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INTRODUCTION 

Multiple  aromatic  heterocyclic  systems  bridged  via 
biaryl linkages represent important building blocks across 
a  broad  range  of  the  chemical  and  material  sciences  
[1,  2].  Within  this  arena, α,α′-linked  heteroaromatics 
have emerged as important building blocks in functional 
p-conjugated  materials  [3–15]  as  well  as  key  structural 
motifs in supramolecular [16–18] and coordination 
chemistry  [18–23].  Due  to  their  broad  utility,  extensive 
efforts have been focused on developing improved 
preparations  of  homogeneous  and  heterogeneous  forms 
of so-called mixed oligoheterocycles [7–13, 24–30]. 
Typically, two generalized approaches have been pursued 
involving, (1) the synthesis of appropriate building blocks 
followed  by  oligomerization  or  (2)  the  preparation  of 
smaller  subunits  that  are  then  elaborated  in  an  iterative 
approach through functionalization to produce higher order 
oligomers. Nevertheless and in spite of the progress made 
to date, there is still a need for generalizable procedures 
that permit the preparation of α,α′-linked heteroaromatics 
in an economically efficient and scalable manner. 

Currently, a number of routes leading to bi- and 
tetraheteroaromatic species are known [9, 25–29]. How-
ever, methodologies allowing for the controlled synthesis 
of odd numbered ter-, penta-, and septaheterocyclic, 
especially non-thiophene, oligoaromatic systems remain 
limited [31–37]. We have, therefore, devoted efforts 
towards  the  preparation  of  higher  order  heterogeneous 
oligoheterocycles using α,α′-dibromo terheterocycles as 
precursors  for  the  expedient  synthesis  of  such  systems. 
Here,  we  present  the  use  of  dibromo  dipyrrolyl  furan 
(1) as a model building block in a tandem Suzuki cross-
coupling  protocol  to  yield  a  series  of  mixed  penta-  and 
septaheterocycles  from  easily  prepared  starting  material 
and commercially available coupling partners (Fig. 1). The 
iterative approach described here allows for the expedient 
synthesis  of  larger  oligoheterocyclic  constructs  whose 
structural diversity provides control over key optical 
properties,  including  the  UV-vis  absorption  spectra  and 
fluorescence  emission  features.  The  net  result  are  color 
and fluorescence differences that are easy to differentiate 
by the naked eye.

RESULTS AND DISCUSSION

Initial  synthetic  efforts  were  devoted  to  optimizing 
conditions  that  would  allow  the  tandem  Suzuki  coupl-
ing  between  dibromo  dipyrrolyl  furan  (1)  [38]  with 
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N-boc-2-pyrroleboronic acid (2). Toward this end, various 
Pd-salts (entries 1–4), bases (entries 4–6), concentrations 
of  the  aryl  boronic  acid  (entry  7),  and  the  palladium 
catalyst  (entry  8)  were  tested  (Table  1).§  Gratifyingly, 
optimized conditions were obtained upon heating 1 in N,N-
dimethylformamide-H2O (5:1, v/v) with Pd(PPh3)Cl2 (20 
mol%), K2CO3 (5.5 equiv), and N-boc-pyrrole-2-boronic 
acid (4 equiv) at reflux. This gave 2,5-di-bipyrrolyl furan 
(3) in 98% yield.

Using this protocol we then examined the construction 
of various mixed oligo-heteroaromatics derived from the 
dipyrrolyl furan scaffold and various heteroaromatic 
pinacol  boranes  (Scheme  1).†  Under  these  conditions 
good-to-excellent  yields  were  obtained  for  a  series  of 
penta-  (4–7)  and  septaheterocycles  (8).  For  instance, 
commercially  available  indole-,  furan,  and  thiophene-
2-boronic  acid  pinacol  esters  were  readily  coupled  to 
give  the  corresponding  pentaheterocycles  4,  5,  and  6 
in  93%,  85%,  and  86%  yield,  respectively.  Although 
mixed oligoheterocyclic species analogous to 4, 5, and 
6  have  previously  been  reported,  these  prior  protocols 
typically required greater step counts and proceeded in 
lower overall yields [39]. 2,2′-Bithiophene-5-boronic 
acid pinacol ester, a common precursor in oligothiophene 
synthesis [40], was coupled to give 7 in 92% yield. This 
method was also amenable to pyridine-based substrates, 
as demonstrated by the reaction between 2 and pyridine-
4-boronic acid pinacol ester to give 8 in 95% yield.

To demonstrate the influence of the terminal hetero-
cycle  on  the  absorbance  and  fluorescence  properties, 
the UV-vis and emission profile of compounds 3–8 

were  measured  (Fig.  1). Torsion  angles  of  synthesized 
compounds as well as the shorter terpyrrole and mixed 
tetrafuran-thiophene  (TFFT  &  FTTF)  are  shown  in 
Table 2. UV-vis spectral studies carried out in acetonitrile 
revealed molar absorptivities that varied as well as 
changes in the maximum absorption (lmax). Specifically, 
for compound 3 lmax = 349 nm (24,500 M-1 . cm-1) and l2 = 
303 nm (20,700 M-1cm-1); for 4 the corresponding values 
were lmax =  298  nm  (17,600  M-1 . cm-1), l2 =  334  nm 
(16,250  M-1 . cm-1);  in  the  case  of  5 lmax =  389  nm  
(15,400 M-1 . cm-1), whereas lmax = 393 nm (13,500 M -1 .  
cm-1)  for  6;  finally,  the  corresponding lmax  values  for 
7  and  8  were  368  nm  (36,150  M-1 . cm-1)  and  366  nm 
(24,900  M-1 . cm-1),  respectively.  The  observed  spectra 
lead  us  to  suggest  that  a  complex  interplay  between 
conjugation and electron density of the pendant 
heterocycle determines the predominant electronic 
transition [40] (Fig. 1).

The  emission  spectra  of  pentaheterocycles  3,  4,  5, 
6,  and  8  recorded  in  acetonitrile  were  found  to  scale 
in accord with the electron density of the terminal 
heterocycle  [41],  with  3  giving  an  emission  maximum 
(Emmax) at 490 nm, 4 at 498 nm, 5 at 481 nm, 6 at 485 nm, 
and  8  at  460  nm  (Fig.  1). A  bathochromic  shift  in  the 
emission profile was also observed upon extending the 
conjugation, as demonstrated by bithiophene-capped 
septaheterocycle  7  that  yielded  an  Emmax  at  511  nm. 
These  spectral  differences  are  readily  apparent  to  the 
naked  eye  when  acetonitrile  solutions  of  compounds 
3–8 were illuminated with a hand held UV-vis lamp, as 
can  be  seen  from  inspection  of  Fig.  2. Absorption  and 

Table 1. Reaction development

O
HNNH

CO2Et

CO2EtCO2Et

EtO2C

BrBr

Pd (cat.)
base (5.5 equiv)

DMF: H2O (5:1, v/v)
120 oC, 5 h

O
HNNH

CO2Et

CO2EtCO2Et

EtO2C
Boc
N

B(OH)2

HNNH

1 2 3

Entry Pd cat. Base Yield (%)b

1 Pd(OAc)2, Ph3
c K2CO3 74

2 Pd(dppf)Cl2 K2CO3 63

3 Pd(dba)2 K2CO3 45

4 Pd(PPh3)2Cl2 K2CO3 84

5 Pd(PPh3)2Cl2 KOtBu 62

6 Pd(PPh3)2Cl2 K3PO4 43

7 Pd(PPh3)2Cl2
d K2CO3 99 (98)f

8 Pd(PPh3)2Cl2
e K2CO3 60

a Reactions performed on 0.05 mmol scale with standard conditions consisting of Pd-catalyst (20 mol%), base (5.5 equiv), and 

aryl boronic acid (2.4 equiv) in 2 mL of DMF: H2O (5:1, v/v). b Yield determined by 1H NMR spectral analysis in CDCl3 using an 

internal standard (1,2-dichloroethane). c 40 mol% of PPh3 was used. d 4 Equivalents of N-boc-pyrrole-2-boronic acid were used. 
e 10 mol% of the Pd-catalyst was used. f Isolated yield for a reaction run on a 0.1 mmol scale.
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Scheme 1. Synthesis of penta- and septa-oligoheterocycles. a Reactions performed on 0.1 mmol scale. b Reaction performed on 
0.2 mmol scale. c 2.4 equiv of pyridine-2-boronic acid pinacol ester was used. Crystal structures are shown as ORTEP plots with 
thermal ellipsoids set at the 50% probability. Hydrogen atoms are removed for clarity

Fig. 1. (a) UV-vis and (b) emission spectra of penta- and septaheterocycles 3–8 in acetonitrile ([c] = 15 μM)
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emission maxima as well as Stokes shift of synthesized 
compounds, terpyrrole, tetrafuran (4F), mixed tetrafuran-
thiophene (TFFT & FTTF), and tetrathiophene (4T) are 
compared in Table 3.

CONCLUSION

In  conclusion,  we  have  developed  a  facile  synthesis 
of higher order α,α′-linked heterocycles using a tandem 
Suzuki cross coupling. This method utilizes easily prepared 
starting material as well as commercially available coupling 
partners to yield penta- and septaheterocycles in good to 
excellent  yield  while  simultaneously  allowing  for  fine-
tuning of the photophysical properties. New routes towards 
the controlled synthesis of homo- and heterogeneous 
α,α′-linked aromatics in an iterative fashion, such as the 
one  described,  are  expected  to  allow  for  the  divergent 
preparation of previously unexplored constructs with 
potentially interesting and useful properties.
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of the N-boc-pyrrole furnishing 3 without need for 
additional  synthetic manipulation.

 † Attempts  to  use  2-thienyl-  and  2-furanylboronic 
acid derivatives under these conditions resulted in 
lower yields (i.e. less than 50% yield as determined 

Table 2. Terminal heterocycle torsion angles based upon x-ray 
crystallography

Compound Terminal heterocycle torsion angles

3 N1 – N2, 178.86°; N3 – N4, 179.78°

5 O1 – N1, 177.60°; N2 – O3, 4.96°

6 T1 – N1, 170.66°; N2 – T2, 173.27°

terpyrrole [42] N1 – N2, 164.75°; N2 – N 3 , 154.83°

TFFT [28b] S1– O1, -2.89°; O1 – O2, -180°; O2 – S2, 2.89°

FTTF [28b] O1 – T1, 175.08°; T1 – T2, 180°; T2 – O2, -175.08°

Table  3.  Absorbance  maxima,  emission  maxima,  and  Stokes 

shifts of synthesized and related compounds
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3 386 490 9.61E5
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4F [28b] 364 413 2.04E5

TFFT [28b] 378 440 1.61E5

FTTF [28b] 393 467 1.35E5

4T [28b] 392 479 1.15E5

Fig. 2. Visual (top) and fluorescence (bottom) profiles of penta- 
and septaheterocycles 3–8 in acetonitrile ([c] = 15 μM).
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