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Abstract

In the randomly-oriented Manhattan lattice, every line in Zd is assigned a uniform
random direction. We consider the directed graph whose vertex set is Zd and whose
edges connect nearest neighbours, but only in the direction fixed by the line orien-
tations. Random walk on this directed graph chooses uniformly from the d legal
neighbours at each step. We prove that this walk is superdiffusive in two and three
dimensions. The model is diffusive in four and more dimensions.
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1 Introduction, notation and results

To define the randomly-oriented Manhattan lattice, let E = {±e1,±e2, . . . ,±ed} be
the canonical unit vectors in Zd and let

Ui := {x ∈ Zd : 〈x, ei〉 = 0}, i ∈ {1, 2, . . . , d}.

These (d− 1)-dimensional subspaces of Zd allow us to uniquely index the lines in Zd that
are parallel to a canonical unit vector as

V (i, x) := {x+ tei : t ∈ Z}, for i ∈ {1, 2, . . . , d}, x ∈ Ui.

Assign to each line V (i, x), x ∈ Ui the direction ei or −ei with probability 1/2 each,
independently of each other. For each x ∈ Zd we denote by ω(i, x) the chosen direction
corresponding to the line {x+ tei : t ∈ Z}. Note that ω(i, x) = ω(i, x− 〈x, ei〉).

We study a continuous-time nearest neighbor random walk on Zd in the random
environment ω(i, x). The walker starts from the origin, takes steps at rate d, and if it is
at x ∈ Zd then its next position is chosen uniformly from the set {x+ ω(i, x), 1 ≤ i ≤ d}.
(See Figure 1.) Our main object of interest is the mean-square displacement

E(t) := E[|Xt|2], t ≥ 0, (1.1)
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Random walk on the randomly-oriented Manhattan lattice

Figure 1: A typical initialisation of the random line directions in the Manhattan lattice
with a legal path for the walker (red).

where Xt ∈ Zd denotes the position of the walker at time t. The expectation E in (1.1) is
with respect to the annealed (or averaged) law, which means that we average over the
realisations of the walker’s randomly chosen steps and the random lattice orientations.
Notice that the model is trivial when d = 1.

We analyse the asymptotics of E by applying the resolvent method. The method was
introduced in [3, 5, 11] to give diffusivity estimates for a tracer particle in a Gaussian
drift field, respectively, for a second class particle in the asymmetric exclusion process
on Z and Z2. Later the method was used in [8, 10] to study the long-time behaviour of
self-repelling diffusions pushed by the negative gradient of their local time and diffusion
driven by the curl-field of the Gaussian Free Field in 2 dimensions.

In this note we show how the method transfers to the Manhattan lattice to prove
superdiffusivity of the random walk in d = 2 and d = 3. The method employed is very
similar to that of [8, 10]. However, this particular model has some interest and notoriety
(see e.g. [1, 2]) and the authors have been repeatedly requested to spell out the full
proof.

Our main theorem provides bounds on the Laplace transform of E

Ê(λ) =

ˆ ∞

0

e−λtE(t)dt, as λ→ 0.

Theorem 1.1. There exists finite positive constants C and λ0 such that for all 0 < λ < λ0
we have

C−1λ−9/4 ≤ Ê(λ) ≤ Cλ−5/2 if d = 2, and

C−1λ−2 log log(λ−1) ≤ Ê(λ) ≤ Cλ−2 log(λ−1) if d = 3.

The bounds in Theorem 1.1 are time-averaged, they should correspond to behaviour
t5/4 . E(t) . t3/2 in two dimensions and t log log t . E(t) . t log t in three dimensions. In
fact, the upper bounds on E(t) can be transferred from those on Ê(λ) by [8, Lem. 1]. The
lower bounds on Ê(λ) do not transfer pointwise without some additional information on
E(t), but they do give the corresponding growth rates for the Cesàro average 1

t

´ t
0
E(s)ds.

In four and higher dimensions the random walk is known to be diffusive, in fact [4, 9]
proves central limit theorem for the random walk both in the quenched and annealed
environment.

The bounds on the growth rates in Theorem 1.1 are not sharp. A non-rigorous
Alder–Wainwright type scaling argument (see e.g. [10]) suggests that the true behavior
is E(t) � t4/3 for d = 2, and E(t) � t(log t)1/2 for d = 3. A heuristic explanation for
the superdiffusive behaviour is that when the walk enters a region with many lines
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Random walk on the randomly-oriented Manhattan lattice

Figure 2: Realisation for the first 10,000 steps: the left shows simple random walk on Z2,
the centre shows random walk on a randomly-oriented Manhattan lattice (orientations
not shown) and the right shows the MdM model with orientations in the x-component.
Time is indexed by colour.

oriented in the same direction, it tends to follow a long and relatively straight path in
that direction (see Figure 2).

Random walk on the randomly-oriented Manhattan lattice is closely related to the
Matheron–de Marsily (MdM) model, originally introduced in [6]. In the MdM model, one
dimension has fixed uniformly chosen random line directions as in the Manhattan lattice,
but all other components are undirected. At each jump time the walker choses uniformly
one of the d lines going through its position. If the chosen line is one of the directed
ones then the walker takes a step in that direction, otherwise it choses one of the two
neighbours on the line randomly.

The MdM model is well-studied [1, 2], and its mean-square displacement can be
analysed exactly, giving scaling E(t) � t3/2 when d = 2 and E(t) � t log t when d = 3.
There is a natural way to interpolate between the MdM and the Manhattan lattice
model: suppose that dfix ≥ 1 of the dimensions of the lattice are directed and dfree are
undirected, where dfix + dfree = d. Then dfix = 1 gives the MdM model, while dfix = d

gives the Manhattan lattice model. This offers no new models in two dimensions and
all the intermediate models can be shown to be diffusive in four and higher dimension.
There is, however, one potentially interesting case when d = 3 and dfix = 2. In Section 4
we show that for this model we have

C−1λ−2
√
log λ−1 ≤ Ê(λ) ≤ Cλ−2 log(λ−1), (1.2)

provided that λ is small enough. Non-rigorous scaling arguments suggest that the true
growth is E(t) � t(log t)2/3 in this case.

Notation and outline of the proof

We will proceed by analysing the environment of randomly-oriented lines as seen
from the position of the random walker. Denote the set of possible environments by

Ω =
d⊗
i=1

⊗
x∈Ui

{−1, 1}.

For a given x ∈ Ui the set {−1, 1} corresponds to {−ei, ei}. For an ω ∈ Ω we denote the
coordinates (with a slight abuse of notation) by ω(i, x), 1 ≤ i ≤ d, x ∈ Ui.
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Random walk on the randomly-oriented Manhattan lattice

Let τi : Ω → Ω be the translation of the environment by ei and τ
−1
i its inverse. These

act on the coordinates as

τiω(i, x) = τ−1
i ω(i, x) = ω(i, x)

τiω(j, x) = ω(j, x+ ei), and τ−1
i ω(j, x) = ω(j, x− ei), for j 6= i.

The distribution of the initial environment of i.i.d. uniform random line directions is
given by the product measure

π =
d⊗
i=1

⊗
x∈Ui

µi,x, (1.3)

where µi,x is the uniform measure on {−1, 1}. Note that π is invariant with respect to
the translations τi, τ

−1
i . For functions f, g ∈ L2(Ω, π) we will use the notation (f, g)π =´

fgdπ.
Let ηt ∈ Ω be the environment seen from the position of the random walker at time t.

The crucial observation is that given η0 the process ηt is Markovian, and its generator
(under the quenched law) can be expressed as follows:

Gf(ω) :=
d∑
i=1

(
1 + ω(i, 0)

2
f(τiω) +

1− ω(i, 0)

2
f(τ−1

i ω)− f(ω)

)
. (1.4)

Note that if η = (ηt)t≥0 is the environment process viewed from the walker and X =

(Xt)t≥0 is the position of the walker, then

ηt(i, x) = η0(i, x−Xt), (1.5)

where we recall that X0 = 0. A simple computation shows that π is an invariant measure
for ηt.

The adjoint of G is given by

G∗f(ω) =
d∑
i=1

(
1− ω(i, 0)

2
f(τiω) +

1 + ω(i, 0)

2
f(τ−1

i ω)− f(ω)

)
,

and hence the symmetric and antisymmetric parts of G are given by

S = 1
2 (G+G∗) Sf(ω) = 1

2

d∑
i=1

(f(τiω) + f(τ−1
i ω)− 2f(ω)), (1.6)

A = 1
2 (G−G∗) Af(ω) =

d∑
i=1

ω(i, 0)(f(τiω)− f(τ−1
i ω)). (1.7)

Notice that S is the generator of the environment process as seen from a symmetric
simple random walk on Zd.

We now sketch the basic strategy of the resolvent method. By symmetry we have
E(t) = E|Xt|2 = d · E|X1

t |2 where X1
t is the first coordinate of Xt. Observe that (X1

t , ηt)

is also a Markov process (given η0) with the generator

G̃1f(z, ω) =
1 + ω(1, 0)

2
f(z + 1, τ1ω) +

1− ω(1, 0)

2
f(z − 1, τ−1

1 ω)− f(z, ω).

With f(z, ω) = z we get G̃1f(z, ω) = ω(1, 0) and G̃1f
2(z, ω)− 2f(z, ω)G̃f(z, ω) = 1. From

this it follows that
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X1
t =Mt +

ˆ t

0

φ(ηs)ds, (Mt)
2 = Nt + t

where φ(ω) = ω(1, 0), the processesMt, Nt are martingales and E[(Mt)
2] = t. Introduce

the quantity

EG(t) := E
[(ˆ t

0

φ(ηs)ds
)2]

= 2

ˆ t

0

(t− s)E[φ(η0)φ(ηs)]ds.

From the inequality 1
2a

2 − b2 ≤ (a + b)2 ≤ 2a2 + 2b2 and the fact that E[(Mt)
2] = t, it

follows that
1

2
EG(t)−

t

2
≤ E[|X1

t |2] ≤ 2EG(t) + 2t.

Hence superlinear upper or lower bounds on EG(t) imply bounds of the same order on
E[|X1

t |2], and hence E[|Xt|2] as well. This means that if we give upper and lower bounds
on ÊG(λ) that grow faster than λ−2 as λ → 0, then these bounds will hold for Ê(λ) as
well, up to a constant multiplier. Hence it is enough to estimate ÊG(λ). Note that a
simple time-reversal argument would actually give the identity

E[|X1
t |2] = EG(t) + E[(Mt)

2] = EG(t) + t, (1.8)

but this is not needed for our superdiffusive estimates.

From the definition of EG it follows that ÊG(λ) = 2λ−2(φ, (λ−G)−1φ)π. The resolvent
method relies on the following variational representation of (φ, (λ−G)−1φ)π:

(φ, (λ−G)−1φ)π = sup
ψ∈L2(Ω,π)

{
2(φ, ψ)π − (ψ, (λ− S)ψ)π − (Aψ, (λ− S)−1Aψ)π

}
. (1.9)

(A derivation of this formula can be found in [7].) Since the right hand side of (1.9) is
a supremum, evaluating the expression 2(φ, ψ)π − (ψ, (λ− S)ψ)π − (Aψ, (λ− S)−1Aψ)π
for a given ψ ∈ L2(Ω, π) will give a lower bound on (φ, (λ−G)−1φ)π, and hence on Ê(λ).
The lower bounds in Theorem 1.1 will follow from careful choices of the test function ψ.
The detailed proof is carried out in Section 2. The same idea is used for the lower bound
for the intermediate MdM model with dfix = 2 and dfree = 1, the proof is presented in
Section 4.

The upper bounds are easier to obtain. Note that because S is self-adjoint, the term
(Aψ, (λ−S)−1Aψ)π is nonnegative. Dropping it from the expression inside the supremum
in (1.9) thus gives the following upper bound:

(φ, (λ−G)−1φ)π ≤ sup
ψ∈L2(Ω,π)

{
2(φ, ψ)π − (ψ, (λ− S)ψ)π

}
= (φ, (λ− S)−1φ)π.

Since S is the generator of the environment process as seen from a symmetric simple
random walk, (φ, (λ−S)−1φ)π can be computed directly, which leads to the upper bounds
on ÊG(λ). This is demonstrated in Section 3.
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2 Proof of lower bound in Theorem 1.1

Our goal will be to find an appropriate test function ψ ∈ L2(Ω, π) where the expression
inside the supremum in (1.9) can be evaluated, and is sufficiently large. We will look for
the test function in the form

ψ(ω) :=
∑
x∈U1

u(x)ω(1, x), (2.1)

where u ∈ L2(U1) is an even real function that could also depend on λ. The precise form
of u will be stated later in this section.

We will start with some explicit computations involving the terms in (1.9). In the
following we will use the notation

∇+
i f(x) := f(x+ ei)− f(x), ∇if(x) := f(x+ ei)− f(x− ei).

Lemma 2.1 (Preliminary calculations). With ψ defined as in (2.1) we have:

(i) (φ, ψ)π = u(0), (ψ,ψ)π = ‖u‖22,

(ii) (ψ, Sψ)π = −
∑d
i=2 ‖∇

+
i u‖22,

(iii) Aψ(ω) = −
∑d
i=2

∑
x∈U1

ω(i, 0)ω(1, x)∇iu(x),

(iv) Let 1 ≤ i, j ≤ d with i 6= j and suppose that the function v : Ui × Uj → R satisfies∑
x∈Uj ,y∈Uj

v(x, y)2 <∞. Set

ζ(ω) =
∑
x∈Ui

∑
y∈Uj

v(x, y)ω(i, x)ω(j, y).

Then we have

Sζ(ω) =
1

2

∑
x,y

(v(x+ ej , y) + v(x− ej , y)− 2v(x, y))ω(i, x)ω(j, y)

+
1

2

∑
x,y

(v(x, y + ei) + v(x, y − ei)− 2v(x, y))ω(i, x)ω(j, y)

+
1

2

∑
k 6=i,j

∑
x,y

(v(x+ ek, y + ek) + v(x− ek, y − ek)− 2v(x, y))ω(i, x)ω(j, y).

(2.2)

Proof. The proof of (i) follows directly from the fact that ω(1, x) are i.i.d. mean zero and
variance 1 random variables.

To prove (ii) first note that ψ(τ1ω) = ψ(τ−1
1 ω) = ψ(ω), and thus (after rearranging the

terms) we get

Sψ(ω) =
1

2

d∑
i=2

∑
x∈U1

(u(x+ ei) + u(x− ei)− 2u(x))ω(1, x).

Hence, after a simple rearrangement of the terms we get

(ψ, Sψ)π =
1

2

d∑
i=2

∑
x∈U1

(u(x+ ei) + u(x− ei)− 2u(x))u(x)

= −
d∑
i=2

∑
x∈U1

(u(x+ ei)− u(x))2 = −
d∑
i=2

‖∇+
i u‖

2
2.

Both (iii) and (iv) follow from the definitions after some algebraic manipulations and
careful book-keeping.
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Fourier representation

For f : Zd → R, denote its Fourier transform by

f̂(p) :=
∑
x∈Zd

ei p·xf(x) p ∈ Td, (2.3)

with i being the imaginary unit and T the torus on [0, 2π). (Although we use the same
notation for the Laplace transform, it will not cause any confusion.) For an f : Uj → R

we define f̂(p) by first extending f to Zd by setting it equal to zero outside Uj and then
taking the Fourier transform. This is the same as using (2.3), but with a summation only
on Uj . Note that if f : Uj → R then f̂(p) does not depend on pj , the jth coordinate of p.

The Fourier transform of a function c : Zd ×Zd → R is defined as

ĉ(p, q) =
∑

x,y∈Zd

ei(p·x+q·y)c(x, y) p, q ∈ Td.

We can extend this definition to functions of the form c : Ui × Uj → R as in the single
variable case.

By Parseval’s formula if f : Ui → R is in L2(Ui) then

‖f‖2 =
1

(2π)d

ˆ
Td

|f̂(p)|2dp,

and similarly, if c : Ui × Uj → R then

‖c‖2 =
∑
x∈Ui

∑
y∈Uj

c(x, y)2 =
1

(2π)2d

ˆ
Td

ˆ
Td

|ĉ(p, q)|2dpdq.

For an u : U1 → R and j 6= 1 we have

∇̂+
j u(p) = (e−ipj − 1)û(p).

Note that |e−it − 1|2 = 4 sin2( t2 ). For p ∈ Td let

d̂(p) =
d∑
j=1

4 sin2(
pj
2 ),

and define p(j) = p− pj ej as the vector obtained from p by replacing its jth coordinate
with 0. Then with ψ defined as in (2.1) we have

(ψ, (λ− S)ψ)π =
1

(2π)d

ˆ
Td

(
λ+ d̂(p(1))

)
|û(p)|2 dp. (2.4)

Now suppose that ζ is defined as in part (iv) of Lemma 2.1. According to the lemma, we
can express Sζ(ω) as

∑
x∈Ui

∑
y∈Uj

v∗(x, y)ω(i, x)ω(j, y) where v∗ can be read off from
(2.2). From this the Fourier transform of v∗ can be expressed as follows:

v̂∗(p, q)

=
1

2

(eipj + e−ipj − 2) + (eiqi + e−iqi − 2) +
∑
k 6=i,j

(ei(pk+qk) + e−i(pk+qk) − 2)

 v̂(p, q)

= −1

2
d̂(p(i) + q(j))v̂(p, q).
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This also shows that (λ− S)−1ζ(ω) can be expressed as
∑
x∈Ui

∑
y∈Uj

s(x, y)ω(i, x)ω(j, y)

with

ŝ(p, q) =
(
λ+ 1

2 d̂(p
(i) + q(j))

)−1

v̂(p, q). (2.5)

Indeed, if ∑
x∈Ui

∑
y∈Uj

v(x, y)2 =
1

(2π)2d

ˆ
Td

ˆ
Td

|v̂(p, q)|2dpdq <∞

then we have 1
(2π)2d

´
Td

´
Td |ŝ(p, q)|2dpdq <∞ where ŝ is defined in (2.5). Hence there is

a unique function s : Ui × Uj → R with Fourier transform ŝ, and setting

ξ(ω) =
∑

x∈Ui,y∈Uj

s(x, y)ω(i, x)ω(j, y),

the previous computation shows that (λ− S)ξ(ω) = ζ(ω).
By Lemma 2.1 we have

Aψ(ω) =
d∑
i=2

∑
x∈Ui

∑
y∈U1

vi(x, y)ω(i, x)ω(1, y)

where
vi(x, y) = −1{x = 0}∇iu(y), and v̂i(p, q) = (eiqi − e−iqi)û(q).

Moreover, using part (iv) of Lemma 2.1 together with the computations around (2.5) we
get

(Aψ, (λ− S)−1Aψ)π =
1

(2π)2d

ˆ
Td

ˆ
Td

d∑
i=2

4 sin2(qi)
(
λ+ 1

2 d̂(p
(i) + q(1))

)−1

|û(q)|2dpdq.

(2.6)

The proceeding integral inequalities follow from simple calculus, comparing sin2(x/2) to
x2 on (−π, π).
Lemma 2.2. If d = 2 then for all λ > 0 and p ∈ T2 we have

1

(2π)d

ˆ
Td

(
λ+ 1

2 d̂(q
(2) + p(1))

)−1

dp ≤ Cλ−1/2, (2.7)

where C is a finite constant. If d = 3 then for all p ∈ T3 and 0 < λ ≤ 1/3 we have

1

(2π)d

ˆ
Td

(
λ+ 1

2 d̂(q
(2) + p(1))

)−1

dq ≤ C| log(λ+ 1
2 sin

2(p22 ))|, (2.8)

where C is a finite constant.

Estimating (φ, (λ−G)−1φ)π using ψ

Our goal is to give a lower bound on 2(φ, ψ)π − (ψ, (λ− S)ψ)π − (Aψ, (λ− S)−1Aψ)π
when ψ is of the form (2.1), this will also give a lower bound for (φ, (λ−G)−1φ)π.

By the inverse Fourier formula we have

(φ, ψ)π = u(0) =
1

(2π)d

ˆ
Td

û(p)dp. (2.9)

We assumed that u is even, hence û(p) is real.
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Using the expression (2.6) for (Aψ, (λ− S)−1Aψ)π and the bounds of Lemma 2.2 we
get that

(Aψ, (λ− S)−1Aψ)π ≤ C

(2π)d

ˆ
Td

λ−1/2 sin2(p2)|û(p)|2dp for d = 2 (2.10)

and

(Aψ, (λ− S)−1Aψ)π

≤ C

(2π)d

ˆ
Td

3∑
j=2

| log(λ+ 1
2 sin

2(
pj
2 ))| sin

2(pj))|û(p)|2dp for d = 3,

(2.11)

if 0 < λ ≤ 1/3. Now we have all the ingredients to prove the lower bounds in Theorem
1.1.

Proof of the lower bound for d = 2 in Theorem 1.1. If d = 2 then (2.4), (2.9) and (2.10)
show that for a ψ of the form (2.1) we have

2(φ, ψ)π − (ψ, (λ− S)ψ)π − (Aψ, (λ− S)−1Aψ)π

≥ 1

(2π)2

ˆ
T2

(
2û(p)−

(
λ+ d̂(p(1))

)
|û(p)|2 − Cλ−1/2 sin2(p2)|û(p)|2

)
dp,

with a fixed constant C > 0.
The integral achieves its maximum for the choice

û(p) =
1

λ+ d̂(p(1)) + Cλ−1/2 sin2(p2)
,

note that this is real, bounded and only depends on p2, thus it corresponds to a function
u : U1 → R that satisfies our assumptions. The value of the integral for this particular u
is

1

2π

ˆ
T

1

λ+ 4 sin2(p22 ) + Cλ−1/2 sin2(p2)
dp2

which can be bounded from below by C ′λ−1/4. This means that with this particular
choice of ψ the value of 2(φ, ψ)π− (ψ, (λ−S)ψ)π− (Aψ, (λ−S)−1Aψ)π is at least C ′λ−1/4,
hence (φ, (λ−G)−1φ)π ≥ C ′λ−1/4. Thus ÊG(λ) grows faster than λ−9/4 as λ → 0, from
which the lower bound of Theorem 1.1 on Ê(λ) follows.

Proof of the lower bound for d = 3 in Theorem 1.1. In the d = 3 case (2.4), (2.9) and
(2.11) lead to

2(φ, ψ)π − (ψ, (λ− S)ψ)π − (Aψ, (λ− S)−1Aψ)π

≥ 1

(2π)3

ˆ
T3

2û(p)−

λ+ d̂(p(1)) + C
3∑
j=2

| log(λ+ 1
2 sin

2(
pj
2 ))| sin

2(pj)

 |û(p)|2
 dp,

assuming 0 < λ ≤ 1/3. The integral takes its maximum for the choice

û(p) =

λ+ d̂(p(1)) + C
3∑
j=2

| log(λ+ 1
2 sin

2(
pj
2 ))| sin

2(pj)

−1
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which correspond to a valid function u : U1 → R. The value of the integral is

1

(2π)3

ˆ
T3

λ+ d̂(p(1)) + C
3∑
j=2

| log(λ+ 1
2 sin

2(
pj
2 ))| sin

2(pj)

−1

dp. (2.12)

This integral is comparable (up to constants) to the integral

ˆ π

0

ˆ π

0

dx dy

λ+ x2 + y2 + x2| log(λ+ x2)|+ y2| log(λ+ y2)|

which can be shown to be at least C ′ log log(λ−1) for 0 < λ ≤ 1/3. The proof of the
statement now follows as in the d = 2 case.

3 Proof of the upper bounds in Theorem 1.1

As explained at the end of Section 1, we have the bound

(φ, (λ−G)−1φ)π ≤ (φ, (λ− S)−1φ)π.

If ψ is of the form of (2.1) then (λ − S)−1ψ can be written as
∑
x∈U1

u∗(x)ω(1, x) with
û∗(p) = 1

λ+d̂(p(1))
û(p). Since φ(ω) =

∑
x∈U1

1{x = 0}ω(1, x), we obtain

(φ, (λ− S)−1φ)π =
1

(2π)d

ˆ
Td

1

λ+ d̂(p(1))
dp. (3.1)

The integral in (3.1) can be bounded by Cλ−1/2 if d = 2 and C log(λ−1) if d = 3 and
0 < λ < 1/2. From this the upper bounds in Theorem 1.1 follow.

Note also that for d ≥ 4 the integral in (3.1) can be bounded by a constant depending
on d and not λ, which shows that in these cases the model is not superdiffusive. (In fact,
identity (1.8) implies diffusivity.)

4 Bounds for the MdM model with dfix = 2, dfree = 1

Consider the modification of the three-dimensional MdM model with dfix = 2 and
dfree = 1, and assume that the e1, e2 directions are fixed. Then the generator of this
process is similar to (1.4), but the i = 3 term in the sum is replaced by 1

2f(τiω) +
1
2f(τ

−1
i ω)− f(ω). Note that the symmetric part is still the same S as in (1.6) for d = 3,

but the asymmetric part will only have the terms i = 1 and 2 from (1.7).

Because the symmetric part is the same as in the case of the d = 3 Manhattan model,
the upper bound proved there holds for this model as well.

For the lower bound we can also proceed with a similar argument as in the case of
the Manhattan model, the only modification is that bound in (2.12) now will only consist
of the j = 2 term. Hence we get

2(φ, ψ)π − (ψ, (λ− S)ψ)π − (Aψ, (λ− S)−1Aψ)π

≥ 1

(2π)3

ˆ
T3

(
2û(p)−

(
λ+ d̂(p(1)) + C| log(λ+ 1

2 sin
2(p22 ))| sin2(p2))

)
|û(p)|2

)
dp,

which leads to the following lower bound:

(φ, (λ−G)−1φ)π ≥ 1

(2π)3

ˆ
T3

(
λ+ d̂(p(1)) + C| log(λ+ 1

2 sin
2(p2))| sin2(p22 )

)−1

dp.
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For0<λ≤1/3theintegralontherightiscomparableto

ˆπ

0

ˆπ

0

dxdy

λ+x2+y2+x2|log(λ+x2)|

whichcanbefurtherboundedfrombelowbyaconstanttimes
π́

0

π́

0
dxdy

λ+y2+x2log(λ 1).

ThisintegralisatleastC logλ−1forλsmall,whichleadstothelowerboundin(1.2).
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