue is attested by the fact that meteorological terminology soon
522 became replete with terms such as *diffluent and confluent troughs, left exit of the jet stream* and
523 *thermal steering* that referred to certain developmental patterns (Fig. 9).

524

525 The second theory, baroclinic instability (Charney 1947; Eady 1949), resulted from an
526 examination of the stability of a steady uniform baroclinic shear flow in the extratropics. Eady
527 (1949, p. 33) concluded that “small disturbances of simple states of steady baroclinic large-scale
528 atmospheric motion...are almost invariably unstable,” and that, in the f -plane limit, the most
529 unstable perturbation possessed a spatial scale and growth rate akin to that of larger-scale cyclones.
530 In effect, although a latitudinal temperature gradient can be balanced by a commensurate zonal
531 flow, wave perturbations of that balanced state can feed from the associated available potential
532 energy. A subsequent simulation with a simple numerical model indicated that growth of the
533 disturbance to finite amplitude resulted in cyclogenesis and frontogenesis (Phillips 1956, pp. 141–
534 142): “The wave begins as a warm low, and...the final stages look very much like those of an
535 occluded cyclone....Definite indications of something similar to cold and warm fronts are to be
536 seen in the 1000-mb [hPa] contours.” This theory views fronts as emerging during cyclogenesis
537 and therefore differs radically from the Bergen School concept of fronts being the source of
538 cyclogenesis.

539
540 Together these two theories helped establish meteorology as a scholarly scientific discipline in the
541 broader scientific community⁴. They also encapsulated in embryonic form the diagnostic and
542 predictive components of the so-called quasigeostrophic set of equations, whose formal derivation

⁴ The unreliability of forecasts and lack of firm theoretical underpinning to the prevailing ideas on cyclogenesis was certainly a deterrent to the full acceptance of meteorology as an established fully fledged discipline prior to the 1940s. Indeed, this view remained prevalent in some quarters for decades thereafter. In support of this contention, the following is a quote from Taylor (2005, p. 642): “A second meeting of the NAS [National Academy of Sciences] advisory committee on meteorology was held over September 19 and 20, 1956, and Bronk announced that Edward Teller had joined the committee. Lloyd Berkner and Carl Rossby were nominated as co-chairs, and since Berkner was a physicist, the minutes noted that this demonstrated 'the recognition of meteorology as a science'" (National Academy of Sciences 1956).

543 soon followed. The first theory was generalized to yield the diagnostic component of the
544 quasigeostrophic set, the so-called ω -equation (Fjortoft 1955). In addition to its deployment for
545 forecasting (e.g., Sutcliffe and Forsdyke 1950; Petterssen 1955), this equation was used to detect
546 the occurrence of cyclogenesis linked to an upper-level trough advancing toward a surface
547 baroclinic zone (Petterssen 1956, p. 335), classifying different types of cyclogenesis (Petterssen
548 and Smebye 1971) and undertaking case study analyses of, for example, events of explosive
549 maritime cyclogenesis. Contemporaneous with these early studies, the contribution of
550 kinematically estimated upper- and lower-level divergence to the three-dimensional development
551 of, and the link between, cyclogenesis and frontogenesis was being elicited in a stream of
552 perceptive diagnostic studies (e.g., Newton 1954, 1956; Newton and Palmén 1963).

553

554 Baroclinic instability theory was followed by the formal derivation of the predictive component of
555 the quasigeostrophic set (Charney 1948; Eliassen 1949). This single and self-contained equation
556 states that there is a quasigeostrophic form of the potential vorticity that is conserved following
557 the flow. It is a radical simplification of the primitive equations, and refers only to the geostrophic
558 flow (thereby circumventing direct consideration of the divergent component). It has provided a
559 fruitful testbed for pursuing studies of baroclinic instability and cyclogenesis because it is
560 amenable both to numerical solution and to mathematical analysis.

561

562 Numerical simulations conducted with this equation, its semigeostrophic counterpart (Hoskins
563 1975), and the primitive equations (a) confirmed that the nonlinear phase of baroclinic instability
564 replicates cyclogenesis with accompanying cold- and warm-frontal accoutrements, (b) showed that
565 a wide panoply of cyclone types and fronts can result from the ambient flow possessing jet-like

566 features or lateral shear, (c) calibrated the modifying role of cloud diabatic heating, and (d)
567 demonstrated that a localized upper-tropospheric anomaly can effectively trigger surface
568 cyclogenesis. Mathematical analysis of the equation (Charney and Stern 1962; Pedlosky 1964)
569 established general instability criteria for two-dimensional basic states, and thereby helped both
570 guide and interpret the results of exploratory studies. Likewise, the concept of baroclinic
571 instability is central to the theories for the atmosphere's general circulation (Held 2018).

572

573 The compatibility of the two substantive theories discussed above is illustrated in Fig. 10. It shows
574 features of cyclogenesis derived from a variety of approaches: three-stage cyclone formation
575 accompanying strong vorticity advection aloft based upon ω -equation considerations (upper row),
576 synoptic syntheses of flow in the lower half of the troposphere in three stages (middle row) and a
577 three-dimensional schematic (left panel, bottom row), and surface and tropopause-level patterns
578 resulting from a semigeostrophic nonlinear simulation of baroclinic instability of a jet flow in the
579 Eady configuration (centre and right panels, bottom row).

580

581 *c. Two paradigm-changing frameworks*

582

583 In the second half of the 20th century, two theoretical advances resulted in new paradigms for
584 studying synoptic-scale flow development and cyclogenesis. These paradigms are the *potential*
585 *vorticity perspective* and *deterministic chaos*. The former regards the space–time development of
586 the interior potential vorticity (PV) and the surface potential temperature to be key to
587 understanding balanced flow, and that knowledge of the instantaneous distributions of these
588 variables "...is sufficient to deduce, diagnostically, all the other dynamical fields, such as winds,

589 temperatures, geopotential heights, static stabilities, and vertical velocities" (Hoskins et al. 1985,
590 p. 877).

591
592 In its mature form, the PV perspective is a coalescence, generalization, and exploitation of several
593 aspects of atmospheric dynamics, namely depiction of the flow on isentropic surfaces (Shaw 1930;
594 Rossby et al. 1937; Namias 1939), exploitation of the Lagrangian conservation property of PV
595 under adiabatic and frictionless conditions (Rossby 1940; Ertel 1942), extension of the
596 quasigeostrophic concepts of partition and inversion (Charney 1963) to higher forms of balanced
597 flow (Davis and Emanuel 1991), and detection and quantification of diabatic changes following
598 air-parcel trajectories (Whitaker et al. 1988; Uccellini 1990; Wernli and Davies 1997).

599
600 For cyclogenesis, the PV perspective focuses attention on the dominant time-evolving, coherent
601 flow features of PV in the interior (i.e., wave and vortex-like features in the upper troposphere and
602 lower stratosphere, cloud-modified regions of the troposphere) and of potential temperature at the
603 surface (i.e., frontal undulations, cut-off cold and warm pools). In this framework, the archetypical
604 upper-level induced surface cyclogenesis can be viewed as a upper-level localized PV anomaly
605 instigating and sustaining, via its far-field effect, a perturbation on an underlying lower-level front.
606 More generally, a suitably located and isolated PV anomaly (generated by adiabatic or diabatic
607 processes) can trigger disturbances on a surface front or upper-level jet. Such vortex-wave
608 interaction bears comparison to aspects of upstream and downstream development, extratropical
609 transition, Rossby-wave breaking, diabatic Rossby waves, and also the train of surface frontal-
610 wave cyclones akin to that portrayed by the Bergen School (Fig. 8).

611

612 Likewise, classical baroclinic instability can be viewed as a wave–wave interaction involving a
613 PV wave near the tropopause and a potential-temperature wave on the surface. For the classical
614 Eady configuration, the interaction is between potential-temperature waves on respectively the
615 upper and lower bounding surfaces (Davies and Bishop 1994). In both settings, maximum
616 instantaneous growth prevails when the upper and lower waves are in quadrature before they transit
617 to a shape-preserving (i.e., normal-mode) structure. The latter state prevails when the two waves
618 remain stationary relative to one another under the influence of their differing upper- and surface-
619 level ambient flow fields. One import of this result is that the fastest-growing normal mode is not
620 the optimum perturbation for maximizing transient growth, illustrated elegantly by Farrell's (1982)
621 example of rapid nonmodal growth. More circumspectly, consideration of nonmodal perturbations
622 introduces questions related to the nature of the growth, namely where (e.g., global, regional),
623 when (i.e., over what time span), and of what (i.e., selection of a suitable metric).

624

625 In addition, the perspective invites consideration of other aspects of cyclogenesis. For example,
626 tracing the origin of the high-PV air that surmounts a surface cyclone by computing backward
627 trajectories can shed light on subtle dynamics of cyclone formation by highlighting the
628 contribution and differing source regions of the high-PV air (e.g., Rossa et al. 2000) and
629 demonstrating that forecast error growth can be associated with the misrepresentation of these
630 differing airstreams (e.g., Davies and Didone 2013).

631

632 The second paradigm-changing concept referred to above is that of *deterministic chaos*. Edward
633 Lorenz, the principal architect of this concept, showed that deterministic flow systems that exhibit
634 nonperiodicity are unstable, and he went on to note in his breakthrough study, "When our

635 results...are applied to the atmosphere, which is ostensibly nonperiodic, they indicate that
636 prediction of sufficiently distant future is impossible by any method, unless the present conditions
637 are known exactly" (Lorenz 1963, p. 141).

638

639 Large-scale atmospheric flow is indeed an exemplar of an intrinsically chaotic system. Consonant
640 with this observation, NWP simulations demonstrate a sensitive response to small differences in
641 the initial state so that with time the trajectories of these simulations *diverge* in phase space. This
642 is an *apologia, par excellence*, for the failure of single deterministic forecasts, and a prompter for
643 applying an ensemble approach to NWP ([section 7b](#)).

644

645 The import of Lorenz's result for cyclogenesis studies is manifold. For example, on the time scale
646 of days, uncertainty in the specification of an NWP's initial state could in principle result in the
647 under- or over-development—or even the simulated nondevelopment or unrealized
648 development—of a cyclogenesis event. For example, [Fig. 11](#) illustrates the sensitivity to the
649 specification of the initial conditions exhibited by the 42-h operational ensemble forecasts from
650 the European Centre for Medium-Range Weather Forecasts (ECMWF) for the major European
651 cyclone Lothar in December 1999. Only 13 of the 50 (26%) ensemble members produced a cyclone
652 with an intensity equal to or greater than that observed. Such depictions provide a practical measure
653 of the predictability of such storms, and the subsequent challenge is to decipher what, if any, small
654 variations of the atmosphere's initial flow state can significantly promote or inhibit an event's
655 subsequent occurrence. Again, on the subseasonal time scale, a sector's flow can be dominated by
656 a particular weather regime (i.e., characterized for example by the occurrence of a series of
657 transient cyclones or a sequence of collocated blocking anticyclones), prompting questions related

658 to the predictability of weather regimes. The challenge is to determine and understand the nature
659 of the linkage between individual weather events and the sustained forcing factors (e.g., sea surface
660 temperature anomalies, stratospheric flow state), and whether this linkage is associated with
661 predictability—or unpredictability—islands in the troposphere’s chaotic flow.

662

663 Lorenz’s concept has patently lifted cyclogenesis studies to a new realm, and this paradigm-
664 changing effect has been mirrored in other scientific fields. The citation accompanying Lorenz’s
665 award of the prestigious Kyoto Prize states that deterministic chaos “has profoundly influenced a
666 wide range of basic sciences and brought about one of the most dramatic changes in mankind’s
667 view of nature since Sir Isaac Newton.”

668

669 Each of the iconic theories discussed in this section sought to establish the basic dynamics
670 governing cyclogenesis, and with the passage of time the tropopause-level jet stream and its
671 associated across-stream temperature gradient, emerged as key factors. In the next section,
672 attention shifts to discussing the influence of these factors upon the geographic distribution of the
673 birth, growth, and decay of extratropical cyclones, as well as their dependence upon and subtle
674 contribution to the jet stream.

675

676 **4. Where do extratropical cyclones occur?: Jet streams and storm tracks**

677

678 Climatologies show that cyclogenesis tends to occur in specific geographic locations (Fig. 12).
679 Specifically, maxima of cyclogenesis occur across the North Atlantic Ocean and North Pacific
680 Ocean in the Northern Hemisphere winter (Fig. 12a) and across the Southern Ocean and east of

681 Australia and New Zealand in the Southern Hemisphere winter (Fig. 12b). Why maxima in
682 cyclogenesis occur over the oceans is the principal topic of this section.

683

684 Understanding the locations and conditions for cyclogenesis requires a gaze upward to the upper
685 troposphere and the jet stream. Storm tracks are preferred areas of the jet stream that control the
686 genesis, movement, and lysis of synoptic-scale pressure systems, and they are critical to
687 midlatitude dynamics in several ways (e.g., Chang et al. 2002).

688

689 First, cyclones and storm tracks are an essential part of the atmospheric general circulation (e.g.,
690 Held 2018). A large fraction of the meridional energy and momentum transport in the midlatitude
691 atmosphere occurs within the storm tracks (Fig. 13b), and the storm tracks thereby sustain the
692 eddy-driven (or polar) jet streams. Starr (1948), in his famous essay on the general circulation,
693 considered the role of anticyclones and cyclones in the poleward transfer of absolute angular
694 momentum. He noted that the distribution and shapes of individual time-mean subtropical
695 anticyclones over the oceans facilitate the poleward transfer of absolute angular momentum from
696 the easterly trade winds. He also remarked that typical midlatitude cyclones as studied by Bjerknes
697 et al. (1933) served to facilitate the downward transport of absolute angular momentum from upper
698 levels because rising air ahead of cyclones was closer to the Earth's axis of rotation than
699 descending air behind cyclones. Lorenz (1967) provided a now-famous first quantitative analysis
700 of the Earth's general circulation in a World Meteorological Organization monograph. He stressed
701 that, because the general circulation would be unstable to small-scale baroclinic disturbances, the
702 observed circulation would have to contain mature cyclones and anticyclones, in agreement with
703 the results from Bjerknes (1937). Newton (1970) further quantified the role of extratropical

704 cyclones in the Earth's general circulation. He calculated that the kinetic energy produced during
705 the extratropical transition of Hurricane Hazel in 1954 (Palmén 1958) was 19×10^{13} W or about
706 25% of the kinetic-energy production in the entire extratropical region. This result led Newton
707 (1970, p. 148) to conclude that "only 4 or 5 active disturbances would suffice to account for the
708 total (kinetic energy) generation, in harmony with the conclusion...that a few disturbances could
709 accomplish the required meridional and vertical heat exchange."

710

711 Second, the location and temporal variability of the storm tracks determines the midlatitude mean
712 climate (Namias 1950), as well as the frequency and intensity of weather and climate extremes.
713 On interannual time scales, latitudinal shifts or the zonal extension and contraction of the storm
714 tracks result in regional precipitation and temperature anomalies in the area of the storm tracks and
715 further downstream. Examples are the effects of the Atlantic storm-track variability on
716 Mediterranean precipitation (e.g., Zappa et al. 2015) or the changes in the Pacific storm track
717 during strong El Niño events and associated precipitation anomalies over North America (e.g.,
718 Andrade and Sellers 1988; Chang et al. 2002) and South America (e.g., Grimm et al. 1998).

719

720 Third, storm tracks are teleconnection agents. They translate Rossby-wave forcing (e.g., from
721 tropical convection, stratospheric-temperature anomalies, sea-ice anomalies) to regional impacts
722 in areas remote from the original forcing. The role of the storm tracks extends beyond the mere
723 transfer of a disturbance, however. The storm tracks can amplify the low-frequency Rossby waves
724 in the jet stream via eddy feedbacks on the background flow (e.g., Held et al. 1989; Hartmann
725 2007).

726

727 As a consequence of these three reasons, a detailed understanding of storm-track dynamics and
728 proper representation in numerical models is essential for capturing the midlatitude dynamical
729 response to external forcings, understanding internal variability or forecasting for seasons and
730 beyond.

731

732 *a. Global occurrence*

733

734 The existence of storm tracks has historically been recognized by meteorologists since before the
735 20th century (e.g., Kropotkin 1893; Van Bebber 1891; Van Bebber and Köppen 1895; Chang et
736 al. 2002 provide an overview). In the mid 20th century, Northern Hemisphere storm tracks based
737 on surface weather charts were compiled by Klein (1951, 1957, 1958) and Petterssen (1956, pp.
738 266–276). With the emergence of gridded analysis datasets by the end of the century, new and
739 more comprehensive views of the storm tracks became possible.

740

741 Specifically, two complementary diagnostic methods have been used to identify storm tracks from
742 these gridded meteorological fields. Early computational studies identified storm tracks from time-
743 filtered fields in the Northern Hemisphere (Fig. 13a; e.g., Blackmon 1976; Lau and Wallace 1979)
744 and the Southern Hemisphere (Fig. 13a; e.g., Trenberth 1991; Berbery and Vera 1996). This
745 approach identifies the storm tracks from variability maxima in meteorological fields (e.g., relative
746 vorticity, height, wind) associated with the passage of synoptic-scale eddies. These methods are
747 still frequently used as they link to the energy and momentum budgets, are computationally
748 inexpensive, and are easy to apply. Alternatively, synoptic-scale eddies can be tracked using
749 manual tracking (e.g., Klein 1957), lagged correlations (e.g., Wallace et al. 1988), or automated

750 feature-tracking algorithms (e.g., Hodges 1995; Fig. 13a contours), providing information on the
751 entire storm life cycle from genesis to lysis and hence a Lagrangian perspective of the storm tracks
752 (e.g., Hoskins and Hodges 2002, 2005; Wernli and Schwierz 2006).

753

754 The Northern Hemisphere possesses two main storm tracks over the North Atlantic and North
755 Pacific Ocean basins (Fig. 13a), comparable in magnitude. The Southern Hemisphere possesses
756 one storm track spiraling across the South Atlantic and South Indian Oceans turning poleward over
757 the western Pacific (Fig. 13a). A second subtropical storm track at lower latitudes extends from
758 southern Australia across the Pacific with a southerly tilt over the eastern Pacific. The maximum
759 in number of storms is located over the South Atlantic and Indian Oceans.

760

761 The storm tracks in each hemisphere generally reach their maximum in eddy kinetic energy during
762 the winter season when the equator-to-pole temperature gradients are strongest (Chang et al. 2002).
763 An interesting exception is the North Pacific storm track. In midwinter, eddy kinetic energy
764 decreases slightly over the Pacific storm track (Nakamura 1992), a local minimum referred to as
765 the midwinter suppression. A possible explanation for the midwinter suppression is the faster
766 progression of eddies across the baroclinic zone in winter due to a stronger background flow,
767 reducing baroclinic amplification (Chang 2001) and resulting in shorter lifetimes of the cyclones
768 (e.g., Schemm and Schneider 2018). Along similar lines, vertical trapping of baroclinic eddies
769 resulting in reduced vertical interaction has also been suggested (Nakamura and Sampe 2002).
770 Another explanation is variability in the number of cyclones that reach the Pacific storm track from
771 upstream (Penny et al. 2010). A more detailed state-of-the art midwinter storm-track suppression
772 mechanism is provided by Schemm and Schneider (2018). They find that the number of cyclones

773 in the North Pacific storm track remains high in the Pacific in the midwinter but the mean eddy
774 kinetic energy per cyclone is reduced (Schemm and Schneider 2018). Southern Hemisphere storm-
775 track intensity variations between seasons are small (e.g., Hoskins and Hodges 2005). In the
776 summer hemispheres, the storm track shifts poleward (e.g., Hoskins and Hodges 2005; Wernli and
777 Schwierz 2006) and the upper-level jets shift with the storm tracks (e.g., Koch et al. 2006).

778

779 Maxima in cyclogenesis also occur downstream of major mountain ranges such as the Rocky
780 Mountains and Alps in the Northern Hemisphere (Fig. 13a) and the Andes and the Antarctic
781 Peninsula in the Southern Hemisphere (Fig. 13b). Cyclogenesis in the lee of the Rocky Mountains
782 was first studied by Newton (1956), building upon earlier work by Hess and Wagner (1948).
783 Newton's (1956) time-dependent three-dimensional analysis enabled him to interpret a lee cyclone
784 on 17–18 November 1948 in terms of dynamical principles by connecting the cyclonic vorticity
785 advection aloft along the 300-hPa jet stream to the ascent and upper-level divergence above the
786 developing lee cyclone. He linked his results to Petterssen's (1955) finding that the “cyclone
787 development at sea level occurs where and when an area of positive vorticity advection in the
788 upper troposphere becomes superimposed on a frontal zone in the lower troposphere” (Newton
789 1956, pp. 528–529). Newton further showed how the period of rapid surface lee cyclogenesis was
790 associated with maximum 500-hPa ascent beneath the jet. In what was a landmark finding for that
791 time, he showed that the maximum ascent at 500 hPa was superimposed over the maximum surface
792 downslope flow, indicative of the importance that lower-tropospheric vertical stretching and the
793 associated horizontal stretching and cyclonic relative vorticity growth played in the lee-
794 cyclogenesis process. Furthermore, Newton (1956) showed that differential lateral friction over

795 sloping terrain east of the Rockies was as important as dynamically induced lower-tropospheric
796 vertical stretching in the production of cyclonic vorticity during lee cyclogenesis.

797

798 Sanders (1988), linking back to Petterssen (1955), noted that surface cyclogenesis is primarily a
799 response to the approach of a preexisting trough at upper levels. Accordingly, Sanders (1988)
800 investigated the origin of preexisting disturbances over the Northern Hemisphere. His analysis was
801 based on the behavior of 500-hPa troughs as identified by the evolution and configuration of the
802 552-dam geopotential height contour from twice-daily upper-level maps for a nine-year period. In
803 an indication of the importance of major mountain barriers over the Northern Hemisphere, Sanders
804 (1988) found that the two primary centers where trough births exceeded trough deaths were located
805 over and downstream of the Rocky Mountains and the Tibetan Plateau whereas a weak maximum
806 of trough deaths over trough births was found about 1000 km upstream of the Rocky Mountains
807 and the Tibetan Plateau. Thus, the maxima of lee cyclogenesis appear to be connected, at least in
808 part, to the formation of mobile short-wave troughs in the jet stream.

809

810 *b. The dynamics of storm tracks*

811

812 The release of potential energy by upward and poleward transport of warm air through baroclinic
813 instability is the fundamental mechanism behind the formation and growth of transient baroclinic
814 eddies that compose the storm track and whose surface manifestation includes cyclones ([section](#)
815 [3](#)). Baroclinicity is a measure for the growth potential of baroclinic eddies and is proportional to
816 the meridional temperature gradient and inversely proportional to the effective static stability
817 taking into account the effects of latent-heat release (e.g., Charney 1947; Lindzen and Farrell 1980;

818 O'Gorman 2011). Latent heating is asymmetrically linked to the vertical winds with heating
819 occurring only in ascent. Because of latent heating, the effective stability is reduced compared to
820 the dry static stability. For example, at 50° latitude in both hemispheres, effective stability is about
821 60% of the dry static stability (O'Gorman 2011), an indication that latent heating affects the
822 dynamics of individual eddies.

823

824 The jet is also maintained against surface friction by momentum fluxes (e.g., Lau and Holopainen
825 1984; Chang et al. 2002; Hartmann 2007; Shaw et al. 2016). The baroclinic eddies converge
826 momentum into the upper-level jet during the final nonlinear stage of their life cycle (e.g.
827 Thorncroft et al. 1993). The eddy momentum fluxes are not constant over time and depend on the
828 location of the jet. A positive feedback exists because the meridional location of the jet affects the
829 shape of the high-frequency eddies. The shape of these eddies determines the direction of the
830 associated momentum fluxes, which in turn affects the meridional position of the jet stream (e.g.,
831 Gerber and Vallis 2007, 2009; Rivière 2009; Barnes and Hartmann 2010). Cyclonically breaking
832 waves are favoured with a more equatorward jet stream, and the momentum fluxes associated with
833 these cyclonically breaking waves keep the jet in its equatorward position. The opposite is true for
834 a poleward-shifted jet and anticyclonic wave-breaking. Thus, this feedback results in the
835 persistence of the meridional jet and storm-track position on medium-range to sub-seasonal time
836 scales.

837

838 These maxima in the momentum fluxes are located downstream of the maxima in the heat fluxes.
839 A simple interpretation of this spatial relationship is that it is a direct representation of an idealized
840 baroclinic life cycle propagating eastward. The idealized life cycle of a baroclinic wave is

841 characterized by strong low-level poleward temperature fluxes during the early stage of the life
842 cycle and upper-level momentum fluxes into the jet during the final stage of the life cycle (e.g.,
843 Thorncroft et al. 1993). However, this simple explanation falls short of the complexity of real-life
844 storm tracks where baroclinic eddies are embedded in coherent wave packets that consist of several
845 eddies. The wave packets propagate with an eastward group velocity that exceeds the eastward
846 phase velocity of individual eddies, and there is downstream transfer of energy from one eddy to
847 the next eddy within the wave packets (e.g., Simmons and Hoskins 1979; Orlanski and Katzfey
848 1991; Chang 1993; Orlanski and Chang 1993), a process called *downstream development*.

849

850 In addition to the dry dynamics discussed above, diabatic processes, and particularly latent heating,
851 shape both cyclone and storm-track dynamics. Latent heating in the midlatitudes is strongest in
852 baroclinic eddies (Sutcliffe 1951) and hence within the storm tracks. More specifically, latent
853 heating occurs in the warm conveyor belts of extratropical cyclones (e.g., Harrold 1973; Carlson
854 1980; Browning 1990; Browning and Roberts 1996; Wernli 1997; Wernli and Davies 1997; Joos
855 and Wernli 2012; Pfahl et al. 2014), and it affects the structure of cyclones (e.g., Danard 1964)
856 through low-level diabatic PV production (e.g., Reed et al. 1992; Davis et al. 1993), resulting in a
857 moderate to strong correlation between cyclone intensification rate and the strength of warm
858 conveyor belts, as measured by the number and mass of the warm conveyor belt trajectories
859 associated with the cyclone at low levels during its strongest intensification (Binder et al. 2016).

860

861 Latent heating is also part of the answer to the question posed by Hoskins and Valdes (1990),
862 namely why do storm tracks exist? Baroclinic eddies feed on baroclinicity and, by transporting
863 heat northward during their life cycle, they act to destroy the baroclinicity. As a consequence, the

864 next eddy would be expected to form in a different location where the baroclinicity is still high,
865 arguing against the formation of a coherent storm track. So, which processes contribute to the self-
866 maintenance of the storm track? Hoskins and Valdes (1990) found that thermal forcing,
867 predominantly via latent heating associated with the baroclinic eddies, is the most important factor
868 in maintaining the baroclinicity and hence the storm tracks. Sensible heat fluxes restore most of
869 the baroclinicity near the surface (e.g., Hotta and Nakamura 2011), whereas latent heating
870 dominates in the free troposphere (e.g., Papritz and Spengler 2015). Then, vorticity fluxes
871 associated with the baroclinic eddies promote convergent flow in the entrance region of the storm
872 tracks (Hoskins et al. 1983) that strengthens the temperature gradient and thereby counters the
873 effects of the temperature fluxes by the eddies (Hoskins and Valdes 1990). In addition, energy
874 fluxes by stationary planetary-scale waves increase the baroclinicity in the storm-track entrance
875 region (e.g., Lee and Mak 1996; Kaspi and Schneider 2013). Last, the low-level flow induced by
876 the eddies exerts wind stresses on the oceans that help maintain the warm boundary currents and
877 thereby baroclinicity (Hoskins and Valdes 1990).

878

879 Diabatic processes also influence storm-track variability. There are distinct differences between
880 the east and the west North Atlantic. Over the western Atlantic, the maxima in sensible and latent
881 heating remain anchored to areas of strong sea surface temperature gradients, whereas in the
882 eastern Atlantic the areas of maximum latent-heat release shift meridionally in tandem with the
883 storm track and hence help to maintain the anomalous storm-track positions (Woollings et al.
884 2016). The interdependency between the creation of baroclinicity by diabatic processes and
885 destruction of baroclinicity by the release of baroclinic instability on subseasonal time scales may
886 explain oscillations of storm-track intensity on these time scales (e.g., Ambaum and Novak 2014;

887 Novak et al. 2017). Beside latent heating, other diabatic processes (e.g., cloud radiative processes)
888 affect the storm tracks, as well (e.g., Shaw et al. 2016).

889

890 Storm tracks extend longitudinally beyond the maximum surface baroclinicity due to downstream
891 development and there is no obvious end to this downstream extension. So which factors control
892 the downstream extent of the storm tracks? First, increased surface roughness and drag over the
893 downstream continents results in energy dissipation (Chang and Orlanski 1993). However, zonally
894 confined storm tracks form without orography (Broccoli and Manabe 1992) or even continents
895 (Kaspi and Schneider 2011); therefore, other processes must be involved. Indeed, stationary
896 planetary-scale waves destroy the baroclinicity downstream of storm tracks (Hoskins and Valdes
897 1990; Kaspi and Schneider 2011, 2013). These stationary planetary-scale waves arise from
898 orography and warm ocean currents (Held et al. 2002). The Atlantic storm track's extent and
899 southwest–northeast tilt are strongly influenced by the geometry and major orography of North
900 America (e.g., Brayshaw et al. 2009; Gerber and Vallis 2009) and by Atlantic SST gradients
901 (Brayshaw et al. 2011). In addition, the weaker background flow in the storm-track exit areas gives
902 rise to Rossby wave breaking and thereby the termination of baroclinic wave packets (Swanson et
903 al. 1997).

904

905 Having considered the large-scale aspects of how the jet stream affects extratropical cyclones, we
906 now transition to scales smaller than the cyclone, to investigate how the dynamics and kinematics
907 of the cyclone itself create structures called fronts that regulate the distribution of heat, moisture,
908 winds, and precipitation within extratropical cyclones.

909

910

911 **5. Fronts and frontogenesis**

912

913 Characteristic features of extratropical cyclones are the baroclinic zones, or fronts, associated with
914 their development. Fronts are characterized by vertically sloping transition zones in the thermal
915 and wind fields (Keyser 1986). The study of fronts, and the process by which they form (i.e.,
916 frontogenesis), was energized by the Bergen School in the wake of World War I. Later, dovetailing
917 observational, theoretical, and diagnostic research encapsulated in Fig. 2 has resulted in substantial
918 growth in the dynamical understanding of frontogenesis, as well as in the systematic refinement
919 of conceptual models of fronts. This section documents and discusses major advances in
920 understanding fronts and frontogenesis during the past 100 years, with a focus on the synergy
921 between observational, theoretical, and diagnostic frontal research.

922

923 *a. Observations of fronts*

924

925 In their development of polar-front theory, the Bergen School astutely integrated sparse
926 quantitative and visual observations to construct a conceptual model for the three-dimensional
927 thermal structure of a midlatitude cyclone (Bjerknes 1919; Bjerknes and Solberg 1921, 1922). The
928 polar front constituted a substantial component of the Norwegian cyclone model and was
929 hypothesized to encircle the globe and to separate polar air masses at high latitudes from tropical
930 air masses at low latitudes within the Northern Hemisphere. The temperature contrast associated
931 with the polar front subsequently represented the energy source for cyclogenesis and the
932 concomitant development of a frontal wave (section 3b).

933

934 The evolution of the frontal wave within the Norwegian cyclone model featured distinct warm-
935 and cold-frontal boundaries that were positioned at the leading edge of advancing warm and cold
936 currents of air, respectively, within the circulation of the cyclone (Fig. 4; Bjerknes and Solberg
937 1921, 1922). The vertical structure of warm and cold fronts was characterized by across-front
938 gradients in vertical motion and precipitation, as well as zero-order, tropospheric-deep
939 discontinuities in temperature and along-front wind that sloped over the colder air. During the
940 latter stages of cyclogenesis, the Norwegian cyclone model depicted advancing cold air behind the
941 cold front catching up to the warm front to produce an occluded front (Fig. 8). Both warm-type
942 and cold-type occluded fronts were proposed as complementary descriptions of the vertical
943 temperature structure associated with an occluded front, with the prevailing type governed by the
944 temperature of the air mass behind the cold front relative to the temperature of the air mass ahead
945 of the warm front.

946

947 The introduction of routine upper-air observations during the 1930s ushered in an era of revision
948 to polar-front theory. In particular, detailed analyses of the vertical structure of fronts consistently
949 demonstrated that fronts were characterized by sloping transition *zones* in the thermal and wind
950 fields, rather than the zero-order discontinuities proposed by the Bergen School (e.g., Bjerknes and
951 Palmén 1937; Palmén and Newton 1948). The rising tide of observations challenging polar-front
952 theory fed the discontent of Fred Sanders and Richard Reed, who lamented “the nearly blind
953 acceptance by many meteorologists” of polar-front theory during the mid 20th century (Reed 2003,
954 p. 3). Of particular interest to Sanders and Reed was the notion that fronts may not be tropospheric-
955 deep entities, as implied by polar-front theory. To this end, Sanders (1955) analyzed surface and

956 upper-air observations during the development of a strong surface-based frontal zone over the
957 south central United States (Fig. 14). Consistent with previous analyses, Sanders identified a
958 frontal zone that featured an intense temperature contrast near the surface, strong cyclonic relative
959 vorticity, and enhanced static stability. A novel aspect of the Sanders (1955) analysis, however,
960 was that the frontal zone was confined *exclusively* within the lower troposphere. In contrast, Reed
961 and Sanders (1953), Newton (1954), and Reed (1955) identified zones of intense thermal contrast
962 and cyclonic wind shear that were confined solely within the middle and upper troposphere (Fig.
963 15). The observation of frontal structures in the middle and upper troposphere laid the foundation
964 for the concept of upper-level frontogenesis, a process by which a wedge of stratospheric air is
965 extruded into the middle troposphere to produce a tropopause fold (e.g., Keyser and Shapiro 1986,
966 pp. 454–458).

967

968 In contrast to surface frontogenesis, which Sanders primarily attributed to horizontal deformation,
969 upper-level frontogenesis resulted from across-front gradients in vertical motion that positioned
970 the most intense subsidence on the warm side of the developing frontal zone (e.g., Reed and
971 Sanders 1953; Reed 1955; Bosart 1970). This description of upper-level frontogenesis countered
972 the conventional wisdom that the tropopause was a material surface separating stratospheric and
973 tropospheric air, because concomitant tropopause folding represented a process that was conducive
974 to stratosphere–troposphere exchange (e.g., Danielsen 1964, 1968; Shapiro 1978, 1980).
975 Considered together, the analyses by Sanders, Reed, and Newton established the notion that
976 surface and upper-level fronts were distinct structural and dynamical entities. Consequently, their
977 analyses represented profound breaks from polar-front theory and served as benchmarks against
978 which future theoretical and diagnostic analyses of fronts would be compared.

979

980 Advances in observational capabilities during the latter half of the 20th century spurred further
981 revisions to polar-front theory. For example, the advent of satellite technology provided greater
982 detail on the distribution of clouds and precipitation within midlatitude cyclones. Carlson (1980)
983 was among the first to synthesize satellite observations through the construction of a conceptual
984 model that expanded upon the Norwegian cyclone model and included the three-dimensional
985 movement of airstreams within a mature, steady-state cyclone (Fig. 16). Although providing a
986 common language for describing the airstreams in midlatitude cyclones, further refinements of
987 Carlson's (1980) model would occur over future years with the advent of air-parcel trajectory
988 calculations (e.g., Whitaker et al. 1988; Kuo et al. 1992; Mass and Schultz 1993; Schultz and Mass
989 1993; Reed et al. 1994; Wernli and Davies 1997; Wernli 1997; Schultz 2001).

990

991 Observations from case studies and intensive field campaigns also demonstrated that the evolution
992 and distribution of fronts within midlatitude cyclones did not always adhere to the model
993 conceptualized by the Bergen School. These observations illuminated some of the synoptic-scale
994 and mesoscale frontal structures that differed from those incorporated in the original polar-front
995 theory (Table 1). Observations of occluded cyclones have also suggested that warm-type and cold-
996 type occlusions are more accurately governed by the static stability rather than the temperature of
997 the air mass behind the cold front relative to air mass ahead of the warm front (Stoelinga et al.
998 2002). One result of this alternative perspective on occluded fronts is that cold-type occlusions
999 would rarely be observed (e.g., Schultz and Mass 1993; Schultz and Vaughan 2011; Schultz et al.
1000 2014).

1001

1002 During the last quarter of the 20th century, the modification of fronts and their associated narrow
1003 precipitation bands by topography at coastlines and mountains became a special focus of
1004 observational investigation in the flourishing field of mesoscale meteorology. Examples of
1005 investigations from three continents include: i) the CYCLonic Extratropical Storms project
1006 (CYCLES) that studied fronts along the west coast of North America (e.g., Hobbs et al. 1980), ii)
1007 the British–French campaign FRONTS87 that studied Atlantic fronts landfalling on western
1008 Europe (Thorpe and Clough 1991), iii) a five-year program called Fronts and Orography centered
1009 in southern Germany and neighboring countries (e.g., Volkert et al. 1991; Egger and Hoinka 1992),
1010 and iv) the Cold Fronts Research Programme that studied fronts over the Southern Ocean
1011 impinging on southeastern Australia (e.g., Ryan et al. 1985). These investigations provided close-
1012 up looks into the three-dimensional structure of precipitation and moisture within frontal zones
1013 and, thus, research datasets for prototypical simulations of frontal dynamics. In particular, the latter
1014 two investigations helped to quantify the often frontogenetic forcing of mountain massifs due to
1015 low-level blocking of the airflow in the vicinity of the European Alps and Australian Alps,
1016 respectively.

1017

1018 *b. Theory of fronts*

1019

1020 As observations further revealed the characteristics of frontal zones, theoretical studies sought to
1021 reproduce and interpret their development within idealized frameworks. The conceptualization of
1022 fronts as transition zones coincided with the advent of baroclinic instability theory (e.g., Charney
1023 1947; Eady 1949) and quasigeostrophic theory (section 3b). An important shift represented by
1024 these theories was that intense fronts were not a necessary precursor to cyclogenesis, but rather

1025 that intense fronts developed as a consequence of cyclogenesis. This shift placed emphasis on the
1026 role of horizontal deformation in subsequent theoretical studies of frontogenesis.

1027

1028 In a quasigeostrophic framework, frontogenesis is driven by geostrophic deformation that acts to
1029 intensify the horizontal temperature gradient. This process is subsequently accompanied by the
1030 development of an across-front ageostrophic circulation that arises to preserve thermal wind
1031 balance (e.g., Hoskins et al. 1978). Studies employing two-dimensional quasigeostrophic
1032 prognostic models were successful in producing frontal zones with some fidelity (e.g., Stone 1966;
1033 Williams 1968, 1972; Williams and Plotkin 1968). However, quasigeostrophic solutions featured
1034 a number of deficiencies compared to observations. Namely, frontogenesis occurred too slowly at
1035 the surface, the frontal zone did not exhibit a vertical tilt, the frontal zone featured areas of both
1036 cyclonic and anticyclonic relative vorticity, and the frontal zone exhibited static instability.

1037

1038 The deficiencies of quasigeostrophic solutions are understood by recognizing that fronts are
1039 synoptic-scale in length, but mesoscale in width. Consequently, whereas the along-front wind is
1040 approximately geostrophic for straight fronts, the across-front wind can be substantially
1041 ageostrophic. In what would become a pioneering contribution to semigeostrophic theory (Hoskins
1042 1975), Sawyer (1956) modified the quasigeostrophic solution for the across-front ageostrophic
1043 circulation to retain across-front ageostrophic and vertical advectons of temperature and along-
1044 front wind. However, Sawyer's solution was limited in that it only considered the frontogenetical
1045 effect of geostrophic confluence. Eliassen (1962) expanded upon Sawyer's work to include the
1046 frontogenetical effects of geostrophic horizontal shear and differential diabatic heating in his
1047 solution for the across-front ageostrophic circulation, diagnosed from what would later be termed

1048 the Sawyer–Eliassen equation. The across-front ageostrophic circulations diagnosed from the
1049 Sawyer–Eliassen equation in regions of geostrophic confluence and horizontal shear (Fig. 17)
1050 represented a significant theoretical advance in the attempt to better understand the dynamics of
1051 frontogenesis and to reproduce the characteristics of observed fronts.

1052

1053 Two-dimensional semigeostrophic prognostic models, which included across-front ageostrophic
1054 advections of temperature and along-front wind, demonstrated a greater ability than their
1055 quasigeostrophic counterparts to reproduce observed surface and upper-level fronts under
1056 adiabatic and frictionless conditions (e.g., Hoskins 1971, 1972; Hoskins and Bretherton 1972). In
1057 particular, the semigeostrophic models identified frontogenesis as a two-step process, in which
1058 geostrophic deformation strengthens the horizontal temperature gradient and induces an across-
1059 front ageostrophic circulation. This circulation further strengthens the horizontal temperature
1060 gradient, resulting in a contraction of the width of the frontal zone at the surface, and accounts for
1061 the vertical tilt of the frontal zone (Fig. 18). Two-dimensional semigeostrophic and primitive
1062 equation models forced by geostrophic confluence (Fig. 19) and horizontal shear, as well as their
1063 primitive-equation counterparts, also affirmed the role of subsidence during upper-level
1064 frontogenesis and the concomitant production of a tropopause fold (e.g., Hoskins 1972; Keyser
1065 and Pecnick 1985; Reeder and Keyser 1988).

1066

1067 Despite the success of two-dimensional semigeostrophic models in reproducing aspects of the
1068 observed structure of fronts, idealized simulations of midlatitude cyclones using three-dimensional
1069 primitive equation models revealed that the semigeostrophic equations inaccurately represented
1070 the structure of fronts relative to the primitive equations for cases in which the ratio of the

ageostrophic relative vorticity to the Coriolis parameter was large (e.g., Snyder et al. 1991; Rotunno et al. 1994). In response to the deficiencies of semigeostrophic theory, Muraki et al. (1999) derived a first-order correction to quasigeostrophic theory that extended the conceptual simplicity of quasigeostrophic theory to higher orders of Rossby number. The subsequent application of this first-order correction resulted in frontal structure that aligned more favorably with that simulated in primitive-equation models (Rotunno et al. 2000). Three-dimensional primitive-equation models also reproduced canonical surface and upper-level frontal structures observed within midlatitude cyclones. In particular, Davies et al. (1991) and Thorncroft et al. (1993) showed that the character of the background barotropic across-jet shear differentiated between cyclones that developed following the Norwegian cyclone model and the more-recent Shapiro–Keyser cyclone model (Shapiro and Keyser 1990; [section 6c](#)). The degree of along-jet shear in the form of confluence or diffluence was also shown to differentiate between the two models (e.g., Schultz et al. 1998; Schultz and Zhang 2007).

The addition of diabatic and frictional processes into idealized modeling frameworks further reconciled idealized simulations of frontal structure with observations. For instance, a number of idealized studies illuminated the influence of condensational heating and differential surface heating on frontogenesis (e.g., Szeto et al. 1988a,b; Huang and Emanuel 1991; Koch et al. 1995; Szeto and Stewart 1997) and on the modulation of the structure and intensity of across-front ageostrophic circulations (e.g., Baldwin et al. 1984; Hsie et al. 1984; Mak and Bannon 1984; Thorpe and Emanuel 1985). Furthermore, surface fluxes, friction, and turbulent mixing within the planetary boundary layer were found to influence the structure of fronts within idealized simulations (e.g., Keyser and Anthes 1982; Cooper et al. 1992; Hines and Mechoso 1993; Rotunno

1094 et al. 1998; Tory and Reeder 2005; Reeder and Tory 2005; Schultz and Roeber 2008; Sinclair
1095 and Keyser 2015).

1096

1097 Lastly, the paradigm of PV thinking has provided a contemporary theoretical framework from
1098 which to examine surface and upper-level fronts (e.g., Hoskins et al. 1985; as discussed in section

1099 3c). In the PV framework, surface fronts are manifested as elongated zones of enhanced potential
1100 temperature gradients on the Earth's surface and are often accompanied by elongated PV maxima
1101 that are primarily generated via condensational heating within frontal precipitation bands. Upper-
1102 level fronts are manifested as elongated zones of enhanced potential temperature gradients on the
1103 dynamic tropopause (e.g., Morgan and Nielsen-Gammon 1998) and may precede the development
1104 of coherent tropopause disturbances (e.g., Pyle et al. 2004; Cavallo and Hakim 2010). In the PV
1105 framework, the development of upper-level fronts may be alternatively described in terms of *PV*
1106 *frontogenesis* (Davies and Rossa 1998), which corresponds to increases in the magnitude of the
1107 PV gradient on an isentropic surface, and *foldogenesis* (Wandishin et al. 2000), which corresponds
1108 to increases in the slope of the dynamic tropopause.

1109

1110 *c. Diagnosis of fronts*

1111

1112 Diagnostic studies of fronts have provided a bridge between observations and theory by leveraging
1113 a suite of quantitative tools to investigate the structure and dynamics of fronts. The two-
1114 dimensional Petterssen frontogenesis equation (Petterssen 1936; 1956, pp. 200–202) served as a
1115 seminal breakthrough by providing a quantitative basis for diagnosing frontogenesis. In the context
1116 of this equation, frontogenesis is defined as the Lagrangian rate of change of the magnitude of the

1117 horizontal temperature gradient and is forced by horizontal convergence and deformation in the
1118 absence of vertical motion and diabatic effects. Reed and Sanders (1953), Newton (1954), and
1119 Sanders (1955) were among the first to calculate the Lagrangian rate of change of the across-front
1120 temperature gradient in their respective diagnoses of upper-level and surface fronts by applying a
1121 related form of the Petterssen frontogenesis equation (Miller 1948, discussed further in Schultz
1122 2015).

1123

1124 Applications of the Sawyer–Eliassen equation to idealized and analyzed cases have further
1125 illuminated the dynamics of frontogenesis and across-front ageostrophic circulations. Todsen
1126 (1964) provided the first known application of the Sawyer–Eliassen equation to an observed front
1127 and quantified the influence of latent heat release in strengthening the across-front ageostrophic
1128 circulation. An advance in conceptual understanding of upper-level frontogenesis resulted from
1129 Shapiro’s (1981) application of the Sawyer–Eliassen equation. In particular, Shapiro demonstrated
1130 that along-front cold-air advection in the presence of geostrophic horizontal shear shifted the
1131 across-front ageostrophic circulation relative to the upper-level jet axis so as to force subsidence
1132 on the warm side of the developing upper-level front. Termed the *Shapiro effect* by Rotunno et al.
1133 (1994), this shift highlighted the role of differential subsidence during upper-level frontogenesis
1134 originally discussed by Reed and Sanders (1953) and became a substantial topic of interest in
1135 subsequent diagnostic examinations of upper-level fronts (e.g., Newton and Trevisan 1984; Keyser
1136 and Pecnick 1985; Rotunno et al. 1994; Schultz and Doswell 1999; Schultz and Sanders 2002;
1137 Lang and Martin 2010, 2013a; Schultz 2013). Applications of the Sawyer–Eliassen equation have
1138 also highlighted the influence of uncoupled (Fig. 20) and coupled (Fig. 21) upper- and lower-
1139 tropospheric across-front ageostrophic circulations on convective initiation, as well as on

1140 cyclogenesis and poleward moisture transport (e.g., Shapiro 1982; Uccellini et al. 1985; Hakim
1141 and Keyser 2001; Winters and Martin 2014).

1142

1143 Despite the diagnostic utility of the Sawyer–Eliassen equation, its rigorous application is restricted
1144 to across-front ageostrophic circulations in straight fronts. The Q-vector (e.g., Hoskins et al. 1978;
1145 Hoskins and Pedder 1980) is not subject to this restriction, and thus its introduction provided an
1146 important tool for diagnosing three-dimensional ageostrophic circulations in straight *and* curved
1147 fronts. The diagnostic power of the Q-vector becomes apparent in a framework where the Q-vector
1148 is partitioned into across- and along-isotherm components (e.g., Keyser et al. 1992). Within this
1149 framework, the across-isotherm component of the Q-vector reduces to the geostrophic form of the
1150 two-dimensional Petterssen frontogenesis equation, whereas the along-isotherm component of the
1151 Q-vector diagnoses changes in the orientation of the temperature gradient. The latter component,
1152 in particular, provided insight into the wrap-up process associated with the occlusion of
1153 midlatitude cyclones (e.g., Martin 1999, 2006).

1154

1155 The psi vector (Keyser et al. 1989) provided a tool complementary to the Q-vector for diagnosing
1156 three-dimensional ageostrophic circulations in straight and curved fronts. Specifically, the psi
1157 vector represents the irrotational part of the three-dimensional ageostrophic circulation, and its
1158 application has demonstrated considerable explanatory power in the context of upper-level
1159 frontogenesis by allowing the separation of the irrotational ageostrophic circulation into across-
1160 and along-front components. A key result from Keyser et al.’s (1989) application of the psi vector
1161 was the notion that subsidence in the vicinity of developing upper-level fronts featured both across-
1162 front *and* along-front components. The along-front component of subsidence occurring in

1163 conjunction with upper-level frontogenesis has received additional consideration by Mudrick
1164 (1974) and Martin (2014). Building on the results of Mudrick (1974), Martin (2014) demonstrated
1165 that, within regions of geostrophic cold-air advection in the presence of cyclonic shear, the
1166 contribution to frontogenetical tilting associated with along-front subsidence induced by negative
1167 shear-vorticity advection by the thermal wind dominates the contribution associated with across-
1168 front subsidence induced by geostrophic frontogenesis.

1169

1170 Finally, the application of PV inversion (e.g., Davis and Emanuel 1991) has provided insight into
1171 the dynamics of frontogenesis (e.g., Morgan 1999; Korner and Martin 2000), as well as into the
1172 dynamics of across-front ageostrophic circulations in the vicinity of upper-level fronts (e.g.,
1173 Winters and Martin 2016, 2017). Furthermore, diabatically generated lower-tropospheric PV
1174 anomalies near fronts have been linked to enhanced along-front moisture transport within the warm
1175 conveyor belt of midlatitude cyclones (e.g., Lackmann and Gyakum 1999; Lackmann 2002;
1176 Reeves and Lackmann 2004; Brennan et al. 2008; Joos and Wernli 2012; Lackmann 2013). This
1177 enhanced along-front moisture transport can foster a positive feedback whereby the lower-
1178 tropospheric frontal structure can be strengthened in response to additional latent heat release.

1179

1180 *d. Summary*

1181

1182 Ignited by the advent of polar-front theory in the wake of World War I, scientific knowledge
1183 regarding fronts and frontogenesis has been characterized by a powerful synergy of observational,
1184 theoretical, and diagnostic research. This research has spurred revisions to polar-front theory to
1185 account for the variety of frontal structures and dynamics within the midlatitude atmosphere. One

1186 way to reduce this variety in a way that humans can comprehend and depict is through the use of
1187 conceptual models. The next section discusses conceptual models and addresses their utility in
1188 revealing classifications of midlatitude cyclones and their associated frontal structures and
1189 precipitation systems.

1190

1191

1192 **6. Conceptual models of cyclone and frontal evolution**

1193

1194 One of the ways that meteorologists make sense of the variety of observed weather systems is
1195 through the construction of conceptual models, idealized schematics that represent common
1196 characteristics of weather systems. With the understanding that comes from cyclone and frontal
1197 dynamics, this section explores how the synthesis of these schematics has led to greater insight
1198 into the structure and dynamics of cyclones and their attendant fronts.

1199

1200 *a. Norwegian cyclone model*

1201 As summarized in Bjerknes and Solberg (1922), the birthplace of the frontal cyclone is a nearly
1202 straight boundary, or polar front, separating cold easterly flow from warm westerly flow (Fig. 22a).
1203 This boundary bulges toward the cold air at the location of the incipient low center, forming a
1204 frontal wave (Fig. 22b), which amplifies into an open-wave cyclone (Fig. 22c). As cold air moves
1205 cyclonically around the low center, the warm sector narrows (Fig. 22d), and eventually the cold
1206 front overtakes the warm front south of the low center, cutting off a pocket of warm-sector air,
1207 known as the warm-core seclusion (Fig. 22e). Eventually the warm sector disappears entirely, and

1208 the cyclone becomes occluded (Fig. 22f). Gradually, the occluded boundary dissipates and the
1209 cyclone becomes a symmetrical vortex of cold air (Fig. 22g), followed by death (Fig. 22h).

1210
1211 Modern textbooks for meteorologists and nonmeteorologists still use elements of the Norwegian
1212 cyclone model, which is sometimes condensed into a four-stage conceptual model consisting of
1213 the initial frontal wave, open-wave cyclone, narrowing warm sector, and frontal occlusion, with
1214 the seclusion omitted (e.g., Schultz and Vaughan 2011). Bergeron (1959, p. 457) suggests that the
1215 seclusion was based on a hypothesis that was “better than the data by which it was achieved,”
1216 although modern observations and modeling confirm seclusion development during intense
1217 extratropical cyclogenesis through processes not envisioned by the Bergen School (e.g., Shapiro
1218 and Keyser 1990; Kuo et al. 1992; Galarneau et al. 2013). The Norwegian cyclone model also
1219 suggested explanations for cyclone development ([section 3](#)) and frontal precipitation processes
1220 ([section 5](#)).

1221
1222 *b. Bergen School contributions through the mid 20th century*
1223 Bergen School meteorologists continued to refine knowledge of frontal cyclones after publication
1224 of the original Norwegian cyclone model (e.g., Bergeron 1959). By the middle 20th century, these
1225 refinements included: (1) awareness that fronts are better regarded as discontinuities in
1226 temperature gradient rather than temperature; (2) identification of frontolysis along the cold front
1227 near the low center during the open wave phase, a predecessor to what is referred to today as the
1228 frontal fracture; (3) recognition of the three-dimensional structure of cyclones, including the role
1229 of upper-level waves; and (4) knowledge of the potential for a secondary surface trough to develop
1230 in the polar airstream behind the low during cases of extreme cyclogenesis, with a back-bent

1231 occlusion coincident with the trough near the low center (e.g., Bergeron 1937; Godske et al. 1957,
1232 their chapters 14 and 15).

1233
1234 Godske et al. (1957) provided a revised conceptual model of a strong occluded cyclone at
1235 maximum intensity (Fig. 23) based largely on work by Bergen School meteorologists Tor
1236 Bergeron, Jacob Bjerknes, and Erik Palmén (Bjerknes 1930; Bergeron 1937, 1959). They
1237 illustrated the occlusion as warm type and include an upper cold front, which is coincident with a
1238 tongue of warm air aloft, sometimes called a *trowal* (*trough of warm air aloft*; Crocker et al. 1947;
1239 Godson 1951; Penner 1955; Galloway 1958, 1960; Martin 1999). The upper cold front may have
1240 a stronger temperature contrast than the surface occluded front and demarcates an important
1241 transition in cloud and precipitation. The secondary trough and back-bent occlusion extend into
1242 the polar airstream behind the low center, with the latter identified with cold-front symbols. In
1243 Norway in the 1960s, meteorologists were trained to watch for strong winds (termed the *sting jet*
1244 by Browning 2004) associated with this “poisonous tail” of the back-bent occlusion (Grønås 1995),
1245 also known as the bent-back occlusion, retrograde occlusion, back-bent (or bent-back) front
1246 (Bjerknes 1930; Bergeron 1937). Research on the origin and mechanisms of strong winds along
1247 the bent-back front in Shapiro–Keyser cyclones has been an active topic for debate over the past
1248 15 years (e.g., Browning 2004; Clark et al 2005; Gray et al. 2011; Schultz and Sienkiewicz 2013;
1249 Smart and Browning 2014; Slater et al. 2015, 2017; Coronel et al. 2016; Schultz and Browning
1250 2017; Volonté et al. 2018).

1251

1252 *c. Beyond the Bergen School*

1253 Surface and upper-air observations, satellite remote sensing, ground-based remote sensing,
1254 numerical modeling, and intensive field programs have transformed our understanding of the life
1255 cycle of extratropical cyclones since the middle 20th century. In particular, modern observational
1256 and numerical modeling capabilities show that:

1257

- 1258 • Fronts are often a consequence of cyclogenesis rather than the cause, with frontal zones
1259 better regarded as regions of active frontogenesis rather than semipermanent phenomena
1260 (Phillips 1956; Reed 1990).
- 1261 • Upper-level and surface-based fronts are not necessarily structurally continuous through
1262 the troposphere and respond to different dynamical processes (Keyser 1986; Reed 1990;
1263 Shapiro and Keyser 1990).
- 1264 • Cyclogenesis is better viewed as a consequence of baroclinic instability and the interaction
1265 of upper-level, surface, and diabatically generated PV anomalies rather than frontal
1266 instabilities (e.g., Charney 1947; Eady 1949; Hoskins et al. 1985; Davis and Emanuel
1267 1991).
- 1268 • Pathways for extratropical cyclone development include not only cyclogenesis along a pre-
1269 existing frontal boundary, but also cyclogenesis in polar airstreams (e.g., Reed 1979) and
1270 the extratropical transition of tropical cyclones (e.g., Evans et al. 2017).

1271

1272 *d. Contemporary perspectives*

1273 Coming from the need to better predict poorly forecasted explosive cyclones, the 1980s and 1990s
1274 were a fruitful time for extratropical cyclone research. An outcome of this period of extensive

1275 research, Shapiro and Keyser (1990) synthesized knowledge from field-program observations and
1276 numerical modeling into a new four-stage conceptual model of a marine extratropical frontal
1277 cyclone (Fig. 24). Their model begins with incipient cyclogenesis along a continuous and broad
1278 frontal zone (Stage I). During the early stages of cyclogenesis, a fracturing of the previously
1279 continuous frontal zone occurs, along with contraction of the now discontinuous warm and cold
1280 frontal temperature gradients (Stage II). The warm front then develops westward into the northern
1281 airstream behind the low, where Shapiro and Keyser (1990) refer to it as a bent-back warm front,
1282 and the warm sector narrows, leading to a pronounced frontal T-bone (Stage III). Finally, a warm-
1283 core seclusion forms as the cold air and the bent-back warm front encircle the low center (Stage
1284 IV). The name bent-back warm front often leads to confusion. For simplicity, and to avoid
1285 confusion with other frontal archetypes, we recommend bent-back front be applied for this feature.

1286

1287 The Shapiro–Keyser model differs from the Norwegian cyclone model in several ways, but
1288 perhaps the most distinctive is that it does not include the process of occlusion. Instead, the warm
1289 and cold fronts become aligned perpendicular to each other (i.e., the frontal T-bone), and only in
1290 the late stages of cyclogenesis is there some narrowing of the warm sector. Synoptic analysis
1291 illustrates, however, that extratropical cyclones may exhibit frontal structures and life cycles that
1292 may resemble the Norwegian cyclone model, the Shapiro–Keyser model, or other alternatives
1293 (Schultz et al. 1998; Catto 2016). This broad spectrum reflects the diversity of dynamical factors
1294 and physical processes contributing to cyclone evolution including variations in the large-scale
1295 flow (e.g., Simmons and Hoskins 1978; Hoskins and West 1979; Davies et al. 1991; Thorncroft et
1296 al. 1993; Schultz et al. 1998; Wernli et al. 1998; Schultz and Zhang 2007), surface characteristics
1297 (e.g., Hines and Mechoso 1993; Thompson 1995; Rotunno et al. 1998), diabatic heating (e.g., Nuss

1298 and Anthes 1987; Terpstra et al. 2015), and orographic effects (e.g., Pichler and Steinacker 1987;
1299 Hobbs et al. 1990, 1996; Tibaldi et al. 1990; Steenburgh and Mass 1994; McTaggart-Cowan et al.
1300 2010a,b; West and Steenburgh 2010). As a result, there are well-documented cases of occlusions
1301 forming and lengthening as the cold front overtakes the warm front as depicted by the Norwegian
1302 cyclone model (e.g., Schultz and Mass 1993; Market and Moore 1998; Martin 1998, 1999),
1303 occlusions forming through alternative processes (e.g., Palmén 1951; Anderson et al. 1969; Reed
1304 1979; Hobbs et al. 1990, 1996; Neiman and Wakimoto 1999), and cyclones that instead develop a
1305 frontal T-bone (e.g., Neiman and Shapiro 1993). How can these contrasting paradigms be
1306 reconciled?

1307

1308 Schultz and Vaughan (2011) proposed that the key physical process operating in all of these
1309 paradigms is the *wrap-up* of the thermal wave by differential rotation and deformation. They
1310 argued that, in many cyclones, the cold front undeniably catches up to the warm front, but that this
1311 catch up is not an explanation for occlusion. Instead, they defined the occlusion process as “the
1312 separation of warm-sector air from the low center through the wrap-up of the thermal wave around
1313 the cyclone” (Schultz and Vaughan 2011, p. 446). The cold front overtaking the warm front is a
1314 consequence of differential rotation and deformation thinning the warm sector and drawing the
1315 two fronts together (Martin 1999). Differential rotation and deformation also act to elongate the
1316 warm tongue and extend the length of the occlusion, explaining why in some cases the occluded
1317 front is much longer than can be explained by the merger of the cold and warm fronts, as illustrated
1318 by the highly wrapped-up occluded fronts in cyclones described by Reed et al. (1994) and Reed
1319 and Albright (1997). Although the Shapiro–Keyser model omits the occluded front, the separation
1320 of the low center from the warm sector, development of the intervening warm front, and formation

1321 of their back-bent warm front are consistent with the wrapping up of the thermal wave. Thus, the
1322 wrap-up of the thermal wave through differential rotation and deformation serves as a framework
1323 for understanding frontal cyclone evolution in a variety of contexts.

1324

1325 *e. Precipitation structure and rainbands*

1326 The precipitation structure of cyclones was a key component of the Norwegian cyclone model,
1327 including the formation of precipitation as warm air ascends the wedge of cold air ahead of the
1328 warm front and the generation of a narrow band of precipitation as the cold front intrudes into the
1329 warm sector (Fig. 4). It was not until the development of weather radars, and their subsequent
1330 incorporation within observation networks, that progress was made in understanding rainfall
1331 patterns associated with extratropical cyclones. By the 1970s, the mesoscale structure of such
1332 precipitation features began to be revealed (e.g., Browning and Harrold 1970; Harrold and Austin
1333 1974; Browning 1974; Houze et al. 1976). The term *rainband* was first introduced by Houze et al.
1334 (1976), referring to elongated mesoscale areas of precipitation that favor certain locations relative
1335 to the fronts themselves. Based on the range of observations collected during the CYCLES project,
1336 Houze et al. (1976) introduced a general classification scheme identifying six types of common
1337 rainbands – warm frontal, warm sector, narrow cold frontal, wide cold frontal, wave-like and post-
1338 frontal. This list was later refined by Hobbs (1978), Matejka et al. (1980, their Fig. 1), and Houze
1339 and Hobbs (1982) which separated warm-frontal bands according to their position relative to the
1340 surface warm front, and also added the surge band in the vicinity of upper-level cold fronts. The
1341 current classification, presented in Houze (2014) and illustrated in Fig. 25, introduced the concept
1342 of the occlusion band found in the northwest quadrant (e.g., Sanders and Bosart 1985a,b; Sanders
1343 1986b; Martin 1998; Novak et al. 2004, 2006, 2008, 2009, 2010; Rauber et al. 2014).

1344

1345 In addition to radar observations, the CYCLES project also provided valuable in-cloud aircraft
1346 measurements that stimulated interest in the role of microphysics and hydrometeor transport. In
1347 the early 1980s, a number of idealized modelling studies were designed to complement the in-situ
1348 observations and elucidate the influence of microphysical processes on frontal rainbands. These
1349 studies revealed the importance of the ice phase in particular, demonstrating a link between ice
1350 crystal growth and surface precipitation flux in both warm-frontal rainbands (Rutledge and Hobbs
1351 1983) and narrow cold-frontal rainbands (Rutledge and Hobbs 1984). Similar conclusions were
1352 reached by Cox (1988), who performed idealized two-dimensional simulations of both warm-
1353 frontal and narrow cold-frontal rainbands for comparison against field observations. Simulations
1354 including only liquid-phase processes could not accurately model the surface precipitation flux
1355 and neither could they produce realistic distributions of latent heat release.

1356

1357 Research into the role of precipitation phase in the evolution of frontal rainbands grew over the
1358 next decade, motivated by Clough and Franks (1991) who suggested that frontal downdrafts could
1359 be enhanced by sublimating snow. This idea was later supported by modelling studies (e.g., Parker
1360 and Thorpe 1995; Marecal and LeMaitre 1995) and also by Clough et al. (2000) using
1361 observational data from the FASTEX field campaign (Joly et al. 1997, 1999). Numerical
1362 simulation of a FASTEX winter case study by Forbes and Clark (2003) also demonstrated how the
1363 rate of sublimation-induced cooling beneath slantwise ascending frontal updrafts can influence the
1364 development of post-frontal rainbands. Indeed, along with ice crystal size and habit (or shape),
1365 sublimation rate is an important factor in determining the density of snow, and hence snowfall
1366 depths in winter storms (e.g., Roebber et al. 2003; Stark et al. 2013).

1367

1368 The role of diabatic effects in relation to precipitation banding has been the subject of further
1369 investigation in recent years. Idealized baroclinic wave simulations have shown that latent heating
1370 and cooling associated with microphysical processes can perturb vertical velocity across the warm
1371 conveyor belt, leading to the creation of multiple precipitation bands (e.g., Norris et al. 2014).
1372 Observations of cool-season European cyclones also suggest the possibility of a link between
1373 precipitation banding, diabatic heating, and fine-scale wind structure below 800 hPa on the
1374 equatorward side of intense storms (Vaughan et al. 2015). Such results serve as a reminder of the
1375 importance of high-quality observations for the validation of numerical models, ultimately to
1376 enable a deeper understanding of the morphology of high-impact weather embedded within low
1377 pressure systems.

1378

1379 In the quest to extend our knowledge and our ability to predict cyclones on smaller and smaller
1380 scales with increased accuracy, we highlight the need for high-quality observations of cloud
1381 microphysical processes to challenge NWP models. How we arrived at this point and the more
1382 recent history of NWP focused specifically on extratropical cyclones is discussed in the next
1383 section.

1384

1385

1386 **7. Prediction**

1387

1388 The failed prediction of major extratropical cyclones has been a catalyst for research programs and
1389 improvements in our understanding throughout time. One of the first events hindcasted using NWP

1390 by computer was of the 5 January 1949 cyclone over central North America (Charney et al. 1950).
1391 Later, Leary (1971) documented systematic underpredictions of oceanic cyclones and
1392 overpredictions of Rocky Mountain lee cyclones in the NMC Primitive-Equation model, but it was
1393 not until later that decade when a catalyst occurred that energized the research community. The
1394 infamous 19 February 1979 Presidents' Day storm along the East Coast of North America (e.g.,
1395 Bosart 1981) was severely underpredicted by the Limited-area Fine Mesh2 (LFMII) model. The
1396 motivation for the definition and study of rapidly developing cyclones was in part due to their poor
1397 performance in the operational models at the time (Sanders and Gyakum 1980). With this
1398 definition and recognition, an explosion (pun intended) in research on rapidly developing cyclones
1399 occurred. The National Science Foundation, Office of Naval Research, and other funding bodies
1400 invested heavily in extratropical cyclone research, including field programs, climatologies, theory,
1401 and numerical modeling. We have already seen the outcomes of much of this work in other
1402 sections, but in this section, we focus on NWP, with the specific goal to discuss some of the NWP
1403 advances and predictability of extratropical cyclones, to highlight some of the forecast challenges,
1404 and to propose some ideas for future directions to improve cyclone predictability.

1405

1406 *a. NWP advances and systematic errors*

1407 Accurate operational forecasts of extratropical cyclones require accurate numerical guidance.
1408 Following on from Leary (1971), Charles and Colle (2009a) gathered some validation statistics
1409 over the eastern United States to show how cyclone displacement errors have evolved over the
1410 decades (Fig. 26). During the 1978/79 cool season, the LFM-II displacement errors over the
1411 continental United States and surrounding oceans ranged from about 300 km to 440 km from hour
1412 24 to 48 (Silberberg and Bosart 1982). By the late 1980s, cyclone position errors over the western
1413 Atlantic had improved by about 30%. By the 2002–2007 cool seasons, the displacement errors in

1414 the NAM and GFS had improved by another 30–40%, which suggests that cyclone position
1415 forecasts had continued to improve since these earlier studies, albeit at a modest rate.

1416

1417 Despite this overall improvement, the predictability of extratropical cyclones can still vary greatly
1418 from case to case. At issue is whether the forecast errors are due to errors in the initial conditions
1419 or errors in the physical processes represented within the model (e.g., moist convection). In the
1420 1980s, forecast busts were more common than now, even for the short term (0–3-day) forecasts
1421 (e.g., Reed and Albright 1986; Reed et al. 1988; Bosart and Sanders 1991). Even in 2001–2002,
1422 landfalling cyclones on the U.S. West Coast with large errors (200–400 km and > 10 hPa) were
1423 happening even in 24–48-h forecasts, related to errors in the initial conditions over the North
1424 Pacific Ocean (McMurdie and Mass 2004). These low-predictability cases were sensitive to flow
1425 regime, with storms tracking from the southwest having the largest sensitivity to initial conditions
1426 (McMurdie and Ancell 2014). In another example, the 25 January 2000 East Coast U.S. cyclone
1427 was another bust in which initial condition errors were important (Zhang et al. 2002). However,
1428 Zhang et al. (2003) showed that the predictability for this event was limited (near its intrinsic limit)
1429 because even adding small random white noise to the initial temperature resulted in large forecast
1430 differences by 30 h. This rapid upscale error growth was the result of moist convective processes
1431 within the baroclinic wave (Zhang et al. 2007). In contrast, Durran et al. (2013) showed for two
1432 extratropical cyclones that the initial errors were concentrated in some of the longer wavelengths
1433 (100–1000 km), and not from an upscale growth process. The variety of these results suggest that
1434 a study on the error growth characteristics in a larger sample of cyclones might shed light on this
1435 behavior.

1436

1437 Despite this uncertainty into why the errors are happening, the good news is that the frequency of
1438 large forecast busts have diminished. A few decades ago, only a few operational models were run
1439 at fairly coarse resolution with limited physics and primitive data assimilation (e.g., LFM, NGM,
1440 AVN). Currently, large ensembles are generated for global models and are combined with
1441 advanced data-assimilation approaches such as four-dimensional data assimilation and ensemble
1442 Kalman filter (EnKF). As a result, forecasters now have access to over 100 ensemble members for
1443 a particular cyclone that are run at higher resolution with more sophisticated physics, so the
1444 chances of all the ensemble members completely missing a storm are much less.

1445

1446 The bad news is that there are still systematic errors for extratropical-cyclone forecasts in many of
1447 these operational models and ensembles. The deterministic models have had systematic
1448 underprediction bias in predicting the intensity (e.g., central pressure) of these storms over the
1449 decades. When the LFM was operational back in 1972 at 190.5-km grid spacing, extratropical
1450 cyclones in the Pacific and Atlantic were too shallow by 6 to 10 hPa at 48 h (Silberberg and Bosart
1451 1982). Mullen (1994) showed that there was a systematic underprediction error in the global model
1452 (AVN) initial analysis for cyclones for 1 November 1989 to 31 January 1990, and that the model
1453 underestimated the deepening rates. Uccellini et al. (2009) also found that 4-day cyclone forecasts
1454 from the NOAA/NCEP Ocean Prediction Center were frequently underforecast, especially for
1455 more intense storms. More recently, Korfe and Colle (2018) showed that major operational
1456 modelling systems (Canadian, NCEP, and ECMWF) still underpredict relatively deep cyclones in
1457 the medium range, particularly near the Gulf Stream. The models all had a slow along-track bias
1458 that was significant from 24–90 h, and they had a left-of-track bias from 120–144 h. The ECMWF

1459 ensemble errors have been decreasing from 2007 to 2014 at all lead times from 0–6 days, but only
1460 at short lead times at CMC and not as much at NCEP.

1461

1462 *b. Use of ensembles*

1463 With limited computer power, early NWP focused on improving model resolution and model
1464 physics. As computer power increased, running a number of forecasts to produce an ensemble was
1465 able to be realized. Ensembles embrace the uncertainty in predictions that Lorenz identified
1466 (section 3c), although others previously had enunciated such concerns (e.g., Lewis 2005). Since
1467 then, numerous studies have identified the benefits of using ensembles for both the short- and
1468 medium-range forecasts of extratropical cyclones (e.g., Froude et al. 2007; Park et al. 2008;
1469 Johnson and Swinbank 2009; Charles and Colle 2009b). For example, Froude et al. (2007) verified
1470 extratropical cyclone tracks in the 0–7-day forecasts from ECMWF and NCEP ensemble
1471 prediction systems between January and April 2005. The ECMWF ensemble consisted of 50
1472 perturbed members with a spectral resolution of T255L40, whereas the NCEP ensemble consisted
1473 of 10 perturbed members with a resolution of T126L28. The ECMWF ensemble was slightly more
1474 accurate than the NCEP ensemble for cyclone intensity in the Northern Hemisphere, whereas the
1475 NCEP ensemble was significantly more accurate for cyclones in the Southern Hemisphere.

1476

1477 In another example, Froude (2011) compared nine ensemble prediction systems from TIGGE in
1478 2008 for both the Northern and Southern Hemispheres. For about half the models, the cyclone
1479 intensity and position errors were 10–20% larger in the Southern Hemisphere than the Northern
1480 Hemisphere, but for other models by other centers (e.g., ECMWF, Met Office) the errors were
1481 more comparable with some coherent biases in most of the models. More than half of the models

1482 were too weak with the cyclones in both hemispheres (Figs. 27a,b), and most models had a slow
1483 bias (Figs. 27c,d).

1484
1485 More recently, Korfe and Colle (2018) validated the ECMWF, Canadian (CMC), and NCEP
1486 ensembles over the eastern United States and western Atlantic for the 2007–2015 cool seasons.
1487 For lead times less than 72 h, the NCEP and ECMWF ensembles had comparable mean absolute
1488 errors in cyclone intensity and track, whereas the CMC errors were larger (Fig. 28). For 4–6-day
1489 forecasts, the ECMWF had 12–18 h and 24–30 h more accuracy for cyclone intensity than NCEP
1490 and CMC, respectively. The ECMWF also had greater probabilistic skill for intensity and track
1491 than CMC and NCEP.

1492
1493 Korfe and Colle (2018) showed that the 90-member multi-model ensemble from all three centers
1494 (NCEP+CMC+ECMWF) had more probabilistic skill than any single ensemble, thus illustrating
1495 the importance of adding model diversity. For example, Korfe and Colle (2018) showed that for
1496 the 3–6-day forecasts from 2007–2015, cyclones fell outside of the envelope for the ECMWF
1497 ensemble 5.6%, 5.2%, and 4.1% of the cases for cyclone intensity, along-, and cross-track
1498 positions, respectively. For the NCEP ensemble, these values were 13.7%, 10.6%, and 11.0%.
1499 Using a multi-model ensemble (90 member EC+CMC+NCEP), however, reduces the percentage
1500 of cases outside the envelope of the 90-member ensemble: 1.9%, 1.8%, and 1.0% of cases,
1501 respectively. How many of these outside-the-envelope cases are near their intrinsic predictability
1502 limit is not known, which is an area of potentially important future research.

1503

1504 One existing challenge of cyclone verification research is that the feature-tracking algorithms have
1505 large uncertainties and often can't track weak cyclones in many members. Therefore, the true
1506 accuracy or skill of the ensemble is often not being assessed. Zheng et al. (2017) developed a
1507 scenario-based method, which includes all ensemble members by using an Empirical Orthogonal
1508 Function (EOF) and fuzzy clustering methodology. The EOF analysis at the verification time is
1509 used to determine the dominant patterns of variations in ensemble sea level pressure forecasts. The
1510 principal components (PCs) corresponding to the leading two EOF patterns are used as a base to
1511 perform fuzzy clustering on the ensemble sea level pressure forecasts over the verification region.
1512 Each ensemble member is assigned a weight that identifies its relative strength of membership to
1513 each of the five clusters depending on its distance from the cluster mean in the PC phase space.
1514 An ensemble member is assigned to the cluster with the largest weight (Zheng et al. 2017), and an
1515 ensemble mean cluster is also determined for those members closest to the mean. Once the clusters
1516 are obtained, spatial plots can be made to demonstrate the synoptic clusters associated with each
1517 cluster using, for example, a “spaghetti” plot of a particular contour.

1518

1519 To illustrate this approach, consider the 90-member (NCEP+CMC+ECMWF) 6-day ensemble
1520 forecast initialized at 1200 UTC 21 January 2015. The mean cyclone position was about 200 km
1521 to the southwest of the analyzed cyclone, and the largest spread was mainly to the west of the
1522 ensemble mean cyclone (Fig. 29a). A spaghetti plot of the 996-hPa contours from the ensemble
1523 also illustrates the spread of the cyclone position, which appears to cluster by ensemble system,
1524 with the ECMWF ensemble members to the west relative to the NCEP ensemble members (Fig.
1525 29b). Figures 29c–d show the leading two EOF patterns for this 6-day sea level pressure forecast,
1526 which explains 42.9% and 28.7% of the variance over the verification region, respectively. The

1527 first EOF (EOF1) has a maximum located about 400 km west of the ensemble mean position of
1528 the surface cyclone (Fig. 29c). This pattern represents a deeper storm with a westward shift and a
1529 weaker storm with a eastward shift compared to the ensemble-mean cyclone at 6 days. Meanwhile,
1530 the dipole pattern with EOF2 (Fig. 29d) is an asymmetric dipole pattern, with a positive pattern
1531 representing the deepening and northeastward shift of the cyclone and a negative pattern
1532 representing the weakening and southwestward shift of the cyclone. Figure 30 shows the
1533 ensembles in the PC1 and PC2 phase space and the clusters, including an ensemble mean cluster,
1534 and the verifying analysis is shown. This example highlights how the ensemble systems tend to
1535 cluster together, which explains why all three ensembles together verify the best on average (Korfe
1536 and Colle 2018).

1537

1538 *c. Physical processes*

1539 There has been no detailed investigation for why the model forecasts have improved over the
1540 decades, which would require systematically varying model resolution, data assimilation
1541 approaches and observations, and model physics. However, smaller cyclone errors are likely linked
1542 to increased operational model resolution as grid spacings on global models have decreased from
1543 about 200 km in the early 1970s to about 80 km in the early 1990s to 20–30 km in the early 2000s.
1544 Increasing resolution has allowed models to better resolve important physical processes, such as
1545 low-level temperature gradients (e.g., along the coastlines, SST boundaries), orographic effects
1546 (e.g., flow blocking, lee cyclogenesis), and diabatic effects (e.g., condensation, surface fluxes,
1547 latent heating). For example, as highlighted in section 2, the importance of diabatic heating on
1548 these storms has been well documented.

1549

1550 Systematic errors from dry dynamical forcing are likely relatively small as grid spacings approach
1551 10–20 km, but latent heating biases are likely still prevalent because most operational global
1552 models today still run with a convective parameterization. Thus, smaller-scale convection, such as
1553 that associated with the warm conveyor belt (section 6), may be important. Historically,
1554 operational models have underpredicted cyclones, and current operational global models still
1555 underpredict relatively deep cyclones in the medium range (Korfe and Colle 2018), and this may
1556 be the result of latent heating underprediction with embedded convection within these cyclones.

1557

1558 There is also interest in how these extratropical cyclones may change during the next 100 years;
1559 however, global climate models typically underestimate the intensity of extratropical cyclones in
1560 the North Atlantic because of their relatively coarse resolution (100–300-km horizontal grid
1561 spacing) (Chang et al. 2013; Colle et al. 2013; Zappa et al. 2013; Seiler and Zwiers 2016; Selier et
1562 al. 2018). Colle et al. (2013) found that those climate models that predicted the best cyclone tracks
1563 and intensities had the higher model resolution. Jung et al. (2006) and Champion et al. (2011) also
1564 found that the extratropical cyclone intensity increases with increasing horizontal resolution. Thus,
1565 one must be careful to use relatively coarse climate models to understand future cyclone changes
1566 given these systematic errors.

1567

1568 However, as climate-model scales steadily converge toward weather-model scales, many of the
1569 same issues faced by the weather community also exist, which will continue to foster collaboration
1570 between both modeling communities. For example, Willison et al. (2013, 2015) showed that latent
1571 heat release increases the intensity of extratropical cyclones in the future model projections as grid
1572 spacings are decreased from 120-km to 20-km grid spacing. Zhang and Colle (2018) showed that

1573 most of the strong underprediction bias in a climate model can be removed if the grid spacings are
1574 decreased to around 20 km, such that latent heating associated with precipitation can be better
1575 resolved. As with other studies, Michaelis et al. (2017) found using regional climate model grid
1576 spacings down to 4 km that the total number of strong storms in the North Atlantic storm track
1577 may decrease during the 21st century because of a weaker low-level temperature gradient.
1578 However, both Michaelis et al. (2017) and Colle et al. (2013) found increased occurrence of
1579 cyclones in the future along the U.S. East Coast. Zhang and Colle (2018) hypothesized that
1580 decreased low-level temperature gradient may be compensated by additional latent heating within
1581 the entrance of the storm track.

1582

1583 *d. Mesoscale challenges*

1584

1585 As NWP improves, there will be fewer large forecast bust cases but still events with large
1586 predictability challenges, because relatively small changes in the cyclone position can lead to
1587 significant changes in the axis of heavy precipitation that have large societal impacts. A good
1588 example is the 26–27 January 2015 East Coast cyclone in which even short-term 24-h forecast
1589 uncertainties in the western edge of a sharp precipitation gradient caused major issues for the New
1590 York City region. For example, Fig. 31a shows the regional radar at 0600 UTC 27 January 2015,
1591 and Fig. 31b shows the location of the 25.4-mm (1-inch) storm-total threshold from the NCEP
1592 ensemble (Greybush et al. 2017). Those members with a more eastern cyclone position (about 100
1593 km east of observed) had the heavy snow more over Long Island, whereas those members farther
1594 to the west of the observed had the heaviest precipitation to the west of New York City. This
1595 uncertainty and sharp western gradient in the precipitation was evident in many other ensembles

1596 (Greybush et al. 2017). What complicates matters for the forecaster is that each of the ensemble
1597 members had a different set of impacts for the New York City area, as shown by clustering the
1598 different ensemble members using a fuzzy clustering technique.

1599

1600 There is a wide spectrum of important mesoscale phenomena associated with these storms that
1601 cause forecast challenges (e.g., precipitation bands, gravity waves, severe convective storms,
1602 freezing level issues, cyclone interaction with terrain, orographic precipitation). Currently,
1603 operational convective-allowing models are run deterministically at 3–4-km grid spacing, which
1604 helps with the prediction of these phenomena, but there are few high-resolution ensembles at this
1605 grid spacing. Multi-model convective-allowing models up to 90 members have been run for
1606 various projects, such as the NOAA Hazardous Weather Testbed Spring Experiment (Clark et al.
1607 2018), but, at the time of this writing, only the High-Resolution Rapid Refresh Ensemble (HRRRE)
1608 is run operationally over the contiguous United States using 20 members at 3-km grid spacing and
1609 a lagged-ensemble approach (S. Benjamin 2018, personal communication).

1610

1611 *e. Opportunities*

1612 Despite improvements in NWP predictions, systematic errors still lead to the loss of probabilistic
1613 skill. Historically, much of the model performance has been quantified using basic-state variables
1614 (e.g., temperature, wind, precipitation), for standard metrics (e.g., 500-hPa anomaly correlations,
1615 root mean square errors), and averaged over a relatively large geographic region or for select
1616 points. This approach helps quantify how good or bad the model may be in general, but it does not
1617 help target the origin of the errors in order to help improve the model. Another way to perform
1618 verification is to calculate the errors around an object of interest, such as a convective line, snow

1619 band, hurricane, and extratropical cyclone. In the future, better use of object-oriented verification
1620 is needed.

1621
1622 A number of process-oriented metric and diagnostic approaches have been applied recently to
1623 models, but mainly to climate models. Physical processes have been evaluated for the Madden–
1624 Julian Oscillation (e.g., Kim et al. 2009, 2014), East Pacific warm pool variability (e.g., Maloney
1625 et al. 2014), tropical cyclones (e.g., Kim 2017), and extratropical cyclones (e.g., Booth et al. 2018).
1626 For an extratropical cyclone, understanding the horizontal temperature gradients, surface fluxes,
1627 vertical stability, moisture budget around the storm, and diabatic heating profiles are important for
1628 model developers who need to understand how changes in the physical parameterizations (e.g.,
1629 microphysics, surface layer physics, convective schemes) impact the parameters leading to any
1630 model biases. This effort also requires the community to obtain and archive important
1631 nonconventional quantities for model development, such as surface fluxes, planetary boundary
1632 layer height, and heating profile estimates.

1633
1634 An operational convective-allowing model ensemble is needed that can be run out 2–3 days to
1635 predict mesoscale phenomena associated with extratropical cyclones that can produce large
1636 gradients in snowfall or precipitation amount over relatively short areas, causing particular
1637 problems along populated coast lines. To reduce underdispersion, these ensembles need both
1638 physics diversity (e.g., stochastic perturbation) and initial-condition diversity. Lastly, it needs to
1639 be determined whether the upscale growth of errors from some of these mesoscale phenomena are
1640 leading to some intrinsic predictability limits or still uncertainties in the regional or larger-scale.
1641 More tools are needed for the forecaster and other users to better utilize ensembles for these

1642 cyclones and associated weather impacts. Above, a fuzzy clustering approach was highlighted to
1643 break down the ensemble into different possible scenarios. Object-based tracking will allow
1644 various mesoscale features (e.g., snowbands) within these storms to be tracked and communicated
1645 probabilistically. More advanced post-processing approaches, such as machine learning and
1646 statistical approaches (e.g., Bayesian model averaging), can be applied to better calibrate the
1647 ensemble for these storms. More ensemble graphics are needed operationally besides mean,
1648 spread, and basic probabilities, with a focus on the feature or hazard in question.

1649

1650

1651 **8. The past, present, and future**

1652

1653 Over the past 100 years, extratropical cyclone research, as described in this chapter, has made
1654 remarkable strides. Can we determine the key ingredients that were conducive to that progress in
1655 the past? Are there indications what would make the line of progress sustainable, analogous to
1656 persistence in forecasting? What can be seen as prerequisites for further progress in the future?

1657

1658 Going back to [section 1](#), we believe that the characteristics that have made this period so successful
1659 are based on the triad of (a) practical challenges of addressing poor forecasts that had large socio-
1660 economic consequences; (b) the intermingling of theory, observations, and diagnosis depicted in
1661 [Fig. 2](#); and (c) strong international cooperation.

1662

1663 As the first note of the triad, poor forecasts of cyclones sinking Norwegian fishing vessels
1664 motivated Vilhelm Bjerknes to develop the observing system. Synoptic analysis of the data from

1665 this network of stations led to the development of the Norwegian cyclone model. Forecasts of
1666 cyclogenesis also were among those first forecasts performed by computer. And, the large interest
1667 in cyclogenesis in the 1980s and 1990s was due to the poor NWP forecasts of rapidly developing
1668 cyclones.

1669

1670 This societal need led to the second note of the triad: the fruitful application of Fig. 2. The century
1671 began with the collection of fine-scale weather observations that led to the birth of the Norwegian
1672 cyclone conceptual model and its continual refinement through the 1950s to the present. The
1673 further collection and analysis of routine observations, through specialized field programs to
1674 provide targeted data collection, as well as the development of new observing tools of radar and
1675 satellite, also shed light on the structures and processes within cyclones. Theories for cyclones at
1676 1919 were incomplete and being debated, but frameworks of divergence, baroclinic instability,
1677 quasigeostrophy, and potential vorticity have been developed that have largely led to the "cyclone
1678 problem" (e.g., Palmén 1951, pp. 618–619) being solved. But the crucial test of these theories was
1679 how they compared against observations. The first attempt at calculating the weather forecast was
1680 attempted shortly after the start of our century (Richardson 1922); but, since the first forecast by
1681 computer at midcentury (Charney et al. 1950), remarkable progress on NWP has occurred in the
1682 last 70 years, driven in part by theoretical advances in modeling and architecture, improved
1683 observations, their incorporation into the initial conditions of models through improved methods
1684 of data assimilation, and accounting for chaos. All these theories, observations, and diagnosis
1685 through numerical modeling have led to improved understanding of relevant physical processes.

1686

1687 In part, the success in effective application of Fig. 2 depends upon the character of individual

1688 researchers and their willingness to cross Valleys of Death, whether it be the Valley of Death
1689 between observation and theory, the Valley of Death between operations and research (e.g.,
1690 National Research Council 2000), or the Valley of Death between observations and modeling.
1691 Rossby (1934, p. 32) famously noted, "The principal task of any meteorological institution of
1692 education and research must be to bridge the gap between the mathematician and the practical
1693 man, that is, to make the weather man realize the value of a modest theoretical education and to
1694 induce the theoretical man to take an occasional glance at the weather map." To many of us
1695 coauthors who have had success in our meteorological institutions, we dedicate this chapter to our
1696 advisors and mentors who prepared us for the journey, taught us not to be afraid, and gave us the
1697 confidence to cross the valleys.

1698 The third culminating note of the triad, a decisive ingredient for the success achieved during the
1699 past 100 years, has been the international voluntary cooperation ([section 1](#); Volkert 2017). The
1700 international associations for sharing science that emerged at the end of World War I and the
1701 AMS—at first a national organization, but which later became one of the leading professional
1702 societies for atmospheric science worldwide—both originated in 1919. Many of the Bergen School
1703 meteorologists were Norwegian, but they also came from other European countries, the United
1704 Kingdom, and the United States for training. These apostles for science travelled the globe, many
1705 settling elsewhere, to help advance their methods and to lead the development of NWP in the
1706 United States, United Kingdom, and Europe. International field research programs (e.g., Global
1707 Atmospheric Research Program, Alpine Experiment, FASTEX, THORPEX) were tasked with
1708 improved understanding of extratropical cyclones and their fronts. The formation of ECMWF in
1709 1975 and its more than 40 years of operation were critical to supporting international cooperation
1710 on NWP (e.g., chapter 20 in Wood 2006). International conferences continue to serve as a focal

1711 point for fruitful scientific discussion, including the Cyclone Workshop (e.g., Gyakum et al. 1999),
1712 soon to celebrate its 19th incarnation.

1713

1714 Given this impressive progress over the last century, what are the current trends?

1715 • The development of reanalysis datasets consisting of gridded meteorological data using a
1716 consistent analysis and modeling system allows the possibility of many years of
1717 meteorological analyses. Indeed, such progress has already led to many advances. We
1718 expect more will come.

1719 • In part to address the large amounts of data available through reanalyses, automated
1720 approaches for detection and analysis of these datasets will become even more developed in
1721 the near future. Machine-learning and artificial-intelligence approaches to further interrogate
1722 the data will become more prevalent.

1723 • Sharing datasets and code communally to access and analyze these datasets is growing and
1724 will continue to grow, driven in part by national regulations and the expectations of funding
1725 agencies.

1726 • As detailed in [sections 6e and 7](#), cyclone structure and predictability on the mesoscale and
1727 microscale can be quite sensitive to cloud-microphysical processes. To what extent do the
1728 details of the cloud microphysics matter to the evolution and predictability of cyclones? Are
1729 any systematic effects missing or misrepresented in the current generation of NWP models?
1730 More collection of relevant datasets, as well as theoretical developments, to better understand
1731 these processes will be required for further progress.

1732 • Finally, as the world warms due to nearly 200 years of anthropogenic greenhouse gas input,
1733 climate change will have a profound influence on regional climates. Their atmospheric and

1734 oceanic responses to changes in a warmer climate—including the potential loss of Arctic sea
1735 ice and melting of permafrost—will change extratropical weather systems. Recent research
1736 is showing conflicting results as to the magnitude of this effect for the jet stream, but further
1737 investigations should reduce this uncertainty.

1738

1739 Beyond these current trends, what is the outlook for the next century? Certainly, 100 years is well
1740 beyond the deterministic predictability limit. Therefore, the provision of a forecast for the next
1741 century is too daring to be made in any detail.⁵ However, in combination with the recently
1742 observed changes to the use of observations in data assimilation (e.g., Davies 2005, especially pp.
1743 374–375), some trends are suggested, along which future research agendas may develop:

- 1744 • Traditional boundaries of research areas will be less clear cut or will disappear altogether.
1745 Extratropical cyclone research is likely to be assimilated into predictability research and
1746 directly linked to data assimilation and ensemble prediction.
- 1747 • The midlatitudes of both hemispheres will continue to be areas of high scientific interest (in
1748 addition to the tropics in between and the polar regions beyond), yet the embedded cyclones
1749 alone may lose their special status as core research objects.
- 1750 • Dedicated field experiments will continue to serve as catalysts for progress, especially if new
1751 technology is applied, be it on airborne platforms (manned and unmanned aircraft) or satellite
1752 missions with active sensors (radar and lidar). The North Atlantic Waveguide and
1753 Downstream Impact (NAWDEX) campaign of 2016 may serve as a recent example (Schäfler
1754 et al. 2018).

⁵ A counterexample from the past of just such a visionary outlook, and a well-documented one, is the May 1957 speech by Lloyd Berkner about the coming era of satellite meteorology and operational NWP (Droessler et al. 2000).

1755 ● Near-global coverage of line-of-sight motion vectors should be available soon (ESA-satellite
1756 mission ADM-Aeolus to be launched later in 2018;
1757 http://www.esa.int/Our_Activities/Observing_the_Earth/Aeolus/Overview2). This mission
1758 is likely to open new horizons for both data-assimilation techniques and a series of systematic
1759 case studies.

1760 ● Extratropical cyclones and their composited storm tracks will continue to be of great interest
1761 for studies of regional reanalyses (e.g., Buizza et al. 2018) on the way towards seamless
1762 prediction of weather and climate (e.g., Palmer et al. 2008; Hoskins 2013).

1763
1764 Altogether, the evolution of extratropical cyclone research over a full century (i.e., the current
1765 lifetime of the AMS and the Norwegian cyclone model) carries some analogies with their life
1766 cycles driven by the ceaseless wind (Dutton 1976).

1767 ● The main features of cyclones and its research are slowly evolving and exhibit some
1768 inherent predictability. So, extratropical cyclones stayed on the research agenda during the
1769 entire century.

1770 ● A multitude of disturbances of much smaller scale are embedded, making every depression
1771 and its life cycle distinct. Equally, inventions and technological developments of, for
1772 example, computers and satellite sensors, transformed the tools to study cyclones and
1773 disseminate results.

1774 Thus, hitherto unforeseeable pieces of technology may redefine extratropical cyclone research
1775 considerably, but the impact of actual weather systems in the extratropical belts around the Earth
1776 will continue to remind researchers and the general public alike of their special relevance for the
1777 atmospheric sciences as a whole.

1778

1779 Over 50 years ago, Bjerknes (1964, p. 314), the author of the Norwegian cyclone model, remarked
1780 at the inaugural award ceremony for the AMS's Harald Sverdrup Gold Medal:

1781 "But yet I would give highest recommendation to the less narrow and more basic
1782 field of meteorology, which was the concern of the founders of our science, and
1783 which still is our first duty to society: weather forecasting. All too frequently,
1784 students, and professors too, shy away from the subject of weather forecasting and
1785 go into one of the nice little research specialties which are less nerve racking, and
1786 which do not force you to show the public how often you are wrong. But,
1787 fortunately, the weather forecaster will soon be better off. Electronic automation
1788 has already relieved him of much of the overwhelming load of data handling, and
1789 now also presents him with electronically computed forecast maps."

1790 As of today, many researchers and students are heavily committed to improving forecasting of
1791 extratropical cyclones, taking the risk of making errors, but also making efforts to quantify the
1792 inherent uncertainties.⁶ Having a global interlinked society requires maintenance of both the
1793 global observation system and continued education for the next generations of researchers. Thus,
1794 we must maintain the high standards of our discipline and hopefully extend them, as has happened
1795 during the past 100 years.

1796

1797

1798 *Acknowledgements.* The authors gratefully acknowledge the support of the NOAA/Next
1799 Generation Global Prediction System to grant NA16NWS4680018 (Roeber),

⁶One example is the collaborative research center Waves to Weather in Germany (<http://www.w2w.meteo.physik.uni-muenchen.de>) under the auspices of WMO's High Impact Weather project (Brunet et al. 2015).

1800 NA15NWS4680003 and NA17NWS4680004 (Colle); the National Science Foundation to grants
1801 AGS-1355960 (Bosart and Keyser), AGS-1656406 (Bosart), and AGS Postdoctoral Research
1802 Fellowship AGS-1624316 (Winters); the UK Natural Environment Research Council to grants
1803 NE/I005234/1, NE/I026545/1, and NE/N003918/1 to the University of Manchester (Schultz); the
1804 German Research Foundation DFG via the collaborative research center Waves to Weather
1805 (Volkert); and the ongoing support of the National Science Foundation and the National Weather
1806 Service CSTAR program (Steenburgh). We thank Heather Archambault for providing Fig. 6,
1807 Robert Marc Friedman for his comments about Bjerknes (1919), and two anonymous reviewers
1808 for their comments.

1809 **References**

1810 Abbe, C., 1901: The physical basis of long-range weather forecasts. *Mon. Wea. Rev.*, **29**, 551–561.

1811 Ambaum, M. H. P., and L. Novak, 2014: A nonlinear oscillator describing storm track variability. *Quar. J. Roy. Meteor. Soc.*, **140**, 2680–2684.

1812 Anderson, R. K., J. P. Ashman, F. Bittner, G. R. Farr, E. W. Ferguson, V. J. Oliver, and A. H. Smith, 1969: Application of meteorological satellite data in analysis and forecasting. ESSA Tech. Rep. NESC 51, 330 pp.

1813 Andrade, E. R., and W. D. Sellers, 1988: El-Niño and its effect on precipitation in Arizona and western New Mexico. *Int. J. Climatol.*, **8**, 403–410.

1814 Anthes, R. A., Y. Kuo, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. *Mon. Wea. Rev.*, **111**, 1174–1188.

1815 Ashforth, O. M., 1992: Development of weather forecasting in Britain, 1900–40: The vision of L. F. Richardson. *Weather*, **47**, 394–402.

1816 Attard, H. E., and A. L. Lang, 2017: Climatological and case analyses of lower-stratospheric fronts over North America. *Quart. J. Roy. Meteor. Soc.*, **143**, 1471–1484.

1817 Austin, J., 1941: Favorable conditions for cyclogenesis near the Atlantic coast. *Bull. Amer. Meteor. Soc.*, **22**, 270–271.

1818 Baldwin, D., E.-Y. Hsie, and R. A. Anthes, 1984: Diagnostic studies of a two-dimensional simulation of frontogenesis in a moist atmosphere. *J. Atmos. Sci.*, **41**, 2686–2700.

1819 Barnes, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks and the persistence of the NAO. *J. Atmos. Sci.*, **67**, 851–865.

1820 Beck, A. L., 1922: The Earth's atmosphere as a circular vortex. *Mon. Wea. Rev.*, **50**, 393–401.

1831 Berbery, E. H., and C. S. Vera, 1996: Characteristics of the Southern Hemisphere winter storm
1832 track with filtered and unfiltered data. *J. Atmos. Sci.*, **53**, 468–481.

1833 Bergeron, T., 1937: On the physics of fronts. *Bull. Amer. Meteor. Soc.*, **18**, 265–275.

1834 Bergeron, T., 1959: Methods in scientific weather analysis and forecasting: An outline in the
1835 history of ideas and hints at a program. *The Atmosphere and Sea in Motion: Scientific*
1836 *Contributions to the Rossby Memorial Volume*. B. Bolin, Ed., Rockefeller Institute Press, 440–
1837 474.

1838 Berggren, R., 1952: The distribution of temperature and wind connected with active tropical air in
1839 the higher troposphere and some remarks concerning clear air turbulence at high altitude.
1840 *Tellus*, **4**, 43–53.

1841 Bigelow, F. H., 1902: Studies on the statics and kinematics of the atmosphere in the United States.
1842 Part V: Relations between the general circulation and the cyclones and anticyclones. *Mon.*
1843 *Wea. Rev.*, **30**, 250–258.

1844 Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the
1845 intensification of extratropical cyclones in Northern Hemisphere winter. *J. Atmos. Sci.*, **73**,
1846 3997–4020.

1847 Bjerknes, J., 1919: On the structure of moving cyclones. *Geofys. Publ.*, **1** (2), 1–8. [Also published
1848 as Bjerknes, J., 1919: On the structure of moving cyclones. *Mon. Wea. Rev.*, **47**, 95–99.]

1849 Bjerknes, J., 1930: Practical examples of polar-front analysis over the British Isles in 1925–6.
1850 *Geophys. Mem.*, **5**(10), 1–21 + 28 pp. of figs.

1851 Bjerknes, J., 1935: Investigations of selected European cyclones by means of serial ascents. Case
1852 3: December 30–31, 1930. *Geofys. Publ.*, **11**(4), 3–18.

1853 Bjerknes, J., 1951: Extratropical cyclones. *Compendium of Meteorology*. Amer. Meteor. Soc.,

1854 577–598.

1855 Bjerknes, J., 1964: Half a century change in the “meteorological scene.” *Bull. Amer. Meteor. Soc.*,
1856 **45**, 312–315. [Available at http://meteohistory.org/wp-content/uploads/2014/04/HOM6_01_Bjerknes_Half_a_century-1.pdf.]

1857

1858 Bjerknes, J. and C. L. Godske, 1936: On the theory of cyclone formation at extra-tropical fronts.
1859 *Astrophys. Norv.*, **1**(6), 198–235.

1860 Bjerknes, J., and E. Palmén, 1937: Investigations of selected European cyclones by means of serial
1861 ascents. Case 4: February 15–17, 1935. *Geofys. Publ.*, **12**(2), 1–62.

1862 Bjerknes, J., and H. Solberg, 1921: Meteorological conditions for the formation of rain. *Geofys.*
1863 *Publ.*, **2**(3), 1–61.

1864 Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric
1865 circulation. *Geofys. Publ.*, **3**(1), 3–18.

1866 Bjerknes, V., 1904: Das Problem der Wettervorhersage, betrachtet von Standpunkt der Mechanik
1867 und der Physik, *Meteor. Z.*, **21**, 1–7. Translated and edited by Volken, E., and S.
1868 Brönnimann, 2009. *Meteor. Z.*, **18**, 663–667.

1869 Bjerknes, V., 1937: Application of line integral theorems to the hydrodynamics of terrestrial and
1870 cosmic vortices. *Astrophys. Norv.*, **2**, 263–339.

1871 Bjerknes, V., J. Bjerknes, T. Bergeron, and H. Solberg, 1933: *Physikalische Hydrodynamik*,
1872 Berlin, Springer, 797 pp.

1873 Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the
1874 Northern Hemisphere. *J Atmos. Sci.*, **33**, 1607–1623.

1875 Booth, J. F., C. M. Naud, and J. Willison, 2018: Evaluation of extratropical cyclone precipitation
1876 in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models. *J.*
1877 *Climate*, doi:10.1175/JCLI-D-17-0308.1.

1878 Bosart, L. F., 1970: Mid-tropospheric frontogenesis. *Quart. J. Roy. Meteor. Soc.*, **96**, 442–471.

1879 Bosart, L. F., 1975: New England coastal frontogenesis. *Quart. J. Roy. Meteor. Soc.*, **101**, 957–
1880 978.

1881 Bosart, L. F., 1981: The Presidents' Day Snowstorm of 18–19 February 1979: A subsynoptic-scale
1882 event. *Mon. Wea. Rev.*, **109**, 1542–1566.

1883 Bosart, L. F., J. Vaudo, and J. H. Helsdon, Jr., 1972: Coastal frontogenesis. *J. Appl. Meteor.*, **11**,
1884 1236–1258.

1885 Bosart, L. F., A. C. Wasula, W. H. Drag, and K. W. Meier, 2008: Strong surface fronts over sloping
1886 terrain and coastal plains. *Synoptic–Dynamic Meteorology and Weather Analysis and*
1887 *Forecasting: A Tribute to Fred Sanders*, L. F. Bosart and H. B. Bluestein, Eds., Amer. Meteor.
1888 Soc., 35–85.

1889 Bosart, L. F., and S. C. Lin, 1984: A diagnostic analysis of the Presidents' Day Storm of February
1890 1979. *Mon. Wea. Rev.*, **112**, 2148–2177.

1891 Bosart, L. F., and F. Sanders, 1986: Mesoscale structure in the Megalopolitan Snowstorm of 11–
1892 12 February 1983. 3. A large-amplitude gravity-wave. *J. Atmos. Sci.*, **43**, 924–939.

1893 Bosart, L. F., and F. Sanders, 1991: An early-season coastal storm: Conceptual success and model
1894 failure. *Mon. Wea. Rev.*, **119**, 2832–2851.

1895 Bosart, L. F., and A. Seimon, 1988: A case study of an unusually intense atmospheric gravity
1896 wave. *Mon. Wea. Rev.*, **116**, 1857–1886.

1897 Bosart, L. F., W. E. Bracken, and A. Seimon, 1998: A study of cyclone mesoscale structure with
1898 emphasis on a large-amplitude inertia-gravity wave. *Mon. Wea. Rev.*, **126**, 1497–1527.

1899 Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M.
1900 Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993
1901 cyclone (“Superstorm '93”) over eastern North America. *Mon. Wea. Rev.*, **124**, 1865–1891.

1902 Bosart, L. F., V. Pagnotti, and B. Lettau, 1973: Climatological aspects of eastern United States
1903 backdoor frontal passages. *Mon. Wea. Rev.*, **101**, 627–635.

1904 Bowie, E. H., and R. H. Weightman, 1914: Types of storms of the United States and their average
1905 movements. *Mon. Wea. Rev.*, **Supplement 1**, 37 pp.

1906 Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic
1907 storm track. Part I: Land–sea contrast and orography. *J. Atmos. Sci.*, **66**, 2539–2558.

1908 Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic
1909 storm track. Part II: Sea surface temperatures. *J. Atmos. Sci.*, **68**, 1784–1805.

1910 Brennan, M. J., G. M. Lackmann, and K. M. Mahoney, 2008. Potential vorticity (PV) thinking in
1911 operations: The utility of nonconservation. *Wea. Forecasting*, **23**, 168–182.

1912 Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern
1913 Hemisphere dry climates. *J. Clim.*, **5**, 1181–1201.

1914 Browning, K. A., 1974: Mesoscale structure of rain systems in the British Isles. *J. Meteor. Soc.*
1915 *Japan*, **52**, 314–326.

1916 Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones.
1917 *Extratropical Cyclones, The Erik Palmén Memorial Volume*, C. W. Newton and E. O.
1918 Holopainen, Eds., Amer. Meteor. Soc., 129–153.

1919 Browning, K. A., 1999: Mesoscale aspects of extratropical cyclones: An observational perspective.

1920 *The Life Cycles of Extratropical Cyclones*, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor.

1921 Soc., 265–283.

1922 Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with

1923 extratropical cyclones. *Quart. J. Roy. Meteor. Soc.* **130**, 375–399.

1924 Browning, K. A., and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front.

1925 *Quart. J. Roy. Meteor. Soc.*, **96**, 369–389.

1926 Browning, K. A., and G. A. Monk, 1982: A simple model for the synoptic analysis of cold fronts.

1927 *Quart. J. Roy. Meteor. Soc.*, **108**, 435–452.

1928 Browning, K. A., and N. M. Roberts, 1996: Variation of frontal and precipitation structure along

1929 a cold front. *Quart. J. Roy. Meteor. Soc.*, **122**, 1845–1872.

1930 Brunet, G., T. Jung, N. Gordon, F. Vitart, A. Robertson, B. Golding, S. Jones, H. Goessling, and

1931 WMO Secretariat, 2015: The World Weather Research Programme: A 10-year vision. *WMO*

1932 *Bulletin*, **64** (1), 16–19. [Available at

1933 [https://library.wmo.int/opac/doc_num.php?explnum_id=3985.\]](https://library.wmo.int/opac/doc_num.php?explnum_id=3985.)

1934 Buizza, R., and Coauthors, 2018: Advancing global and regional reanalyses. *Bull. Amer. Meteor.*

1935 *Soc.*, doi: 10.1175/BAMS-D-17-0312.1.

1936 Carlson, T. M., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. *Mon.*

1937 *Wea. Rev.*, **108**, 1498–1509.

1938 Carr, J. A., 1951: The east coast “backdoor” front of May 16–20, 1951. *Mon. Wea. Rev.*, **79**, 100–

1939 110.

1940 Catto, J. L., 2016: Extratropical cyclone classification and its use in climate studies. *Rev. Geophys.*,

1941 **54**, 486–520.

1942 Cavallo, S. M., and G. J. Hakim, 2010: Composite structure of tropopause polar cyclones. *Mon. Wea. Rev.*, **138**, 3840–3857.

1944 Champion, A. J., K. I. Hodges, L. O. Bengtsson, N. S. Keenlyside, and M. Esch, 2011: Impact of
1945 increasing resolution and a warmer climate on extreme weather from Northern Hemisphere
1946 extratropical cyclones. *Tellus A*, **63**, 893–906.

1947 Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression
1948 analysis. *J. Atmos. Sci.*, **50**, 2038–2053.

1949 Chang, E. K. M., 2001: The structure of baroclinic wave packets. *J. Atmos. Sci.*, **58**, 1694–1713.

1950 Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. *J. Atmos. Sci.*, **50**, 999–
1951 1015.

1952 Chang, E. K. M., S. Y. Lee, and K. L. Swanson, 2002: Storm track dynamics. *J. Clim.*, **15**, 2163–
1953 2183.

1954 Chang, E. K., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3
1955 model simulations. *J. Climate*, **26**, 246–260.

1956 Charles, M., and B. A. Colle, 2009a: Verification of extratropical cyclones within cyclones within
1957 NCEP forecast models using an automated tracking algorithm: Part 1: Comparison of the GFS
1958 and NAM models. *Wea. Forecasting*, **24**, 1173–1190.

1959 Charles, M., and B. A. Colle, 2009b: Verification of extratropical cyclones within cyclones within
1960 NCEP forecast models using an automated tracking algorithm: Part 2: Evaluation of the Short-
1961 Range Ensemble Forecast (SREF) system. *Wea. Forecasting*, **24**, 1191–1214.

1962 Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. *J. Meteor.*, **4**,
1963 135–163.

1964 Charney, J. G., 1948: On the scale of atmospheric motion. *Geophys. Publ.*, **17** (2), 1–17.

1965 Charney, J. G., 1951: Dynamic forecasting by numerical process. *Compendium of Meteorology*.

1966 Amer. Meteor. Soc., 470–482.

1967 Charney, J. G., 1963: Numerical experiments in atmospheric hydrodynamics. *Proc. XV Symp. in*

1968 *Applied Mathematics*. Amer. Math. Soc., 289–310.

1969 Charney, J. G., R. Fjörtoft, and J. von Neumann, 1950: Numerical integration of the barotropic

1970 vorticity equation. *Tellus*, **2**, 237–254.

1971 Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating

1972 atmosphere. *J. Atmos. Sci.*, **19**, 159–172.

1973 Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the

1974 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. *Bull. Amer. Meteor.*

1975 *Soc.*, doi: 10.1175/BAMS-D-16-0309.1.

1976 Clark, P. A., K. A. Browning, and C. Wang, 2005: The sting at the end of the tail: Model

1977 diagnostics of fine-scale three-dimensional structure of the cloud head. *Quart. J. Roy. Meteor.*

1978 *Soc.*, **131**, 2263–2292.

1979 Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform

1980 precipitation. *Quart. J. Roy. Meteor. Soc.*, **117**, 1057–1080.

1981 Clough, S. A., H. W. Lean, N. M. Roberts, and R. M. Forbes, 2000: Dynamical effects of ice

1982 sublimation in a frontal wave. *Quart. J. Roy. Meteor. Soc.*, **126**, 2405–2434.

1983 Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical

1984 evaluation and future prediction of eastern North American and western Atlantic

1985 extratropical cyclones in the CMIP5 models during the cool season. *J. Climate*, **26**, 6882–

1986 6903.

1987 Cooper, I. M., A. J. Thorpe, and C. H. Bishop, 1992: The role of diffusive effects on potential
1988 vorticity in fronts. *Quart. J. Roy. Meteor. Soc.*, **118**, 629–647.

1989 Cordeira, J. M., and L. F. Bosart, 2010: The antecedent large-scale conditions of the “Perfect
1990 Storms” of late October and early November 1991. *Mon. Wea. Rev.*, **138**, 2546–2569.

1991 Cordeira, J. M., and L. F. Bosart, 2011: Cyclone interactions and evolutions during the “Perfect
1992 Storms” of late October and early November 1991. *Mon. Wea. Rev.*, **139**, 1683–1707.

1993 Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2016: Cold-conveyor-belt jet, sting jet and
1994 slantwise circulations in idealized simulations of extratropical cyclones. *Quart. J. Roy. Meteor.
1995 Soc.*, **142**, 1781–1796.

1996 Cox, G. P., 1988: Modeling precipitation in frontal rainbands. *Quart. J. Roy. Meteor. Soc.*, **114**,
1997 115–127

1998 Crocker, A. M., W. L. Godson, and C. M. Penner, 1947: Frontal contour charts. *J. Meteor.*, **4**, 95–
1999 99.

2000 Danard, M. B., 1964: On the influence of released latent heat on cyclone development. *J. Appl.
2001 Meteor.*, **3**, 27–37.

2002 Danielsen, E. F., 1964: Project Springfield Report. DASA 1517, Defense Atomic Support Agency,
2003 Washington, DC 20301, 97 pp. [NTIS AD-607980]

2004 Danielsen, E. F., 1968: Stratospheric–tropospheric exchange based on radioactivity, ozone, and
2005 potential vorticity. *J. Atmos. Sci.*, **25**, 502–518.

2006 Davies, H. C., 1997: Emergence of the mainstream cyclogenesis theories. *Meteor. Z.*, **6**, 261–274.

2007 Davies, H. C., 2005: Conformity to observations and the development of weather prediction.
2008 *European Rev.*, **13**, 361–376.

2009 Davies, H. C., and C. Bishop, 1994: Eady edge waves and rapid development. *J. Atmos. Sci.*, **51**, 1930–1946.

2010

2011 Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. *Mon. Wea. Rev.*, **141**, 2483–2501.

2012

2013 Davies, H. C., and A. M. Rossa, 1998: PV frontogenesis and upper-tropospheric fronts. *Mon. Wea. Rev.*, **126**, 1528–1539.

2014

2015 Davies, H. C., C. Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. *J. Atmos. Sci.*, **48**, 1666–1689.

2016

2017 Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. *Mon. Wea. Rev.*, **119**, 1929–1953.

2018

2019 Davis, C. A., M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. *Mon. Wea. Rev.*, **121**, 2309–2330.

2020

2021 Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K.

2022 R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and

2023 convective-scale flow interaction and model performance. *Mon. Wea. Rev.*, **125**, 3041–3072.

2024

2025 Dines, W. H., 1912: The statistical changes of pressure and temperature in a column of air that accompany changes of pressure at the bottom. *Quart. J. Roy. Meteor. Soc.* **38** (2), 41–50.

2026

2027 Dirks, R. A., J. P. Kuettner, and J. A. Moore, 1988: Genesis of Atlantic Lows Experiment (GALE): An overview. *Bull. Amer. Meteor. Soc.*, **69**, 148–160.

2028

2029 Douglas, C. K. M., 1929: Some aspects of surfaces of discontinuity. *Quart. J. Roy. Meteor. Soc.*, **55**, 123–151.

2030

2031 Douglas, C. K. M., 1952: The evolution of 20th-century forecasting in the British Isles. *Quart. J. Roy. Meteor. Soc.*, **78**, 1–21.

2032 Douglas, M. W., L. S. Fedor, and M. A. Shapiro, 1991: Polar low structure over the northern Gulf
2033 of Alaska based on research aircraft observations. *Mon. Wea. Rev.*, **119**, 32–54.

2034 Droessler, E. G., J. M. Lewis, and T. F. Malone, 2000: Lloyd Berkner: Catalyst for meteorology's
2035 fabulous fifties. *Bull. Amer. Meteor. Soc.*, **81**, 2963–2973.

2036 Durran, D. R., P. A. Reinecke, and J. D. Doyle, 2013: Large-scale errors and mesoscale
2037 predictability in Pacific Northwest snowstorms. *J. Atmos. Sci.*, **70**, 1470–1487.

2038 Durst, C. S., and R. C. Sutcliffe, 1938: The effect of vertical motion on the ‘geostrophic departure’
2039 of the wind. *Quart. J. Roy. Meteor. Soc.*, **64**, 75–84; Addendum, **64**, 240.

2040 Dutton, J. A., 1976: *The Ceaseless Wind: Introduction to the Theory of Atmospheric Motion*.
2041 McGraw-Hill, 579 pp.

2042 Eady, E. T., 1949: Long waves and cyclone waves. *Tellus*, **1**, 33–52.

2043 Eady, E. T., 1951: The quantitative theory of cyclone development. *Compendium of Meteorology*.
2044 Amer. Meteor. Soc., 464–469.

2045 Egger, J., and K. P. Hoinka, 1992: Fronts and orography. *Meteor. Atmos. Phys.*, **48**, 3–36.

2046 Eliassen, A., 1949: The quasi-static equations of motion with pressure as independent variable.
2047 *Geofys. Publ.*, **17** (3), 5–44.

2048 Eliassen, A., 1962: On the vertical circulation in frontal zones. *Geofys. Publ.*, **24** (4), 147–160.

2049 Eliassen, A., 1990: Transverse circulations in frontal zones. *Extratropical Cyclones, The Erik
2050 Palmén Memorial Volume*, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc.,
2051 155–165.

2052 Eliassen, A., 1999: Vilhelm Bjerknes's early studies of atmospheric motions and their connection
2053 with the cyclone model of the Bergen School. *The Life Cycles of Extratropical Cyclones*, M.
2054 A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 5–13.

2055 Ellenton, G. E., and M. B. Danard, 1979: Inclusion of sensible heating in convective
2056 parameterization applied to lake-effect snow. *Mon. Wea. Rev.*, **107**, 551–565.

2057 Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. *Meteor. Z.*, **59**, 277–281.

2058 Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone
2059 evolution and direct impacts. *Mon. Wea. Rev.*, **145**, 4317–4344.

2060 Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. *J. Atmos. Sci.*, **39**,
2061 1663–1686.

2062 Ficker, H., 1920: Der Einfluss der Alpen auf Fallgebiete des Luftdrucks und die Entwicklung von
2063 Depressionen über dem Mittelmeer. *Meteor. Z.*, **37**, 350–363. Translated and edited by E.
2064 Volken and S. Brönnimann, 2010: The influence of the Alps on areas of falling air pressure
2065 and the development of depressions over the Mediterranean Sea. *Meteor. Z.*, **19**, 501–512, doi:
2066 10.1127/0941-2948/2010/478.

2067 Ficker, H., 1923: Polarfront, Aufbau, Entstehung und Lebensgeschichte der Zyklen. [Polarfront:
2068 structure, genesis and life cycle of cyclones.] *Meteor. Z.*, **40**, 65–79.

2069 Fjortoft, R. 1955: On the use of space-smoothing in physical weather forecasting. *Tellus*, **7**, 462–
2070 480.

2071 Fleming, J. R., 2016: *Inventing Atmospheric Science: Bjerknes, Rossby and Wexler, and the*
2072 *Foundations of Modern Meteorology*. MIT Press, 312 pp.

2073 Forbes, R. M. and P. A. Clark, 2003: Sensitivity of extratropical cyclone mesoscale structure to
2074 the parametrization of ice microphysical processes. *Quart. J. Roy. Meteor. Soc.*, **129**, 1123–
2075 1148.

2076 Friedman, R. M., 1989: *Appropriating the Weather: Vilhelm Bjerknes and the Construction of a*
2077 *Modern Meteorology*. Cornell University Press, 251 pp.

2078 Friedman, R. M., 1999: Constituting the polar front, 1919–1920. *The Life Cycles of Extratropical*
2079 *Cyclones*, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 29–39.

2080 Froude, L. S. R., 2010: TIGGE: Comparison of the prediction of Northern Hemisphere
2081 extratropical cyclones by different ensemble prediction systems. *Wea. Forecasting*, **25**, 819–
2082 836, doi:10.1175/2010WAF2222326.1.

2083 Froude, L. S. R., 2011: TIGGE: Comparison of the prediction of Southern Hemisphere
2084 extratropical cyclones by different ensemble prediction systems. *Wea. Forecasting*, **26**, 388–
2085 398, doi:10.1175/2010WAF2222457.1.

2086 Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2007: The predictability of extratropical storm
2087 tracks and the sensitivity of their prediction to the observing system. *Mon. Wea. Rev.*, **135**,
2088 315–333.

2089 Fultz, D., 1951: Experimental analogies to atmospheric motions. *Compendium of Meteorology*.
2090 Amer. Meteor. Soc., 1235–1248.

2091 Galarneau, T. J., C. A. Davis, and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012)
2092 through extratropical warm core seclusion. *Mon. Wea. Rev.*, **141**, 4296–4321

2093 Galloway, J. L., 1958: The three-front model: Its philosophy, nature, construction, and use.
2094 *Weather*, **13**, 3–10.

2095 Galloway, J. L., 1960: The three-front model, the developing depression and the occluding process.
2096 *Weather*, **15**, 293–309.

2097 Gerber, E. P., and G. K. Vallis, 2007: Eddy-zonal flow interactions and the persistence of the zonal
2098 index. *J. Atmos. Sci.*, **64**, 3296–3311.

2099 Gerber, E. P., and G. K. Vallis, 2009: On the zonal structure of the North Atlantic Oscillation and
2100 annular modes. *J. Atmos. Sci.*, **66**, 332–352.

2101 Godske, C. L., T. Bergeron, J. Bjerknes, and R. C. Bundgaard, 1957: *Dynamic Meteorology and*
2102 *Weather Forecasting*. Amer. Meteor. Soc., 800 pp.

2103 Godson, W. L., 1951: Synoptic properties of frontal surfaces. *Quart. J. Roy. Meteor. Soc.*, **77**, 633–
2104 653.

2105 Gray, S. L., O. Martínez-Alvarado, L. H. Baker, and P. A. Clark, 2011: Conditional symmetric
2106 instability in sting-jet storms. *Quart. J. Roy. Meteor. Soc.*, **137**, 1482–1500.

2107 Greybush, S. J., S. Saslo, and R. Grumm, 2017: Assessing the ensemble predictability of
2108 precipitation forecasts for the January 2015 and 2016 East Coast winter storms. *Wea.*
2109 *Forecasting*, **32**, 1057–1078.

2110 Grimm, A. M., S. E. T. Ferraz, and J. Gomes, 1998: Precipitation anomalies in southern Brazil
2111 associated with El Niño and La Niña events. *J. Climate*, **11**, 2863–2880.

2112 Grønås, S., 1995: The seclusion intensification of the New Year’s Day storm 1992. *Tellus*, **47A**,
2113 733–746.

2114 Gyakum, J. R., 1983a: On the evolution of the *QE II* storm. I. Synoptic aspects. *Mon. Wea. Rev.*,
2115 **111**, 1137–1155.

2116 Gyakum, J. R., 1983b: On the evolution of the *QE II* storm. II. Dynamic and thermodynamic
2117 structure. *Mon. Wea. Rev.*, **111**, 1156–1173.

2118 Gyakum, J. R., L. F. Bosart, and D. M. Schultz, 1999: The Tenth Cyclone Workshop. *Bull. Amer.*
2119 *Meteor. Soc.*, **80**, 285–290.

2120 Hacker, J. P., E. S. Krayenhoff, and R. B. Stull, 2003: Ensemble experiments on numerical weather
2121 prediction error and uncertainty for a North Pacific forecast failure. *Wea. Forecasting*, **18**, 12–
2122 31.

2123 Hadlock, R., and C. W. Kreitzberg, 1988: The Experiment on Rapidly Intensifying Cyclones over
2124 the Atlantic (ERICA) field study: Objectives and plans. *Bull. Amer. Meteor. Soc.*, **69**, 1309–
2125 1320.

2126 Hakim, G. J., and D. Keyser, 2001: Canonical frontal circulation patterns in terms of Green's
2127 functions for the Sawyer–Eliassen equation. *Quart. J. Roy. Meteor. Soc.*, **127**, 1795–1814.

2128 Hakim, G. J., L. F. Bosart, and D. Keyser, 1995: The Ohio Valley wave-merger cyclogenesis event
2129 of 25–26 January 1978. 1. Multiscale case study. *Mon. Wea. Rev.*, **123**, 2663–2692.

2130 Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic
2131 disturbances. *Quart. J. Roy. Meteor. Soc.*, **99**, 232–251.

2132 Harrold, T. W., and Austin, 1974: The structure of precipitation systems – A review. *J. Rech.
2133 Atmos.*, **8**, 41–57.

2134 Hartmann, D. L., 2007: The atmospheric general circulation and its variability. *J. Meteor. Soc.
2135 Japan*, **85b**, 123–143.

2136 Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern
2137 Hemisphere precipitation is associated with extratropical cyclones? *Geophys. Res. Lett.*, **39**,
2138 L24809, doi:10.1029/2012GL053866.

2139 Held, I. M., 2019: 100 years of progress in understanding the general circulation of the atmosphere.
2140 Amer. Meteor. Soc. Monographs, under review.

2141 Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El
2142 Niño. *J. Atmos. Sci.*, **46**, 163–174.

2143 Held, I. M., M. F. Ting, and H. L. Wang, 2002: Northern winter stationary waves: Theory and
2144 modeling. *J. Clim.*, **15**, 2125–2144.

2145 Henry, A. J., 1922a: Discussion. *Mon. Wea. Rev.*, **50**, 401.

2146 Henry, A. J., 1922b: J. Bjerknes and H. Solberg On meteorological conditions for the formation
2147 of rain. *Mon. Wea. Rev.*, **50**, 402–404.

2148 Henry, A. J., 1922c: J. Bjerknes and H. Solberg On the life cycle of cyclones and the polar front
2149 theory of atmospheric circulation. *Mon. Wea. Rev.*, **50**, 468–474.

2150 Hess, S. L., and H. Wagner, 1948: Atmospheric waves in the northwestern United States. *J.*
2151 *Meteor.*, **5**, 1–19.

2152 Hines, K. M., and C. R. Mechoso, 1993: Influence of surface drag on the evolution of fronts. *Mon.*
2153 *Wea. Rev.*, **121**, 1152–1176.

2154 Hobbs, P. V., 1978: Organization and structure of clouds and precipitation on the mesoscale and
2155 microscale in cyclonic storms. *Rev. Geophys. Space Phys.*, **16**, 741–755.

2156 Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze, 1980: The mesoscale
2157 and microscale structure and organization of clouds and precipitation in midlatitude cyclones.
2158 I: A case study of a cold front. *J. Atmos. Sci.*, **37**, 568–596.

2159 Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1990: Cold fronts aloft and the forecasting of
2160 precipitation and severe weather east of the Rocky Mountains. *Wea. Forecasting*, **5**, 613–626.

2161 Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones
2162 generated in the lee of the Rocky Mountains. *Bull. Amer. Meteor. Soc.*, **77**, 1169–1178.

2163 Hodges, K. I., 1995: Feature tracking on the unit sphere. *Mon. Wea. Rev.*, **123**, 3458–3465.

2164 Hoskins, B. J., 1971: Atmospheric frontogenesis models: Some solutions. *Quart. J. Roy. Meteor.*
2165 *Soc.*, **97**, 139–153.

2166 Hoskins, B. J., 1972: Non-Boussinesq effects and further development in a model of upper
2167 tropospheric frontogenesis. *Quart. J. Roy. Meteor. Soc.*, **98**, 532–541.

2168 Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic
2169 equations. *J. Atmos. Sci.*, **32**, 233–242.

2170 Hoskins, B. J., 1990: Theory of extratropical cyclones. *Extratropical Cyclones: The Palmén*
2171 *Memorial Volume*. C. W. Newton and E. O. Holopainen, Eds., Amer. Met. Soc., Boston, 63–
2172 80.

2173 Hoskins, B., 2013. The potential for skill across the range of the seamless weather–climate
2174 prediction problem: A stimulus for our science. *Quart. J. Roy. Meteor. Soc.*, **139**, 573–584.

2175 Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical
2176 formulation and solution. *J. Atmos. Sci.*, **29**, 11–37.

2177 Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω -equation. *Quart. J. Roy.*
2178 *Meteor. Soc.*, **104**, 31–38.

2179 Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter
2180 storm tracks. *J. Atmos. Sci.*, **59**, 1041–1061.

2181 Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks.
2182 *J. Clim.*, **18**, 4108–4129.

2183 Hoskins, B., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow
2184 interaction of large-scale weather systems. *J. Atmos. Sci.*, **40**, 1595–1612.

2185 Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of
2186 isentropic potential vorticity maps. *Quart. J. Roy. Meteor. Soc.*, **111**, 877–946.

2187 Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development.
2188 *Quart. J. Roy. Meteor. Soc.*, **106**, 707–719.

2189 Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. *J. Atmos. Sci.*, **47**, 1854–
2190 1864.

2191 Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform
2192 potential vorticity jet flows—Cold and warm fronts. *J. Atmos. Sci.*, **36**, 1663–1680.

2193 Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean
2194 in the maintenance of the mean baroclinicity along storm tracks. *J. Clim.*, **24**, 3377–3401.

2195 Houze, R. A., 2014: *Cloud Dynamics*, 2nd Ed., Elsevier/Academic Press, Oxford, 432 pp.

2196 Houze, R. A., Jr., and P. V. Hobbs, 1982: Organization and structure of precipitating cloud
2197 systems. *Adv. Geophys.*, **24**, 225–315.

2198 Houze, R. A., P. V. Hobbs, K. R. Biswas and W. M. Davis, 1976: Mesoscale rainbands in
2199 extratropical cyclones. *Mon. Wea. Rev.*, **104**, 868–878.

2200 Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of
2201 precipitation particles in frontal clouds. *J. Atmos. Sci.*, **36**, 156–162.

2202 Hsie, E.-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist
2203 atmosphere. *J. Atmos. Sci.*, **41**, 2581–2594.

2204 Huang, H.-C., and K. A. Emanuel, 1991: The effects of evaporation on frontal circulations. *J.*
2205 *Atmos. Sci.*, **48**, 619–628.

2206 Ismail-Zadeh, A., 2016: Geoscience international: The role of scientific unions. *Hist. Geo. Space*
2207 *Sci.*, **7**, 103–123.

2208 Ismail-Zadeh, A., and T. Beer, 2009: International cooperation in geophysics to benefit society.
2209 *Eos*, **90**, 493, 501–502.

2210 Jeffreys, H., 1919: On travelling atmospheric disturbances. *Phil. Mag.*, **37** (217), 1–8.

2211 Jewell, R., 2017: *The Weather's Face: Features of Science in the Story of Vilhelm Bjerknes and*
2212 *the Bergen School of Meteorology*. Fagbokforlaget, 516 pp.

2213 Johnson, C., and R. Swinbank, 2009: Medium-range multi-model ensemble combination and
2214 calibration. *Quart. J. Roy. Meteor. Soc.*, **135**, 777–794.

2215 Joly, A., D. Jorgensen, M. A. Shapiro, A. Thorpe, P. Bessemoulin, K. A. Browning, J. Cammas,
2216 J. Chalon, S. A. Clough, K. A. Emanuel, L. Eymard, R. Gall, P. H. Hildebrand, R. H. Langland,
2217 Y. Lemaître, P. Lynch, J. A. Moore, P. O. Persson, C. Snyder, and R. M. Wakimoto, 1997:
2218 The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and
2219 experimental design. *Bull. Amer. Meteor. Soc.*, **78**, 1917–1940.

2220 Joly, A., and Coauthors, 1999: Overview of the field phase of the Fronts and Atlantic Storm-Track
2221 EXperiment (FASTEX) project. *Quart. J. Roy. Meteor. Soc.*, **125**, 3131–3163.

2222 Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity
2223 development in a warm conveyor belt: A case-study with the limited-area model COSMO.
2224 *Quart. J. Roy. Meteor. Soc.*, **138**, 407–418, doi: 10.1002/qj.934.

2225 Jung, T., S. K. Gulev, I. Rudeva, and V. Soloviov, 2006: Sensitivity of extratropical cyclone
2226 characteristics to horizontal resolution in the ECMWF model. *Quart. J. Roy. Meteor. Soc.*,
2227 **132**, 1839–1857, doi: 10.1256/qj.05.212.

2228 Kaspi, Y., and T. Schneider, 2011: Downstream self-destruction of storm tracks. *J. Atmos. Sci.*,
2229 **68**, 2459–2464.

2230 Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm
2231 tracks. *J. Atmos. Sci.*, **70**, 2596–2613.

2232 Keshishian, L. G., and L. F. Bosart, 1987: A case study of extended East Coast frontogenesis. *Mon.*
2233 *Wea. Rev.*, **115**, 100–117.

2234 Keyser, D., 1986: Atmospheric fronts: An observational perspective. *Mesoscale Meteorology and*
2235 *Forecasting*, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.

2236 Keyser, D., and R. A. Anthes, 1982: The influence of planetary boundary layer physics on frontal
2237 structure in the Hoskins–Bretherton horizontal shear model. *J. Atmos. Sci.*, **39**, 1783–1802.

2238 Keyser, D., and M. J. Pecnick, 1985: A two-dimensional primitive equation model of frontogenesis
2239 forced by confluence and horizontal shear. *J. Atmos. Sci.*, **42**, 1259–1282.

2240 Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal
2241 zones. *Mon. Wea. Rev.*, **114**, 452–499.

2242 Keyser, D., B. D. Schmidt, and D. G. Duffy, 1989: A technique for representing three-dimensional
2243 vertical circulations in baroclinic disturbances. *Mon. Wea. Rev.*, **117**, 2463–2494.

2244 Keyser, D., B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed
2245 from along- and cross-isentrope components of the Q vector. *Mon. Wea. Rev.*, **120**, 731–741.

2246 Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. *J.*
2247 *Clim.*, **22**, 6413–6436.

2248 Kim, H. M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation
2249 in the ECMWF reforecast, *J. Geophys. Res. Atmos.*, **122**, 7772–7784.

2250 Kim, H. M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of
2251 the MJO in two operational forecasting systems, *J. Clim.*, **27**, 5364–5378.

2252 Klein, W. H., 1951: A hemispheric study of daily pressure variability at sea level and aloft. *J.*
2253 *Meteor.*, **8**, 332–346.

2254 Klein, W. H., 1957: Principal tracks and mean frequencies of cyclones and anticyclones in the
2255 Northern Hemisphere. U.S. Weather Bureau Research Paper No. 40, 60 pp.

2256 Klein, W. H., 1958: The frequency of cyclones and anticyclones in relation to the mean circulation.
2257 *J. Meteor.*, **15**, 98–102.

2258 Koch, P., H. Wernli, and H. C. Davies, 2006: An event-based jet-stream climatology and typology.

2259 *Int. J. Climatol.*, **26**, 283–301.

2260 Koch, S. E., J. T. McQueen, and V. M. Karyampudi, 1995: A numerical study of the effects of

2261 differential cloud cover on cold frontal structure and dynamics. *J. Atmos. Sci.*, **52**, 937–964.

2262 Kocin, P. J., 1983: An analysis of the “Blizzard of ‘88”. *Bull. Amer. Meteor. Soc.*, **64**, 1258–1272.

2263 Kocin, P. J., A. D. Weiss, and J. J. Wagner, 1988: The great Arctic outbreak and East Coast

2264 blizzard of February 1899. *Wea. Forecasting*, **3**, 305–318.

2265 Kocin, P. J., and L. W. Uccellini, 2004: *Northeast Snowstorms*. Amer. Meteor. Soc., 280 pp.

2266 Korfe, N. G., and B. A. Colle, 2018: Evaluation of cool-season extratropical cyclones in a

2267 multimodel ensemble for eastern North America and the western Atlantic Ocean. *Wea.*

2268 *Forecasting*, **33**, 109–127.

2269 Korner, S. O., and J. E. Martin, 2000: Piecewise frontogenesis from a potential vorticity

2270 perspective: Methodology and a case study. *Mon. Wea. Rev.*, **128**, 1266–1288.

2271 Kropotkin, P., 1893: Recent science. *Popular Science Monthly*, **43**, 391–398 [Available at

2272 https://en.wikisource.org/wiki/Popular_Science_Monthly/Volume_43/July_1893/Recent_Sci

2273 ence_II.]

2274 Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1992: Thermal structure and airflow in a model

2275 simulation of an occluded marine cyclone. *Mon. Wea. Rev.*, **120**, 2280–2297.

2276 Kutzbach, G., 1979: *The Thermal Theory of Cyclones*. American Meteorological Society, 255 pp.

2277 Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture

2278 transport in extratropical cyclones. *Mon. Wea. Rev.*, **130**, 59–74.

2279 Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. *J. Clim.*,

2280 **26**, 4688–4709.

2281 Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the northwestern
2282 United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. *Wea.*
2283 *Forecasting*, **14**, 687–700.

2284 Lackmann, G. M., D. Keyser, and L. F. Bosart, 1997: A characteristic life cycle of upper-
2285 tropospheric cyclogenetic precursors during the Experiment on Rapidly Intensifying Cyclones
2286 over the Atlantic (ERICA). *Mon. Wea. Rev.*, **125**, 2729–2758.

2287 Lang, A. A., and J. E. Martin, 2010: The influence of rotational frontogenesis and its associated
2288 shearwise vertical motion on the development of an upper-level front. *Quart. J. Roy. Meteor.*
2289 *Soc.* **136**, 239–252.

2290 Lang, A. A., and J. E. Martin, 2012: The structure and evolution of lower stratospheric frontal
2291 zones. Part I: Examples in northwesterly and southwesterly flow. *Quart. J. Roy. Meteor. Soc.*,
2292 **138**, 1350–1365.

2293 Lang, A. A., and J. E. Martin, 2013a: Reply to comments on 'The influence of rotational
2294 frontogenesis and its associated shearwise vertical motion on the development of an upper-
2295 level front.' *Quart. J. Roy. Meteor. Soc.* **139**, 273–279.

2296 Lang, A. A., and J. E. Martin, 2013b: The structure and evolution of lower stratospheric frontal
2297 zones: Part II: The influence of tropospheric ascent on lower stratospheric frontal development.
2298 *Quart. J. Roy. Meteor. Soc.*, **139**, 1798–1809.

2299 Lau, N. C., and J. M. Wallace, 1979: Distribution of horizontal transports by transient eddies in
2300 the Northern Hemisphere wintertime circulation. *J. Atmos. Sci.*, **36**, 1844–1861.

2301 Lau, N. C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified
2302 by geopotential tendencies. *J. Atmos. Sci.*, **41**, 313–328.

2303 Leary, C. 1971: Systematic errors in operational National Meteorological Center primitive-
2304 equation surface prognoses. *Mon. Wea. Rev.*, **99**, 409–413.

2305 Lee, W. J., and M. Mak, 1996: The role of orography in the dynamics of storm tracks. *J. Atmos.*
2306 *Sci.*, **53**, 1737–1750.

2307 Lempfert, R. G. K., 1920: *Meteorology*. Methuen, 186 pp.

2308 Lewis, J. M., 2005: Roots of ensemble forecasting. *Mon. Wea. Rev.*, **133**, 1865–1885, doi:
2309 10.1175/MWR2949.1.

2310 Ley, C., 1879: On the inclination of the axes of cyclones. *Quart. J. Roy. Meteor. Soc.*, **5**, 168.

2311 Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth-rate of
2312 baroclinic instabilities. *J. Atmos. Sci.*, **37**, 1648–1654.

2313 Lorenz, E. N., 1963: Deterministic non-periodic flow. *J. Atmos. Sci.*, **20**, 130–141.

2314 Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. World
2315 Meteorological Organization, 161 pp.

2316 Mak, M., and P. R. Bannon, 1984: Frontogenesis in a moist semigeostrophic model. *J. Atmos. Sci.*,
2317 **41**, 3485–3500.

2318 Malone, T. F., Ed., 1951: *Compendium of Meteorology*. Amer. Meteor. Soc., 1334 pp.

2319 Maloney, E. D., X. Jiang, S. P. Xie, and J. J. Benedict, 2014: Process-oriented diagnosis of East
2320 Pacific warm pool intraseasonal variability. *J. Clim.*, **27**, 6305–6324.

2321 Marecal, V., and Y. Lemaitre, 1995: Importance of microphysical processes in the dynamics of a
2322 CSI mesoscale frontal cloud band. *Quart. J. Roy. Meteor. Soc.*, **121**, 301–318.

2323 Margules, M., 1904: Über die Beziehung zwischen Barometerschwankungen und
2324 Kontinuitätsgleichung. *Festschrift: Ludwig Boltzmann gewidmet zum sechzigsten*
2325 *Geburtstage*. S. Meyer, Ed., J. A. Barth, 585–589. [Available at

2326 https://ia801404.us.archive.org/24/items/bub_gb_EuQaR5ERgzUC/bub_gb_EuQaR5ERgzUC.pdf]

2328 Margules, M., 1906: Zur Sturmtheorie. *Meteor. Z.*, **23**, 481–497.

2329 Market, P. S., and J. T. Moore, 1998: Mesoscale evolution of a continental occluded cyclone. *Mon. Wea. Rev.*, **126**, 1793–1811.

2331 Martin, J. E., 1998: The structure and evolution of a continental winter cyclone. Part I: Frontal
2332 structure and the occlusion process. *Mon. Wea. Rev.*, **126**, 303–328, doi: 10.1175/1520-
2333 0493(1998)126<0303:TSAEOA>2.0.CO;2.

2334 Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the
2335 trowal airstream. *Mon. Wea. Rev.*, **127**, 70–88.

2336 Martin, J. E., 2006: The role of shearwise and transverse quasigeostrophic vertical motions in the
2337 midlatitude cyclone life cycle. *Mon. Wea. Rev.*, **134**, 1174–1193.

2338 Martin, J. E., 2014: Quasi-geostrophic diagnosis of the influence of vorticity advection on the
2339 development of upper level jet-front systems. *Quart. J. Roy. Meteor. Soc.*, **140**, 2658–2671.

2340 Mass, C. F., and D. M. Schultz, 1993: The structure and evolution of a simulated midlatitude
2341 cyclone over land. *Mon. Wea. Rev.*, **121**, 889–917.

2342 Matejka, T. J., R. A. Houze, Jr., and P. V. Hobbs, 1980: Microphysics and dynamics of clouds
2343 associated with mesoscale rainbands in extratropical cyclones. *Quart. J. Roy. Meteor. Soc.*,
2344 **106**, 29–56.

2345 McMurdie, L. A., and B. Ancell, 2014: Predictability characteristics of landfalling cyclones along
2346 the North American West Coast. *Mon. Wea. Rev.*, **142**, 301–319.

2347 McMurdie, L. A., and C. Mass, 2004: Major numerical forecast failures over the northeast Pacific.
2348 *Wea. Forecasting*, **19**, 338–356.

2349 McTaggart-Cowan, R., T. J. Galarneau, L. F. Bosart, and J. A. Milbrandt, 2010a: Development
2350 and tropical transition of an Alpine lee cyclone. Part I: Case analysis and evaluation of
2351 numerical guidance. *Mon. Wea. Rev.*, **138**, 2281–2307.

2352 McTaggart-Cowan, R., T. J. Galarneau, Jr., L. F. Bosart, and J. A. Milbrandt, 2010b: Development
2353 and tropical transition of an Alpine lee cyclone. Part II: Orographic influence on the
2354 development pathway. *Mon. Wea. Rev.*, **138**, 2308–2326.

2355 Meisinger, C. L., 1920: The great cyclone of mid-February, 1919. *Mon. Wea. Rev.*, **48**, 582–586.

2356 Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. *J. Meteor.*, **3**,
2357 31–44.

2358 Miller, J. E., 1948: On the concept of frontogenesis. *J. Meteor.*, **5**, 169–171.

2359 Morgan, M. C., 1999: Using piecewise potential vorticity inversion to diagnose frontogenesis. Part
2360 I: A partitioning of the Q vector applied to diagnosing surface frontogenesis and vertical
2361 motion. *Mon. Wea. Rev.*, **127**, 2796–2821.

2362 Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude
2363 weather systems. *Mon. Wea. Rev.*, **126**, 2555–2579.

2364 Mudrick, S. E., 1974: A numerical study of frontogenesis. *J. Atmos. Sci.*, **31**, 869–892.

2365 Mullen, S. L., 1994: An estimate of systematic error and uncertainty in surface cyclone analysis
2366 over the North Pacific Ocean: Some forecasting implications. *Wea. Forecasting*, **9**, 221–227.

2367 Muraki, D. J., C. Snyder, and R. Rotunno, 1999: The next-order corrections to quasigeostrophic
2368 theory. *J. Atmos. Sci.*, **56**, 1547–1560.

2369 Mylne, K., R. Evans, and R. Clark, 2002: Multi-model multi-analysis ensembles in quasi-
2370 operational medium-range forecasting. *Quart. J. Roy. Meteor. Soc.* **128**, 361–384.

2371 Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. *J. Atmos.*
2372 *Sci.*, **49**, 1629–1642.

2373 Nakamura, H., and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the North-
2374 Pacific subtropical jet core in midwinter. *Geophys. Res. Lett.*, **29**, GL015535, doi:
2375 10.1029/2002GL015535.

2376 Namias, J., 1939: The use of isentropic analysis in short term forecasting. *J. Aeronaut. Sci.*, **6**,
2377 295–298.

2378 Namias, J., 1950: The index cycle and its role in the general circulation. *J. Meteor.*, **7**, 130–139.

2379 Namias, J., 1981: The early influence of the Bergen School on synoptic meteorology in the United
2380 States. *PAGEOPH*, **119**, 491–500.

2381 Namias, J., 1983: The history of polar front and air mass concepts in the United States—An
2382 eyewitness account. *Bull. Amer. Met. Soc.*, **64**, 734–755.

2383 Namias, J., and P. F. Clapp 1949: Confluence theory of the high tropospheric jet stream. *J. Meteor.*,
2384 **6**, 330–336.

2385 National Academy of Sciences, 1956: Folder: Committee on Meteorology. Washington, DC:
2386 National Research Council.

2387 National Research Council, 2000: *From Research to Operations in Weather Satellites and*
2388 *Numerical Weather Prediction: Crossing the Valley of Death*. The National Academies Press,
2389 96 pp., doi: 10.17226/9948.

2390 Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I:
2391 Frontal-cyclone evolution and thermodynamic air–sea interaction. *Mon. Wea. Rev.*, **121**, 2153–
2392 2176.

2393 Neiman, P. J., and R. M. Wakimoto, 1999: The interaction of a Pacific cold front with shallow air

2394 masses east of the Rocky Mountains. *Mon. Wea. Rev.*, **127**, 2102–2127.

2395 Newton, C. W., 1954: Frontogenesis and frontolysis as a three-dimensional process. *J. Meteor.*,

2396 **11**, 449–461.

2397 Newton, C. W., 1956: Mechanisms of circulation change during a lee cyclogenesis, *J. Meteor.*, **13**,

2398 528–539.

2399 Newton, C. W., 1970: The role of extratropical disturbances in the global atmosphere. *The Global*

2400 *Circulation of the Atmosphere*, G. A. Corby, Ed., Roy. Meteor. Soc., 137–158.

2401 Newton, C., and E. O. Holopainen, Eds., 1990: *Extratropical Cyclones: The Erik Palmén*

2402 *Memorial Volume*. Amer. Meteor. Soc., 262 pp.

2403 Newton, C. W., and E. Palmén, 1963: Kinematic and thermal properties of a large-amplitude wave

2404 in the westerlies, *Tellus*, **15**, 99–119.

2405 Newton, C. W., and A. Trevisan, 1984: Clinogenesis and frontogenesis in jet-stream waves. Part

2406 II: Channel model numerical experiments. *J. Atmos. Sci.*, **41**, 2735–2755.

2407 Newton, C. W., and H. Rodebush Newton, 1999: The Bergen School concepts come to America.

2408 *The Life Cycles of Extratropical Cyclones*, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor.

2409 Soc., 41–59.

2410 Norris, J., G. Vaughan, and D. M. Schultz, 2014: Precipitation banding in idealized baroclinic

2411 waves. *Mon. Wea. Rev.*, **142**, 3081–3099, doi: 10.1175/MWR-D-13-00343.1.

2412 Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of

2413 cold season–banded precipitation in northeast U.S. cyclones. *Wea. Forecasting*, **19**, 993–1010.

2414 Novak, D. R., J. S. Waldstreicher, D. Keyser, and L. F. Bosart, 2006: A forecast strategy for

2415 anticipating cold season mesoscale band formation within eastern U.S. cyclones. *Wea.*

2416 *Forecasting*, **21**, 3–23.

2417 Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model
2418 simulations of the life cycle of an intense mesoscale snowband over the northeastern United
2419 States. *Mon. Wea. Rev.*, **136**, 1433–1456.

2420 Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the
2421 formation and evolution of mesoscale snowbands within the comma head of northeast U.S.
2422 cyclones. *Mon. Wea. Rev.*, **137**, 2662–2686.

2423 Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band
2424 environments within the comma head of northeast U.S. cyclones. *Mon. Wea. Rev.*, **138**, 2354–
2425 2374.

2426 Novak, L., M. H. P. Ambaum, and R. Tailleux, 2017: Marginal stability and predator–prey
2427 behaviour within storm tracks. *Quart. J. Roy. Meteor. Soc.*, **143**, 1421–1433.

2428 Nuss, W. A., and R. A. Anthes, 1987: A numerical investigation of low-level processes in rapid
2429 cyclogenesis. *Mon. Wea. Rev.*, **115**, 2728–2743.

2430 O'Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere.
2431 *J. Atmos. Sci.*, **68**, 75–90.

2432 Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere.
2433 Part I: Eddy energy budget. *J. Atmos. Sci.*, **48**, 1972–1998.

2434 Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and
2435 upstream development of baroclinic waves. *J. Atmos. Sci.*, **50**, 212–225.

2436 Palmén, E., 1951: The aerology of extratropical disturbances. *Compendium of Meteorology*. Amer.
2437 Meteor. Soc., 599–620.

2438 Palmén, E., 1958: Vertical circulation and release of kinetic energy during the development of
2439 Hurricane Hazel into an extratropical storm, *Tellus*, **18**, 838–845.

2440 Palmén, E., and C. W. Newton, 1948: A study of the mean wind and temperature distribution in
2441 the vicinity of the polar front in winter. *J. Meteor.*, **5**, 220–226.

2442 Palmén, E. and C. W. Newton, 1969: *Atmospheric Circulation Systems: Their Structure and*
2443 *Physical Interpretation*. Academic Press, 603 pp.

2444 Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless
2445 prediction: Calibration of climate change projections using seasonal forecasts. *Bull. Amer.*
2446 *Meteor. Soc.*, **89**, 459–470, doi: 10.1175/BAMS-89-4-459.

2447 Papritz, L., and T. Spengler, 2015: Analysis of the slope of isentropic surfaces and its tendencies
2448 over the North Atlantic. *Quart. J. Roy. Meteor. Soc.*, **141**, 3226–3238.

2449 Park, Y.-Y., R. Buizza, and M. Leutbecher, 2008: TIGGE: Preliminary results on comparing and
2450 combining ensembles. *Quart. J. Roy. Meteor. Soc.*, **134**, 2029–2050.

2451 Parker, D. J. and A. J. Thorpe, 1995: The role of snow sublimation in frontogenesis. *Quart. J. Roy.*
2452 *Meteor. Soc.*, **121**, 763–782.

2453 Pedlosky, J. 1964: The stability of atmospheric jets in the atmosphere and the ocean: Part I. *J.*
2454 *Atmos. Sci.*, **21**, 201–219.

2455 Penner, C. M., 1955: A three-front model for synoptic analyses. *Quart. J. Roy. Meteor. Soc.*, **81**,
2456 89–91.

2457 Penny, S., G. H. Roe, and D. S. Battisti, 2010: The source of the midwinter suppression in
2458 storminess over the North Pacific. *J. Climate*, **23**, 634–648,
2459 <https://doi.org/10.1175/2009JCLI2904.1>.

2460 Petterssen, S., 1936: Contribution to the theory of frontogenesis. *Geofys. Publ.*, **11** (6), 1–27.

2461 Petterssen, S., 1941: Cyclogenesis over the southeastern United States and the Atlantic Coast. *Bull.*
2462 *Amer. Meteor. Soc.*, **112**, 1577–1589.

2463 Petterssen, S., 1955: A general survey of the factors influencing development at sea level. *J.*
2464 *Meteor.*, **12**, 36-42; Corrigendum, **12**, 286.

2465 Petterssen, S., 1956: *Weather Analysis and Forecasting, Vol. 1. Motion and Motion Systems*. 2nd
2466 ed., McGraw-Hill, 428 pp.

2467 Pettersen, S., 1969: *Introduction to Meteorology*. McGraw-Hill, 333 pp.

2468 Petterssen, S., D. L. Bradbury, and K. Pedersen, 1962: The Norwegian cyclone models in relation
2469 to heat and cold sources. *Geofys. Publ.*, **24**, 243–280.

2470 Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. *Quart. J.*
2471 *Roy. Meteor. Soc.*, **97**, 457–482.

2472 Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes.
2473 *J. Clim.*, **25**, 6770–6870.

2474 Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the
2475 ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. *J.*
2476 *Clim.*, **27**, 27–40.

2477 Phillips, N. A., 1956: The general circulation of the atmosphere: A numerical experiment. *Quart.*
2478 *J. Roy. Meteor. Soc.*, **82**, 123–164.

2479 Pierrehumbert, R. T., and K. L. Swanson, 1995: Baroclinic instability. *Annu. Rev. Fluid Mech.*,
2480 **27**, 419–467.

2481 Pichler, H., and R. Steinacker, 1987: On the synoptics and dynamics of orographically induced
2482 cyclones in the Mediterranean. *Meteor. Atmos. Phys.*, **36**, 108–117.

2483 Pyle, M. E., D. Keyser, and L. F. Bosart, 2004: A diagnostic study of jet streaks: Kinematic
2484 signatures and relationship to coherent tropopause disturbances. *Mon. Wea. Rev.*, **132**, 297–
2485 319.

2486 Rauber, R. M., M. K. Macomber, D. M. Plummer, A. A. Rosenow, G. M. McFarquhar, B. F.
2487 Jewett, D. Leon, and J. M. Keeler, 2014: Finescale radar and airmass structure of the comma
2488 head of a continental winter cyclone: The role of three airstreams. *Mon. Wea. Rev.*, **142**, 4207–
2489 4229.

2490 Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. *J. Meteor.*, **12**,
2491 226–237.

2492 Reed, R. J., 1977: Bjerknes Memorial Lecture: The development and status of modern weather
2493 prediction. *Bull. Amer. Meteor. Soc.*, **58**, 390–399.

2494 Reed, R. J., 1979: Cyclogenesis in polar air streams. *Mon. Wea. Rev.*, **107**, 38–52.

2495 Reed, R. J., 1990: Advances in knowledge and understanding of extratropical cyclones during the
2496 past quarter century: An overview. *Extratropical Cyclones: The Erik Palmén Memorial
2497 Volume*, C. Newton, and E. O. Holopainen, Eds., Amer. Meteor. Soc., 27–45.

2498 Reed, R. J., 2003: A short account of my education, career choice, and research motivation. *A Half
2499 Century of Progress in Meteorology: A Tribute to Richard Reed*, R. A. Johnson, and R. A.
2500 Houze, Jr., Eds., Amer. Meteor. Soc., 1–7.

2501 Reed, R. J., and M. D. Albright, 1986: A case study of explosive cyclogenesis in the eastern Pacific
2502 Ocean. *Mon. Wea. Rev.*, **114**, 2297–2319.

2503 Reed, R. J., and M. D. Albright, 1997: Frontal structure in the interior of an intense mature ocean
2504 cyclone. *Wea. Forecasting*, **12**, 866–876.

2505 Reed, R. J., A. J. Simmons, M. D. Albright, and P. Uden, 1988: The role of latent heat release in
2506 explosive cyclogenesis: Three examples based on ECMWF operational forecasts. *Wea.
2507 Forecasting*, **3**, 217–229.

2508 Reed, R. J., Y.-H. Kuo, and S. Low-Nam, 1994: An adiabatic simulation of the ERICA IOP 4

2509 storm: An example of quasi-ideal frontal cyclone development. *Mon. Wea. Rev.*, **122**, 2688–
2510 2708.

2511 Reed, R. J., M. T. Stoelinga, and Y. H. Kuo, 1992: A model-aided study of the origin and evolution
2512 of the anomalously high-potential vorticity in the inner region of a rapidly deepening marine
2513 cyclone. *Mon. Wea. Rev.*, **120**, 893–913.

2514 Reed, R. J., and F. Sanders, 1953: An investigation of the development of a mid-tropospheric
2515 frontal zone and its associated vorticity field. *J. Meteor.*, **10**, 338–349.

2516 Reeder, M. J., and D. Keyser, 1988: Balanced and unbalanced upper-level frontogenesis. *J. Atmos.*
2517 *Sci.*, **45**, 3366–3386.

2518 Reeder, M. J., and K. J. Tory, 2005: The effect of the continental boundary layer on the dynamics
2519 of fronts in a 2D model of baroclinic instability. II: Surface heating and cooling. *Quart. J. Roy.*
2520 *Meteor. Soc.*, **131**, 2409–2429.

2521 Reeves, H. D., and G. M. Lackmann, 2004: An investigation of the influence of latent heat release
2522 on cold-frontal motion. *Mon. Wea. Rev.*, **132**, 2864–2881.

2523 Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and
2524 upper-tropospheric wave-breaking processes. *J. Atmos. Sci.*, **66**, 1569–1592.

2525 Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. *Mon.*
2526 *Wea. Rev.*, **112**, 1577–1589.

2527 Roebber, P. J., 1989: On the statistical analysis of cyclone deepening rates. *Mon. Wea. Rev.*, **117**,
2528 2293–2298.

2529 Roebber, P. J., and M. R. Schumann, 2011: Physical processes governing the rapid deepening tail
2530 of maritime cyclogenesis. *Mon. Wea. Rev.*, **139**, 2776–2789.

2531 Roebber, P. J., S. L. Bruening, D. M. Schultz, and J. V. Cortinas, 2003: Improving snowfall

2532 forecasting by diagnosing snow density. *Wea. Forecasting*, **18**, 264–287.

2533 Rossa, A., H. Wernli and H. C. Davies, 2000: Growth and decay of an extratropical cyclone's PV-
2534 tower. *Meteor. Atmos. Phys.*, **73**, 130–156.

2535 Rossby, C.-G., 1934: Comments on meteorological research. *J. Aeronaut. Sci.*, **1**, 32–34.

2536 Rossby, C.-G., 1940: Planetary flow patterns in the atmosphere. *Quart. J. Roy. Meteor. Soc.*, **66**
2537 (*Suppl.*), 68–87.

2538 Rossby, C.-G., and Collaborators, 1937: Isentropic analysis. *Bull. Amer. Meteor. Soc.*, **18**, 201–
2539 209.

2540 Rotunno, R., D. J. Muraki, and C. Snyder, 2000: Unstable baroclinic waves beyond
2541 quasigeostrophic theory. *J. Atmos. Sci.*, **57**, 3285–3295.

2542 Rotunno, R., W. C. Skamarock, and C. Snyder, 1994: An analysis of frontogenesis in numerical
2543 simulations of baroclinic waves. *J. Atmos. Sci.*, **51**, 3373–3398.

2544 Rotunno, R., W. C. Skamarock, and C. Snyder, 1998: Effects of surface drag on fronts within
2545 numerically simulated baroclinic waves. *J. Atmos. Sci.*, **55**, 2119–2129.

2546 Rutledge, S. A. and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization
2547 of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder–feeder”
2548 process in warm-frontal rainbands. *J. Atmos. Sci.*, **40**, 1185–1206.

2549 Rutledge, S. A. and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization
2550 of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of
2551 precipitation development in narrow cold-frontal rainbands. *J. Atmos. Sci.*, **41**, 2949–2972.

2552 Ryan, B. F., K. J. Wilson, J. R. Garratt, and R. K. Smith, 1985: Cold Fronts Research Programme:
2553 Progress, future plans, and research directions. *Bull. Amer. Meteor. Soc.*, **66**, 1116–1122.

2554 Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal
2555 zone. *J. Meteor.*, **12**, 542–555.

2556 Sanders, F., 1986a: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84.
2557 Part I: Composite structure and mean behavior. *Mon. Wea. Rev.*, **114**, 1781–1794, doi:
2558 10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

2559 Sanders, F., 1986b: Frontogenesis and symmetric stability in a major New England snowstorm.
2560 *Mon. Wea. Rev.*, **114**, 1847–1862.

2561 Sanders, F., 1987: A study of 500 mb vorticity maxima crossing the East Coast of North America
2562 and associated surface cyclogenesis. *Wea. Forecasting*, **2**, 70–83, doi: 10.1175/1520-
2563 0434(1987)002<0070:ASOMVM>2.0.CO;2.

2564 Sanders, F., 1988: Life-history of mobile troughs in the upper westerlies. *Mon. Wea. Rev.*, **116**,
2565 2629–2648.

2566 Sanders, F., 1990: Surface analysis over the oceans—Searching for sea truth. *Wea. Forecasting*,
2567 **5**, 596–612.

2568 Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the "bomb". *Mon. Wea.*
2569 *Rev.*, **108**, 1589–1606.

2570 Sanders, F., and L. F. Bosart, 1985a: Mesoscale structure in the Megalopolitan snowstorm of 11–
2571 12 February 1983. Part I: Frontogenetical forcing and symmetric instability. *J. Atmos. Sci.*, **42**,
2572 1050–1061.

2573 Sanders, F., and L. F. Bosart, 1985b: Mesoscale structure in the Megalopolitan snowstorm, 11–12
2574 February 1983. Part II: Doppler radar study of the New England snowband. *J. Atmos. Sci.*, **42**,
2575 1398–1407.

2576 Sansom, H. W., 1951: A study of cold fronts over the British Isles. *Quart. J. Roy. Meteor. Soc.*,
2577 **77**, 96–120.

2578 Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to
2579 frontogenesis. *Proc. Roy. Soc. London*, **A234**, 346–362.

2580 Schäfler, A., and Coauthors, 2018: The North Atlantic Waveguide and Downstream Impact
2581 Experiment. *Bull. Amer. Meteor. Soc.*, doi: 10.1175/BAMS-D-17-0003.1.

2582 Schemm, S., and T. Schneider, 2018: Eddy lifetime, number, diffusivity and the suppression of
2583 eddy kinetic energy in midwinter. *J. Clim.*, in review.

2584 Scherhag, R., 1934: Zur Theorie der Hoch- und Tiefdruckgebiete. Die Bedeutung der Divergenz
2585 in Druckfeldern. *Meteor. Z.*, **51**, 129–138. [Translated and edited by E. Volken, A. M. Giesche,
2586 and S. Brönnimann, 2016: On the theory of high and low pressure areas: The significance of
2587 divergence in pressure areas. *Meteor. Z.*, **25**, 511–519, doi: 10.1127/metz/2016/0785.]

2588 Schultz, D. M., 2001: Reexamining the cold conveyor belt. *Mon. Wea. Rev.*, **129**, 2205–2225.

2589 Schultz, D. M., 2005: A review of cold fronts with prefrontal troughs and wind shifts. *Mon. Wea.*
2590 *Rev.*, **133**, 2449–2472.

2591 Schultz, D. M., 2013: Comment on ‘The influence of rotational frontogenesis and its associated
2592 shearwise vertical motion on the development of an upper-level front’ by A. A. Lang and J. E.
2593 Martin (January 2010, **136**: 239–252). *Quart. J. Roy. Meteor. Soc.*, **139**, 269–272, doi:
2594 10.1002/qj.1871.

2595 Schultz, D. M., 2015: Frontogenesis. *Encyclopedia of Atmospheric Sciences*, Vol. 5, 2nd ed., G.
2596 R. North, J. Pyle, and F. Zhang, Eds., Elsevier, 353–358.

2597 Schultz, D. M., B. Antonescu, and A. Chiarello, 2014: Searching for the elusive cold-type occluded
2598 front. *Mon. Wea. Rev.*, **142**, 2565–2570.

2599 Schultz, D. M. and K. A. Browning, 2017: What is a sting jet? *Weather*, **72**, 63–66,
2600 doi:10.1002/wea.2795.

2601 Schultz, D. M., and C. A. Doswell III, 1999: Conceptual models of upper-level frontogenesis in
2602 south-westerly and north-westerly flow. *Quart. J. Roy. Meteor. Soc.*, **125**, 2535–2562.

2603 Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of the large-scale flow on low-level
2604 frontal structure and evolution in midlatitude cyclones. *Mon. Wea. Rev.*, **126**, 1767–1791.

2605 Schultz, D. M., and C. F. Mass, 1993: The occlusion process in a midlatitude cyclone over land.
2606 *Mon. Wea. Rev.*, **121**, 918–940.

2607 Schultz, D. M., and P. J. Roebber, 2008: The fiftieth anniversary of Sanders (1955): A mesoscale
2608 model simulation of the cold front of 17–18 April 1953. *Synoptic–Dynamic Meteorology and*
2609 *Weather Analysis and Forecasting: A Tribute to Fred Sanders*, L. F. Bosart and H. B.
2610 Bluestein, Eds., Amer. Meteor. Soc., 126–143.

2611 Schultz, D. M., and F. Sanders, 2002: Upper-level frontogenesis associated with the birth of mobile
2612 troughs in northwesterly flow. *Mon. Wea. Rev.*, **130**, 2593–2610.

2613 Schultz, D. M., and J. M. Sienkiewicz, 2013: Using frontogenesis to identify sting jets in
2614 extratropical cyclones. *Wea. Forecasting*, **28**, 603–613.

2615 Schultz, D. M., and G. Vaughan, 2011: Occluded fronts and the occlusion process: A fresh look at
2616 conventional wisdom. *Bull. Amer. Meteor. Soc.*, **92**, 443–466, ES19–ES20.

2617 Schultz, D. M., and F. Zhang, 2007: Baroclinic development within zonally-varying flows. *Quart.*
2618 *J. Roy. Meteor. Soc.*, **133**, 1101–1112.

2619 Seiler, C., and F. W. Zwiers, 2016: How well do CMIP5 climate models reproduce explosive
2620 cyclones in the extratropics of the Northern Hemisphere? *Clim. Dyn.*, **46**, 1241–1256.

2621 Seiler, C., F. W. Zwiers, K. I. Hodges, and J. F. Scinocca, 2018: How does dynamical downscaling
2622 affect model biases and future projections of explosive extratropical cyclones along North
2623 America's Atlantic coast? *Clim. Dyn.*, **50**, 677–692.

2624 Shapiro, M. A., 1976: The role of turbulent heat flux in the generation of potential vorticity in the
2625 vicinity of upper-level jet stream systems. *Mon. Wea. Rev.*, **104**, 892–906.

2626 Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulent structure of upper level jet
2627 stream–frontal zone systems. *Mon. Wea. Rev.*, **106**, 1100–1111.

2628 Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange
2629 of chemical constituents between the stratosphere and troposphere. *J. Atmos. Sci.*, **37**, 994–
2630 1004.

2631 Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the
2632 vicinity of jet stream–frontal zone systems. *J. Atmos. Sci.*, **38**, 954–973.

2633 Shapiro, M. A., 1982: Mesoscale weather systems of the central United States. CIRES/NOAA
2634 Technical Report, University of Colorado, 78 pp.

2635 Shapiro, M. A., and S. Grønås, 1999: *The Life Cycles of Extratropical Cyclones*. Amer. Meteor.
2636 Soc., 359 pp.

2637 Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. *Extratropical*
2638 *Cyclones: The Erik Palmén Memorial Volume*. C. Newton and E. O. Holopainen, Eds., Amer.
2639 Meteor. Soc., 167–191.

2640 Shapiro, M. A. and A. J. Thorpe, 2004: *THORPEX International Science Plan*.
2641 WWRP/THORPEX No. 2, 51 pp.

2642 Shapiro, M., H. Wernli, J.-W. Bao, J. Methven, X. Zou, J. Doyle, T. Holt, E. Donall-Grell, and P.
2643 Neiman, 1999: A planetary-scale to mesoscale perspective of the life cycles of extratropical

2644 cyclones: The bridge between theory and observations. *The Life Cycles of Extratropical*
2645 *Cyclones*, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 139–185.

2646 Shaw, W. N., 1911: *Forecasting Weather*. Van Nostrand, 380 pp.

2647 Shaw, W. N., 1930: *Manual of Meteorology, Vol. 3: The Physical Processes of Weather*.
2648 Cambridge University Press, 445 pp.

2649 Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate
2650 change. *Nature Geosci.*, **9**, 656–665.

2651 Silberberg, S. R., and L. F. Bosart, 1982: An analysis of systematic cyclone errors in the NMC
2652 LFM-II model during the 1978–79 cool season. *Mon. Wea. Rev.*, **110**, 254–271.

2653 Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. *J.*
2654 *Atmos. Sci.*, **35**, 414–432.

2655 Simmons, A. J., and B. J. Hoskins, 1979. The downstream and upstream development of unstable
2656 baroclinic waves. *J. Atmos. Sci.*, **36**, 1239–1254.

2657 Sinclair, V. A., and D. Keyser, 2015: Force balances and dynamical regimes of numerically
2658 simulated cold fronts within the boundary layer. *Quart. J. Roy. Meteor. Soc.*, **141**, 2148–2164.

2659 Slater, T. P., D. M. Schultz, and G. Vaughan, 2015: Acceleration of near-surface strong winds in
2660 a dry, idealised extratropical cyclone. *Quart. J. Roy. Meteor. Soc.*, **141**, 1004–1016, doi:
2661 10.1002/qj.2417.

2662 Slater, T. P., D. M. Schultz, and G. Vaughan, 2017: Near-surface strong winds in a marine
2663 extratropical cyclone: Acceleration of the winds and the importance of surface fluxes. *Quart.*
2664 *J. Royal Meteor. Soc.*, **143**, 321–332, doi: 10.1002/qj.2924.

2665 Smart, D. J., and K. A. Browning, 2014: Attribution of strong winds to a cold conveyor belt and
2666 sting jet. *Quart. J. Roy. Meteor. Soc.*, **140**, 595–610.

2667 Snyder, C., W. C. Skamarock, and R. Rotunno, 1991: A comparison of primitive-equation and
2668 semigeostrophic simulations of baroclinic waves. *J. Atmos. Sci.*, **48**, 2179–2194.

2669 Spar, J., 1956: An analysis of a cyclone on a small synoptic scale. *Mon. Wea. Rev.*, **84**, 291–300.

2670 Stark, D., B. A. Colle, and S. E. Yuter, 2013: Observed microphysical evolution for two East Coast
2671 winter storms and the associated snow bands. *Mon. Wea. Rev.*, **141**, 2037–2057.

2672 Starr, V. P., 1948: An essay on the general circulation of the atmosphere. *J. Meteor.*, **5**, 39–43.

2673 Steenburgh, W. J., and C. F. Mass, 1994: The structure and evolution of a simulated Rocky
2674 Mountain lee trough. *Mon. Wea. Rev.*, **122**, 2740–2761.

2675 Stensrud, D. J., H. E. Brooks, J. Du, M. S. Tracton, and E. Rogers, 1999: Using ensembles for
2676 short-range forecasting. *Mon. Wea. Rev.*, **127**, 433–446.

2677 Stoelinga, M. T., J. D. Locatelli, and P. V. Hobbs, 2002: Warm occlusions, cold occlusions, and
2678 forward-tilting cold fronts. *Bull. Amer. Meteor. Soc.*, **83**, 709–721.

2679 Stone, P. H., 1966: Frontogenesis by horizontal wind deformation fields. *J. Atmos. Sci.*, **23**, 455–
2680 465.

2681 Sutcliffe, R. C., 1938: On the development in the field of barometric pressure. *Quart. J. Roy.*
2682 *Meteor. Soc.*, **64**, 495–509.

2683 Sutcliffe, R. C., 1947: A contribution to the problem of development. *Quart. J. Roy. Meteor. Soc.*,
2684 **73**, 370–383.

2685 Sutcliffe, R. C., 1951: Mean upper contour patterns of the Northern Hemisphere—The thermal-
2686 synoptic view-point. *Quart. J. Roy. Meteor. Soc.*, **77**, 435–440.

2687 Sutcliffe, R. C., 1982: Obituary. Charles Kenneth MacKinnon Douglas, O.B.E., A.F.C., M.A,
2688 Vice-President 1955. *Quart. J. Roy. Meteor. Soc.*, **108**, 996–997.

2689 Sutcliffe, R. C., and A. G. Forsdyke, 1950: The theory and use of upper air thickness patterns in
2690 forecasting. *Quart. J. Roy. Meteor. Soc.*, **76**, 189–217.

2691 Swanson, K. L., P. J. Kushner, and I. M. Held, 1997: Dynamics of barotropic storm tracks. *J.*
2692 *Atmos. Sci.*, **54**, 791–810.

2693 Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. *Bull. Amer. Meteor.*
2694 *Soc.*, **97**, 49–67.

2695 Szeto, K. K., and R. E. Stewart, 1997: Effects of melting on frontogenesis. *J. Atmos. Sci.*, **54**, 689–
2696 702.

2697 Szeto, K. K., C. A. Lin, and R. E. Stewart, 1988a: Mesoscale circulations forced by melting snow.
2698 Part I: Basic simulations and dynamics. *J. Atmos. Sci.*, **45**, 1629–1641.

2699 Szeto, K. K., R. E. Stewart, and C. A. Lin, 1988b: Mesoscale circulations forced by melting snow:
2700 Part II: Application to meteorological features. *J. Atmos. Sci.*, **45**, 1642–1650.

2701 Taylor, P. A., 2005: The organizational formation of atmospheric science. *The Social Sci. J.*, **42**,
2702 639–648.

2703 Terpstra, A., T. Spengler, and R. W. Moore, 2015: Idealised simulations of polar low development
2704 in an Arctic moist-baroclinic environment. *Quart. J. Roy. Meteor. Soc.*, **141**, 1987–1996.

2705 Thompson, W. T., 1995: Numerical simulations of the life cycle of a baroclinic wave. *Tellus A*,
2706 **47**, 722–732.

2707 Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave
2708 life-cycle behavior. *Quart. J. Roy. Meteor. Soc.*, **119**, 17–55.

2709 Thorpe, A. J., 2002: Extratropical cyclogenesis: An historical review. *Meteorology at the*
2710 *Millennium*, R. P. Pearce. Ed., Roy. Meteor. Soc., Academic Press, 14–22.

2711 Thorpe, A. J., and S. A. Clough, 1991: Mesoscale dynamics of cold fronts: Structures described

2712 by dropsoundings in FRONTS87. *Quart. J. Roy. Meteor. Soc.*, **117**, 903–941.

2713 Thorpe, A. J., and K. A. Emanuel, 1985: Frontogenesis in the presence of small stability to

2714 slantwise convection. *J. Atmos. Sci.*, **42**, 1809–1824.

2715 Tibaldi, S., A. Buzzi, and A. Speranza, 1990: Orographic cyclogenesis. *Extratropical Cyclones:*

2716 *The Erik Palmén Memorial Volume*, C. Newton, and E. O. Holopainen, Eds., Amer. Meteor.

2717 Soc., 107–127.

2718 Toden, M., 1964: A computation of the vertical circulation in a frontal zone from the quasi-

2719 geostrophic equations. Air Force Cambridge Laboratories Tech. Note 4, OAR Contribution

2720 AF 61(052)-525, 23 pp.

2721 Tory, K. J., and M. J. Reeder, 2005: The effect of the continental boundary layer on the dynamics

2722 of fronts in a 2D model of baroclinic instability. I: An insulated lower surface. *Quart. J. Roy.*

2723 *Meteor. Soc.*, **131**, 2389–2408.

2724 Tracton, M. S., 1973: The role of cumulus convection in the development of extratropical cyclones.

2725 *Mon. Wea. Rev.*, **101**, 573–593.

2726 Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. *J. Atmos. Sci.*, **48**, 2159–2178.

2727 Uccellini, L. W., 1986: The possible influence of upstream upper-level baroclinic processes on the

2728 development of the *QE II* storm. *Mon. Wea. Rev.*, **114**, 1019–1027.

2729 Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones.

2730 *Extratropical Cyclones: The Erik Palmén Memorial Volume*, C. Newton, and E. O.

2731 Holopainen, Eds., Amer. Meteor. Soc., 81–105.

2732 Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents' Day cyclone of

2733 18–19 February 1979: Influence of upstream trough amplification and associated tropopause

2734 folding on rapid cyclogenesis. *Mon. Wea. Rev.*, **113**, 962–988.

2735 Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for
2736 mesoscale wave disturbances. *Mon. Wea. Rev.*, **115**, 721–729.

2737 Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents'
2738 Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet
2739 streak influencing the pre-cyclogenetic period. *Mon. Wea. Rev.*, **112**, 31–55.

2740 Uccellini, L. W., P. J. Kocin, R. S. Schneider, P. M. Stokols, and R. A. Dorr, 1995: Forecasting
2741 the 12–14 March 1993 Superstorm. *Bull. Amer. Meteor. Soc.*, **76**, 183–199.

2742 Uccellini, L. W., P. J. Kocin, J. M. Sienkiewicz, R. Kistler, and M. Baker, 2008: Fred Sanders'
2743 roles in the transformation of synoptic meteorology, the study of rapid cyclogenesis, the
2744 prediction of marine cyclones, and the forecast of New York City's 'Big Snow' of December
2745 1947. *Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to*
2746 *Fred Sanders*, *Meteor. Monogr.*, No. 55, Amer. Meteor. Soc., 269–294.

2747 Van Bebber, W. J., 1891: Die Zugstraßen der barometrischen Minima nach den Bahnenkarten der
2748 Deutschen Seewarte für den Zeitraum 1875–1890. *Meteor. Z.*, **8**, 361–366, plus 312 monthly
2749 charts.

2750 Van Bebber, W. J., and W. Köppen, 1895: Die Isobarentypen des Nordatlantischen Ozeans und
2751 Westeuropas, ihre Beziehung zur Lage und Bewegung der barometrischen Maxima und
2752 Minima. *Arch. Dtsch. Seewarte*, **18** (4), 27 pp., plus 23 plates.

2753 Vaughan, G., and Coauthors, 2015: Cloud banding and winds in intense European cyclones:
2754 Results from the DIAMET project. *Bull. Amer. Meteor. Soc.*, **96**, 249–265.

2755 Volkert, H., 1999: Components of the Norwegian Cyclone Model: Observations and theoretical
2756 ideas in Europe prior to 1920. *The Life Cycles of Extratropical Cyclones*, M. A. Shapiro and
2757 S. Grønås, Eds., Amer. Meteor. Soc., 15–28.

2758 Volkert, H. 2016: Aerological data spurred dynamical meteorology: Richard Scherhag's
2759 contribution of 1934 as an early milestone. *Meteor. Z.*, **25**, 521–526; doi:
2760 10.1127/metz/2016/0784.

2761 Volkert, H., 2017: Putting faces to names: Snapshots of two committee meetings, 95 years apart,
2762 emphasize continuous international cooperation in the atmospheric sciences. *Adv. Atmos. Sci.*,
2763 **34**, 571–575, doi: 10.1007/s00376-017-6329-6.

2764 Volkert, H., L. Weickmann, and A. Tafferner, 1991: The Papal Front of 3 May 1987: A remarkable
2765 example of frontogenesis near the Alps. *Quart. J. Roy. Meteor. Soc.*, **117**, 125–150.

2766 Volonté, A., P. A. Clark, and S. L. Gray, 2018: The role of mesoscale instabilities in the sting-jet
2767 dynamics of windstorm Tini. *Quart. J. Roy. Meteor. Soc.*, doi: 10.1002/qj.3264.

2768 Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks,
2769 anticyclone tracks and baroclinic wave-guides. *J. Atmos. Sci.*, **45**, 439–462.

2770 Wandishin, M. S., J. W. Nielsen-Gammon, and D. Keyser, 2000: A potential vorticity diagnostic
2771 approach to upper-level frontogenesis within a developing baroclinic wave. *J. Atmos. Sci.*, **57**,
2772 3918–3938.

2773 Weather Bureau, 1948: The snowstorm of December 26–27, 1947 with comparative data of earlier
2774 heavier snowstorms. U.S. Department of Commerce.

2775 Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study.
2776 *Quart. J. Roy. Meteor. Soc.*, **123**, 1677–1706.

2777 Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The
2778 method and some applications. *Quart. J. Roy. Meteor. Soc.*, **123**, 467–489.

2779 Wernli, H., R. Fehlmann, and D. Lüthi, 1998: The effect of barotropic shear on upper-level induced
2780 cyclogenesis: Semigeostrophic and primitive equation numerical simulations. *J. Atmos. Sci.*,

2781 **55**, 2080–2094.

2782 Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA40 dataset (1958–2001). Part I:
2783 Novel identification method and global climatology. *J. Atmos. Sci.*, **63**, 2486–2507.

2784 Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of
2785 the winter storm ‘Lothar’ (24–26 December 1999). *Quart. J. Roy. Meteor. Soc.*, **128**, 405–429.

2786 West, G. L., and W. J. Steenburgh, 2010: Life cycle and mesoscale frontal structure of an
2787 Intermountain cyclone. *Mon. Wea. Rev.*, **138**, 2528–2545.

2788 Whitaker, J. S., L. W. Uccellini, and K. F. Brill, 1988: A model-based diagnostic study of the rapid
2789 development phase of the Presidents’ Day cyclone. *Mon. Wea. Rev.*, **116**, 2337–2365.

2790 Williams, R. T., 1968: A note on quasi-geostrophic frontogenesis. *J. Atmos. Sci.*, **25**, 1157–1159.

2791 Williams, R. T., 1972: Quasi-geostrophic versus non-geostrophic frontogenesis. *J. Atmos. Sci.*, **29**,
2792 3–10.

2793 Williams, R. T., and J. Plotkin, 1968: Quasi-geostrophic frontogenesis. *J. Atmos. Sci.*, **25**, 201–
2794 206.

2795 Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale
2796 latent heating in the North Atlantic storm track. *J. Atmos. Sci.*, **70**, 2234–2250.

2797 Willison, J., W. A. Robinson, and G. M. Lackmann, 2015: North Atlantic storm-track sensitivity
2798 to warming increases with model resolution. *J. Climate*, **28**, 4513–4524.

2799 Winters, A. C., and J. E. Martin, 2014: The role of a polar/subtropical jet superposition in the May
2800 2010 Nashville flood. *Wea. Forecasting*, **29**, 954–974.

2801 Winters, A. C., and J. E. Martin, 2016: Synoptic and mesoscale processes supporting vertical
2802 superposition of the polar and subtropical jets in two contrasting cases. *Quart. J. Roy. Meteor.*
2803 *Soc.*, **142**, 1133–1149.

2804 Winters, A. C., and J. E. Martin, 2017: Diagnosis of a North American polar–subtropical jet
2805 superposition employing piecewise potential vorticity inversion. *Mon. Wea. Rev.*, **145**, 1853–
2806 1873.

2807 Woods, A., 2006: *Medium-Range Weather Prediction: The European Approach*. Springer,
2808 xv+270 pp.

2809 Woollings, T., L. Papritz, C. Mbengue, and T. Spengler, 2016: Diabatic heating and jet stream
2810 shifts: A case study of the 2010 negative North Atlantic Oscillation winter. *Geophys. Res. Lett.*,
2811 **43**, 9994–10,002.

2812 Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel
2813 assessment of future projections of North Atlantic and European extratropical cyclones in the
2814 CMIP5 climate models. *J. Climate*, **26**, 5846–5862.

2815 Zappa, G., B. J. Hoskins, and T. G. Shepherd, 2015: The dependence of wintertime Mediterranean
2816 precipitation on the atmospheric circulation response to climate change. *Environ. Res. Lett.*,
2817 **10**, 104012; Corrigendum, *Environ. Res. Lett.*, **10**, 129501.

2818 Zhang, Z., and B. A. Colle, 2018: Extratropical cyclone and precipitation changes along the U.S.
2819 East Coast using a downscaled climate modeling approach. *J. Climate*, in press.

2820 Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm
2821 of 24–25 January 2000. *Mon. Wea. Rev.*, **130**, 1617–1632.

2822 Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale
2823 predictability. *J. Atmos. Sci.*, **60**, 1173–1185.

2824 Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of
2825 moist baroclinic waves: Convection-permitting experiments and multistage error growth
2826 dynamics. *J. Atmos. Sci.*, **64**, 3579–3594.

2827 Zheng, M., E. Chang, B. A. Colle, Y. Luo, and Y. Zhu: 2017: Applying fuzzy clustering to a multi-
2828 model ensemble for U.S. East Coast winter storms: Scenario identification and forecast
2829 verification. *Wea. Forecasting*, **32**, 881–903.

2830 **Figure Captions**

2831

2832 **Fig. 1.** International milieu at the Bergen School of Meteorology, two years after the foundation
2833 of AMS. Participants at the Eighth meeting of the International Commission for the Scientific
2834 Investigation of the Upper Air on 25 July 1921 in Bergen Norway, as discussed by Volkert (2017).
2835 Photo credit: University Library Bergen.

2836

2837 **Fig. 2.** Physical understanding and conceptual representation through the union of theory,
2838 diagnosis, and observation. Figure and caption from Shapiro et al. (1999, their Fig. 1).

2839

2840 **Fig. 3.** The cyclone model of Shaw (1911). Figure from Petterssen (1969, p. 14).

2841

2842 **Fig. 4.** Idealized cyclone presented by the Bergen school. Figure from Bjerknes and Solberg (1921,
2843 their Fig. 18) and Bjerknes and Solberg (1922, their Fig. 1).

2844

2845 **Fig. 5.** (a) Dominant inertia-gravity wave isochrone analysis for 0700–1900 UTC 4 January 1994.
2846 The area affected by the “snow bomb” is outlined by bold-dashed ellipse. The region of multiple
2847 small-amplitude inertia-gravity waves outlined by bold-dotted ellipse. (b) Manually prepared
2848 surface analysis for 0600 UTC 4 January 1994. Mean sea level isobars (solid lines every 2 hPa).
2849 Figure adapted from Bosart et al. (1998, their Figs. 1 and 16).

2850

2851 **Fig. 6.** Real-time analyses from the U.S. Global Forecast System (GFS) at a grid spacing of 0.5°
2852 latitude–longitude. (a) Sea level pressure (solid lines every 4 hPa), 1000–500-hPa thickness

2853 (dashed lines every 6 dam with a changeover from blue dashed to red dashed lines between 540
2854 and 546 dam), precipitable water (mm, colored according to the color bar) and 250-hPa wind
2855 speeds (m s^{-1} , shaded according to the gray scale). (b) Dynamic tropopause potential temperature
2856 (K, shaded according to the color bar) and wind barbs (pennant, full barb, and half-barb denote 25,
2857 5, 2.5 m s^{-1} , respectively); 925–850-hPa layer-mean cyclonic relative vorticity (solid lines every
2858 $0.5 \times 10^{-4} \text{ s}^{-1}$). (c) The 250-hPa wind speed (m s^{-1} , colored according to the color bar), potential
2859 vorticity (gray lines every 1 PVU), 250-hPa relative humidity (%), shaded according to the gray
2860 scale), 600–400-hPa layer-averaged ascent (red contours every $5 \times 10^{-3} \text{ hPa s}^{-1}$, negative values
2861 only), 300–200-hPa layer-averaged irrotational wind (vectors starting at 3 m s^{-1} , length scale at
2862 lower-right corner). Figure courtesy of Heather Archambault.

2863

2864 **Fig. 7.** An east–west cross section of the temperature (K) and pressure (hPa) patterns above a
2865 zonally aligned ‘High–Low–High’ sequence of surface pressure systems. Data compiled by Dines
2866 and drafted by Lempfert (1920, his Fig. 45). Note that horizontal divergence at tropopause level
2867 with accompanying adiabatic descent above and ascent below would yield the observed thermal
2868 pattern.

2869

2870 **Fig. 8.** Train of frontal-wave cyclones. Figure from Bjerknes and Solberg (1922, their Fig. 9).

2871

2872 **Fig. 9.** Some classical developmental patterns. Panel A depicts thickness contours for (a) diffluent
2873 thermal ridge; (b) confluent thermal ridge; (c) diffluent thermal trough; and (d) confluent thermal
2874 trough. Panel B corresponds to a thermal jet complex, and panel C traces the development of a
2875 warm-sector depression. In each sketch, the symbols A and C refer respectively to preferred

2876 regions for anti-cyclogenesis and cyclogenesis. Figures from Sutcliffe and Forsdyke (1950, their
2877 Figs. 22, 24, and 23).

2878

2879 **Fig. 10.** Alternative depictions of extratropical cyclones. Upper and middle rows show an
2880 idealized three-stage development of a cyclone. The upper row depicts surface cyclogenesis
2881 induced by an upper-level trough advancing toward a surface front (Petterssen 1956, his
2882 Fig. 16.7.1). Low-level ascent is attributed to the strong upper-level vorticity advection (hatched
2883 areas). The middle row is a schematic synoptic synthesis of the evolution (Palmén and Newton
2884 1969, their Fig. 11.3), and shows the 500-hPa geopotential height (heavy solid lines), the 1000-
2885 hPa geopotential height (thin solid lines), and the 1000–500-hPa thickness (dashed lines). In the
2886 bottom row, the left panel is an early (circa 1940) schematic of the three-dimensional structure of
2887 a train of frontal cyclones (Namias 1983, his Fig. 31), and the remaining two panels show the
2888 finite-amplitude stage of baroclinic instability captured by a semigeostrophic model with
2889 geopotential height (dashed lines) and temperature (solid contours) at the surface and tropopause
2890 (adapted from Davies et al. 1991, their Fig. 9).

2891

2892 **Fig. 11.** A deterministic prediction (green box), verifying analysis (blue box), and 50 individual
2893 ensemble members of 42-h ECMWF forecasts for 1200 UTC 26 December 1999. A strong cyclone,
2894 named Lothar, was located over the United Kingdom, and the 13 red boxes identify forecasts that
2895 captured a storm of equal or greater intensity to the verifying analysis. The shaded regions of mean
2896 sea level pressure are plotted at 4 hPa intervals. Figure adapted from Shapiro and Thorpe (2004,
2897 their Fig. 2.9).

2898

2899 **Fig. 12.** Winter climatologies of Northern Hemisphere cyclogenesis (left panel) and Southern
2900 Hemisphere cyclogenesis (right panel) for 1958–2001. The units are number of events per 10^4 km^2 .
2901 The field has been calculated on a $3^\circ \times 3^\circ$ latitude–longitude grid and is not plotted in regions
2902 where the topography exceeds 1800 m. Figure adapted from Wernli and Schwierz (2006, their
2903 Figs. 6a and 7a).

2904

2905 **Fig. 13.** Wintertime (December–February, DJF, in the Northern Hemisphere and June–August,
2906 JJA, in the Southern Hemisphere) storm tracks. (a) Vertically averaged, 10-day high-pass filtered
2907 EKE from ERA-Interim reanalysis data set (coloured shading). Black contours show cyclone track
2908 density; thin contour, 10 tracks $(10^6 \text{ km}^2)^{-1}$ per season; thick contour, 20 tracks $(10^6 \text{ km}^2)^{-1}$ per
2909 season. Blue lines show individual cyclone tracks for the top 0.5% most intense cyclones ranked
2910 by minimum sea-level pressure (shown separately for the Pacific, North Atlantic, Mediterranean
2911 and Southern Oceans). (b) Vertically and longitudinally averaged, 10-day high-pass filtered,
2912 northward total energy transport (black) and momentum transport (MOM; grey) from ERA-
2913 Interim. Energy transport is divided into dry static energy (DSE; red), latent energy (LE; blue) and
2914 EKE (green). Figure and caption adapted from Shaw et al. (2016, their Fig. 1).

2915

2916 **Fig. 14.** (a) Surface observations at 0330 UTC 18 April 1953 with sea level pressure contoured in
2917 thin solid lines every 6 hPa and the boundaries of the surface frontal zone contoured in the thick
2918 solid lines. (b) Cross section along A–A', as indicated in (a), at 0300 UTC 18 April 1953 with
2919 potential temperature contoured in thin solid lines every 5 K, the horizontal wind component
2920 normal to the cross section contoured in dashed lines every 5 m s^{-1} with positive values
2921 representing flow into the cross section, and the boundaries of the frontal zone contoured in thick

2922 black lines. Figure and caption adapted from Sanders (1955, his Figs. 2 and 9).

2923

2924 **Fig. 15.** (a) Observed 500-hPa temperature, dew point, and wind at 0300 UTC 15 December 1953
2925 with geopotential height (thin solid lines every 200 ft), temperature (dashed lines every 4°C), and
2926 the boundaries of the frontal zone (thick red lines). (b) Cross section along B–B', as indicated in
2927 (a), of geostrophic wind speed normal to the cross section (thin solid lines every 20 m s⁻¹), potential
2928 temperature (dashed lines every 10 K), the tropopause (thick solid line), and the jet core (indicated
2929 by the red 'J'). Figure and caption adapted from Reed (1955, his Figs. 7 and 13).

2930

2931 **Fig. 16.** Schematic composite of the three-dimensional airflow through a midlatitude cyclone.
2932 Heavy solid streamlines depict the warm conveyor belt; dashed lines represent the cold conveyor
2933 belt (drawn dotted where it lies beneath the warm conveyor belt or dry airstream); dot-dashed line
2934 represents flow originating at midlevels within the tropics. Thin solid streamlines pertain to dry
2935 air that originates at upper levels west of the trough. Thin solid lines denote the heights of the
2936 airstreams (hPa) and are approximately normal to the direction of the respective air motion (isobars
2937 are omitted for the cold conveyor belt where it lies beneath the warm conveyor belt or beneath the
2938 jet stream flow). Scalloping marks the regions of dense clouds at upper and middle levels; stippling
2939 indicates sustained precipitation; streaks denote thin cirrus. Small dots with tails mark the edge of
2940 the low-level stratus. The major upper-tropospheric jet streams are labeled 'Jet', and 'Dry Tongue
2941 Jet'. The limiting streamline for the warm conveyor belt is labeled 'LSW'. Warm and cold fronts
2942 are identified by the thick red and blue lines, respectively, and coincide with the boundaries
2943 between airstreams. Figure and caption adapted from Carlson (1980, his Fig. 9).

2944

2945 **Fig. 17.** (a) Schematic illustrating the frontogenetical effect of geostrophic confluence. Thin solid
2946 lines are streamlines of the geostrophic wind and dashed lines are isentropes. (b) Schematic
2947 illustrating the across-front ageostrophic circulation for frontogenesis induced by geostrophic
2948 confluence. The dashed lines are isotachs of along-front geostrophic wind (indicated by U); dotted
2949 lines are isotachs of across-front geostrophic wind (indicated by V); and solid lines are
2950 streamfunction for the across-front ageostrophic circulation. (c) Schematic illustrating
2951 frontogenetical effect of horizontal geostrophic shear. Arrows indicate the sense of the geostrophic
2952 wind and dashed lines are isentropes. (d) As in (b), except for frontogenesis induced by horizontal
2953 geostrophic shear. Figure and caption adapted from Eliassen (1990, his Figs. 9.2 and 9.4) and
2954 Eliassen (1962, his Figs. 2a and 3a).

2955

2956 **Fig. 18.** Cross section of a surface front within a semigeostrophic confluence frontogenesis model
2957 with uniform potential vorticity. (a) Potential temperature (thin black lines every 2.4 K) with
2958 particle motions from a previous time (red arrows). The basic deformation motion is highlighted
2959 below the lower surface with the black arrows. (b) The along-front wind component out of the
2960 cross section (thin black lines every 4 m s^{-1}), and Richardson number values of 0.5 and 1.0 (thin
2961 dashed lines). The location of the surface front is indicated by the vertical black arrow beneath
2962 panel (b). Figure and caption adapted from Hoskins (1971, his Figs. 3 and 4).

2963

2964 **Fig. 19.** Cross section of a surface and upper-level front within a semigeostrophic confluence
2965 frontogenesis model with two uniform PV regions; the higher value of PV represents the
2966 stratosphere and the lower value represents the troposphere. Potential temperature (thin black lines
2967 every 7.8 K), the along-front wind component (dashed lines every 10.5 m s^{-1}), and particle motions

2968 from a previous time (red arrows). The basic deformation motion is highlighted below the lower
2969 surface with the black arrows. Figure and caption adapted from Hoskins (1972, his Fig. 4).

2970

2971 **Fig. 20.** Schematic illustrations of vertically uncoupled upper- and lower-level jet–front systems.
2972 (a) Plan view of the location of the upper-level jet streak exit region with respect to the surface
2973 frontal zone. Isotachs are given by thick solid lines, with the solid arrow denoting the axis of the
2974 upper-level jet streak, surface isentropes are given by thin dashed lines, and the open arrow denotes
2975 the axis of the lower-level jet. (b) Cross section C–C', as indicated in (a), with isotachs indicated
2976 by thick dashed lines surrounding the upper- and lower-level jets, frontal boundaries by thin solid
2977 lines, the tropopause by thin double lines, the moist boundary layer by the stippled region, and the
2978 across-front ageostrophic circulation by the solid arrows. (c) Semigeostrophic solution for a
2979 vertically uncoupled upper- and lower-level jet–front system. Streamfunction is given by thick
2980 lines (negative values dashed) every $2 \times 10^3 \text{ m}^2 \text{ s}^{-1}$, positive values of vertical motion are shaded
2981 every 2 cm s^{-1} starting at 1 cm s^{-1} , absolute momentum is given by thin dashed lines every 30 m
2982 s^{-1} , and vectors depict the across-front ageostrophic circulation. Figure and caption adapted from
2983 Shapiro (1982, his Fig. 22) and Hakim and Keyser (2001, their Fig. 6).

2984

2985 **Fig. 21.** As in Fig. 20, but for vertically coupled upper- and lower-level jet–front systems. Figure
2986 and caption adapted from Shapiro (1982, his Fig. 23) and Hakim and Keyser (2001, their Fig. 7).

2987

2988 **Fig. 22.** Life cycle of the ideal cyclone: (a) initial phase, (b) incipient cyclone and frontal wave,
2989 (c) amplification of the warm wave (open-wave cyclone), (d) narrowing in of the warm

2990 tongue/sector, (e) warm-core seclusion, (f) occluded cyclone, (g) cold-air vortex, (h) death. Figure
2991 from Bjerknes and Solberg (1922, their Fig. 2).

2992

2993 **Fig. 23.** The occluded cyclone. Figure from Godske et al. (1957, their Fig. 14.4.1).

2994

2995 **Fig. 24.** The life cycle of the marine extratropical frontal cyclone following the Shapiro–Keyser
2996 model: (I) incipient frontal cyclone; (II) frontal fracture; (III) bent-back warm front and frontal T-
2997 bone; (IV) warm-core seclusion. Upper: sea-level pressure (solid lines), fronts (bold lines), and
2998 cloud signature (shaded). Lower: temperature (solid lines) and cold and warm air currents (solid
2999 and dashed arrows, respectively). Figure and caption from Shapiro and Keyser (1990, their Fig.
3000 10.27).

3001

3002 **Fig. 25.** Schematic representation of cloud and precipitation bands associated with a mature
3003 extratropical cyclone. Figure from Houze (2014, his Fig. 11.24).

3004

3005 **Fig. 26.** Extratropical cyclone displacement errors (in km) versus forecast hour for the LFM-II
3006 (Silberberg and Bosart 1982) (1978/79 cool season) (CONUS and oceans), the NGM and AVN
3007 (Smith and Mullen 1993) (1987/88 and 1989/90 cool seasons) (Atlantic), and the NAM and GFS
3008 (2002–2007 cool seasons) (Atlantic). Figure from Charles and Colle (2009a, their Fig. 16).

3009

3010 **Fig. 27.** Mean bias in intensity for the (a) Northern Hemisphere, (b) Southern Hemisphere and (c),
3011 (d) propagation speed in the NH and SH. The propagation speed bias is also shown for the ECMWF
3012 high-resolution deterministic forecast in (c) and (d). Units of intensity and propagation speed bias

3013 are 10^{-5} s^{-1} (relative to background field removal) and $\text{km}^{-1} \text{ h}^{-1}$, respectively. Figure from Froude
3014 (2011, her Fig. 2).

3015

3016 **Fig. 28.** (a) Mean absolute error for cyclone intensity (central pressure) averaged for all individual
3017 ensemble members and the ensemble mean. (b) Same as (a) except for mean error but only for the
3018 averaged ensemble members and for relatively deep (greater one standard deviation) cyclones in
3019 the analysis or any ensemble member. (c) Average mean absolute error (in km) for absolute (total),
3020 cross-, and along-track directions for all members tracked separately and the different ensemble
3021 systems (NCEP, CMC, and ECMWF). Figure from Korfe and Colle (2018, their Figs. 2a,c and 5).

3022

3023 **Fig. 29.** (a) Sea level pressure ensemble mean (contours, hPa) and spread (shading, hPa), (b)
3024 spaghetti plots of 996-hPa contour for 90 multi-model ensemble members (blue are for the
3025 ECMWF members; green are for the NCEP members; and orange are for the CMC members) with
3026 the dashed magenta lines and black lines to be the ensemble mean and the analysis. (c) EOF1 sea
3027 level pressure pattern (contours, hPa), and (d) EOF2 sea level pressure pattern (contours, hPa).
3028 The verifying time is 1200 UTC 27 January 2015 and initial time is 1200 UTC 24 January 2015.
3029 Analyzed mean position of the surface cyclone at verifying time (black dot), and ensemble mean
3030 position of the surface cyclone at verifying time (red dot). Figure from Zheng et al. (2017, their
3031 Fig. 8).

3032

3033 **Fig. 30.** The five clusters divided using fuzzy clustering method on the PC1–PC2 space from the
3034 90 ensemble members for 3-day forecast. The verifying time is 1200 UTC 27 January 2015, and
3035 the initial time is 1200 UTC 24 January 2015. Figure from Zheng et al. (2017, their Fig. 5b).

3036

3037 Fig. 31. (a) Surface pressure analyses from the Climate Forecast System Reanalysis (CFSR; hPa;
3038 black contours) and observed composite radar reflectivity (dBZ; shaded) during the height of the
3039 (top) Jan 2015 at 0600 UTC 27 Jan 2015. (b) Locations of storm centers as estimated from
3040 minimum sea level pressure from GEFS ensemble forecasts initialized at 1200 UTC 26 Jan 2015
3041 and valid at 1200 UTC 27 Jan 2015. Location of minimum pressure from the verifying NAM
3042 analysis is shown as a black star. Points are colored according to their longitudinal distance from
3043 the analysis, with purple being farthest west and red farthest east. Contours indicate the
3044 westernmost extent of the 25.4-mm storm total precipitation threshold, colored by its respective
3045 GEFS member. Figure from Greybush et al. (2017, their Fig. 2).

3046 **Tables**

3047

3048

TABLE 1. Examples of observed frontal structures that differ from the Norwegian cyclone model.


Frontal Structure	Selected Citations
Katafronts and anafronts	Bergeron (1937), Sansom (1951), Browning (1990, 1999)
Split fronts and cold fronts aloft	Browning and Monk (1982), Browning (1990, 1999), Hobbs et al. (1990), Schultz and Mass (1993)
Backdoor fronts	Carr (1951), Bosart et al. (1973)
Coastal fronts	Bosart et al. (1972, 2008), Bosart (1975, 1981)
Lower-stratospheric fronts	Berggren (1952), Shapiro (1976), Lang and Martin (2012, 2013b), Attard and Lang (2017)
Prefrontal troughs and wind-shift lines	Schultz (2005)

3049

3050 **Figures**

3051

3052

01 Martin KNUDSEN (50) (Denmark; 1871-1949)	06 Johan SANDSTRØM (47) (Sweden; 1874-1947)	11 Lewis Fry RICHARDSON (40) (Great Britain; 1881-1953)	16 Jules JAUMOTTE (34) (Belgium; 1887-1940)	21 Alfred de QUERVAIN (42) (Switzerland; 1879-1927)
02 Axel WALLÉN (44) (Sweden; 1877-1935)	07 Theodor HESSELBERG (36) (Norway; 1885-1966)	12 Paul Louis MERCANTON (45) (Switzerland; 1876-1963)	17 Jacob BJERKNES (24) (Norway; 1897-1975)	22 Geoffrey I. TAYLOR (35) (Great Britain; 1886-1975)
03 Juan CRUZ CONDE (xx) (Spain; 18xx-19xx)	08 Willem van BEMMELLEN (53) (Netherlands; 1868-1941)	13 Harald NORINDER (33) (Sweden; 1888-1969)	18 Ewoud van EVERDINGEN (48) (Netherlands; 1873-1955)	23 Philippe SCHERESCHEWSKY (29) (France; 1892-1980)
04 Ernst CALWAGEN (27) (Sweden; 1894-1925)	09 Vilhelm BJERKNES (60) (Norway; 1861-1952)	14 Napier SHAW (67) (Great Britain; 1854-1945)	19 Ernest GOLD (40) (Great Britain; 1881-1976)	24 Charles J.P. CAVE (50) (Great Britain; 1871-1950)
05 Oscar EDLUND (29) (Sweden; 1892-1959)	10 Hilding KOHLER (33) (Sweden; 1888-1982)	15 Finn MALMGREN (26) (Sweden; 1895-1928)	20 Sakuhei FUJIWARA (37) (Japan; 1884-1950)	25 Rikichi SEKIGUCHI (35) (Japan; 1886-1951)
				26 Gustav GYLSTRÖM (18) (Sweden; 1903-19xx)

3053

3054

3055

3056

3057

3058

Fig. 1. International milieu at the Bergen School of Meteorology, two years after the foundation of AMS. Participants at the Eighth meeting of the International Commission for the Scientific Investigation of the Upper Air on 25 July 1921 in Bergen Norway, as discussed by Volkert (2017). Figure courtesy of the University Library Bergen.

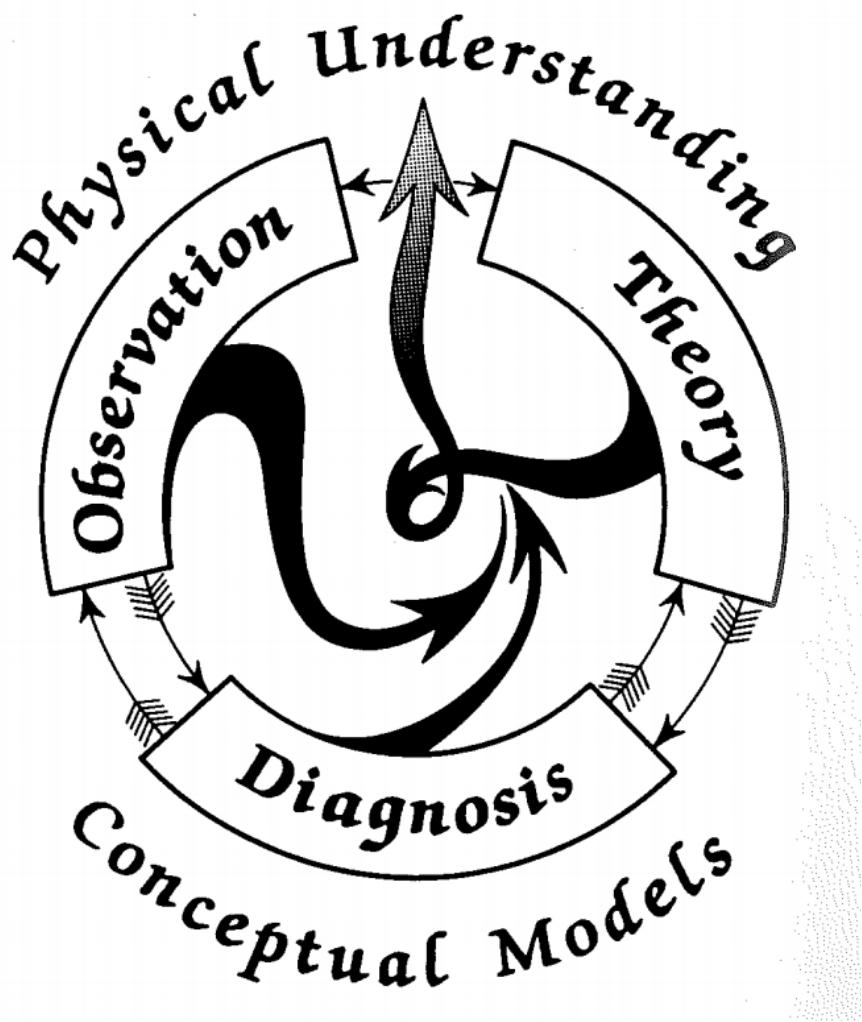
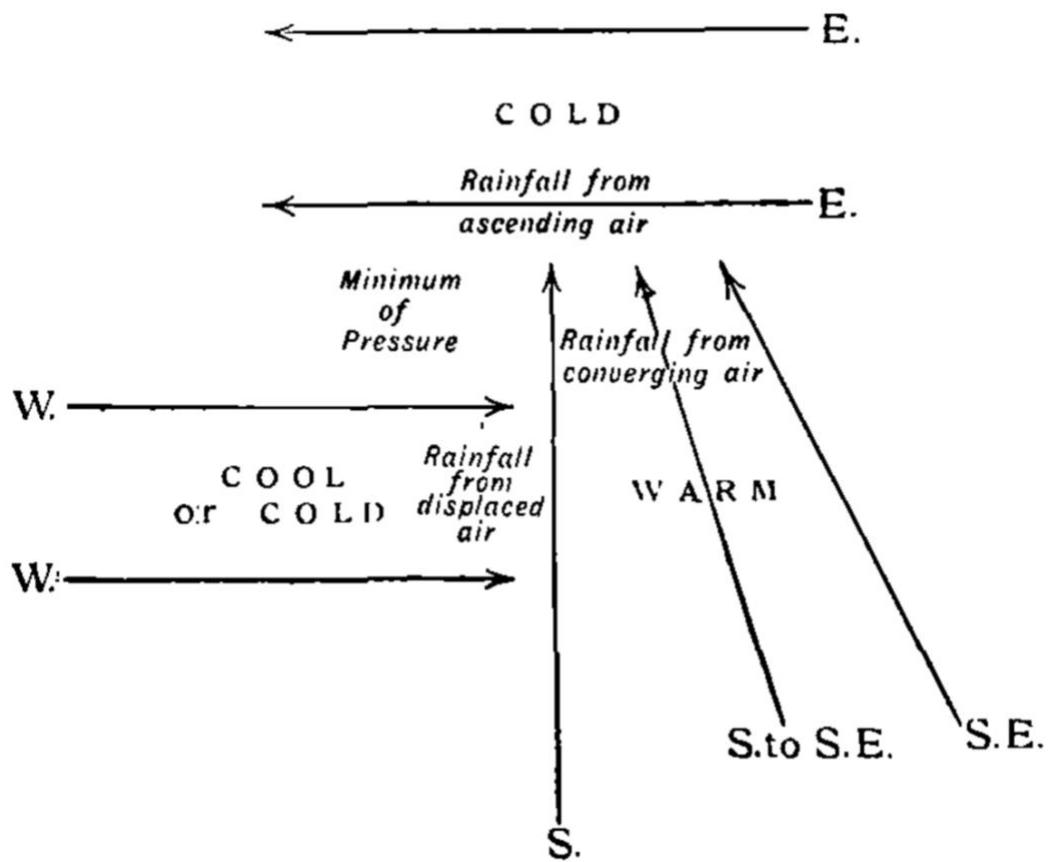
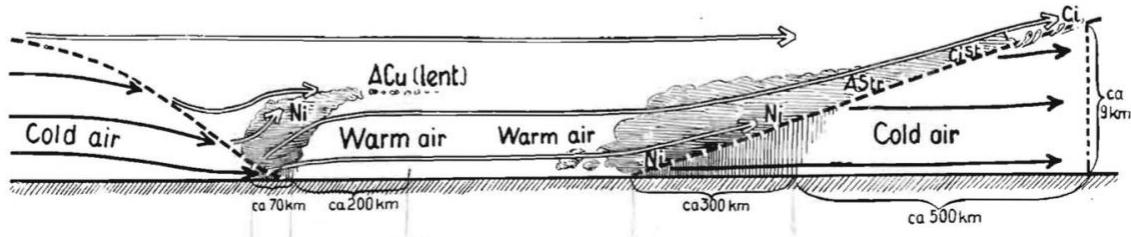
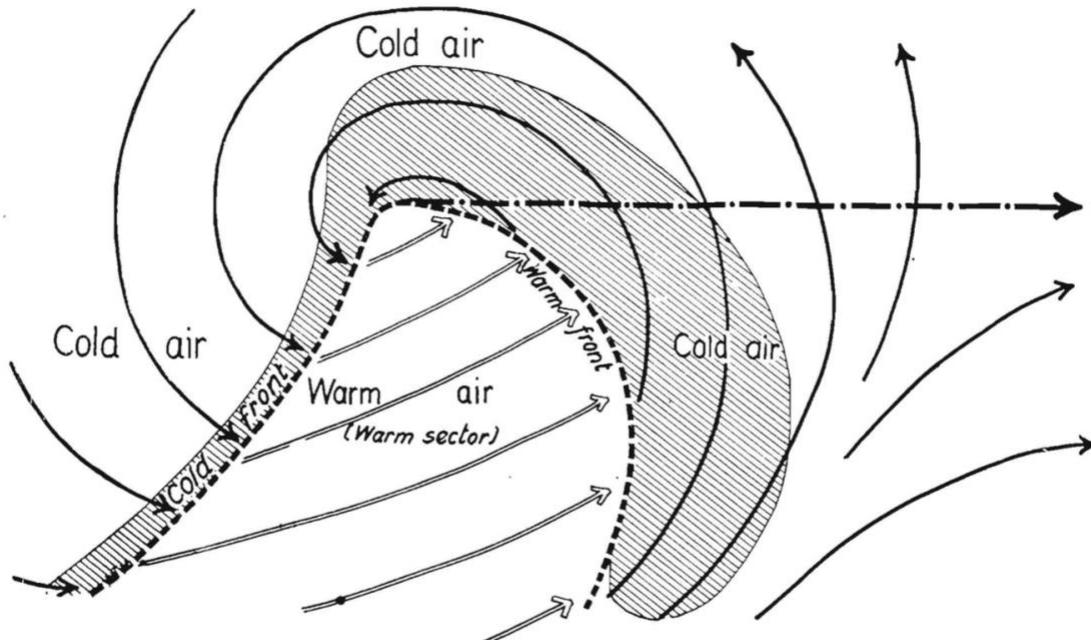
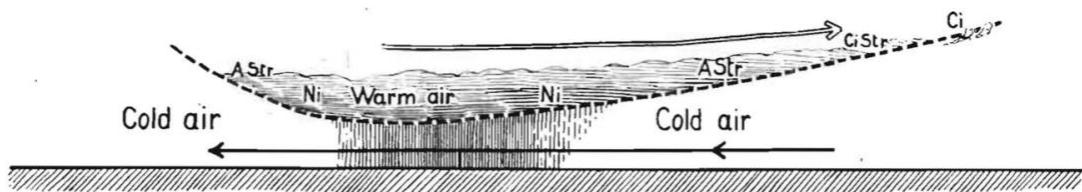
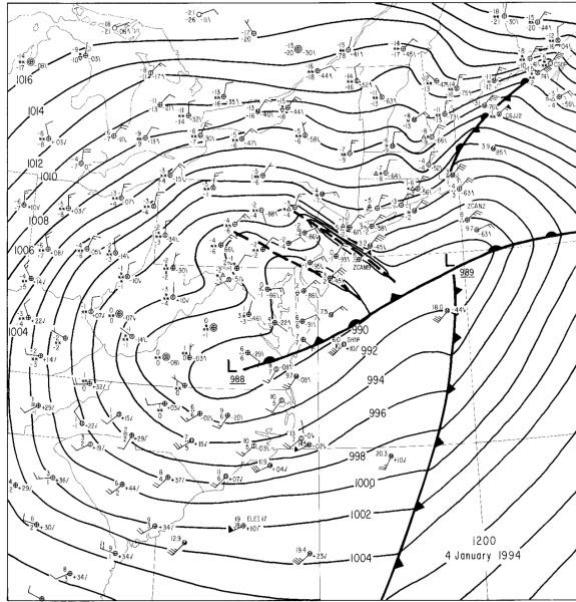
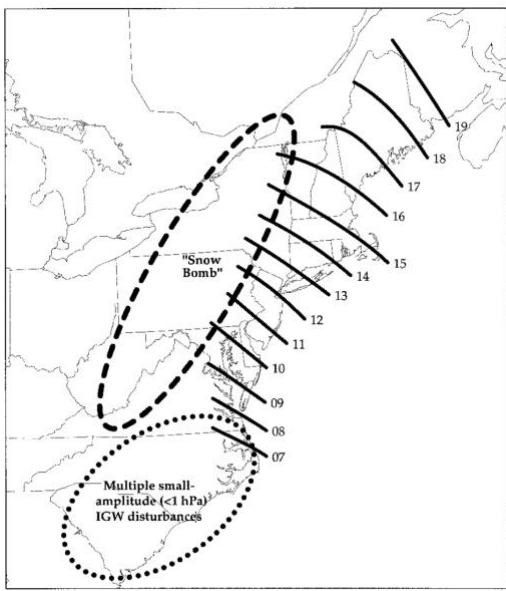
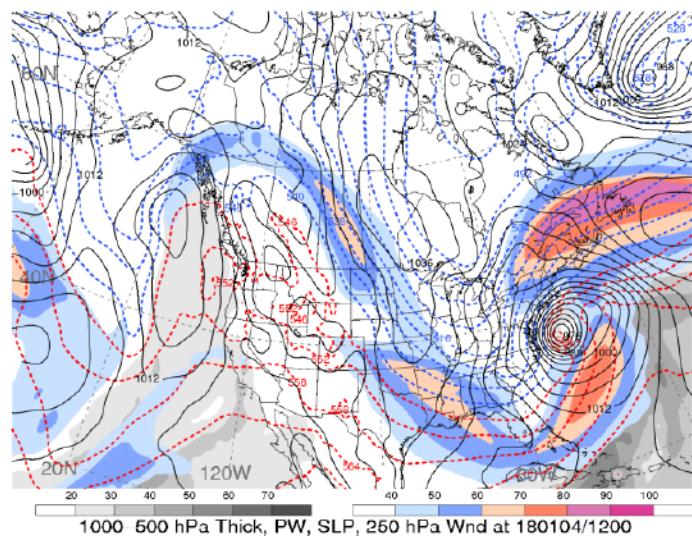
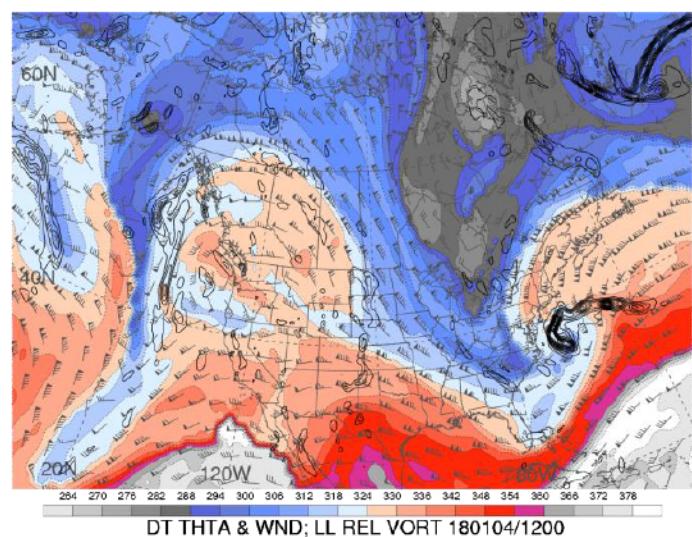



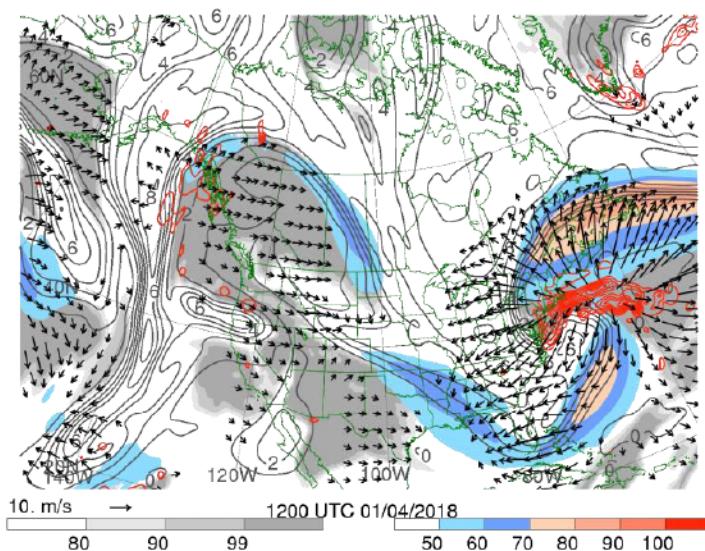
Fig. 2. Physical understanding and conceptual representation through the union of theory, diagnosis, and observation. Figure and caption from Shapiro et al. (1999, their Fig. 1).

3064
3065
3066

Fig. 3. The cyclone model of Shaw (1911). Figure from Bergeron (1959, his Fig. 9).


Fig. 4. Idealized cyclone presented by the Bergen school. Figure from Bjerknes and Solberg (1921, their Fig. 18) and Bjerknes and Solberg (1922, their Fig. 1).


3075 **Fig. 5.** (a) Dominant inertia-gravity wave isochrone analysis for 0700–1900 UTC 4 January 1994.
 3076 The area affected by the “snow bomb” is outlined by bold-dashed ellipse. The region of multiple
 3077 small-amplitude inertia-gravity waves outlined by bold-dotted ellipse. (b) Manually prepared
 3078 surface analysis for 0600 UTC 4 January 1994. Mean sea level isobars (solid lines every 2 hPa).
 3079 Figure adapted from Bosart et al. (1998, their Figs. 1 and 16). [Need to include panel lettering.]

3080

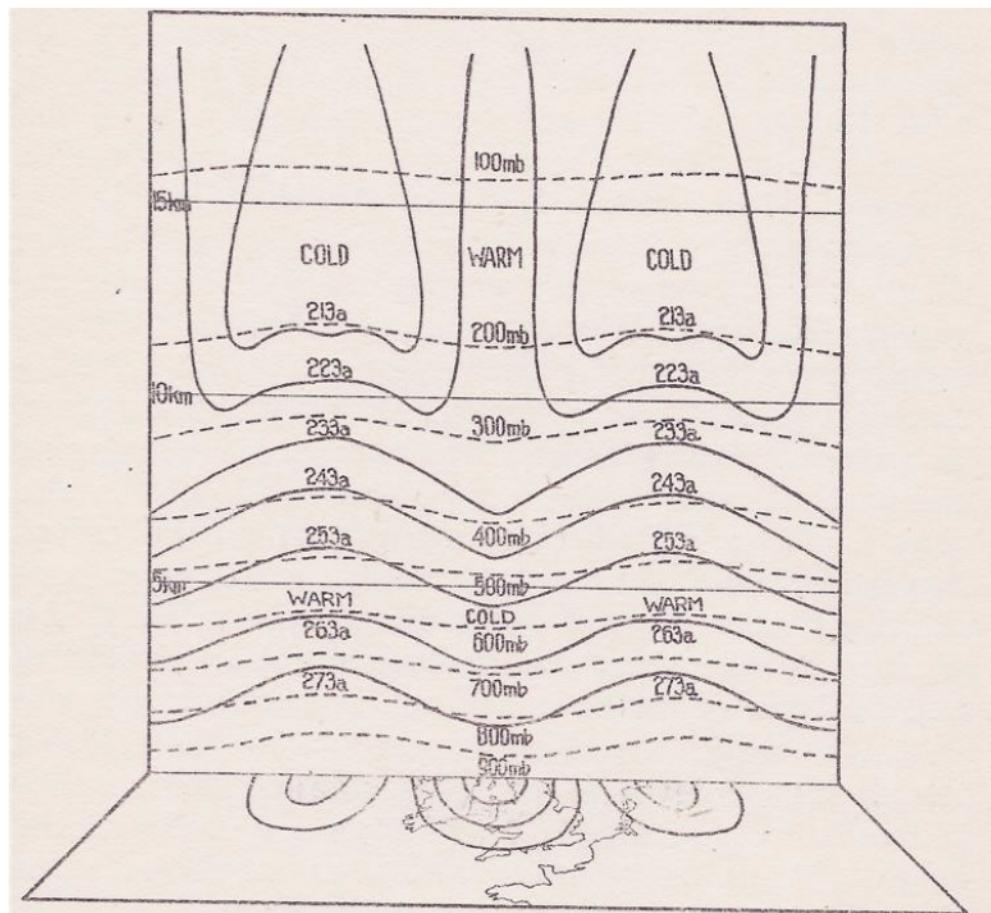
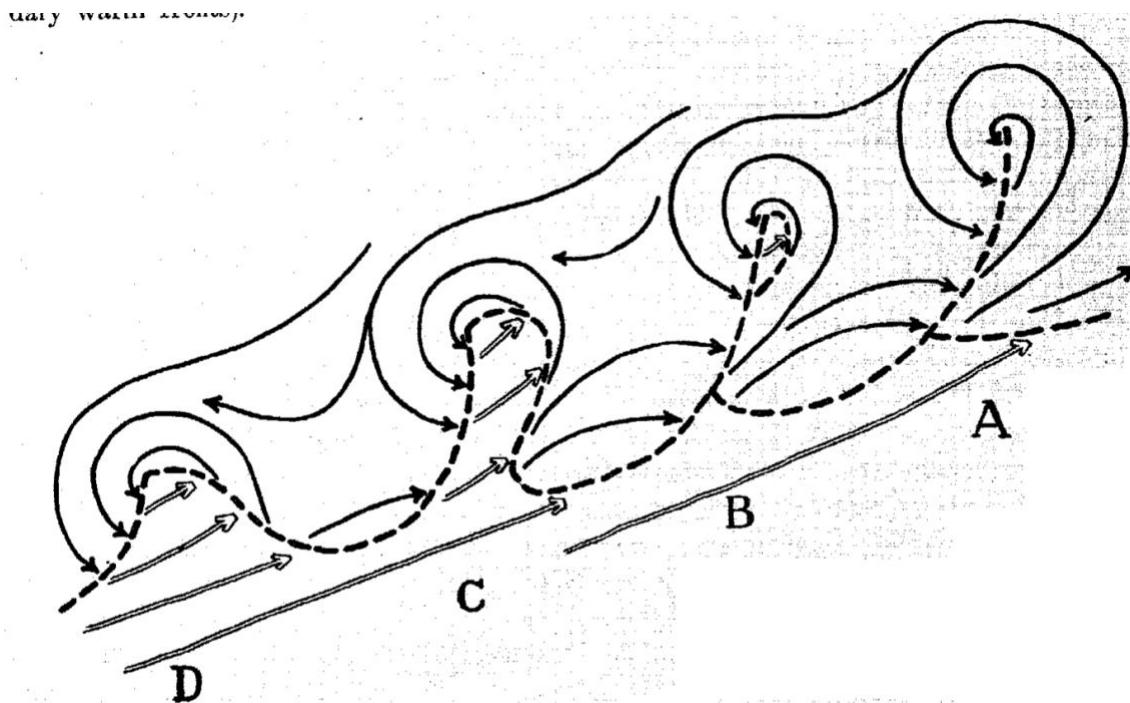
3081

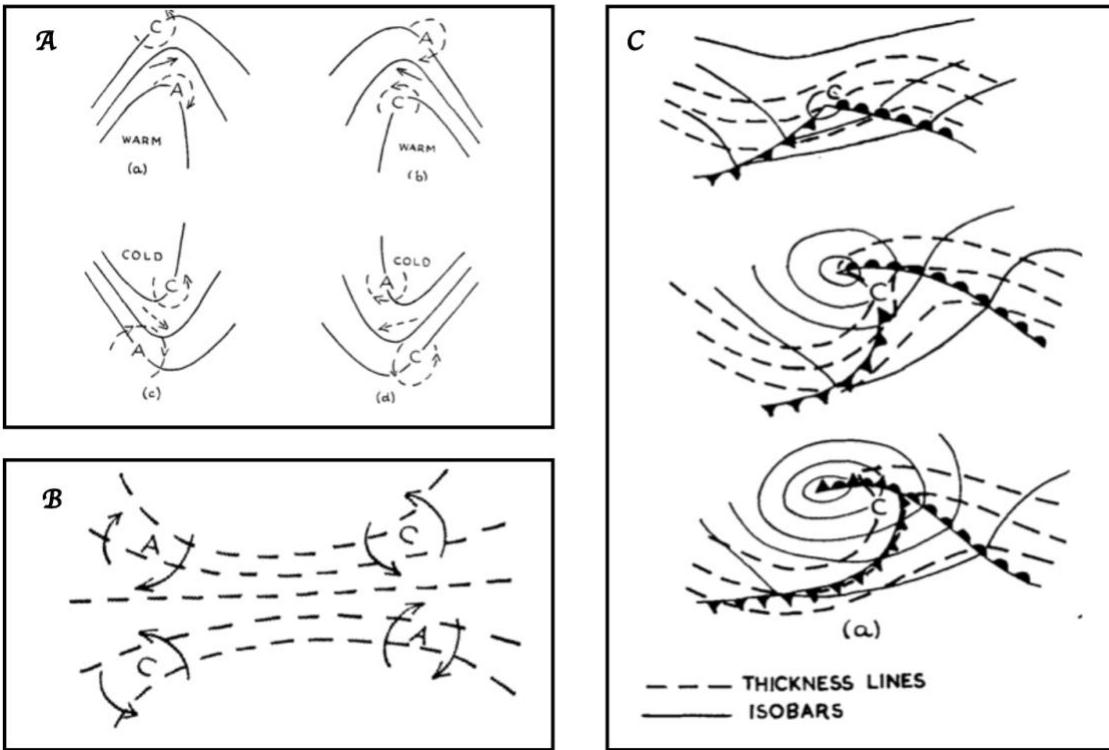
3082

3083

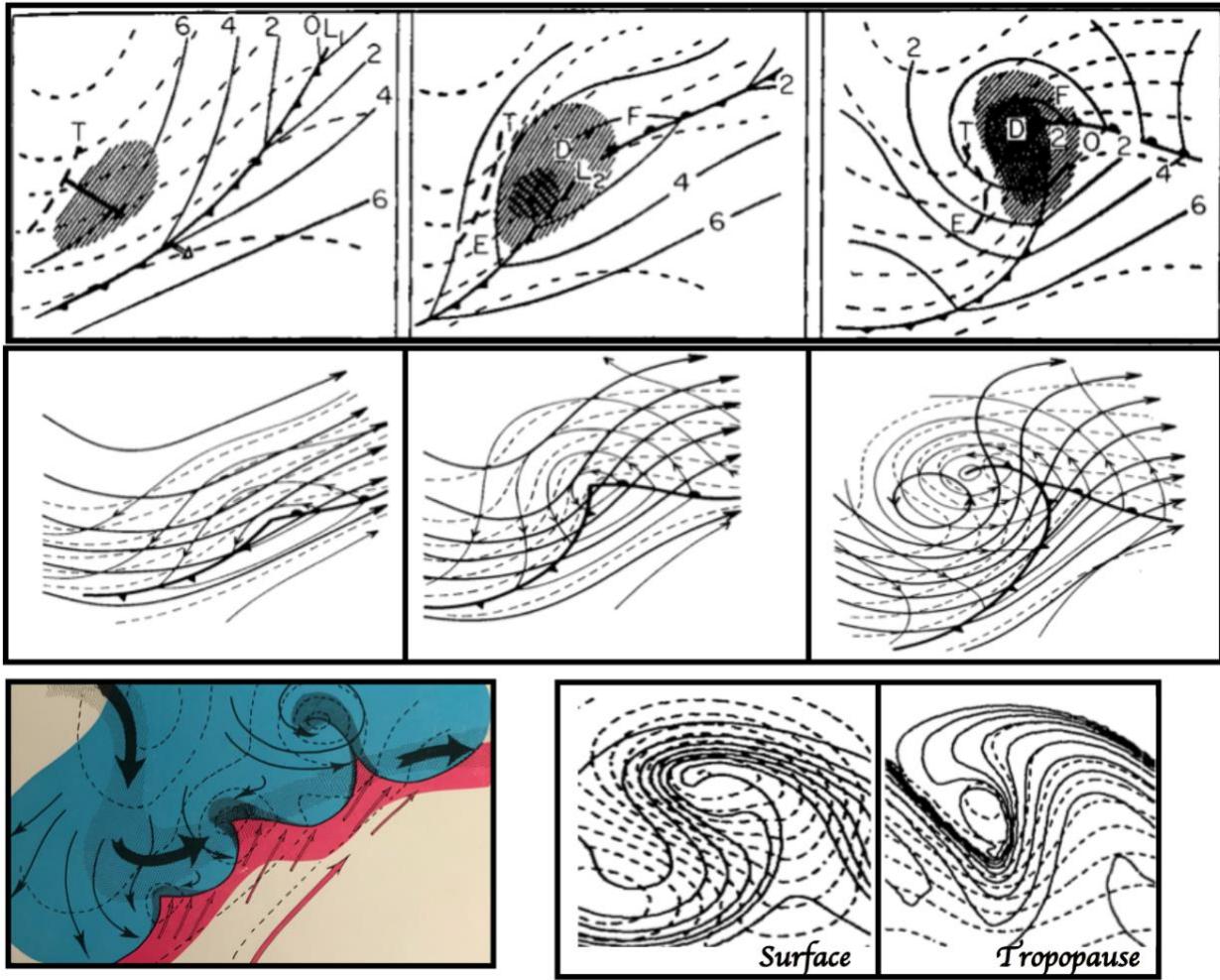
3084 **Fig. 6.** Real-time analyses from the U.S. Global Forecast System (GFS) at a grid spacing of 0.5°
3085 latitude-longitude. (a) Sea level pressure (solid lines every 4 hPa), 1000–500-hPa thickness
3086 (dashed lines every 6 dam with a changeover from blue dashed to red dashed lines between 540
3087 and 546 dam), precipitable water (mm, colored according to the color bar) and 250-hPa wind
3088 speeds (m s^{-1} , shaded according to the gray scale). (b) Dynamic tropopause potential temperature
3089 (K, shaded according to the color bar) and wind barbs (pennant, full barb, and half-barb denote
3090 $25, 5, 2.5 \text{ m s}^{-1}$, respectively); 925–850-hPa layer-mean cyclonic relative vorticity (solid lines
3091 every $0.5 \times 10^{-4} \text{ s}^{-1}$). (c) The 250-hPa wind speed (m s^{-1} , colored according to the color bar),
3092 potential vorticity (gray lines every 1 PVU), 250-hPa relative humidity (%), shaded according to
3093 the gray scale), 600–400-hPa layer-averaged ascent (red contours every $5 \times 10^{-3} \text{ hPa s}^{-1}$, negative
3094 values only), 300–200-hPa layer-averaged irrotational wind (vectors starting at 3 m s^{-1} , length
3095 scale at lower-right corner). Figure courtesy of Heather Archambault. [Need to include panel
3096 lettering.]

3097
3098 Fig. A
3099
3100
3101
3102

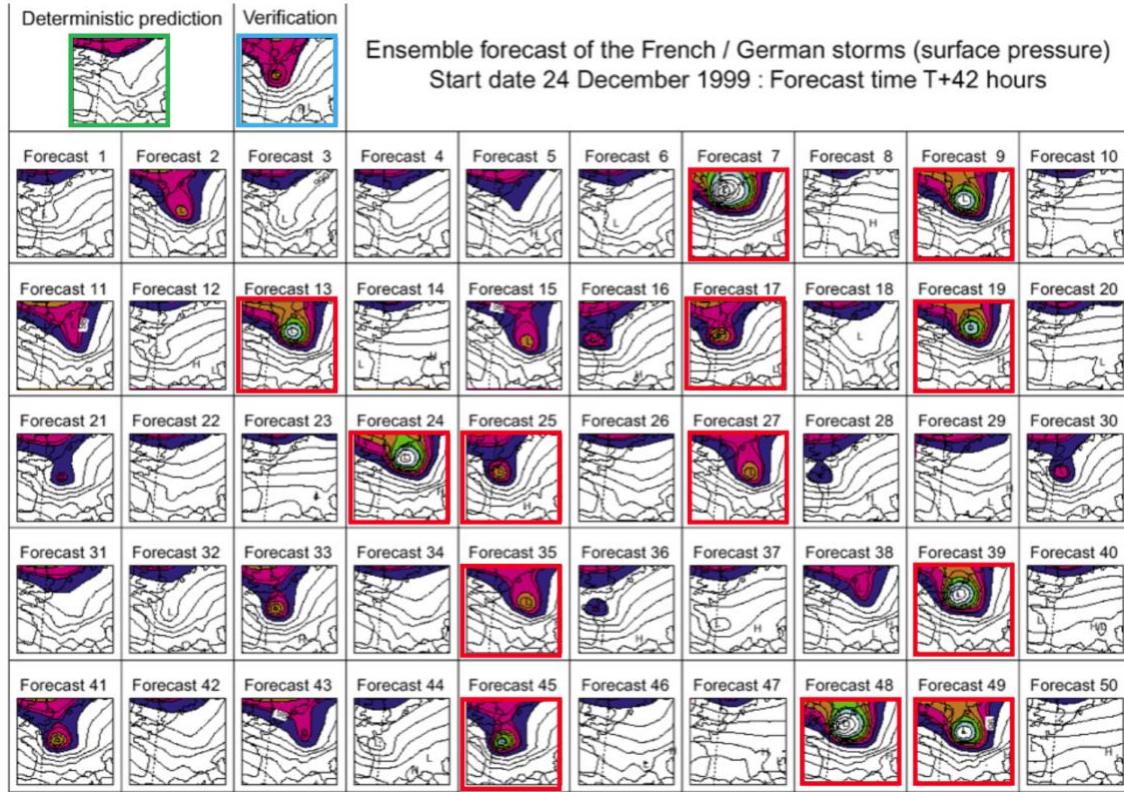




Fig. 7. An east-west cross section of the temperature (K) and pressure (hPa) patterns above a zonally aligned 'High-Low-High' sequence of surface pressure systems. Data compiled by Dines and drafted by Lempfert (1920, his Fig. 45). Note that horizontal divergence at tropopause level with accompanying adiabatic descent above and ascent below would yield the observed thermal pattern. [Need to remove "Fig. A".]

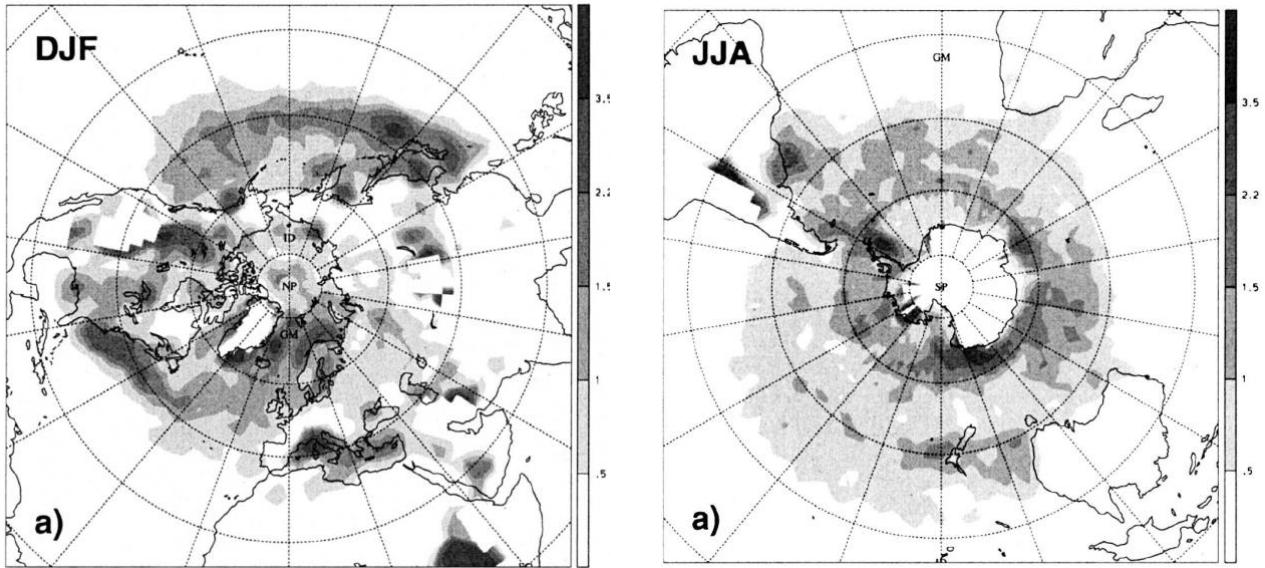
3103


3104

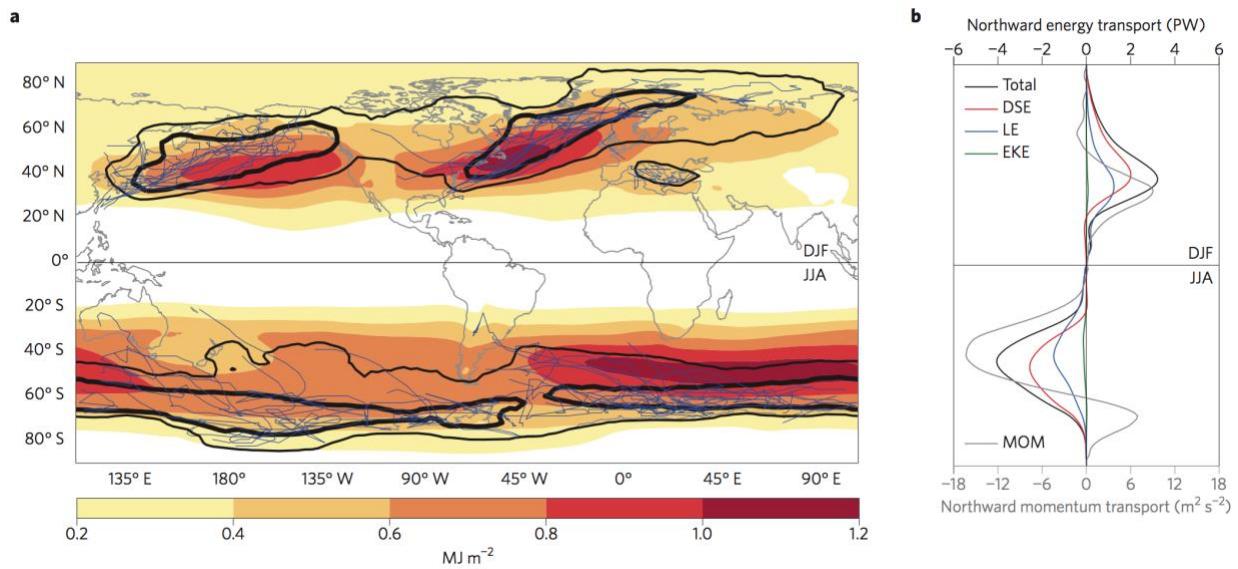
3105 Fig. 8. Train of frontal-wave cyclones. Figure from Bjerknes and Solberg (1922, their Fig. 9).
3106 [Would be nice to find a version that doesn't have background noise.]


3107

3108 **Fig. 9.** Some classical developmental patterns. Panel A depicts thickness contours for (a) diffluent
 3109 thermal ridge; (b) confluent thermal ridge; (c) diffluent thermal trough; and (d) confluent thermal
 3110 trough. Panel B corresponds to a thermal jet complex, and panel C traces the development of a
 3111 warm-sector depression. In each sketch, the symbols A and C refer respectively to preferred
 3112 regions for anti-cyclogenesis and cyclogenesis. Figures from Sutcliffe and Forsdyke (1950, their
 3113 Figs. 22, 24, and 23).



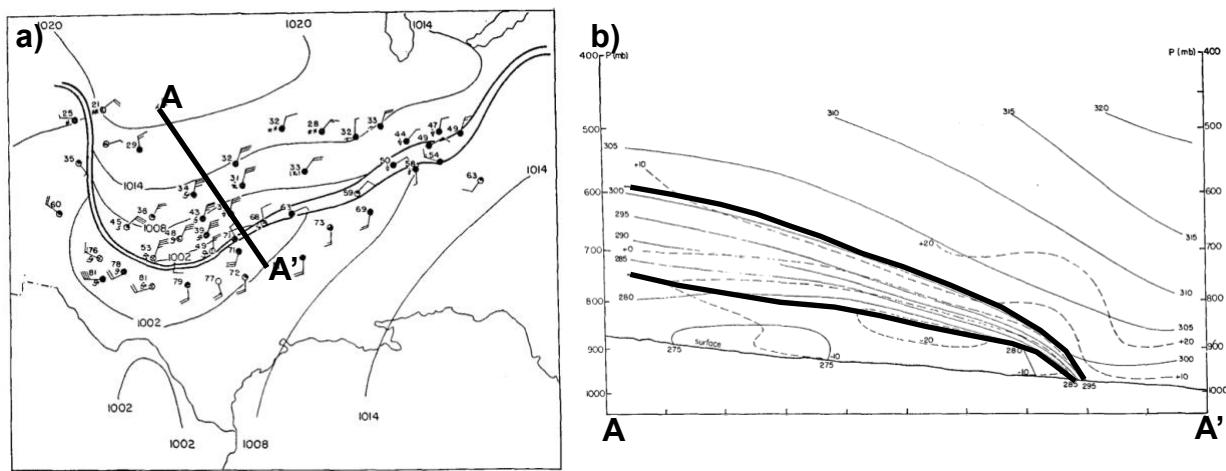
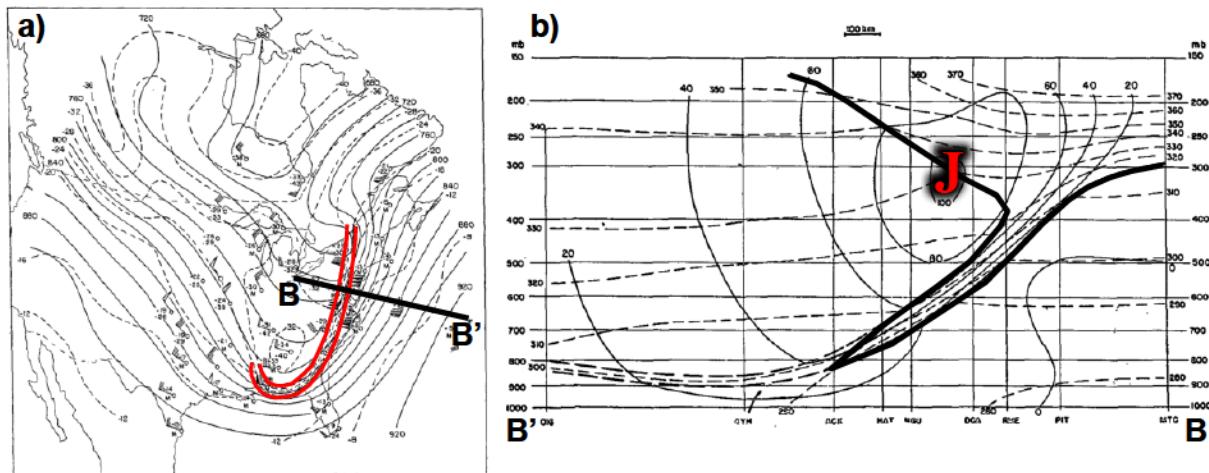
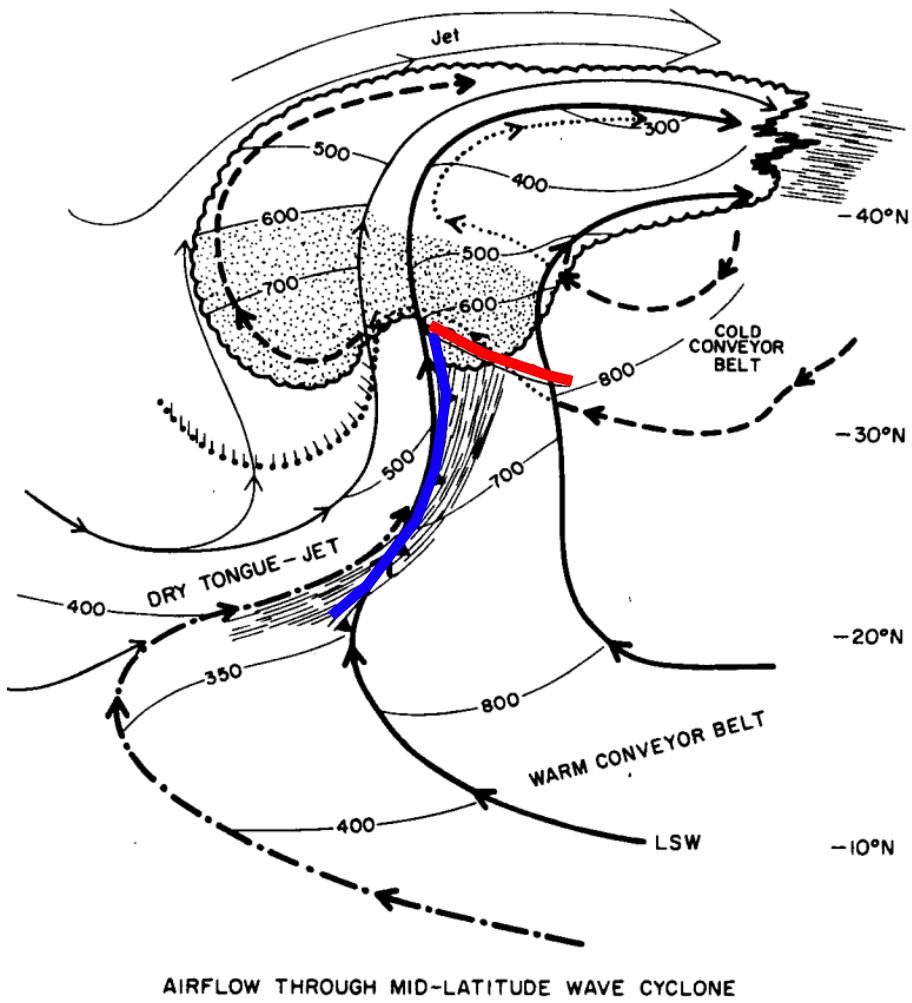
3114

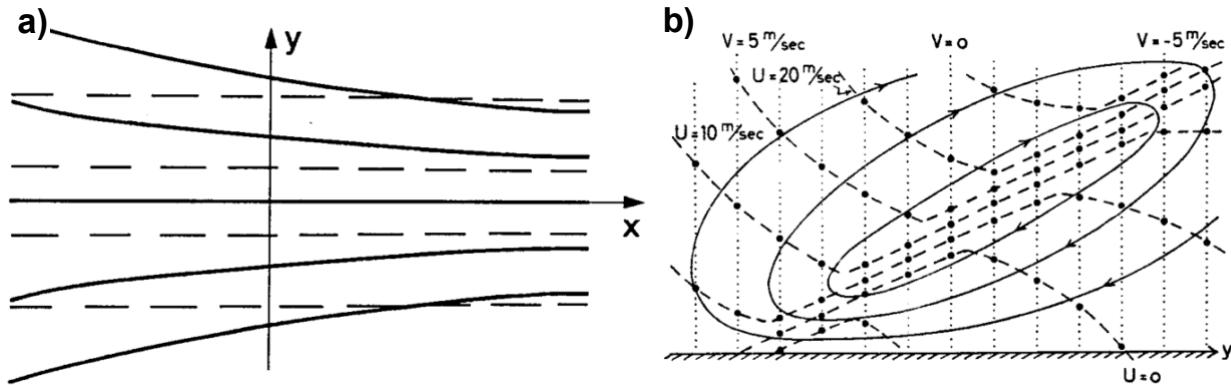

3115 Fig. 10. Alternative depictions of extratropical cyclones. Upper and middle rows show an
 3116 idealized three-stage development of a cyclone. The upper row depicts surface cyclogenesis
 3117 induced by an upper-level trough advancing toward a surface front (Petterssen 1956, his Fig.
 3118 16.7.1). Low-level ascent is attributed to the strong upper-level vorticity advection (hatched areas).
 3119 The middle row is a schematic synoptic synthesis of the evolution (Palmén and Newton 1969, their
 3120 Fig. 11.3), and shows the 500-hPa geopotential height (heavy solid lines), the 1000-hPa
 3121 geopotential height (thin solid lines), and the 1000–500-hPa thickness (dashed lines). In the bottom
 3122 row, the left panel is an early (circa 1940) schematic of the three-dimensional structure of a train
 3123 of frontal cyclones (Namias 1983, his Fig. 31), and the remaining two panels show the finite-
 3124 amplitude stage of baroclinic instability captured by a semigeostrophic model with geopotential
 3125 height (dashed lines) and temperature (solid contours) at the surface and tropopause (adapted from
 3126 Davies et al. 1991, their Fig. 9).

3128 Fig. 11. A deterministic prediction (green box), verifying analysis (blue box), and 50 individual
 3129 ensemble members of 42-h ECMWF forecasts for 1200 UTC 26 December 1999. A strong cyclone,
 3130 named Lothar, was located over the United Kingdom, and the 13 red boxes identify forecasts that
 3131 captured a storm of equal or greater intensity to the verifying analysis. The shaded regions of mean
 3132 sea level pressure are plotted at 4 hPa intervals. Figure adapted from Shapiro and Thorpe (2004,
 3133 their Fig. 2.9).

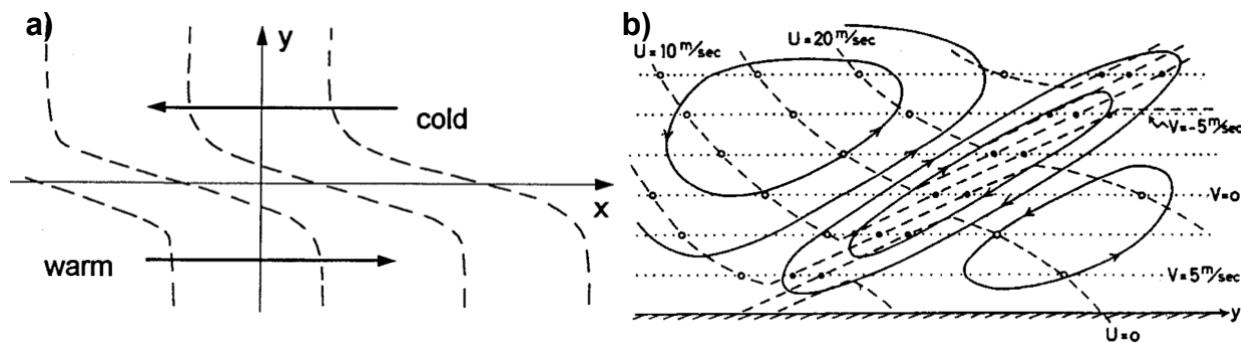
3134
 3135
 3136 Fig. 12. Winter climatologies of Northern Hemisphere cyclogenesis (left panel)
 3137 and Southern Hemisphere cyclogenesis (right panel) for 1958–2001. The units are number of events per 10^4 km^2 .
 3138 The field has been calculated on a $3^\circ \times 3^\circ$ latitude–longitude grid and is not plotted in regions
 3139 where the topography exceeds 1800 m. Figure adapted from Wernli and Schwierz (2006, their
 3140 Figs. 6a and 7a). [Need to change panel lettering.]

Fig. 13. Wintertime (December–February, DJF, in the Northern Hemisphere and June–August, JJA, in the Southern Hemisphere) storm tracks. (a) Vertically averaged, 10-day high-pass filtered EKE from ERA-Interim reanalysis data set (coloured shading). Black contours show cyclone track density; thin contour, 10 tracks (10^6 km^2)⁻¹ per season; thick contour, 20 tracks (10^6 km^2)⁻¹ per season. Blue lines show individual cyclone tracks for the top 0.5% most intense cyclones ranked by minimum sea-level pressure (shown separately for the Pacific, North Atlantic, Mediterranean and Southern Oceans). (b) Vertically and longitudinally averaged, 10-day high-pass filtered, northward total energy transport (black) and momentum transport (MOM; grey) from ERA-Interim. Energy transport is divided into dry static energy (DSE; red), latent energy (LE; blue) and EKE (green). Figure and caption adapted from Shaw et al. (2016, their Fig. 1).


Fig. 14. (a) Surface observations at 0330 UTC 18 April 1953 with sea level pressure contoured in thin solid lines every 6 hPa and the boundaries of the surface frontal zone contoured in the thick solid lines. (b) Cross section along A–A', as indicated in (a), at 0300 UTC 18 April 1953 with potential temperature contoured in thin solid lines every 5 K, the horizontal wind component normal to the cross section contoured in dashed lines every 5 m s^{-1} with positive values representing flow into the cross section, and the boundaries of the frontal zone contoured in thick black lines. Figure and caption adapted from Sanders (1955, his Figs. 2 and 9).

3151
 3152 Fig. 15. (a) Observed 500-hPa temperature, dew point, and wind at 0300 UTC 15 December 1953
 3153 with geopotential height (thin solid lines every 200 ft), temperature (dashed lines every 4°C), and
 3154 the boundaries of the frontal zone (thick red lines). (b) Cross section along B–B', as indicated in
 3155 (a), of geostrophic wind speed normal to the cross section (thin solid lines every 20 m s^{-1}), potential
 3156 temperature (dashed lines every 10 K), the tropopause (thick solid line), and the jet core (indicated
 3157 by the red 'J'). Figure and caption adapted from Reed (1955, his Figs. 7 and 13).



3158
 3159 Fig. 16. Schematic composite of the three-dimensional airflow through a midlatitude cyclone.
 3160 Heavy solid streamlines depict the warm conveyor belt; dashed lines represent the cold conveyor
 3161 belt (drawn dotted where it lies beneath the warm conveyor belt or dry airstream); dot-dashed line
 3162 represents flow originating at midlevels within the tropics. Thin solid streamlines pertain to dry
 3163 air that originates at upper levels west of the trough. Thin solid lines denote the heights of the
 3164 airstreams (hPa) and are approximately normal to the direction of the respective air motion (isobars
 3165 are omitted for the cold conveyor belt where it lies beneath the warm conveyor belt or beneath the
 3166 jet stream flow). Scalloping marks the regions of dense clouds at upper and middle levels; stippling
 3167 indicates sustained precipitation; streaks denote thin cirrus. Small dots with tails mark the edge of
 3168 the low-level stratus. The major upper-tropospheric jet streams are labeled 'Jet', and 'Dry Tongue
 3169 Jet'. The limiting streamline for the warm conveyor belt is labeled 'LSW'. Warm and cold fronts
 3170 are identified by the thick red and blue lines, respectively, and coincide with the boundaries
 3171 between airstreams. Figure and caption adapted from Carlson (1980, his Fig. 9).

3172

3173

3174

3175

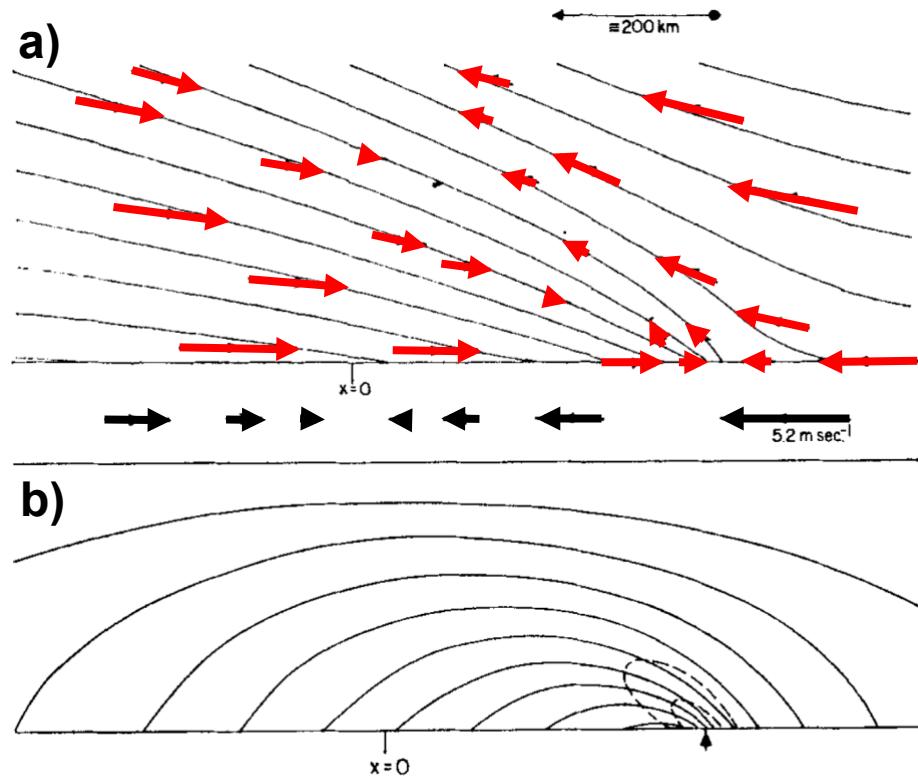
3176

3177

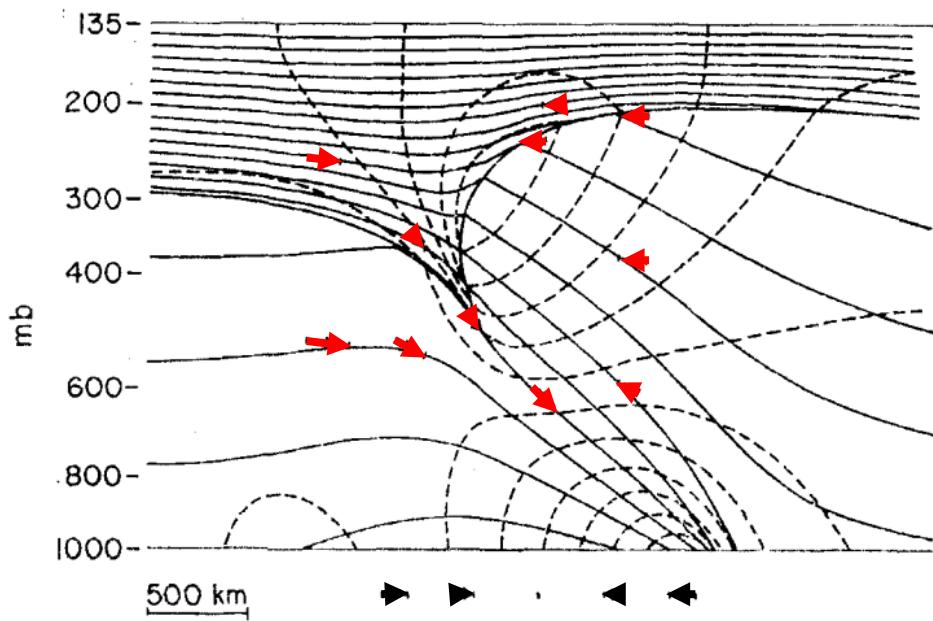
3178

3179

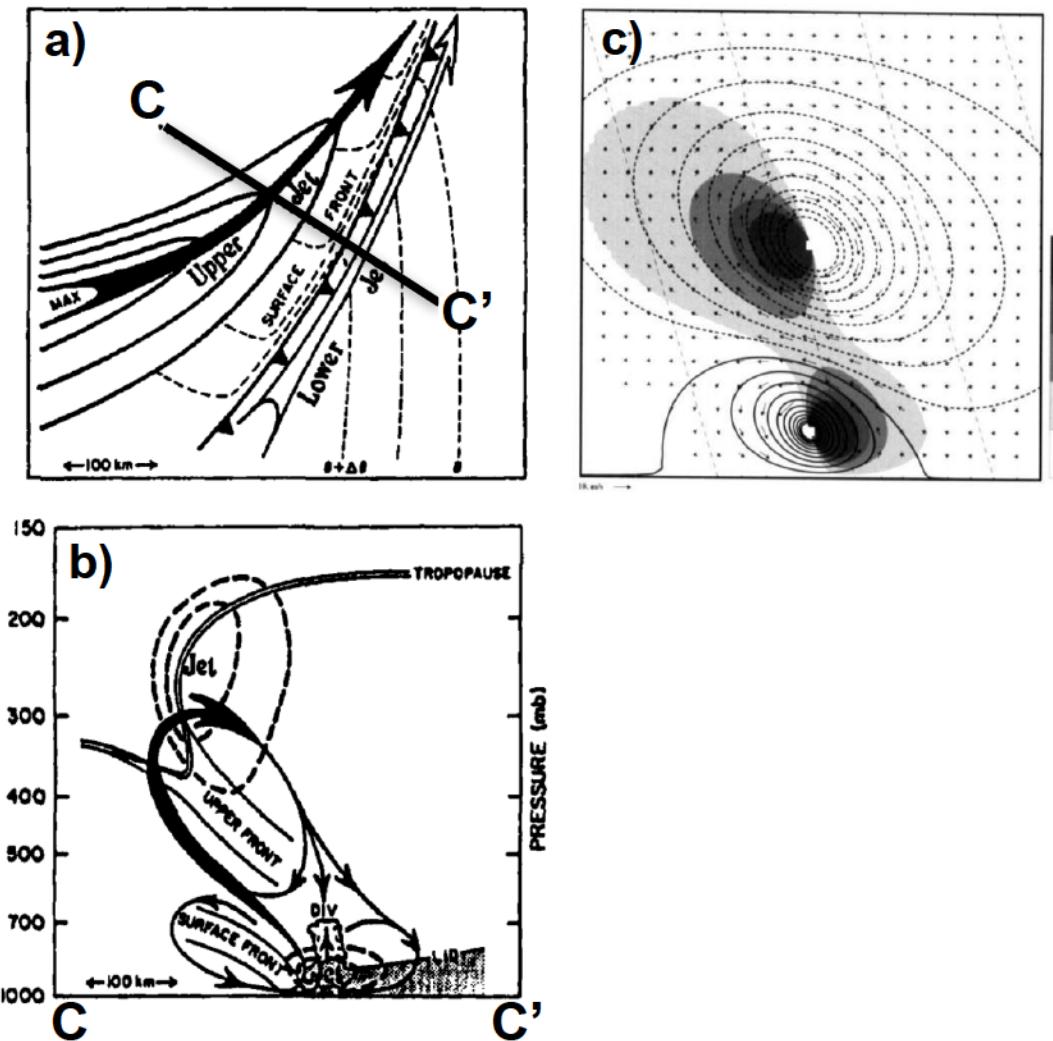
3180

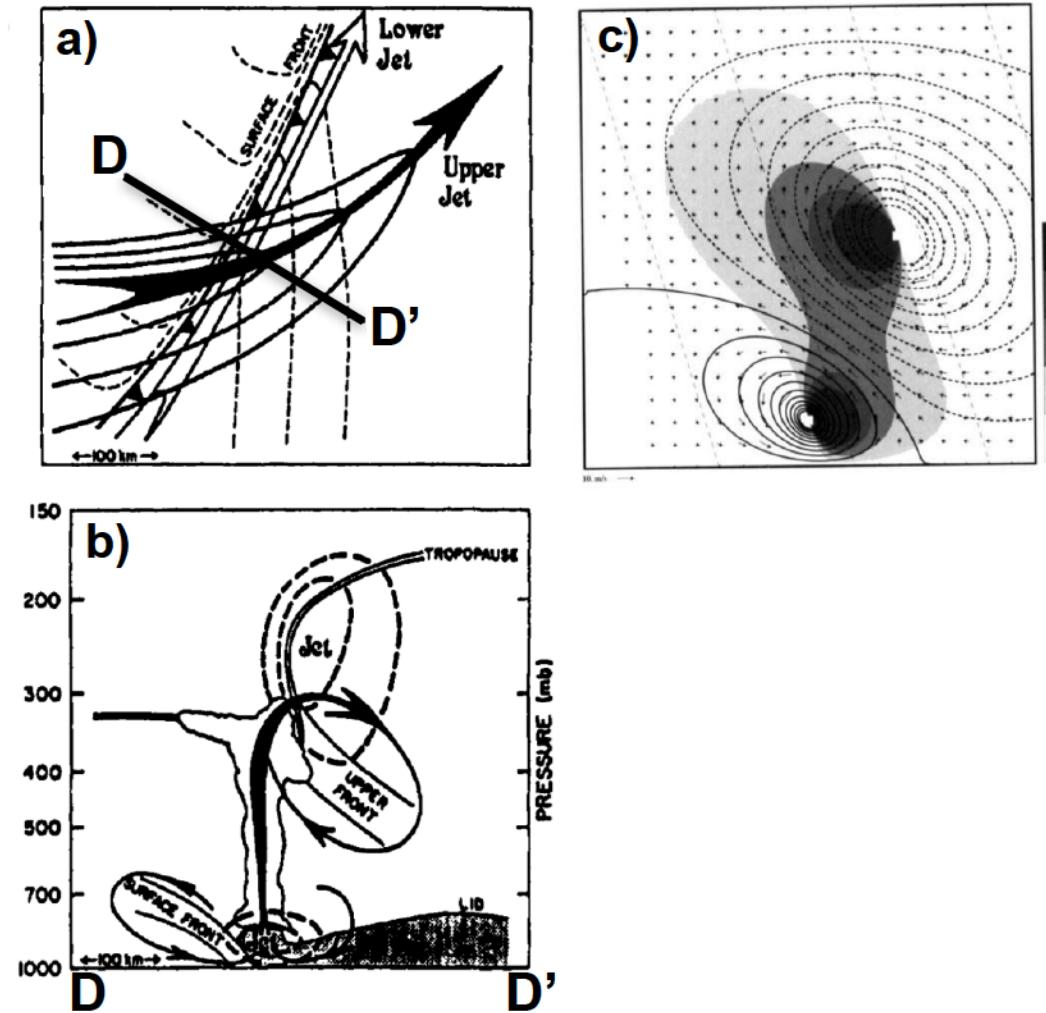

3181

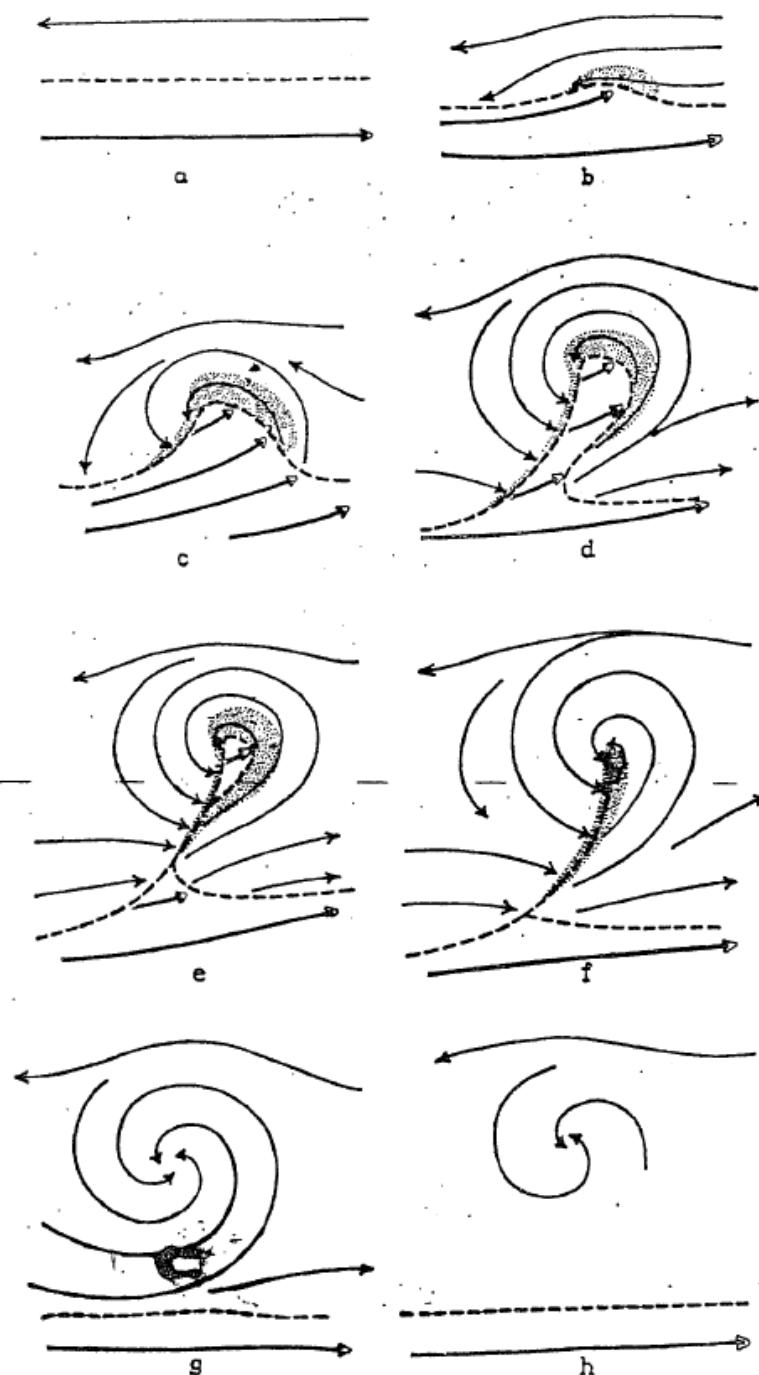
3182


3183

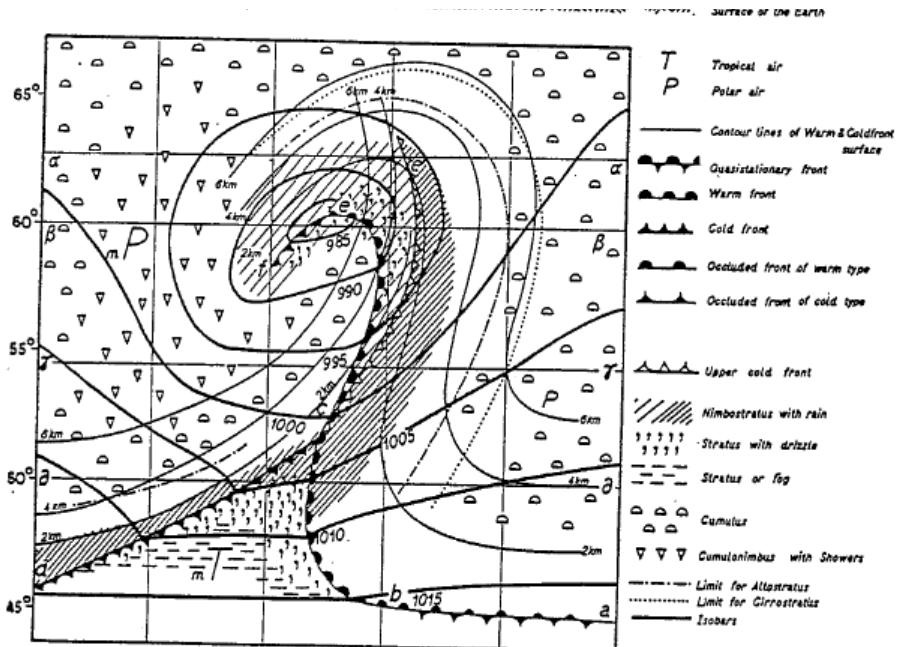
3184


Fig. 17. (a) Schematic illustrating the frontogenetical effect of geostrophic confluence. Thin solid lines are streamlines of the geostrophic wind and dashed lines are isentropes. (b) Schematic illustrating the across-front ageostrophic circulation for frontogenesis induced by geostrophic confluence. The dashed lines are isotachs of along-front geostrophic wind (indicated by U); dotted lines are isotachs of across-front geostrophic wind (indicated by V); and solid lines are streamfunction for the across-front ageostrophic circulation. (c) Schematic illustrating frontogenetical effect of geostrophic horizontal shear. Arrows indicate the sense of the geostrophic wind and dashed lines are isentropes. (d) As in (b), except for frontogenesis induced by geostrophic horizontal shear. Figure and caption adapted from Eliassen (1990, his Figs. 9.2 and 9.4) and Eliassen (1962, his Figs. 2a and 3a). [Need to change panel lettering.]

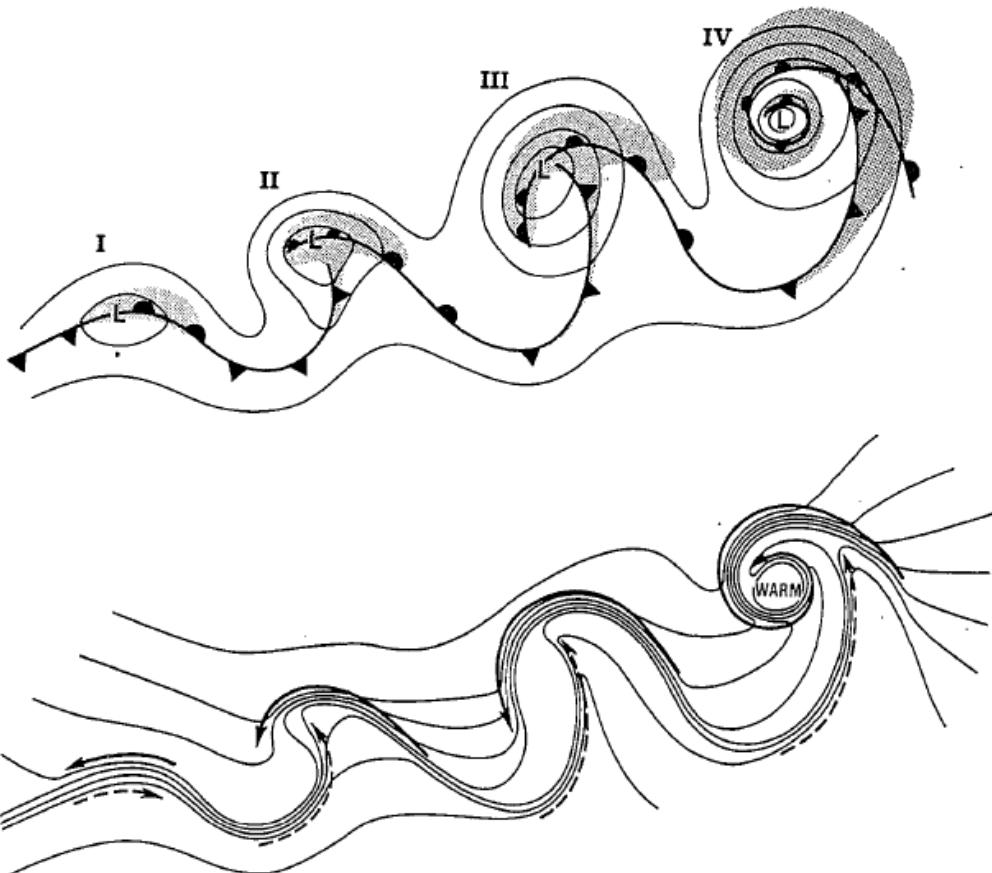

3185
 3186 Fig. 18. Cross section of a surface front within a semigeostrophic confluence frontogenesis model
 3187 with uniform potential vorticity (thin black lines every 2.4 K) with
 3188 particle motions from a previous time (red arrows). The basic deformation motion is highlighted
 3189 below the lower surface with the black arrows. (b) The along-front wind component out of the
 3190 cross section (thin black lines every 4 m s^{-1}), and Richardson number values of 0.5 and 1.0 (thin
 3191 dashed lines). The location of the surface front is indicated by the vertical black arrow beneath
 3192 panel (b). Figure and caption adapted from Hoskins (1971, his Figs. 3 and 4).


3193
 3194 Fig. 19. Cross section of a surface and upper-level front within a semigeostrophic confluence
 3195 frontogenesis model with two uniform PV regions; the higher value of PV represents the
 3196 stratosphere and the lower value represents the troposphere. Potential temperature (thin black lines
 3197 every 7.8 K), the along-front wind component (dashed lines every 10.5 m s⁻¹), and particle motions
 3198 from a previous time (red arrows). The basic deformation motion is highlighted below the lower
 3199 surface with the black arrows. Figure and caption adapted from Hoskins (1972, his Fig. 4).

3200 Fig. 20. Schematic illustrations of vertically uncoupled upper- and lower-level jet-front systems.
 3201 (a) Plan view of the location of the upper-level jet streak exit region with respect to the surface
 3202 frontal zone. Isotachs are given by thick solid lines, with the solid arrow denoting the axis of the
 3203 upper-level jet streak, surface isentropes are given by thin dashed lines, and the open arrow denotes
 3204 the axis of the lower-level jet. (b) Cross section C-C', as indicated in (a), with isotachs indicated
 3205 by thick dashed lines surrounding the upper- and lower-level jets, frontal boundaries by thin solid
 3206 lines, the tropopause by thin double lines, the moist boundary layer by the stippled region, and the
 3207 across-front ageostrophic circulation by the solid arrows. (c) Semigeostrophic solution for a
 3208 vertically uncoupled upper- and lower-level jet-front system. Streamfunction is given by thick
 3209 lines (negative values dashed) every $2 \times 10^3 \text{ m}^2 \text{ s}^{-1}$, positive values of vertical motion are shaded
 3210 every 2 cm s^{-1} starting at 1 cm s^{-1} , absolute momentum is given by thin dashed lines every 30 m
 3211 s^{-1} , and vectors depict the across-front ageostrophic circulation. Figure and caption adapted from
 3212 Shapiro (1982, his Fig. 22) and Hakim and Keyser (2001, their Fig. 6). [Need to rearrange panels.]

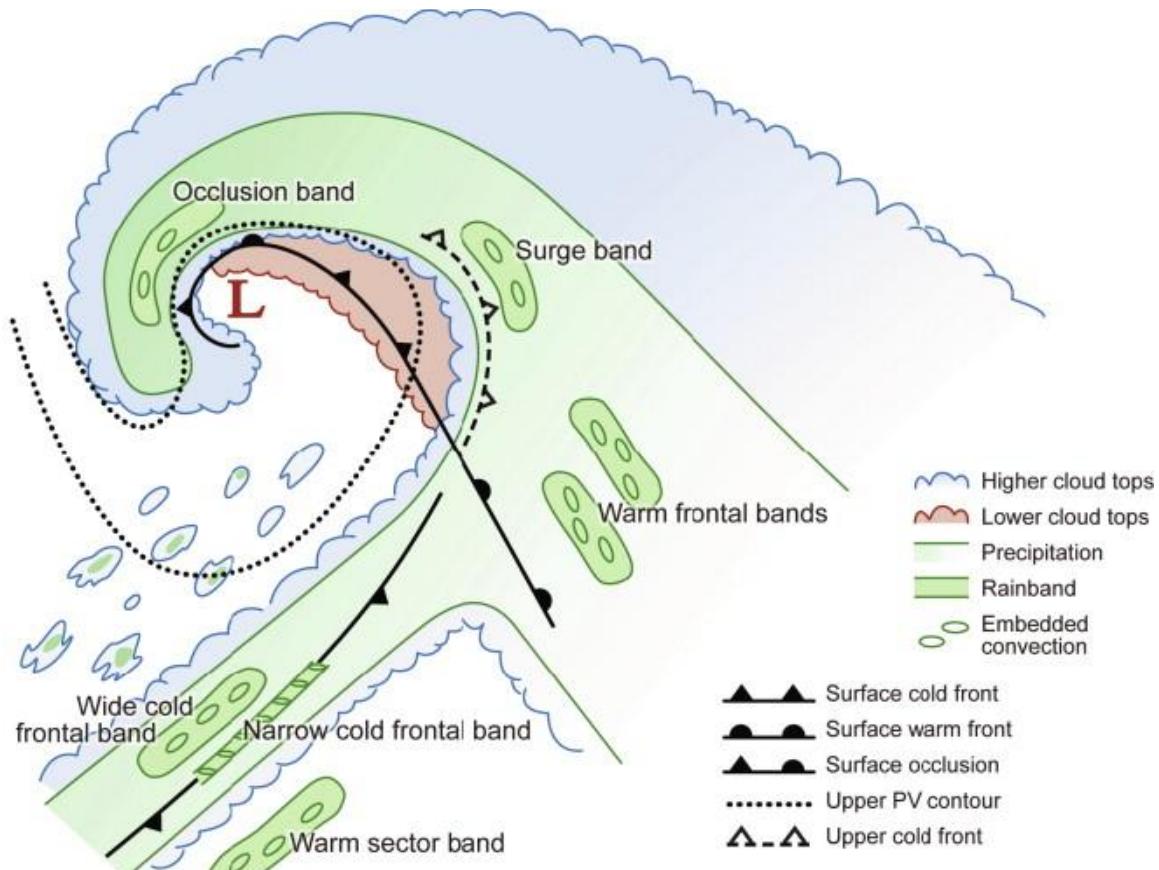


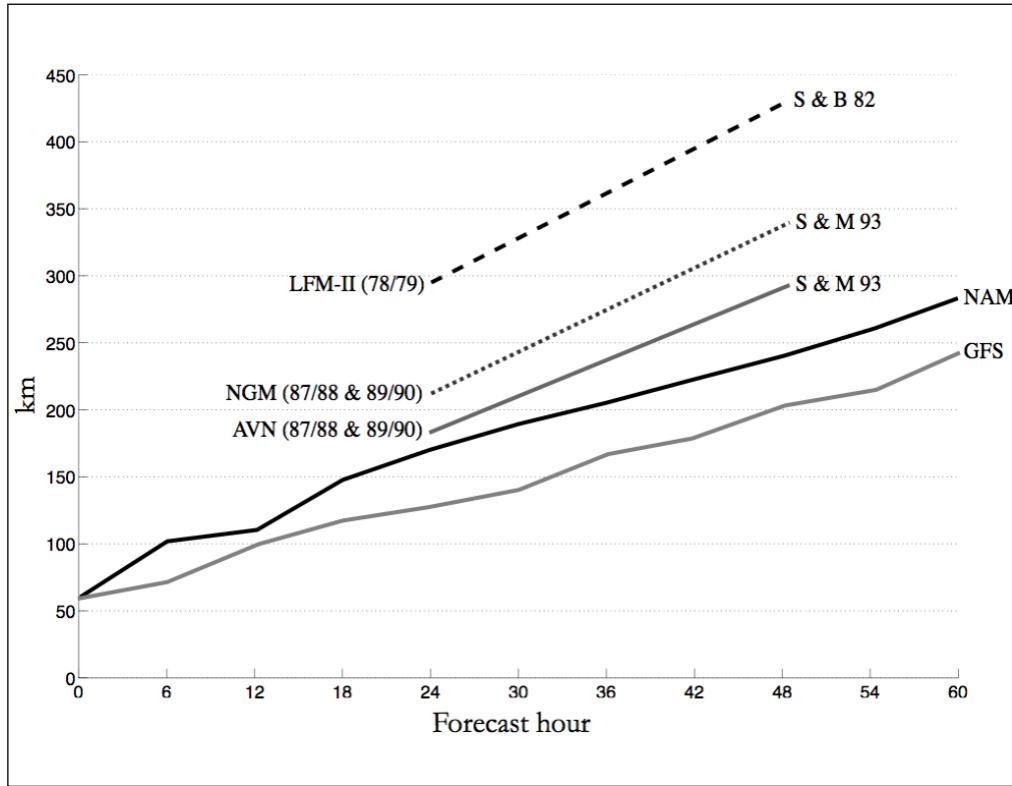
3213 Fig. 21. As in Fig. 20, but for vertically coupled upper- and lower-level jet-front systems. Figure
 3214 and caption adapted from Shapiro (1982, his Fig. 23) and Hakim and Keyser (2001, their Fig. 7).
 3215 [Need to rearrange panels.]



3216
3217
3218
3219
3220
3221

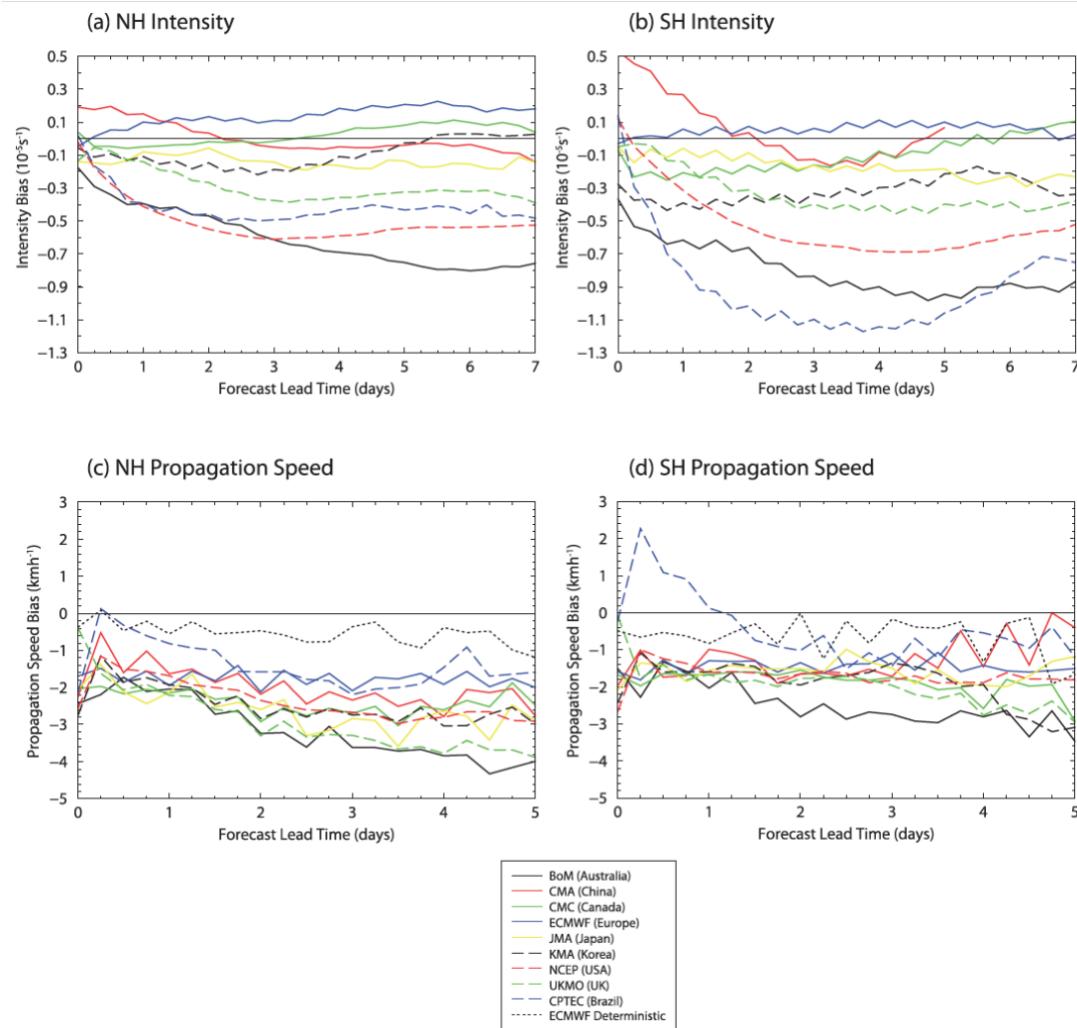
Fig. 22. Life cycle of the ideal cyclone: (a) initial phase, (b) incipient cyclone and frontal wave, (c) amplification of the warm wave (open-wave cyclone), (d) narrowing in of the warm tongue/sector, (e) warm-core seclusion, (f) occluded cyclone, (g) cold-air vortex, (h) death. Figure from Bjerknes and Solberg (1922, their Fig. 2). [Would be nice to find a version that doesn't have background noise.]


3222
3223
3224 Fig. 23. The occluded cyclone. Figure from Godske et al. (1957, their Fig. 14.4.1). [Clean up stray
3225 marks and rotate counterclockwise slightly.]


3226

3227

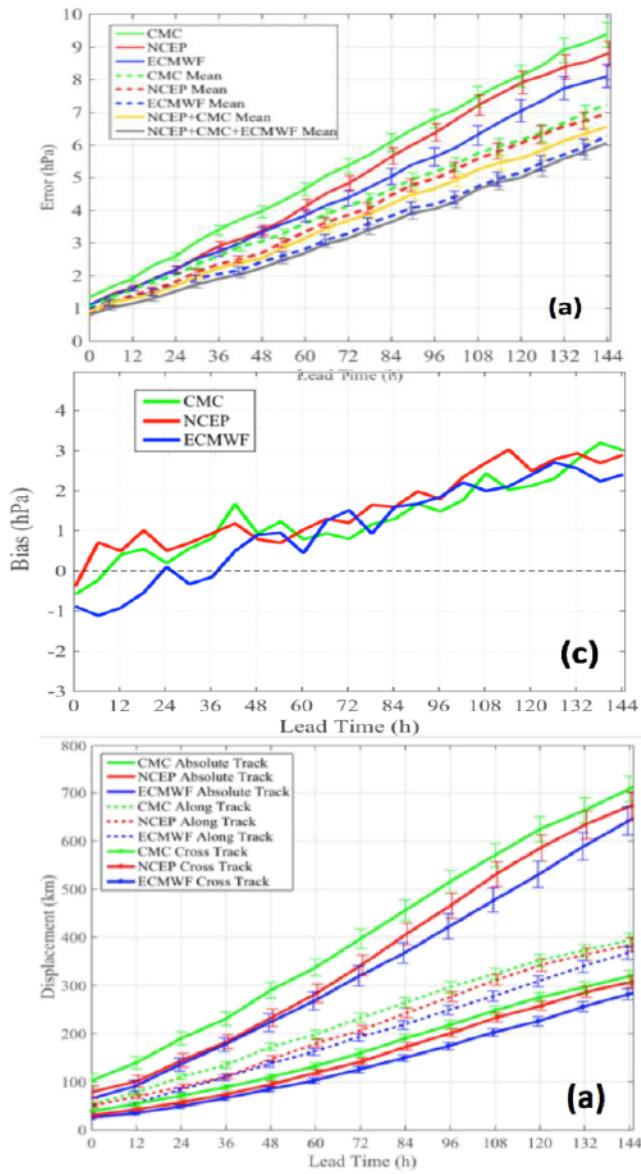
3228 Fig. 24. The life cycle of the marine extratropical frontal cyclone following the Shapiro-Keyser
 3229 model: (I) incipient frontal cyclone; (II) frontal fracture; (III) bent-back warm front and frontal T-
 3230 bone; (IV) warm-core seclusion. Upper: sea-level pressure (solid lines), fronts (bold lines), and
 3231 cloud signature (shaded). Lower: temperature (solid lines) and cold and warm air currents (solid
 3232 and dashed arrows, respectively). Figure and caption from Shapiro and Keyser (1990, their Fig.
 3233 10.27).
 3234


Fig. 25. Schematic representation of cloud and precipitation bands associated with a mature extratropical cyclone. Figure from Houze (2014, his Fig. 11.24).

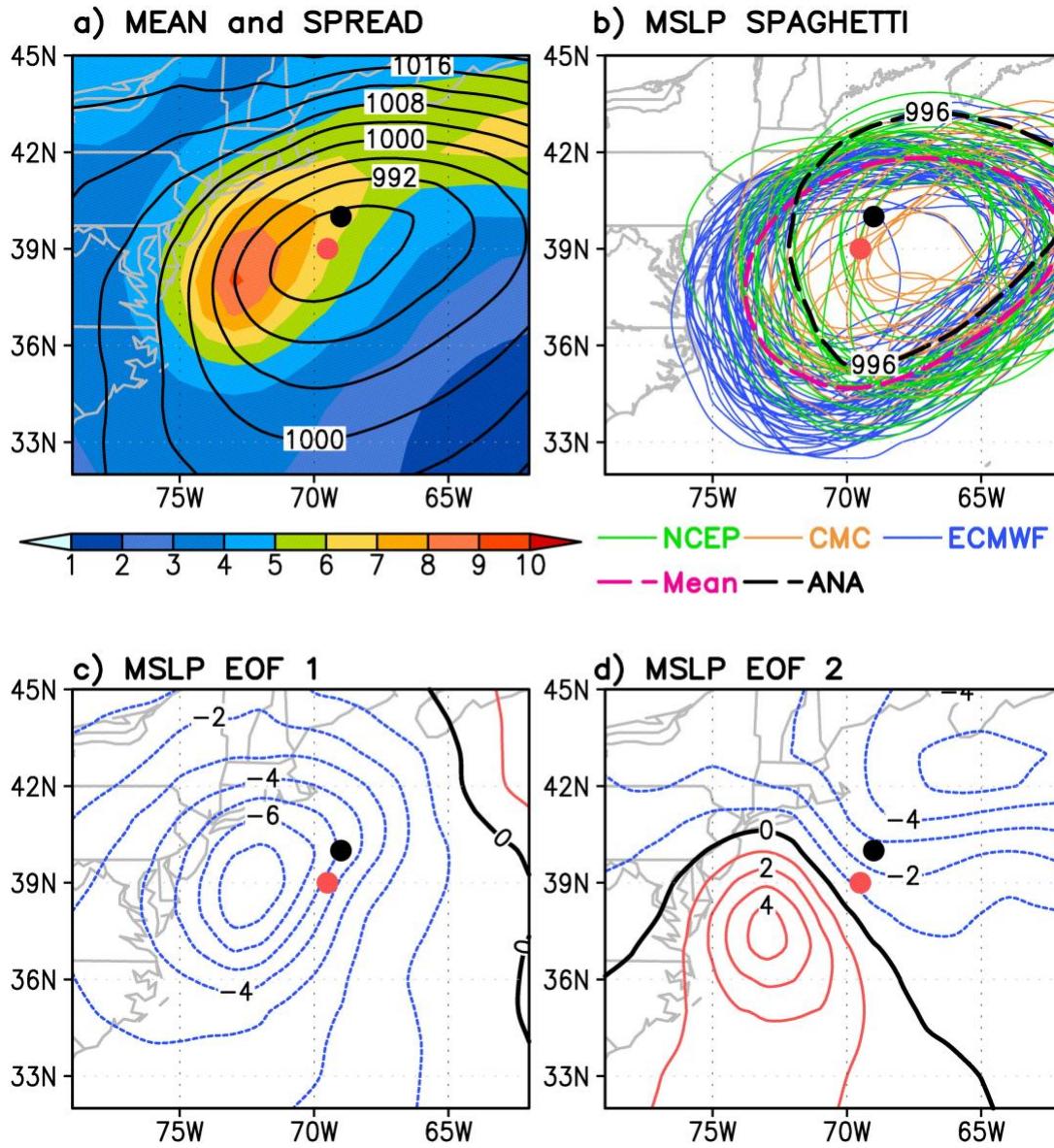
3262

Fig.

26. Extratropical cyclone displacement errors (in km) versus forecast hour for the LFM-II (Silberberg and Bosart 1982) (1978/79 cool season) (CONUS and oceans), the NGM and AVN (Smith and Mullen 1993) (1987/88 and 1989/90 cool seasons) (Atlantic), and the NAM and GFS (2002–2007 cool seasons) (Atlantic). Figure from Charles and Colle (2009a, their Fig. 16).

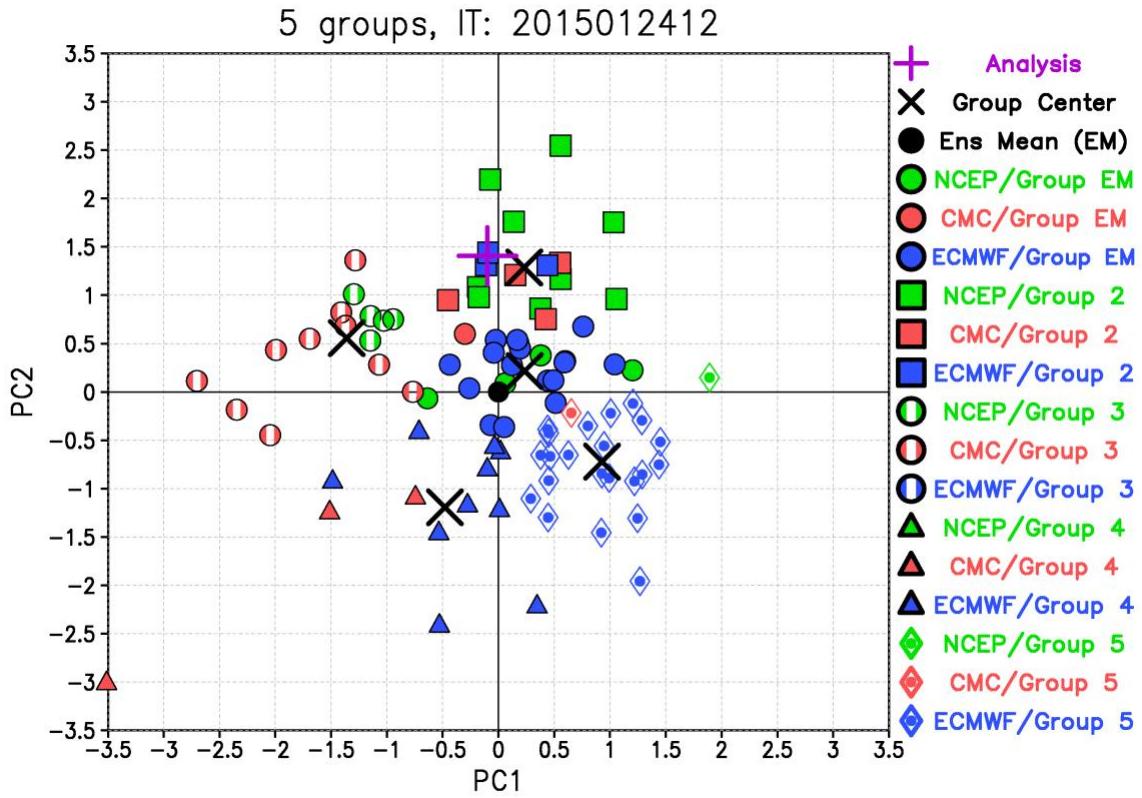

3296

3297


3298

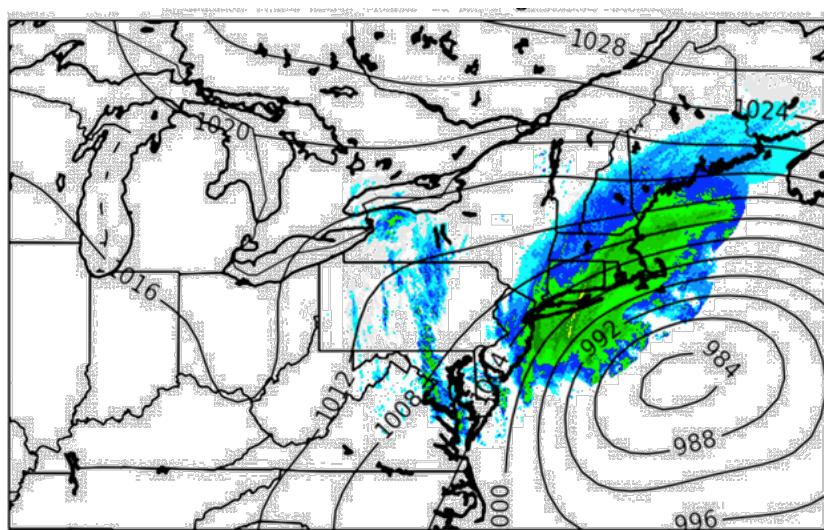
3299 **Fig. 27.** Mean bias in intensity for the (a) Northern Hemisphere, (b) Southern Hemisphere and (c),
 3300 (d) propagation speed in the NH and SH. The propagation speed bias is also shown for the ECMWF
 3301 high-resolution deterministic forecast in (c) and (d). Units of intensity and propagation speed bias
 3302 are 10^{-5} s^{-1} (relative to background field removal) and $\text{km}^{-1} \text{ h}^{-1}$, respectively. Figure from Froude
 3303 (2011, her Fig. 2).

3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338



3339 Fig. 28. (a) Mean absolute error for cyclone intensity (central pressure) averaged for all individual
3340 ensemble members and the ensemble mean. (b) Same as (a) except for mean error but only for the
3341 averaged ensemble members and for relatively deep (greater one standard deviation) cyclones in
3342 the analysis or any ensemble member. (c) Average mean absolute error (in km) for absolute (total),
3343 cross-, and along-track directions for all members tracked separately and the different ensemble
3344 systems (NCEP, CMC, and ECMWF). Figure adapted from Korfe and Colle (2018, their Figs. 2a,c
3345 and 5a). [Need to change panel lettering.]

3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356


Fig. 29. (a) Sea level pressure ensemble mean (contours, hPa) and spread (shading, hPa), (b) spaghetti plots of 996-hPa contour for 90 multi-model ensemble members (blue are for the ECMWF members; green are for the NCEP members; and orange are for the CMC members) with the dashed magenta lines and black lines to be the ensemble mean and the analysis. (c) EOF1 Sea level pressure pattern (contours, hPa), and (d) EOF2 Sea level pressure pattern (contours, hPa). The verifying time is 1200 UTC 27 January 2015 and initial time is 1200 UTC 24 January 2015. Analyzed mean position of the surface cyclone at verifying time (black dot), and ensemble mean position of the surface cyclone at verifying time (red dot). Figure from Zheng et al. (2017, their Fig. 8).

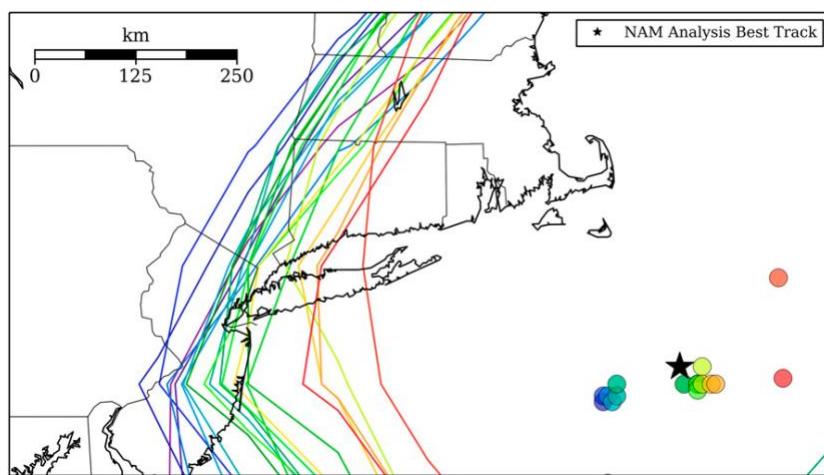

3357
3358
3359
3360
3361
3362
3363

Fig. 30. The five clusters divided using fuzzy clustering method on the PC1–PC2 space from the 90 ensemble members for 3-day forecast. The verifying time is 1200 UTC 27 January 2015, and the initial time is 1200 UTC 24 January 2015. Figure is drawn from the same data as in Zheng et al. (2017, their Fig. 5b).

3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378

3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392

3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403

Fig. 31. (a) Surface pressure analyses from the Climate Forecast System Reanalysis (CFSR; hPa; black contours) and observed composite radar reflectivity (dBZ; shaded) during the height of the (top) Jan 2015 at 0600 UTC 27 Jan 2015. (b) Locations of storm centers as estimated from minimum sea level pressure from GEFS ensemble forecasts initialized at 1200 UTC 26 Jan 2015 and valid at 1200 UTC 27 Jan 2015. Location of minimum pressure from the verifying NAM analysis is shown as a black star. Points are colored according to their longitudinal distance from the analysis, with purple being farthest west and red farthest east. Contours indicate the westernmost extent of the 25.4-mm storm total precipitation threshold, colored by its respective GEFS member. Figure adapted from Greybush et al. (2017, their Figs. 1 and 2). [Need to include panel lettering.]