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ABSTRACT Epigenetic modifications can extend over long genomic regions to form domain-level chromatin states that play critical
roles in gene regulation. The molecular mechanism for the establishment and maintenance of these states is not fully understood and
remains challenging to study with existing experimental techniques. Here, we took a data-driven approach and parameterized an
information-theoretic model to infer the formation mechanism of domain-level chromatin states from genome-wide epigenetic modi-
fication profiles. This model reproduces statistical correlations among histone modifications and identifies well-known states. Impor-
tantly, it predicts drastically different mechanisms and kinetic pathways for the formation of euchromatin and heterochromatin. In
particular, long, strong enhancer and promoter states grow gradually from short but stable regulatory elements via a multistep pro-
cess. Onthe other hand, the formation of heterochromatin states is highly cooperative, and no intermediate states are found along the
transition path. This cooperativity can arise from a chromatin looping-mediated spreading of histone methylation mark and supports
collapsed, globular three-dimensional conformations rather than regular fibril structures for heterochromatin. We further validated
these predictions using changes of epigenetic profiles along cell differentiation. Our study demonstrates that information-theoretic

models can go beyond statistical analysis to derive insightful kinetic information that is otherwise difficult to access.

INTRODUCTION

A remarkable achievement of multicellular organisms is
the formation of distinct cell types with the same DNA
sequence. The epigenome that consists of covalent modifi-
cations to histone proteins and the DNA is expected to
play a key role in encoding the cell type diversity (1,2). A
prominent feature of the epigenome is that neighboring nu-
cleosomes tend to share similar modifications such that the
entire chromatin is partitioned into various continuous re-
gions with well-defined histone modification patterns (3)
(i.e., domain-level chromatin states) that include transcrip-
tionally active domains and heterochromatin. Switching
the type of these states as cells differentiate can impact
the expression of the underlying genes and drive phenotypic
changes without altering the DNA sequence.

For epigenetic modifications and domain-level chromatin
states to maintain well-defined gene expression profiles and
cell phenotypes, there must exist robust mechanisms for
their establishment and maintenance (4). Ensuring the sus-
tained stability of these chemical modifications within a
cell cycle and through cell division can be a challenging
task. Unlike the DNA sequence, histone modifications are
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intrinsically dynamic and face constant perturbations from
enzymes that add or remove these marks (5). Furthermore,
roughly half of the histone proteins will be replaced with un-
modified ones as the DNA replicates, and these random ad-
ditions can dramatically alter the epigenome of the daughter
cells if left uncorrected (6-8). Therefore, it is not surprising
that cells have evolved complex regulatory pathways to
ensure the stability of epigenetic modifications. Though sig-
nificant insights on the robustness of histone modifications
can be gained by studying these pathways (9,10), a complete
understanding based on them is lacking because many of the
molecular players that are crucial for epigenome stability
and inheritance remain unknown.

Large-scale sequencing studies have provided valuable
data on the genome-wide distribution of epigenetic marks
(11). Top-down theoretical models based on these data pro-
vide an alternative approach for the mechanistic understand-
ing of domain-level chromatin state formation. They can
circumvent the challenges faced by modeling chromatin reg-
ulatory pathways, including the incompleteness of these
pathways and the lack of kinetic parameters. Existing epige-
nomics data analysis approaches (12—-14) have focused on ex-
tracting unique patterns of histone modifications. They have
discovered many novel single-nucleosome chromatin states
and support the histone code hypothesis (15,16), which states
that unique combinations of histone modifications encode
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distinctive biological outcomes. However, focusing on the
correlation between epigenetic marks within the same nucle-
osome, current approaches have often ignored the extension
of these marks across multiple nucleosomes to form domains
(17). Consequently, they fail to provide insight into the stabil-
ity of large domain-level chromatin states and the mechanism
leading to their establishment.

We propose an information-theoretic model to identify
domain-level chromatin states with distinct histone modifica-
tion patterns and infer the mechanism for their formation from
epigenomics data. This model can be derived and parameter-
ized following the maximal entropy principle. It rigorously
accounts for both intra- and internucleosome correlation be-
tween epigenetic marks and succeeds in identifying various
known states, including super (stretch) enhancers (18,19),
broad H3K4me3 domains (20), and heterochromatin (9).
Transition path analysis of these domain-level chromatin
states revealed that promoters and enhancers could be stabi-
lized at a continuous range of genomic lengths, and more
extended states often grow from shorter ones through a
sequential maturation process. On the other hand, heterochro-
matin states exhibit a bistable behavior, and nucleosomes
within these states undergo an all-or-none cooperative transi-
tion as they become methylated. By correlating the model
interaction energies with contact probability between nucleo-
somes in the three-dimensional (3D) space, we found that our
model supports condensed, globular heterochromatin confor-
mations that resemble phase-separated liquid droplets. Our
results demonstrate the usefulness of statistical mechanical
models and molecular biophysical approaches in interpreting
the rich information encoded in epigenomics data.

MATERIALS AND METHODS
Calculating epigenetic mark correlation

For a comprehensive characterization of the chromatin landscape, we
analyzed the collective behavior of 12 epigenetic marks. These marks
include histone H3 lysine 4 monomethylation/dimethylation/trimethylation
(H3K4me1/me2/me3), which are important for identifying enhancer and pro-
moter regions; H3 lysine 9 acetylation (H3K9ac) and H3 lysine 27 acetylation
(H3K27ac), which are associated with increased activation of gene promoters
and enhancers, respectively; H3 lysine 9 trimethylation (H3K9me3) and H3
lysine 27 trimethylation (H3K27me3), which are signatures of constitutive
heterochromatin and facultative heterochromatin; H3 lysine 36 trimethyla-
tion (H3K36me3), H3 lysine 79 dimethylation (H3K79me2), and H4 lysine
20 monomethylation (H4K20mel), which are indicative of transcribed
gene regions; DNase I hypersensitive sites that probe exposed DNA and
open chromatin regions; and an important histone variant H2A.Z.

We obtained genome-wide profiles of these marks from the ROADMAP
epigenomics project (11). Data from the IMR90 cell line were collected
because of their high quality. We then binarized the epigenetic profiles
with a Poisson background model at a resolution of 200 bp that corresponds
to the nucleosome repeat length (21). From the binarized data, the mean
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were calculated. In these notations, the binary variable s} indicates whether
the i-th mark is present (= 1) at the n-th nucleosome or not (= 0), and N is
the genome length. We note that the experimental data used here is obtained
from a bulk average, but epigenetic marks are under constant remodeling in
individual cells. The correlation coefficients between histone marks deter-
mined here, therefore, only represent a mean-field approximation to the
actual values. Single cell epigenomics data are becoming available (22)
and will provide more accurate estimations for the correlation between
histone marks that are present on the same DNA molecule at the same time.

Parameterizing the information-theoretic model

Using the mean occupancy and mark correlations as experimental con-
straints, parameters in the energy function E(s, L) defined in Eq. 8 can be
determined with a Boltzmann learning algorithm (23). This algorithm min-
imizes the cross entropy

$'(0) = > F*0, —InZ(6), (1)
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where 8 = {h;, J;;, K!} is the collection of model parameters, Z is the parti-
tion function of the model, and F**? is the collection of experimental con-
straints. It is straightforward to demonstrate that at the stationary point of §*
(6), the simulated ensemble averages match with experimental constraints.

The minimum of $* (#) can be found with the steepest gradient descent
method that iteratively updates the parameters with the following expression
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F™°% is the collection of simulated ensemble averages for mean mark oc-

cupancy and correlation coefficients between marks.
To accelerate the steepest gradient descent in the relevant direction and
dampen oscillations, a momentum step was included when updating the
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We used a learning rate of « = 0.002 and § = 0.9. At each iteration ¢, we
used the Metropolis Monte Carlo algorithm to sample the Boltzmann distri-
bution and estimate the ensemble averages F™°%!. We further applied the
parallel tempering technique to enhance the sampling efficiency. A total
of 13 replicas was used with temperatures evenly distributed between 0.8
and 2.0, with each replica lasting for 10® Monte Carlo steps per iteration.
The parameters were set as zero at the beginning and were updated until
the relative error defined as & = Y ;[fm%l — f*F | /5™ 7P is less than 5%.

Identifying domain-level chromatin states using
the information-theoretic model

To identify robust combinatorial patterns of epigenetic marks and domain-
level chromatin states, we searched for basins of attractions supported



by the information-theoretic model using steepest gradient descent optimi-
zation. Like other Hopfield-like systems (14,24), these basins are local
minima that represent patterns with high probabilities of appearance. Local
minima are defined as states whose energies are lower than all the neigh-
boring configurations. The neighborhood of a state includes all configura-
tions that differ from the state with only one epigenetic mark. Following
this definition, the closest local minimum for any configuration can be found
by the steepest gradient descent algorithm. In this algorithm, we iteratively
select out the configuration that has the lowest energy in the neighborhood of
the lowest energy state from the previous iteration until convergence.

To identify the set of local minima that most resemble the configurations
observed in genome-wide profiles of epigenetic marks, we first partitioned
the genome into unmodified and modified regions. The modified regions
were identified as stretches of genomic segments that do not contain any
gaps longer than 25 nucleosomes. Gap regions do not exhibit any epigenetic
marks. The local minimum for unmodified regions will always be the
ground state. For modified regions, we further divided them into configura-
tions with 25 nucleosomes that correspond to the system size of our model.
For each 25-nucleosome long region, we performed the steepest gradient
descent optimization to find the corresponding local minimum (.e.,
domain-level chromatin states).

Calculating transition rates between domain-level
chromatin states

We used Monte Carlo simulations to probe connections between domain-
level chromatin states and to calculate transition rates. Specifically, for a
pair of states A and B, we first selected a large set of paths that originated
from A and ended up in B from a trajectory that has sufficiently traversed
the entire energy landscape. From the path ensemble p4p, the configuration
of the transition state connecting A and B is identified with the energy

Ea.p = minmaxE(s), ®)
pePap sep

where E(s) is the energy of configuration s along the transition path p, and
its detailed expression is provided in Eq. 8. The energy barrier is then
determined as AE p = Ej p — E, for the transition from A to B and
AEpy = Esp — Ep for the reverse transition. From these barriers, we esti-
mate the transition rates using the Arrhenius equation ryp = le=4Eu/ksT,
where 7 is the timescale for observing a fluctuation in histone modification.
Note that it’s nontrivial to efficiently sample the huge phase space. We
therefore employed the generalized Wang-Landau algorithm (25) to bias
the simulations for enhanced transitions between states (see Supporting
Materials and Methods for more details).

Calculating the most probable transition path
between domain-level chromatin states

To determine the most probable pathway connecting two domain-level
chromatin states A and B, we applied the transition path theory to the kinetic
network. Transition path theory is a probabilistic framework to analyze the
mechanism of reaction or transition and provides the reactive rate of state
transformation (26). The core concept in transition path theory is the com-
mittor probability. The committor probability (¢;") at state i is defined as the
probability that the system reaches state B first before visiting state A. Thus,
the committor probability can be solved by the simple relation with the tran-
sition probability matrix

Ty = %Jr - ZTMZ- (6)

k+A

The transition probability matrix 7 was constructed from the rate matrix r
using the expression T = ¢, A lag time of At = I was used.

Mechanism of Chromatin Domain Formation

Among all the transitions between the two domain-level chromatin
states, only a fraction is reactive. The effective flux of transition between
intermediate states i — j contributing to the path A — B'is

fi = mi(1 = ¢ )Tyq, ©)

where m; is the equilibrium distribution of domain-level chromatin state i
that can be determined from the relation #7 = . Then, we picked up the
most probable transition pathway connecting A and B as the pathway
with the greatest flux (f;)) along it.

RESULTS

Information-theoretic model predicts long-range
internucleosome correlations

Chromatin immunoprecipitation followed by deep sequencing
is a powerful method for characterizing the epigenome at
high resolution and has helped to determine genome-wide
profiles of numerous epigenetic marks across hundreds of
cell types (11,27). Here, we introduce an information-theo-
retic approach to analyze these data and investigate the inter-
relationship of epigenetic marks.

The information-theoretic model describes a chain of
N-interacting nucleosomes, each one of which is character-
ized by a total of 12 epigenetic marks (Fig. 1). These marks
are selected for a comprehensive characterization of the
chromatin landscape, and their biological importance are
explained in the Materials and Methods: Calculating epige-
netic mark correlation. The model’s potential energy adopts
the following form

L
E(s,L) = > |hisi+ Jysisi+ > Kisisit 0 (8)
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The binary variable s indicates whether the i-th mark is pre-
sent (= 1) at the n-th nucleosome or not (= 0). The param-
eters h;, J;, and K! measure the overall propensity for the
appearance of the i-th mark, the coupling strength between
marks i and j on the same nucleosome, and the coupling
strength between the same mark i separated by [/ nucleo-
somes, respectively. We include internucleosome interac-
tions up to L nucleosomes, and the total number of
parameters equals 78 + 12 x L. As shown in the Supporting
Materials and Methods, E(s, L) is the most probable
model that maximizes the information entropy while repro-
ducing the experimental mean and pair-wise correlation of
epigenetic marks. Maximal entropy models have been suc-
cessfully applied to study a wide variety of problems,
including protein structure prediction and genome folding
(28-35). A related model with only intranucleosome cor-
relations has been proposed to study single-nucleosome
chromatin states (14,36). The added internucleosome inter-
actions here are crucial for studying the spreading of epige-
netic marks and the formation of long-range domain-level
states.
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Epigenetic marks exhibit strong intra- and internucleosome correlations. (A) Shown is an illustration of the information-theoretic model for

studying domain-level chromatin state formation (fop panel). The model explicitly considers intra- (J;)) and internucleosome (K!) coupling between epige-
netic marks, and the values of the coupling strengths are derived from epigenomics data (bottom panel). The fundamental unit of this model is a 200-bp-long
genomic segment that includes both the core nucleosome and the linker DNA. A total of 12 epigenetic marks is used to describe the state of each segment. For
simplicity, only two marks are shown. (B) Pair-wise correlation between epigenetic marks on the same nucleosome is shown. (C) Self-correlation for epige-
netic marks on different nucleosomes as a function of the genomic separation is shown. The characteristic length scales of these correlation coefficients
measure the tendency for epigenetic marks to spread across multiple nucleosomes. To see this figure in color, go online.

As detailed in the Materials and Methods, parameters in
E(s, L) can be derived with a Boltzmann learning algorithm
(Parameterizing the information-theoretic model) using
experimental data collected from IMRO90 cells (Calculating
epigenetic mark correlation). For efficient computational
sampling, we limited the system size N to 25 nucleosomes
and adopted the periodic boundary condition. As shown in
Table S1, the correlation length for most epigenetic marks
is significantly less than 25. In the meantime, the periodic
boundary condition ensures that the long-range correlation
between some epigenetic marks that give rise to large, peri-
odic domain-level chromatin states can be modeled accu-
rately in a finite system.

To probe the effect of internucleosome interactions and
identify the minimalist model with the least parameters
that succeeds in capturing the correlation between epige-
netic marks, we studied a series of systems with increasing
L. Fig. 2, A and B present the results obtained from a model
without any internucleosome interactions (L = 0). As
indicated by the blue dots, this model succeeds in reproduc-
ing intranucleosome correlations that were provided as
experimental constraints. The relative error, which is
defined as the total absolute difference between experi-
mental constraints and modeled values normalized by the
sum of experimental constraints, is less than 5%. Further-
more, higher-order intranucleosome correlations, which
are measured by the population of all the possible combina-
torial patterns formed by the 12 epigenetic marks and are
not included as experimental constraints, are accurately pre-
dicted as well (Fig. 2 A, green). On the other hand, the simu-
lated internucleosome correlations between all pairs of
epigenetic marks separated by less than 13 nucleosomes
differ significantly from the experimental values (Fig. 2 B).

The performance of models that explicitly consider inter-
nucleosome coupling are shown in Fig. 2, C and D. We
measured the model performance using the quality of the
linear regression between simulated and experimental inter-
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nucleosome correlations and the relative error between the
two. As shown in Fig. 2 C, the slope and R-squared of the
linear fit improve systematically, and the difference between
simulation and experiment continuously decreases up to
L = 5. Explicit results for the L = 5 model are provided
in Fig. 2 D. Further increasing L (see Fig. S1) or introducing
internucleosome cross-mark coupling to the energy function
E(s, L) (see Fig. S2) does not improve the model’s perfor-
mance. We therefore conducted all following analyses using
the model with L = 5.

Information-theoretic energy landscape supports
domain-level chromatin state formation

A central goal for the computational analysis of epigenom-
ics data is to systematically characterize combinatorial
patterns of histone modifications that are of functional
importance and appear more frequently than random. Previ-
ous studies have focused on histone modifications within the
same nucleosome to identify single-nucleosome chromatin
states (13,36). Here, we investigate whether distinct patterns
also emerge across multiple nucleosomes to form domain-
level chromatin states. Toward that end, we searched for ba-
sins of attractions supported by the energy landscape of the
parameterized information-theoretic model. These energy
basins offer representative arrangements of epigenetic
marks that are of high population and are ideal candidates
for domain-level chromatin states. In the following, we
will focus our discussion on the top 100 most populated
states identified with the steepest descent algorithm (see
Materials and Methods) because they cover over 94% of
the whole genome.

Fig. 3 A illustrates the average epigenetic mark profiles
for the top 100 domain-level chromatin states. The most
populated state, which we term as the ground state, exhibits
no histone modifications. Constitutive and facultative
heterochromatin states are, respectively, identified with



A ; ; . ; B i . . T T
Pairwise 7/ /
1071 |- Higher- 7 107} 7
7/ /
02t / . gw*z - p 4 .
©
] _‘ o . - )
T R { =Sl -
v -/
107 K 7 E 1074+ 7/ et ]
'l L=0 s L=0
10*5 i L 1 L 10*5 1 L L 1
107° 107* 107* 102 100 10° 107 107* 107 1072 107 10°
Experiment Experiment
c 1.0p———————1——n D 10° : : T T
g 2 & ¥ P
0.8 | 1wl 2
°
& 0.6t ° ® Eror [{ G102} .
43 s ® Slope 3
= 0.4} » R2 | 210 4 1
® o [ ]
0.2} e o © 1074 F } o
/ L=5
hd 5
OO 1 1 1 1 1 1 1 10 0 1 1 - 1 - 1
01 2 3 4 5 6 107 107 107 1072 107' 10°

L Experiment

FIGURE 2 Parameterization and validation of information-theoretic
models with different internucleosome interaction cutoff length L. (A)
Shown is a comparison between experimental and simulated (L = 0)
pair-wise (blue) and higher-order intranucleosome correlations (green).
(B) Shown is a comparison between experimental and simulated (L = 0) in-
ternucleosome correlations for all pairs of epigenetic marks separated by
less than 13 nucleosomes. (C) Quantitative measurements of the perfor-
mance for models with different L are shown. (D) Shown is a comparison
between experimental and simulated (L = 5) internucleosome correlations.
The same experimental data as in part (B) are used for plots in (C and D). To
see this figure in color, go online.

signature methylation marks H3K9me3 and H3K27me3.
States with H3K4mel or H3K4me3 are assigned as
enhancer and promoter, respectively, though they often
share additional activation marks that include H3K4me2,
H3K9ac, H3K27ac, DNase, and H2A.Z. A distinct set of
states (promoter/enhancer) with both H3K4me3 and
H3K4mel marks are found as well, supporting the
fundamental similarity between promoters and enhancers
(37). States marked with H3K36me3, H3K79me2, and
H4K20mel modifications are transcribed gene regions.
We further label states that consist of both gene silencing
marks (H3K27me3) and activation marks H3K4mel/2/3
as bivalent, states marked with transcribed gene marks and
regulatory marks as intragenic regulator, and states marked
with H3K9me3 and H3K36me3 as zinc finger protein
gene (11).

In addition to their unique histone modification profiles,
domain-level chromatin states exhibit distinct length depen-
dence as well, as shown in the bottom plot of Fig. 3 A. The
length of a state is defined as the number of nucleosomes
with at least one epigenetic mark. For several heterochro-
matin and transcribed gene states, all the 25 nucleosomes
share the same set of epigenetic modifications. These peri-
odic patterns are consistent with the formation of large silent

Mechanism of Chromatin Domain Formation
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FIGURE 3 Characterization of domain-level chromatin states predicted
by the information-theoretic model E(s, L = 5). (A) Average epigenetic pro-
files over modified nucleosomes for the top 100 most populated states are
shown. The length shown in the bottom panel represents the number of
modified nucleosomes for each state, and the color bar is shown on the
side. The labels for different chromatin domains shown at the top are based
on known functions of their dominant epigenetic marks (see text for de-
tails). (B and C) Shown are the mean values of various epigenetic marks
determined from chromatin immunoprecipitation followed by deep
sequencing data for chromatin segments with different lengths of contin-
uous H3K4mel marks (B) and H3K4m3 marks (C). To see this figure in co-
lor, go online.

or transcribed genomic regions that span tens of kilobase
pairs. Their periodicity, however, also suggests that these
domain-level chromatin states have the potential to spread
over the entire genome, and additional mechanisms beyond
epigenetic mark interactions, such as boundary elements,
must be in play to confine them at specific genomic
regions (38).

On the other hand, we find a series of aperiodic promoter
and enhancer states of varying lengths. We note that
extended regulatory states have indeed been observed previ-
ously (18-20) and are often termed as broad H3K4me3
domains and super (stretch) enhancers. The increased
appearance of additional activation marks in more extended
states (see Fig. 3, B and C) may support open chromatin
conformations to enhance the transcription consistency or
the overall expression level of their target genes (39).

As domain-level chromatin states are local energy
minima, their histone modification patterns and length
dependence can be understood from the underlying energy
landscape. In Fig. 4, we plot the intra- and internucleosome
interaction energies between epigenetic marks. Consistent
with the complex promoter and enhancer state patterns,
most of the interaction energies between activation marks
are negative (blue), supporting their co-existence within
the same nucleosome. A notable exception is a strong
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FIGURE 4 Intra- (Left) and inter- (Right) nucleosome coupling energies
between epigenetic marks for the information-theoretic model E(s, L = 5).
To see this figure in color, go online.

repulsion between H3K4mel and H3K4me3, two mutually
exclusive marks for defining enhancers and promoters,
respectively (11). We emphasize that the intranucleosome
energies probe direct interactions among epigenetic marks
that correspond better with physical interactions between
histone modification enzymes. The correlation coefficients
presented in Fig. 1, on the other hand, could arise from a
transit effect as a result of indirect couplings (36,40).

As shown in the right panel of Fig. 4, all epigenetic mod-
ifications exhibit attractive interactions between the nearest
neighbor nucleosomes (K l). This attractive interaction de-
cays rather quickly for active marks, explaining the small
length of promoter and enhancer states. On the other
hand, the interaction between epigenetic marks for tran-
scribed gene regions or heterochromatin persists over an
extended range to promote the formation of large domains.

Mechanism of domain-level chromatin state
formation from transition path calculations

As basins of attraction, domain-level chromatin states are
inherently stable and able to withstand transient fluctuations
caused by the addition and removal of enzymes within a cell
cycle. Thus, once established, these states provide a robust
mechanism for regulating gene expression and maintaining
genome stability. However, the molecular mechanism for
their de novo creation as cells differentiate and their reestab-
lishment when cells divide remains elusive. We here
perform kinetic analysis of the information-theoretic model
to provide mechanistic insight into domain-level chromatin
state formation.

Toward that end, we first built a kinetic network to
explore the dynamical transition between domain-level
chromatin states (see Fig. 5 A). Each node in this network
corresponds to one of the top 100 most populated states.
A connection between two nodes is introduced if direct
transitions between them were observed in a long-time
enhanced simulation conducted with the generalized
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FIGURE 5 Kinetic analysis of the information-theoretic model E(s,
L = 5). (A) Shown is an illustration of the kinetic network for transitions
between domain-level chromatin states. Each node represents a state, and
the size of the node is proportional to the length of that state. The edge
width indicates the value of the transition rates between the two connecting
nodes, with thicker lines for faster transitions. The color gradient for pro-
moter and enhancer states is used to illustrate the densities of activation
marks. (B) The energy profile of the most probable transition path from
the ground state to an enhancer state is shown. The line connecting the
minima and transition states is provided as a guide for the eye. The length
and density of activation marks at each minimum are indicated by the node
size and color gradient as in part (A). (C) The most probable transition path
from the ground state to the H3K9me3 heterochromatin is shown. To see
this figure in color, go online.

Wang-Landau algorithm (25). Transition rates between
domain-level chromatin states were further estimated using
transition states identified in the simulation trajectory with
the transition state theory (41). The detailed algorithm for
rate calculations is provided in the Materials and Methods.
For simplicity, only transitions with energetic barriers less
than 15 kgT are shown in Fig. 5 A. Network connections
therefore quantify the likelihood, caused by random fluctu-
ation, for converting a chromatin segment with a particular
set of histone marks to a different state. A notable feature of
this network is its apparent modularity, and domain-level
chromatin states with similar biological functions naturally
organize into highly connected clusters. The slow transition
between clusters highlights the robustness of the overall or-
ganization of the epigenome in a given cell type to ensure
stable gene expression.

Assuming Markovian dynamics, the time evolution
of this kinetic network can be solved analytically to
study the transition between any pairs of states without



performing computationally expensive, long timescale sim-
ulations (26). We expect the Markovian assumption to hold
well, given that the network nodes are local minima in
which the system will reside for a significant period to
lose memory of the past and achieve dynamical decoupling.

To study the molecular mechanism for the formation of
superenhancers, we solved the kinetic network and deter-
mined the most probable transition path from the ground
state to an enhancer state that extends over six nucleosomes.
We did not study enhancer states with much longer length as
they are not included in the kinetic network because of low
population. Details of the transition path calculations are
provided in the Materials and Methods. As shown in
Figs. 5 B and S3, we observe a sequential transition along
which the chromatin becomes more open and more enriched
with activation marks while the length of the state grows.
Such a multistep, gradual transition indicates that superen-
hancers may not directly emerge from a genomic region
along evolution or as cells differentiate but instead will un-
dergo a maturation process. The presence of enhancer states
with different potency could help cells fine-tune gene
expression levels at various developmental stages. Further-
more, from detailed balance, one can show that the back-
ward transition path from the enhancer state to the ground
state is identical to the forward one. The sequential path
shown in Fig. 5 B, therefore, also supports that superen-
hancers will take more steps and longer time to transit
into the ground state than regular enhancers with shorter
length (i.e., the red dots on the far right side of the path).
Superenhancers are thus more stable with respect to pertur-
bations and less likely to disappear from the chromatin
landscape. The increased stability is in accord with their
functional importance. Similar conclusions can be drawn
from the transition path for the formation of a broad
H3K4me3 promoter domain (see Fig. S4).

Next, we determined the transition path from the ground
state to the periodic heterochromatin state with H3K9me3
marks. As shown in Fig. 5 C, we find that heterochromatin
formation is a cooperative process, and there are no interme-
diate states along the pathway. To ensure the robustness of
this observation, we further determined the transition path
using a path deformation algorithm (42) that can search
for the entire phase space and is not limited by the 100 states
included in the kinetic network. As shown in Fig. S5, the
new path shares the same transition barrier and does not
exhibit any intermediate state either. The analysis for the
heterochromatin state with the H3K27me3 mark supports
similar conclusions (see Fig. S6). Cooperativity between nu-
cleosomes will give rise to a bistable system, in which either
all or none of the nucleosomes will become methylated, a
phenomenon that has indeed been observed in many regula-
tory networks proposed for heterochromatin formation
(43,44). Collective behavior between nucleosomes will
significantly enhance the stability of the heterochromatin
to ensure a robust inheritance of methylation marks across
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FIGURE 6 Information-theoretic energy landscape supports the globular
heterochromatin conformation. (A) Shown is an illustration of the transfer
of histone-modifying enzymes (red) from the methylated nucleosome
(green) to others that are close in 3D space. This enzyme transfer is pro-
moted by diffusion and, its rate is impacted by the distance between nucle-
osomes that increases at larger sequence separations. Internucleosome
interaction energies arise from enzyme transfer and are therefore propor-
tional to the contact probability between nucleosomes. (B) Internucleosome
interaction energy for epigenetic mark H3K9me3 as a function of the
genomic distance is shown. To see this figure in color, go online.

cell cycles. We will explore possible molecular mechanisms
for such cooperativity in the next section.

Internucleosome interactions support
condensed, globular heterochromatin
conformations

A striking finding from Fig. 4 is the presence of strong, attrac-
tive internucleosome interactions. These interactions mea-
sure the propensity for a pair of nucleosomes to share the
same epigenetic mark and can arise if the two nucleosomes
are in 3D contact to promote the transfer of corresponding
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modification enzymes (43,45) or enzyme-enzyme interac-
tions (44) (see Fig. 6 A). Consistent with this interpretation,
all epigenetic marks exhibit a strong K' interaction energy
as a result of the spatial proximity between the two neigh-
boring in-sequence nucleosomes. Furthermore, the interac-
tion energies typically decay at larger genomic separations
as the nucleosomes become farther apart in space. It is there-
fore tempting to assume that internucleosome interaction en-
ergies are proportional to the contact probability between
pairs of nucleosomes. Because different polymer configura-
tions exhibit distinct trends in the variation of contact proba-
bilities as a function of sequence length, studying the scaling
behavior of interaction energies offers the opportunity to
derive 3D chromatin domain conformations. Indeed, we
find that interaction energies of the heterochromatin mark
H3K9me3 decay slower than that of the activation mark
H3K4me3, consistent with the fact that heterochromatin
states are more condensed than euchromatin.

Quantitatively inferring scaling exponents from Fig. 4 can
be challenging, however, because of the limited number of
internucleosome couplings included. To more accurately
determine the value of interaction energies at large genomic
separations, we studied an additional model consisting of
201 nucleosomes. We only included the H3K9me3 mark
for computational efficiency, and each nucleosome can
either be methylated or free of modifications. Because
H3K9me3 does not co-localize strongly with other epige-
netic marks, this single mark model is expected to provide
a good description for heterochromatin formation.

The single mark model adopts the same Hamiltonian as in
Eq. 8. We included internucleosome interactions to a much
longer range than the multimark model and determined the
parameters again using the Boltzmann learning algorithm.
Fig. 6 presents the resulting interaction energies as a function
of nucleosome separation. These energies are robust and
insensitive to the cutoff length L as well as the parameters
used to process and binarize the raw data (see Fig. S7). We
further fitted the interaction energies for L = 35 with a power
law expression E(/) = al® and obtained a value for o« = —1.61
(%£0.07). An exponent that falls in the range between —2

and —1 has been shown to support a phase transition in the
one-dimensional Ising model (46), giving rise to the bistabil-
ity seen in Fig. 5 C. Assuming that interaction energies are
proportional to the contact probability P(/), an exponent of
—1.5 suggests that the constitutive heterochromatin confor-
mation is consistent with an equilibrium globule (47). Glob-
ular conformations differ significantly from the rigid fibril
structures with a diameter of 30 nm and can be stabilized
by phase-separated liquid droplets formed by heterochromat-
in protein 1 (48-53).

DISCUSSION

Genome-wide histone modification profiles provide a
comprehensive characterization of the chromatin landscape.
Using an information-theoretic model and rigorous statisti-
cal mechanical tools, we demonstrated that epigenomics
data could shed light on the mechanism of domain-level
chromatin state formation as well. In particular, we found
that heterochromatin states exhibit bistability and form in
a highly cooperative process. On the other hand, long
enhancer and promoter states grow from intermediate states
of shorter length via a sequential process. These observa-
tions have significant implications on the establishment of
domain-level chromatin states across cell cycles and as cells
differentiate.

To support the biological relevance of transition paths
predicted by the information-theoretic energy landscape,
we examined the variation of epigenetic profiles as the dif-
ferentiation progresses from mesodermal to IMRO0 cells.
Specifically, we determined, for chromatin segments from
IMRO0 cells that are 25 nucleosomes in length and fully
marked with H3K27me3 or H3K4mel, the number of corre-
sponding methylation marks in mesodermal cells. As shown
in Fig. 7 A, the probability distribution for H3K27me3
numbers is bimodal, with two peaks at 0 and 25 nucleo-
somes, respectively. This bimodality is consistent with
an all-or-none transition and supports the cooperative
formation of heterochromatin. In the meantime, the proba-
bility distribution for H3K4mel is almost uniform, with

FIGURE 7 Variations of epigenomics profiles along
cell differentiation are consistent with predictions from
transition paths of domain-level chromatin state forma-
tion. (A) Shown is the probability for the number of
H3K27me3 marks in 25-nucleosome-long chromatin seg-
ments from mesodermal cells given that the same seg-
ments are fully marked in IMR90 cells. (B) Shown is a
similar plot as in part (A) but for the H3K4mel mark.
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significant contributions at intermediate lengths. Therefore,
superenhancers in IMR90 can grow from weaker ones
formed in mesodermal cells.

The information-theoretic energy landscape further pre-
dicts strong and direct interactions between nucleosomes
that are far apart in sequence. These interactions support
the essential role of chromatin looping in facilitating the
spreading of epigenetic marks across nucleosomes. Experi-
mentally validating the role of looping in domain-level
chromatin state formation can be challenging and requires
high temporal resolution to monitor the dynamics of histone
modification, but some early evidence is emerging (54).
The effective interaction between methylation marks also
significantly constrains the corresponding chromatin organi-
zation. By studying the scaling behavior of these interac-
tions, we argued that the 3D conformation of constitutive
heterochromatin is consistent with a globular conformation
but not rigid fibril structures. We note that determining
the chromatin structure at the kilobase range is extremely
difficult, and the existence of 30 nm chromatin fibers
in vivo remains controversial (55-57), though increasing
evidence argues against their presence (58-60). To our
knowledge, this study is the first demonstration in
deriving structural information for chromatin from epige-
nomics data.
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Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
2019.04.006.
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