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SUB-GAUSSIAN ESTIMATORS OF THE MEAN OF A RANDOM
MATRIX WITH HEAVY-TAILED ENTRIES'

BY STANISLAV MINSKER
University of Southern California

Estimation of the covariance matrix has attracted a lot of attention of the
statistical research community over the years, partially due to important ap-
plications such as principal component analysis. However, frequently used
empirical covariance estimator, and its modifications, is very sensitive to the
presence of outliers in the data. As P. Huber wrote [Ann. Math. Stat. 35 (1964)
73-101], ... This raises a question which could have been asked already by
Gauss, but which was, as far as I know, only raised a few years ago (notably
by Tukey): what happens if the true distribution deviates slightly from the as-
sumed normal one? As is now well known, the sample mean then may have a
catastrophically bad performance. ...” Motivated by Tukey’s question, we de-
velop a new estimator of the (element-wise) mean of a random matrix, which
includes covariance estimation problem as a special case. Assuming that the
entries of a matrix possess only finite second moment, this new estimator
admits sub-Gaussian or sub-exponential concentration around the unknown
mean in the operator norm. We explain the key ideas behind our construc-
tion, and discuss applications to covariance estimation and matrix completion
problems.

1. Introduction. LetY;,...,Y, € Cdrxd2 pe a sequence of independent ran-
dom matrices such that all their entries have finite second moments: E|(Y ;) 12 <
ocoforalll <j<n,1<k<d,1<l<d.LetEYy,...,EY, € CH*% be the ex-
pectations evaluated element-wise, meaning that (EY;)x; = E(Y)«,;. The goal of
this paper is to construct and study estimators of EY := E[% 2?21 Y ;] under mini-
mal assumptions on the distributions of Y1, ..., Y,. In particular, we are interested
in the estimators that admit tight nonasymptotic bounds and exponential deviation
inequalities without imposing any additional assumptions (besides finite second
moments) on Yi,...,Y,. For example, if ¥; = ZjZ/.T, where Z1,...,Z, € R4
are i.i.d. copies of a random vector Z such that EZ = 0, E[ZZT] = £ and
E|Z ||‘2L < 00, formulated problem is reduced to covariance estimation (here and
in what follows, || - |2 and (-, -) stand for the usual Euclidean norm and Euclidean
dot product, resp.).
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Techniques developed in this paper have direct connection to several problems
in high-dimensional statistics and statistical learning theory. In the past decade,
these fields have seen numerous breakthroughs in structural estimation, concerned
with a task of recovering a high-dimensional parameter that belongs to a set
with “simple” structure from a small number of measurements. Examples include
sparse linear regression, low-rank matrix recovery and structured covariance esti-
mation. However, theoretical recovery guarantees for popular techniques (e.g., £1
and nuclear norm minimization) usually require strong assumptions on the under-
lying probability distribution, such as sub-Gaussian or bounded noise. What hap-
pens with the performance of the algorithms when these conditions are violated,
which is the case for many real data sets modeled by heavy-tailed distributions?
Can the assumptions be weakened without sacrificing the quality of theoretical
guarantees? We look at examples where the answer is positive, and describe mod-
ifications of existing techniques that allow to achieve the improvements.

1.1. Overview of the previous work. Letus begin by briefly discussing a scalar
version of the problem investigated in this paper. Assume that Xi,..., X, € R
are i.i.d. copies of X, where EX? < co. One of the fundamental problems in
statistics is to construct the confidence interval for the unknown mean EX based
on a given sample. A surprising fact (dating back to [38] where the “median of
means” estimator was introduced, along with [3] and [22]) is that it is possi-
ble to construct a nonasymptotic confidence intervals 1,(8) with coverage prob-
ability 1 — § [meaning that Pr(EX € fn (8)) = 1 — 6 for given n and &] and
“nearly optimal” length |fn (8)| < Ly/Var(X),/ w, where L > 0 is an abso-
lute constant. An in-depth study of this and closely related questions was per-
formed in [11, 14] based on two different approaches. Note that the center of any

such confidence interval is a point estimator 1 := (X1, ..., X,, ) that satisfies
Pr(jii — EX| > L4/Var(X) M) < §. Because the only assumption on X is

the existence of a second moment, it is natural to call such an estimator “robust”:2

it admits strong deviation bounds even for the heavy-tailed distributions that can
be used to model outliers in the data. Ideas behind these results have also been
extended to empirical risk minimization methods [5, 30] which cover a wide range
of statistical applications. Let us emphasize that the aforementioned estimators do
not require any assumptions on the “shape” of the distribution, such as unimodality
or elliptical symmetry.

Generalizations of univariate results to the case of random vectors and random
matrices are not straightforward since element-wise deviation inequalities do not
always translate into desired bounds. In some cases, element-wise bounds yield

ZFor the classical treatment of robust estimators based on the notion of a breakdown point, we refer
the reader to [20].
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inequalities for the “wrong” norm: for example, estimating each entry of the co-
variance matrix results in a deviation inequality for the Frobenius norm, while we
are frequently interested in the bounds for the operator norm that can be much
smaller. An approach which often yields “dimension-free” bounds was proposed
in [18] and [35] (using generalizations of the median in higher dimensions); how-
ever, to the best of our knowledge, results of these papers are still not sufficient to
obtain deviation guarantees in the operator norm that we are mainly interested in.
Under more restrictive assumptions on the sequence of random matrices Yy, ..., Y,
(such as [|Y;|| < M almost surely for some fixed M >0, j =1,...,n, where || - ||

stands for the operator norm), behavior of the sample mean ¥ = %Z’?Zl Y; has
been analyzed with the help of matrix concentration inequalities [1, 39, 41].

A closely related covariance matrix estimation problem has been extensively
studied in the past decades. A comprehensive review is beyond the scope of this
Introduction, so we will just mention few classical results and more recent work
related to the current line of research. Statistical properties of the sample covari-
ance matrix for Gaussian and sub-Gaussian observations have been investigated
in detail (see [7, 8, 25, 26, 44] and references therein); under weaker moment as-
sumptions, sample covariance estimator has been studied in [40]. Some popular
robust estimators of scatter are discussed in [21], including the Minimum Covari-
ance Determinant (MCD) estimator and the Minimum Volume Ellipsoid estimator
(MVE). However, rigorous results for these estimators are available only for ellip-
tically symmetric distributions; see [6] for results on MCD and [13] for results on
MVE. Popular Maronna’s [34] and Tyler’s [43, 45] M-estimators of scatter also
admit theoretical guarantees for the family of elliptically symmetric distributions,
but we are unaware of any results extending beyond this case.

Recent papers of O. Catoni [12] and I. Guilini [17], Fan et al. [15] are closest in
spirit to our work. For instance, in [12] the author constructs a robust estimator of
the Gram matrix of a random vector Z € R? (as well as its covariance matrix) via
estimating the quadratic form E(Z, u)? uniformly over ||u||2 = 1, and obtains error
bounds for the operator norm. The latter (univariate) estimators for the quadratic
form are based on the fruitful ideas originating in [11]. However, results of these
works cannot be straightforwardly extended beyond covariance estimation, and are
obtained under more stringent (compared to the present paper) assumptions on the
underlying distribution (such as a known upper bound on the kurtosis of (Z, u)?
for any u of norm 1). In [15], authors obtain error bounds for norms other than the
operator norm which is the main focus of the present paper.

Finally, let us mention that the problem of robust matrix recovery (that is dis-
cussed as an example below) has also received attention recently: for instance, the
work [9, 24] investigates robust matrix completion under the “low rank + sparse”
model. In [16], authors study low-rank matrix recovery under the assumption that
the additive noise has only (2 4+ &) moments, and obtain strong results via trun-
cation argument. We propose a different approach based on general techniques
developed in this paper and achieve similar results for the matrix completion prob-
lem while requiring only the finite variance of the noise.
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1.2. Organization of the paper. Section 2 contains definitions, notation and
background material. Our main results are introduced in Section 3. After present-
ing core results, we discuss applications to covariance estimation and low-rank ma-
trix completion in Section 4, and illustrate the role of various quantities involved
in the general bounds through these examples. Sections 5 and 6 discuss adaptation
to unknown parameters that appear in our construction, and contain longer proofs.

The Appendix contains proofs of several technical lemmas, while other details
and statements not included in the main text can be found in the Supplementary
Material [36].

2. Preliminaries. In this section, we introduce the main notation and recall
several useful facts from linear algebra, matrix analysis and probability theory that
we rely on in the subsequent exposition.

2.1. Definitions and notation. Given A € C11*% Jet A* € C%* be the Her-
mitian adjoint of A. If A is self-adjoint, we will write Apax (A) and Apin(A) for the
largest and smallest eigenvalues of A. Next, we will introduce the matrix norms
used in the paper.

Everywhere below, || - || stands for the operator norm ||A| := v/ Amax(A*A). If
dy = dy =d, we denote by tr A the trace of A. Next, for A € Cé 42 the nuclear
norm || - ||1 is defined as ||A||; = tr(+/ A*A), where / A* A is a nonnegative definite
matrix such that (v/A*A)? = A*A. The Frobenius (or Hilbert—Schmidt) norm is
|Allr = /tr(A*A), and the associated inner product is (A1, A2) = tr(A]A»). Fi-
nally, set || Allmax := sup; ; la;,j|. For Y € C4, ||Y ||» stands for the usual Euclidean
norm of Y.

Given two self-adjoint matrices A and B, we will write A > B (or A > B) iff
A — B is nonnegative (or positive) definite.

Given a sequence Y1, ..., Y, of random matrices, IE;[-] will stand for the con-
ditional expectation E[-|Y1, ..., ¥;].

Finally, for a, b € R, set a vV b := max(a, b) and a A b := min(a, b).

2.2. Tools from linear algebra. In this section, we collect several facts from
linear algebra, matrix analysis and probability theory that are frequently used in
our arguments.

DEFINITION 2.1.  Given areal-valued function f defined on an interval T € R
and a self-adjoint A € C4*? with the eigenvalue decomposition A = U AU* such
that A;(A) €T, j=1,...,d,define f(A)as f(A)=Uf(A)U*, where

S| fa)
fn)=f - = s
hd fa)
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Additionally, we will often use the following facts.

FACT 2.1. Let A € C?*4 pe a self-adjoint matrix, and fi, f> be two real-
valued functions such that f1(A;) > f2(A;) for j =1,...,d. Then fi1(A) = f2(A).

FACT 2.2. Let A, B € C4*4 be two self-adjoint matrices such that A > B.
Then A;(A) > A;(B),j=1,...,d, where A;(-) stands for the jth largest eigen-
value. Moreover, tre? > tre5.

FAcT 2.3. The matrix logarithm is operator monotone: if A > 0, B > 0 and
A > B, then log(A) > log(B).

PROOF. See[4]. O

FACT 2.4. Let A € C4*? be a self-adjoint matrix. Then I + A + ATZ > 0.
Moreover,

A? A?
—log<I+A+ 7) ﬁlog([ —A+ 7)

PROOF. In view of the definition of a matrix function, the first claim follows
from scalar inequality 1+ ¢ 4+ ¢?/2 > 0 for ¢ € R. Similarly, the second relation
follows from the inequality —log(1 +¢ +¢2/2) <log(1 —t +?/2) fort e R. O

FACT 2.5 (Lieb’s concavity theorem). Given a fixed self-adjoint matrix H,
the function

A+ trexp(H +log(A))

is concave on the cone of positive definite matrices.
PROOF. See [31]and [42].> O

FacT 2.6. Let f: R+ R be a convex function. Then A > tr f(A) is convex
on the set of self-adjoint matrices. In particular, for any self-adjoint matrices A, B,

A+ B 1 1
trf(T> §§trf(A)+§trf(B).

3Let us mention that Lieb’s theorem is one of the key tools for proving matrix concentration in-
equalities, and its power in this context was first demonstrated by J. Tropp [41].
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PROOF. This is a consequence of Peierls inequality; see Theorem 2.9 in [10]
and the comments following it. [J

Finally, we introduce the Hermitian dilation which allows to reduce many prob-
lems involving general rectangular matrices to the case of Hermitian operators.
Given the rectangular matrix A € C9 42 the Hermitian dilation 7 : C91%% >
Clh+d)x(di+d) s defined as

2.1) H(A) = (/?* /3) .

Since H(A)? = (Ag* AQA), it is easy to see that |H(A)| = ||A]l. Another tool

useful in dealing with rectangular matrices is the following lemma.

LEMMA 2.1. Let § € C >4 T ¢ C2*% pe self-adjoint matrices, and A €

Ch 42 Then
S A - 0 A
A* T = |\Aa* o/

PROOF. See Section A.1 in the Appendix. [J

3. Main results. Our construction has its roots in the technique proposed by
O. Catoni [11] for estimating the univariate mean. Let us briefly recall the main
ideas of Catoni’s approach. Assume that &, &, ..., §, is a sequence of i.i.d. ran-
dom variables such that E& = y and Var(£) < v?. Catoni’s estimator is defined as
follows: let ¥ (x) : R — R be a nondecreasing function such that for all x € R,

(3.1) —log(l —x +x%/2) < ¥ (x) <log(l + x + x%/2).

See Remark 1 below for examples of such functions. Given 6 > 0, let [y be such
that

(3.2) Y V(G — 1) =0

j=1

(clearly, j1g always exists due to monotonicity). Set n = v,/ n(l_zﬁ and 6, =

/n(0227—ll-172)' Assuming that n > 2¢, it is shown in [11] that |, — | < n with
probability > 1 — 2¢~".

We proceed by presenting a multivariate extension of the estimator 9. We
will first formulate main results for the self-adjoint matrices, and will later de-
duce the general case of rectangular matrices as a corollary. Let Yi,...,Y, €
C?%*4 be a sequence of independent self-adjoint random matrices such that
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or =10, EYJ-2|| < 0o. Let W be such that W (x) = y(x) for all x € R, and
set

(3.3) Ty = argmin |:trz (O — S))},

SeCdxd, =5+ j=]

where 6 > 0 is an appropriate constant. It follows from Fact 2.6 that ]A"g* exists,
moreover, it is unique if ¥ (x) is strictly increasing. It is also not hard to see that
(3.3) is equivalent to

(3.4) Y w(O(Y; - T})) = Ouaxa-
j=1

Indeed, if Fy (S) :=1r Z?Zl V(@ (Y; — S)), then (3.4) simply states that the gra-
dient of Fy, evaluated at Tg* is equal to zero; see Lemma A.1 in the Appendix for
more details.

To understand the properties of the estimator defined via (3.3) and (3.4), we will

first consider another estimator 7\”9(0) that shares many important properties with fe*
but is easier to analyze.

The “preliminary estimator” TG(O) is constructed as follows: given 6 > 0 and a
function v satisfying (3.1), set X ; ;=¥ (0Y;), j=1,...,n and

~ 1
0)
3.5 T, = — .,
(3-5) 0 no 4 I
Jj=1

In other words, @(0) is an average of “y-truncated” observations. Since X ; >~ 60Y;

for small 6 and a smooth function i, we expect that @(O) is close to % Z’j’.:l EY;.
In the following sections, we will make this intuition more precise. In particular,
we will establish the following (so far informally stated) results.

THEOREM. 1. Assume that the observations Y1, ..., Y, arei.i.d. copies of Y €
C4*4 and the parameter 0 is chosen properly. Then

PY(H ;" -EY| = 0\/5) <2d eXP(—%),

where 0% :=0?/n = |EY?|.
2. Assume that n is large enough and 6 is chosen properly. Then the estimator
T, defined via (3.4) satisfies the inequality

~ t t
Pr(” 77 —EY| = Cio0 /-) < Czdexp<—§>,
n

where C1, Cy > 0 are absolute constants and 0'02 = ||E(Y —EY)?|.



2878 S. MINSKER

Note that the “variance term” ||EY?2|| appearing in the first part of the bound
above is akin to the second moment, while in the second bound it is replaced by
ag = |[E(Y — EY)?|; presence of the term ||[EY?|| can be explained by the fact
that the estimator 7:9(0) is obtained via bias-producing truncation. We remark that
in some applications, such as matrix completion discussed in Section 4, even the
estimator 7}(0) with “suboptimal” variance term suffices to obtain good bounds.

REMARK 1. Most of our results do not depend on the concrete choice of the
function . One possibility is

x2
log<l+x+?>, x>0,
(3.6) Yi(x) = e
—log(l—x+3>, x <0.
Another example is
1/2, x>1,
x2
(3.7) Vo (x) = {x — sign(x) - 5 xe[—1,1],
—1/2, x <—1.

Since the latter function is bounded, it can provide additional advantages (such
as robustness) in applications. However, note that ¥»(x) does not satisfy (3.1);
instead, it satisfies a slightly weaker inequality

—log(1 —x —|—x2) <yn(x) <log(l +x +x2),

hence all subsequent results hold for ¥, as well, albeit with slightly worse constant
factors. We also note that both 1| and 1y are operator Lipschitz functions; see
Lemma A.3 for details.

3.1. Bounds for the moment generating function. In this section, we will
establish deviation inequalities for the estimator TQ(O) = % Z’}Zl Y (0Y;). The
lemma below is the cornerstone of our results. As before, given 6 > 0, let X; =

Y (0Y;).

LEMMA 3.1. The following inequalities hold:

n 02 n
(3.8) Etrexp(Z(Xj - GIEYj)> < trexp<? > EY}),
j=1

Jj=1

(3.9) Etrexp(Z(@EYj - Xj)> < trexp<7 > EY}).
j=1

j=1
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PROOF. Note that

Etrexp(Z(Xj — GEYj)>

j=1

n—1
=EE,_, trexp(|:Z(Xj —0EY;) — GIEY,,} + wem)

j=1

n—1
<EE,_; trexp<|:Z(Xj —0EY;) — QIEY,,:| +log(I +0Y, + 92Ynz/2)>
j=1

n—1

< Etrexp(Z(Xj — 0EY;) +log(I + 6EY, + OZ]EYHZ/Z) - 0EY,,>,
j=1

where the first inequality follows from the semidefinite relation ¥/ (6Y,) < log(I +

oY, + % Ynz) and Fact 2.2, and the second inequality follows from Lieb’s concavity

theorem (Fact 2.5) with H = Z'};}(Xj —0EY;) — 6EY), and Jensen’s inequality

for conditional expectation. We also note that I + 6EY, + 92EY,,2 /2 > 0 since

I +0Y, + GZYHZ/Z > 0 almost surely, hence log(/ + 0EY,, + GzEYnz/Z) is well
defined. Repeating the steps for X,_1, ..., X1, we obtain the inequality

Etrexp(Z(Xj — QIEYJ-))

(3.10) =

n
< trexp(Z(log(I +0EY; + 92IEYJZ/2) - GIEYj)>.
j=1
It remains to note that by Fact 2.1 and the inequality log(1 + x) < x (that holds
Vx> —1),forall j=1,...,n
2my2 6° 2
log(1 +0EY; + 0 EY; /2) 2 OEY; + EEYJ"

or log(I 4+ 0EY; + 6*EY}/2) — OEY; < %EY]?. The first inequality (3.8) now
follows from (3.10) and Fact 2.2.
To establish the second inequality of the lemma, we use the relation —X; =

-y (0Y;) <log(I —0Y; + %sz) [which follows from (3.1) and Fact 2.1] together
with the Fact 2.2 to deduce that

Etrexp(Z(GEYj — Xj))

j=1

< Etrexp(Z(log([ +0(=Y)) + 92Yj2/2) - QE(—YJ))>’
j=I



2880 S. MINSKER

and apply inequality (3.8) to the sequence —Y7q, ..., —Y, with
X;=log(I +6(=Y;)+6%*(=Y;)?/2), j=1,...,n. O

We are ready to state and prove the main result of this section.

THEOREM 3.1. Let Yy,...,Y, € C¥*? be a sequence of independent self-
adjoint random matrices, and o,% > || Z?:] Eszll. Then for all 6 > 0

2 2
Pr( ztﬁ) szdexp< )
t/n

In  particular, setting 6 = —5, we get the “sub-Gaussian” tail bound
n

n

Z(%w(eyj) —JEYj>

Jj=l1

2d exp(—5.2 /n) for a given t > 0. Alternatively, setting 0 = “/_ (independent

of t), we obtain sub-exponential concentration with tail 2d exp(— 2’ 1 ) for all
t>1/2.

REMARK 2. In the important special case when Y;, j =1,...,n are i.i.d.
copies of Y, we will often use the following equivalent form of of the bound:

assume that o> > ||[EY?|, then replacing ¢ by o'/s and setting 0 := \/g % implies
that

(3.11) Pr(|| 79 _Ey| > a\f) <2d exp(—s/2),
where T"g(o) was defined in (3.5).

PROOF. As before, set X :=v(0Y;), j=1,...,n. Then

Pr()\max< Z(X —0EY; )>>s)

j=lI

= Pr(exp <Amax<Z(Xj — GEYj))) > 695)
i=1

. ‘ 62 &
< e_esEtrexp<Z(Xj — GEYJ-)) <e % trexp(; Z EY;)
j=1

2|50

where we used Chebyshev’s inequality, the fact that rmax(A) — ) (e4) and the
inequality Amax(e?) < tre? on the second step, the first inequality of Lemma 3.1

5dexp< 0s+
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on the third step, and the bound tr e < delAl on the last step (here and below, A €

Ca*d ig an arbitrary self-adjoint matrix). Similarly, since —Amin(A) = Amax(—A),
we have

1 n
Pr<kmin (5 J;(Xj — eEYj)) < —s)
1 n
= Pr(,\max<5 > (PEY; — X,-)) > s)

j=1

< e_gs]Etrexp<Z(9EYj - XJ-)> <e trexp(; Z ]EYJZ)
j=1

j=1
n
2
> er3)).
j=1

where we used the second inequality of Lemma 3.1 instead. The result fol-
lows by taking s := t4/n since for a self-adjoint matrix A, ||A|| = max(Amax(A),
—Amin(A)). U

02
< dexp(—@s + )

The main weakness of the estimator T@O discussed above is the fact that the
“variance term” || Z;;l Esz || appearing in the bound is akin to the second moment
(the price we pay for applying bias-producing truncation) while we would like to
replace it by || Z’}:l EY; — I[*EYJ-)2 ||. This problem will be addressed in detail in
Section 6. In particular, we will show the following: assume that Yy, ..., Y, are

i.i.d. copies of Y, 002 > |E(Y —EY)?|, 6y = \/%%, and n is large enough (n 2,
d?). Then, with exponentially high probability with respect to s, the solution TA"@"(‘)
of equation (3.4) satisfies ||T9"; —EY| < Cao\/g for an absolute constant C > 0.

Another problem is the fact that one needs to know the value of || Z;f:l }EY].2 | (or
its tight upper bound) a priori to choose the “optimal” value of parameter 6. This
issue and its resolution based on adaptive estimators is discussed in Section 5. We
conclude this discussion with few additional comments.

REMARK 3. 1. Sub-Gaussian guarantees provided by Theorem 3.1 hold for
a given confidence parameter ¢ > 0 that has to be fixed a priori: in particular, the
optimal value of 6 depends it. However, as it was noted in [14], this is sufficient
to construct (via Lepski’s method [29]) estimators that admit sub-Gaussian tails
uniformly over ¢ in a certain range. We discuss the details in Section 6 of the
Supplementary Material [36].

2. Let Y1,..., ¥, € C9*¢ be iid. copies of ¥, and of = |E(Y — EY)?||. It
is interesting to compare our estimator [in particular, bound (3.11)] to the guar-
antees for the sample mean %Z’}: 1 Y;. Under an additional restrictive bound-
edness assumption requiring that ||Y|| < M almost surely, the noncommutative
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Bernstein’s inequality (see Theorem 1.4 in [41]) implies that |- 1 -1 Y, —EY| <

200\/> v 3 M ! with probability > 1 —2de~"/2. Hence, even under addmonal strong
assumptlons our technique allows to obtain guarantees that compare favorably to
the sample mean. However, as noted in [41], in the case when ||Y| < M almost
surely, the size of Ell% ;le Y; — EY| is controlled by 002 while the scale of
deviations of the random variable |||% ?:1 Y, —EY| —Ell% ;!:1 Y; —EY||| de-
pends on the “weak variance” parameter 0*2 = Supy|,=1 E{((Y — EY)v, v)? < 002.
It is not clear if similar improvements are achievable in the case of heavy-tailed
distributions; see Remark 6 for additional comments.

3.2. Bounds depending on the effective dimension. The bound obtained in
Theorem 3.1 explicitly depends on the dimension d of random matrices. An ex-
ample is Section 3.2.1 below shows that the dimensional factor in the right-hand
side of the inequality is unavoidable in general. However, it is possible to prove a
similar inequality which only includes the “effective dimension” defined as

2
P (X EY7)
128 EY7

which can be much smaller than d if Z’}:l IEY].2 has many eigenvalues that are
close to 0. The following result holds.

(3.12)

THEOREM 3.2. Let Yy,...,Y, € C4 be a sequence of independent self-
adjoint random matrices, and a,% > | Z';:] EYl-zll. Then

L

n

Z(éw(eyj) —IEYj)

j=1
0252
REMARK 4. As before, we can set § = t;/f to get
P i(lw(GY) EY) > t/n <2d< % /n ) ( t )
r — ) — ; exp| ————|.
g7 J P\ 202/m

j=1
For the values of # > /02 /n (when the bound becomes useful), it further simplifies

to
Pr <
J

> tﬁ)

f(%w(eyj) —Eyj)

=1

ztﬁ>§4d_exp<— a )

202 /n
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Jn

For the “sub-exponential regime” with 6 = oz We get that for all ¢ > % \% a,% /n
simultaneously,

|

PROOF. The argument is similar in spirit to the proof of Theorem 3.1. Details
are included in Section 3 of the Supplementary Material [36]. [J

i(éw(eyj) —Eyj>

j=1

- 2t —1
> lﬁ) §4dexp<—ﬁ).
os/n

3.2.1. Dimensional factor in Theorem 3.1. The example below shows that
the dimensional factor in Theorem 3.1 is unavoidable in general. Assume that
Y (x) = ¥1(x) as defined in (3.6), 0 =1,n=d, and let Yj,j < d be indepen-
dent and such that ¥ (Y;) = yjeje T where Yj,»J < d are 1.i.d. random variables
with density p(x) =e —2lx] and {el, ..., eq} 1s the standard Euclidean basis. Re-
calling that Y; = wl_l(yj)ej , it is easy to check that EY; = Oyx4, and that

I Z?:l IEYJ.2|| = I}E(lpfl(yl))2 < 00. Theorem 3.1 implies that

(>

with f(d) < Cd for some absolute constant C. Since || Z‘j: Lviej ejT | = max(|y],

. |val), it follows from Lemma 7.2 of the Supplementary Material [36] that
Pr(]| Z’Jj-zl yjejeJTH > (% —1)logd) > c(7) for any 0 < t < 1/2 and some con-
stant ¢(t) > 0. This shows that the dimensional factor f(d) cannot grow slower
than d'/277 for any v > 0.

€j]

><fwk

3.3. Bounds for arbitrary rectangular matrices. In this section, we will de-
duce results for arbitrary matrices from the bounds for self-adjoint operators. Let

Yi,...,Y, € Cdrxdr pe independent, and assume that
n n
ax( Y EY;YF|. | Y _EY}Y; )
Jj=1 j=1

Given 6 > 0, set X; := ¥ (0H(Y;)) [where H(-) is the self-adjoint dilation, see
equation (2.1)] and define 7 € C@1+d2)x(di+d) 44

T:=T() ZX

7’jll 7’j12
. T T
T is “close” to 27:1 H(EY;) for the proper choice of 0, it is natural to expect that
Ti, is close to Z;%=1 EY;.

Let 71y € Caxdi Ty, € Chxd2 Ty, € C41%2 be such that T = ( ). Since
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COROLLARY 3.1. Under the assumptions stated above,

y
|

where d =2

n
Tir — Z EY;
=1

0202
> tﬁ) <2(d; +dy) exp(— n 5 L )

and

n
Ti,— Y EY;
j=1

w(X_ EYFY))
TS Y Y IV EY Y,

n
:max(
J=1

> ;ﬁ) < 2d<1 + 7) exp(—@t\/ﬁ—i- @)

PROOF. Note that

Y EH(Y))?

j=1

Y EY;Y7,

n
2
> EY}Y, ) <o,
j=1

Theorem 3.1 applied to self-adjoint random matrices H(Y;) € Clrtd)x(ditdy)
j=1,...,n implies that ||T Yo HEY )| < t/n with probability > 1 —

2(d) + da) exp(—0t/n 42 ” ). It remains to apply Lemma 2.1:

n

~ ; T11 T, — Z EY;

T-) HEY)| =] n ’
j=1 15— ) EY} Ty
R n
0 Tiz— ) _EY; i
> n = = |T12 — Y_EY;|,
15— Y EY} 0 j=1

and the first inequality follows. To obtain the second inequality, it is enough to use
Theorem 3.2 instead of Theorem 3.1 and note that

n n n n
tr(Z E’H(Yj)z) = tr(Z EYjY;‘) + tr(Z IEYJ’-"Y]) = 2tr<Z IEYJ*-‘YJ)
j=1 j=1 j=1 j=1

since forany 1 < j <n, tr(EYjYJ’F) =Etr(Y; YJ’-“) = Etr(Y}‘Yj). O

In a particular case when ¥ € R? is a random vector such that EY Y7 = ¥ and
Yy,..., Y, are its ii.d. copies, max(]| Z,:1EY Yj*||, I Z]: EYJ*Y D =ntrX
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and tr(Z’}: 1 IEY;.‘ Y;) =ntr X, hence d = 2 and the estimator 7, admits the fol-

lowing bound: if we replace ¢t by 4/s+/tr X and set 6 = \/g ﬁ in the second
bound of Corollary 3.1, then

2 gy

T
Pr(

n

> Jﬁﬁ) <4(1+41/s)e*/2.
2 n

3.4. Bounds under weaker moment assumptions. In this section, we discuss
the mean estimation problem under weaker moment conditions. Namely, assume
that Y1, ..., Y, are independent self-adjoint random matrices such that ||E|Y;|*| <
oo for some o € (1,2] and all 1 < j <n. Let ¢, satisfy

—log(l — x + colx]|%) < Yo (x) <log(l+ x + cylx|¥)

for all x € R, where ¢, = "‘T_l \/ ZTT(X The fact that such ¥, exists follows from

Lemma A.2 in the Appendix. For example, one can take ¥, (x) = log(l + x +
cq|x|%). The following result holds.

THEOREM 3.3. Assume that vy > || Z§:1 E|Y;|*|l. Then for any positive t

and 6,
Pr(

PROOF. The argument repeats the steps of Lemma 3.1 and Theorem 3.1, the
only difference being that application of Fact 2.4 is replaced by Lemma A.2. [J

n

Z(%%(@Yj) —EYJ->

j=1

> t) <2d exp(—0t + co0%vy)).

REMARK 5. In the special case when Y1, ..., Y, are i.i.d. copies of ¥ with
a—1 . . .
v=|E|Y|*|'/%, setting r = vn!/*s @ and 6 = (ﬁ)l/(“—l)(%)l/“% gives the in-

equality
Pr( > v<—) )
n

a—17 1 \VeDb
< 2dexp<— (—) s).
o \acy

Note that for o« = 2, we recover (3.11).

1 n
— oY) —EY
‘ne;%( )

Before we proceed with discussion or further improvements and adaptation is-
sues, let us demonstrate applications of developed techniques to popular problems
in statistics and highlight the advantages over existing results.
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4. Examples. We present two examples which highlight the potential im-
provements obtained via our technique in popular scenarios: estimation of the co-
variance matrix in Frobenius and operator norms, and low-rank matrix completion
problem.

4.1. Estimation of the covariance matrix in operator norm. Let Z € RY be a
random vector with [EZ = u, E|| Z — ;L||‘21 <00, X =E[(Z - pn)(Z—n)T], and let
Z1,..., 2y beii.d. copies of Z. Let us first assume that u = 0, and define

~ 1 % "
$0)=5— > V(0Z,Z]),
2n6 e

where ¥ (-) satisfies (3.1). Let o2 > ||E|| Z||3ZZ7 || and 6 = \/E L Itis straightfor-
ward to deduce from Theorem 3.1 that with probability > 1 — 2de ™,

~ t
[22,(0) — 2| < a\/;.

REMARK 6. 1. Note that for any matrix X = AUUT of rank 1 (where |U|» =
1),
Y (X) =y ()UUT  [since ¥ (0) = 0],
hence $2,(0) = -1 Y2, (@123 2%,
ence X,(0) = 6 Zj:l (VA j ”2) ||Z_,~||%'
to evaluate numerically; in general, computation of the estimator (3.5) requires n
singular value decompositions.

2. Parameter o is closely related to the effective rank defined as r(X) = %
[44]; clearly, it always true that r(X) < d. The quantity /r(X)||X|| has been
shown to control the expected error of the sample covariance estimator in the
Gaussian setting [26]. Under the additional assumption that the kurtosis of the
linear forms (Z, v), v # 0, is uniformly bounded by K, it is possible to show that
(see Lemma 2.3 in [37]) that 02 < Kr(Z)||Z||%>. On the other hand, fluctuations
of the error around its expected value in the Gaussian case [26] are controlled by
the “weak variance” sup,cpd.y|,=1 EY2(Z,v)* < V/K||Z|, while in our bounds
fluctuations are controlled by the “strong variance” o2; this fact leaves room for
improvement in our construction and proof techniques.

In particular, this expression is easy

Of course, the initial assumption that  is known is often unrealistic, hence we
modify the estimator as follows. Given 6 > 0, set

1
Yi=5(Z2j-1 = Z2j)(Z2j-1 — Z2)".

~ 1 &
S (0) = — > w©Y)).
j=1
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Let 62 > LE(Z — i))(Z — wT)2 + ()T + 232, and 6 = \/%. Our co-

variance estimator is then defined as izn = izn (é). The following result can be
deduced from Theorem 3.1.

COROLLARY 4.1. With probability > 1 — 2de™",

~ .|t
IS0 — Tl < V26~
n

Before presenting the proof, let us make several additional remarks.

REMARK 7. 1. Itis not hard to show that (see Corollary 7.1 of the Supplemen-
tary Material [36]) that |E((Z — u)(Z — /,L)T)ZH > tr(X)|| 21|; hence it is enough to
choose 6% > || Z||? —I-JO2 = IZI?+IEW(Z — w)(Z — w)T)?||. In view of Remark 6,
this expression can be further simplified under the bounded kurtosis assumption,
and one can choose 62 > || Z||2(1 + K1r(X)), where K is the uniform bound on the
kurtosis of the coordinates of Z, and r(X) is the effective rank.

2. Construction of fzn (0) essentially halves the effective sample size. While the
loss of a constant factor can be deemed insignificant in non-asymptotic theoretical
bounds, it is undesirable in applications. A more natural version of the estimator
based on a sample of size 2n is the U-statistic

S0 (6) = zi > lw@@i —Z)(Zi - Zj)T).
(2)1§i<j§2n9 2

Another possibility to avoid “halving” the sample size is to center the data using
a robust estimator of location, such as the spatial median or the median-of-means
estimator [23, 33, 35]. Analysis of the estimators of these types is not covered in
the present paper, and requires a slightly different set of technical tools to deal with
dependent summands; see [37] for results in this direction.

PROOF OF COROLLARY 4.1. Note that forall j =1,...,n, EY; = X. Since
Y1, ..., Y, are i.i.d. random matrices, Theorem 3.1 applies (see Remark 2), giving

that
A A 2t _t
Pr(”E(G)—ZHza —>§2de ,
n

where 62 > ||IEY12||. It is easy to check that

9

|EY?| = %HE((Z —W(Z =) +tu(D)T +232

and the result follows. [
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4.2. Estimation of the covariance matrix in Frobenius norm. Next, we present
an estimator which achieves strong deviation guarantees in the Frobenius norm.
Estimation of the covariance matrix with respect to this norm has been previously
investigated in the literature, for instance, see [28], [8] and references therein;
Frobenius norm is a natural choice when one wants to understand the effect of
the rank of an unknown covariance matrix on the estimation error [32]. Let 3‘2,, be
the sample covariance estimator based on Z1, ..., Zo,:

& 1 (Zi —Z)(Zi = Z))"
S =z 2 5 :

(2) 1<i<j<2n

The following “soft thresholding” estimator has been studied in [32]; here, T > 0
is a fixed threshold parameter:

(4.1) 85, = argmin[ | A — $2,[IE + 7| All1].
AeRdXd

We propose to replace the sample covariance Son by $on, and consider

(4.2) 52 =argmin[[|A — Sy, |12 + || All1].
AERdXd

It is not hard to see (e.g., see the proof of Theorem 1 in [32]) that f;n can be
written explicitly as

d
23, =Y max(h;(Zon) — 7/2,0)0;(Z2n)v; (Z2n) ",
j=1

whgre A j(fz,l) and v j(fzn) are the eigenvalues and corresponding eigenvectors
of ¥,,. The following result holds.

THEOREM 4.1. For any

. |t +1og(2d)
>40, ———,
2n

—~ 2 .
IS5, - 2lp < it |14 - DI+

(4.3)

2
%Tzrank(m}

with probability > 1 — e~ .
The result stated above mimics the (almost) optimal rates obtained in [32] (in
the situation when no data is missing) under significantly weaker assumptions on

the underlying distribution.

PROOF OF THEOREM 4.1. The proof is based on the following lemma.
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LEMMA 4.1. Inequality (4.4) holds on the event £ = {t > 2|| Son— % I}

To verify this statement, it is enough to repeat the steps of the proof of Theo-
rem 1 in [32], replacing each occurrence of the sample covariance Son by its robust
counterpart i;n

The result then follows from Corollary 4.1 that Pr(£) > 1 — e~' whenever 7 >

t+log(2d)
40\ =, — U

4.3. Matrix completion. Let Ag € RY1*% be an unknown matrix, and assume
that we observe a random subset of its entries contaminated by noise. The goal is to
estimate Ag from a small number of such noisy measurements under an additional
assumption that Ag is likely to be of low rank (or can be well approximated by a
low rank matrix). More specifically, let

X=lejd)el (), 1<j<d,1<k<d),

where e;(d;) and e;(d>) are the elements of the canonical bases of R4 and R%,
respectively. Let X have uniform distribution IT := Unif(X’) on X', and assume
that the noisy linear measurement Y has the form

Y =t(XT Ap) +&,

where E(&|X) = 0. Finally, assume that (X1, Y1), ..., (Xn, ¥,) are i.i.d. copies of
(X,7).

It is easy to check that E(Y X) = ﬁAo, hence the natural unbiased estimator
of Ag is

ZYX

To incorporate the structural (low-rank) assumption on A, the following estimator
has been considered in the literature: let T > 0, and define

AT _ [ All2
A" = argmin ) A —Alg+llAlh

AcRéxd LE1E2
1
= argmin | ——||A|% — YiXj, A)+TlAl |
Aeﬂ%dl xdy |:d1d2 F Xz i

Note that one can use the symmetric version Ay € Rt x(ditd) of A instead,
defined as

- dd
A, 12ZY’H(X)

j=l1



2890 S. MINSKER

so that IEX = H(Ap), and consider the equivalent convex minimization problem

AT = argmin [WHH(A) H(A\s)”]z:-i-ZTllA”l]
AeRd]Xdz 1

= argmin [—H’H(A)HF < ZY H(X)), ’H(A)>+2r||A||1]
AeRledZ d / 1

However, strong theoretical guarantees for this estimator exist only when the

“noise term” &; is either bounded with probability 1, or has sub-exponential tails.

We propose to replace A with a robust estimator

R= d;dz S v (Y HX)),
j=1
where 1 (-) satisfies (3.1) and
1 (t +log(2(dy + d2)))(dy N da)
0:=0(t,n, Ag) = .
1140 = s v NI E) n

The reasoning behind this choice of 6 is explained below. Consider

RT = argmin |:—||7‘l( )”F < 2 R, ”H(A)> + 2r||A||1]
Acrdixd, Ld1d didy
Finally, set
M =R —E(YH(X)).
The following result holds.

THEOREM 4.2.  Assume that §; is independent of X j, j =1, ...,n, and that
Var(£) < oo. For any

log(2(d; +d
rZ4(||A0||maxV\/\T(§))\/t+ :)lg(g;l(/\ldz 2))’

1 2\?2
0||%+< +2[) dldgrzrank(A)}

L |RT — Ag|% < inf [—HA -
did 0 F_Ae]Rdlx"Z dyd.

with probability > 1 —e™".

Note that we only assume that Var(¢) < oo, while in [16], a similar result is ob-
tained under a slightly stronger assumption requiring that E|£]|?T¢ < oo for some
e>0.

PROOF. Define A C R@1+d2)x(d1+d2) t e the image of R4 *% under H(-):

A ={B e RUTRxdi+d) . g — 3/(A) for some A € R1*%),
We begin with the following inequality.
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LEMMA 4.2. Assume that Tt > 2||M||. Then
1 ~ 5
[ H(R) ~ A0
2

1+42

< inf [—HB HAp |2+ (

) didrt rank(B)}
BeA

PROOF. By the definition of R?, we see that

~ 2
H(R') = ——||B —R B B
(R7) = arin,g“[dldz” 12— <dd >+r|| M

If we replace v d R by 7 dzA 1 "_1Y;H(X ), the result follows from Theo-
rem 1 in [27] 1mmedlate1y To obtaln the current statement, it is enough to repeat
the argument of Theorem 1 in [27], replacing each occurrence of the matrix ﬁAs

bydl1 R. O

To complete the proof, we will estimate each side of the inequality of
Lemma 4.2. First, it is obvious from the definition of the Frobenius norm that

1 - 2 A )
4.4 — R™) —H(A =" ||IRT — Apll=.
(44) G R = H Ao e = 2R = Aol

Next, since rank(H(A)) = 2rank(A),

1
ég&[d—”B H(Ao)|p + < +2f> didyt rank(B)}
4.5) .
142 ,
_2Ae]11£1f><d2|:d1d |A — A0||F ( 7 )dldzr rank(A)].

It remains to estimate the probability of the event £ = {r > 2||M|}. Let

o2 :=max(|E[Y2xXT]|, |[E[Y*xT X]|).
LEMMA 4.3.  Assume that §; is independent of X j, j =1, ...,n. Then
o <(Var(E)V||A0||max)dlAd2-

PROOF. Note that E[Y2XXT] = E[£2XXT] + E[(tr(XT Ap))>X X"]. More-
over, | tr(XT Ag)| < max;,;j [(Ao)i, ;| = llAolimax, and [EXXT = i |, hence

IE[Y2xxT]| < Var(s)— + | Aoll?

max d
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Similarly,

1 1
24T 2
IE[Y*Xx" X]| = Var(®) -+ Ao lma - O

Applying Theorem 3.1 (see Remark 2) with

o \/2@ +log(2(d: + d2))) !
n (Var() V | Aol) 725)" /2
_ 1 (t +1og(2(dy + d2)))(d1 N d2)
| Aolimax V +/ Var(§) n ’
we see that

t +1log(2(d; + d))
n(dy A dp)

M1 < 2(Il Aollmax Vv \/Var(&‘))\/

with probability > 1 — e~'. The final result now follows from the combination of
this inequality with (4.4), (4.5) and Lemma 4.2. [l

5. Optimal choice of # and adaptation to the unknown second moment.
To make results of Theorem 3.1 useful, one has to set the value for the parameter
6 which in turn depends on the (usually unknown) norm or”2 = Z;?: 1 EYJ.ZH. To
address this problem, we develop a simple adaptive solution based on Lepski’s
method.

Lepski’s method [29] is a powerful general technique that allows to adapt to the
unknown structure of the problem, for example, bandwidth selection in nonpara-
metric estimation, or an unknown second moment in our case. Let Y1,...,Y, €
C?*4 pe independent self-adjoint random matrices with o*,% = | 27:1 IEYJ.ZH, and
assume that opin, omax are such that

Omin = T =< Omax-
Parameters omin and omax are “crude” preliminary bounds that can differ from
on/+/n by several orders of magnitude. Let 0j = omin2’ and

={j€Z3Umin§Uj < 20max}

be a set of cardinality | 7| < 1 + 10g,(0max/0omin)» and for each j € J set 0; =

0(j,1) = /% L Define

T,. ——Zw(e Y;),

jll
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where 1 (-) satisfies (3.1). Finally, set
: . : 2t
5.1 s ::mm{] eJ:Vk>jstkeT, Tk —Tnjll <20k —}
n
and 7" :=T, j,.
The next result shows that adaptation is possible at the cost of an additional
multiplicative constant factor 6 in the deviation bound.

THEOREM 5.1. The following inequality holds for any t > 0:

2 2
HQU?—EYHzamMJ%JJ)fzde((%“)ff
n Omin

PROOF. Let j=min{j e J: oj > %} (hence o5 < 2%). First, we will show

that j, < j with high probability. Indeed,

- 2t
i = <P U |t = 7,502 2007 )

ke]:k>]_'

2t 2t
§Pr<||Tn’j-.—]EY||>o]r‘/;>+ > Pr(||Tn7k—EY||>ok1/;>

keT:k>j

<2de™" +2d 1og2<0m"">e—f,

Omin
where we used Theorem 3.1 to bound each of the probabilities in the sum. The
display above implies that the event

2t
5= hnk—MWS%J;}
keT:k=>j

of probability > 1 — 2d logz(%)e*t is contained in £ = {j, < j}. Hence, on B
we have that

T —EY| < ||T* =T - T—EY<2-2t -2t
”n_ ”—”n_ n,j||+” n,j I < Gj ;—i_aj ;
o, |2t on |2t o, |2t
<4— |—+2—|—=6—=,/—,
=YV T T

and result follows. [

REMARK 8. It follows from the proof that constant factor 6 in Theorem 5.1
can be reduced to 3 + ¢ for any ¢ > 0 by considering the “finer grid”, that is,
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replacing J by {j € Z : opmin < K7 Opmin < Komax} for some 1 < k < 2, at the cost
of replacing logz(%) by 1og2(%)/ log, k.

6. From bounds depending on ||EY?| to bounds depending on ||E(Y —
EY)?|l. Assume that Yi,..., Y, are ii.d. copies of ¥ € C?*? In this section,
we build upon previously established bounds to provide performance guarantees
for the estimator defined via (3.3), (3.4). To this end, we study a version of the

steepest descent scheme for the problem (3.3) initialized at the point 5:0(0)’ namely,

A

To := 7\”9((?) and

~ ~ 1 2 ~
T =Tri1 + — Y _ v (0c(Yj — Tk—1)), k>1
no st

for an appropriate choice of 6, k > 0. Note that for any nonrandom self-adjoint
matrix S and s = \/% W, Theorem 3.1 implies that

Pr<|| T,(S) —EY| > |E(Y — $)?| 1/2\/E) <2d exp(—s/2),
n

where T,,(S) =S + % ;?:1 Y (O0s(Y; — §)). Hence, if we use random § which is
“not too far” from EY with high probability, we expect that the deviation guaran-
tees will still hold with the “variance parameter” close to |E(Y — EY)?|.
Everywhere in this section, we will assume that one has access to some known
(possibly very crude) bounds for o2 = ||[EY?|| and a& = |E(Y —EY)?|.

ASSUMPTION 1. Let omin, 00,min and Omax, 00,max be known constants such
that

Omin <0 < Omax and 00,min = 00 = 00, max-

6.1. Two-step estimation based on sample splitting. We will first discuss
the simplest (but not the most efficient) approach based on splitting the sample
Y1,..., Y, into two disjoint subsets G| and G, of cardinality > |n/2] each, and
performing one step of the steepest descent. The main advantage of this approach
is the fact that it requires very mild assumptions. The idea is to apply Lepski’s
metl}od (as discussed in Section 5) twice: on the first step, we obtain an estima-
tor Ty based on subsample G, and on the second step we apply Lepski’s method
again to the subsample {Y; —Tp: 1< j <n,Y; € G2}

Here is the more detailed description: set o = 27 6min,

Ji=1{j €Z:0min <0} <20max}

and Go,j = ZJIO()’min,

. 1
T = {] €L: 00,min = 00,; < 2<0'0,max + lzamax\/;> },
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and let Ty be the “Lepski-type” adaptive estimator based on the subsample G
defined as

fo=T|Gl|,j1*(0;G1),

where
1l

TiG,1.j(S; G1) = G116, ; ¥ (6;(Y: — ),

0; = /251, y() satisfies (3.1) and

n/2a;’
Ji = min{j eJi:Vke Jyist. k> ],
2t
|1T16,.£(0: G1) — TjG,1.; (0: G1) || <20 Gl

fl is then defined as follows:

Ty =To + T|G2|,J'§k(fO; G2),

where
TG (5: Ga) Yy, i—5). 6 2
1G41,j (85 G2) = ——— o,j (Yi —8)), 0.j =\ =5 =
and
J3 = min{j e :Yke st k>j,
N N 2t
171641,k (To; G2) — TiG,),j (To; G2)|| <200k @}

THEOREM 6.1. With probability at least

Umax) (UO,max + 120max v/ t/l’l)) —t
+ log, e,

00, min

1 —2d<2—|—10g2<

the following inequality holds:

~ t t
1Ty —EY|| < 12<00 + 120 /-) -
n n

PROOF. See Section 4 in the Supplementary Material [36]. [

Omin

The main feature of this result is the variance term og + 120\/% that can be
much smaller compared to ¢ as long as t < n.
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6.2. Results for the estimator Tb* defined via equation (3.4). We will next
show how to design an estimator with deviations controlled by the “correct” vari-
ance term without sample splitting (however, subject to the condition that the sam-
ple size is sufficiently large). In what follows, we will make an additional assump-
tion about the function .

ASSUMPTION 2. Function ¥ (-) satisfies (3.1) and is operator Lipschitz,
meaning that ||y (A) — ¥ (B)|| < L||A — B|| for all self-adjoint A, B € C?*¢, with
Lipschitz constant L independent of the dimension d.

For example, we may take ¢ = yr; or ¥ = i (see Lemma A.3 for details). As
before, let # > 0 be fixed, set 09, j = 2/ 060, min,

J={jeZ: 00,min = 00,; < 200,max},

2t 1 2t 1 )
0=, — and 0; =, /——— forjeJ.
N Omax n GO,j

For all j € J, define 85.0) = O'maX\/% and

6.1 50 _ 12 2t p 2t 12 2t
(6.1) j =590 ;-l— Omax ;—?Uo,j P

for k > 1. Next, for each j € 7, we define
©) | §
— 70 _ .
(6.2) T, =T = E;WQY‘)’
1=
(independent of j),* and

1 n
k) ._ pk=1) k=1)
T =T, "+ e ;w(ej(yi —-7,7")
1=

for k > 1. Finally, we apply Lepski’s method to the collection of estimators {Tn(? :
j € J}. To this end, define f"k = Tn(kj);, where

ji=min{jeJ:VleTstl>j |10 -1 <26/},

Note that the estimator 7} is completely data-dependent. We are ready to state the
main result of this section.

4Particular choice of Tn(o) does not matter as long as || T,,(O) — EY| is small with high probability.
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THEOREM 6.2. Let

[d? Lt
T=1.1K +
200

where K > 0 is an absolute constant, and assume that T < 1/6. Moreover, assume
that

24 2t
(63) ( 5 00, max Vv O‘max> — <1
n

Then for all k > 0 simultaneously,

|7 —EY)| <3[ —ao,/ s amax,/

with probability > 1 — 8d(1 + 2log, (s=2max lz”max 1)) lo g2(2f’0 2oman ) -

500,m 00,m

PROOF. See Section 5 in the Supplementary Material [36]. [

The next corollary easily follows from the preceding result. Let .A be the event
of probability

12 )
PI'(A) >1-— 8d<1 + 210g2<5 Gmax)) 10g2< GO,max)g_t

00, min 00, min

defined in Theorem 6.2. Since by the properties of the steepest descent scheme
Tn(k]) converges to the solution (denoted T";;) of the problem (3.3), we can easily
deduce the following inequality.

COROLLARY 6.1. Let {T"é: }jeg satisfy the equations

Zz/f (Yi = T5) =Ouxa,  j€J.

Jll

Then on event A, ||7:9 —EY| <limg_ o 8( ) = \/7

_One can further apply Lepski’s method (see Section 5) to the collection
{Tg’; } jes to obtain a completely data-dependent estimator 7* that satisfies

72 2
|7~ By < gf

with high probability (in particular, on event A).
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7. Numerical simulation results. Numerical simulation was performed
for covariance estimation problem. Data was simulated as follows: let U =

WD, ..., u10NT ¢ RI00 pe a vector with i.i.d. coordinates such that U) 4
ﬁ(éj,l —&j2), where §; 1 and &; 5, j =1,..., 100, are independent random
variables with probability density function

q
pe(t;q) = ml{f > 0}
(which belongs to the Pareto family), c(q) = Var(§) = (q—l)gﬂ and g =4.01;

in particular, Var(U Uy =1. Finally, let Z = VXU, where ¥ is a diagonal matrix
with X1 =10, X2 =5,¥33 =1and ¥j; = 91—7,j > 4, in particular, EZ = 0 and
EzzT =%.

The goal of numerical experiment was to evaluate the quality of estimation of
the covariance matrix ¥ as well as its first eigenvector e; corresponding to A1 =
10. We tested two scenarios with sample sizes equal n to 100 and 1000. In both
cases, we generated Zy, ..., Z,, i.i.d. copies of Z and centered the data via the
spatial (or geometric) median defined as

100

M, = argmin } ||y = Zj]2.
yeRIO ;1

We compared two estimators, §,, and in constructed as follows: set Z? =Zj—
M,, for brevity, and

— 1 & T
Sn="— > 2929",
j=1

which is the analogue of sample covariance with “robust centering”.
Next, X, was constructed using a version of Lepski’s method described in Sec-
tion 5. We provide details for completeness: set

Omax := ZJ

J = {] €Z: Omin < 1-3j = Umax},
and let ¥ (-) be the function defined in (3.6). Let ¢t = log 10, and for j € J, set

R T, ..
0; = \/%% and X, ; = n%oj Y W(QjZlQZ? ). Finally, define

Omax

L 50125007
;Z”ZjHZZij > Omin = 550

j=1

~ A t
= min{j €T Yk > j. | Enik — Snjll < 1.3"\/;}

(note that we modified some constants compared to the “theoretical” version), and
finally set X, := X, j,.
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0. T T T T T T
> : 0. T T T T T
. .Sample covariance estimator - .Sam e covariance estimator
5 . . g i
> 03 Robust covariance estimator [] @ . ) l
(2] ES DRobust covariance estimator
[ Robust estimator error ] . . - i
023 1. = SI/1E0 o o :
[ (E)u(E)T = ui(B)ui(2)7]
0.2
0.15)
01 Sample covariance error Jur(S)ur(8,)7 = ur (S)uy ()7
1S = SN/ / ]
0.0} ./ \
o nl .. T L | I | i i 1 ]]_-5:__‘_‘_‘_‘_
1 2 3 4 5 6 7 8 9 w0_ 11 02 03 04 05 06 07 08 0.9 1
Error Error

(a) Covariance matrix estimation error (b) First principal component estimation error

F1G. 1.  Sample size n = 100, dimension d = 100.
Quality of covariance estimation was evaluated via comparing % with
% over 500 runs of simulations. We also compared errors of estimation of

projectors onto the first principal component,
JurGnur 0" —ur(Dur(DT] and - Jur(En)ur(E)" —ur(Sur ()"

where u1(-) denotes the eigenvector corresponding to the largest eigenvalue of a
matrix. Histograms illustrating performance of both estimators are presented in
Figure 1(a) and (b) (for the sample size n = 100), and in Figure 2(a) and (b) (for
the sample size n = 1000). It is clear from the graphs that in all scenarios, S
performs significantly better than S,

9

APPENDIX: SUPPLEMENTARY RESULTS

LEMMA A.1. Let F: R+ R be a continuously differentiable function, and
S € C¥*4 pe a self-adjoint matrix. Then the gradient of G(S) :=tr F(S) is

VG(S)=F'(S),

> " N N
e .Sample covariance estimator kY .Sample covariance estimator
0.45| 2 09)
o N " . .
E D Robust covariance estimator ] Dﬂobust covariance estimator
D o4 Z o8
w i
0.35] 07
03 Robust estimator error 09
-/
025 112 = /12 05 " & |
lua(En)u(E0)" = wi(B)ua(B)7)
02 04
015 03 i
|1 (S,)ur(S)T — wi(Z)ur (2)7)]
o1 Sample covariance error 02
IS0 =21/1=
0.05] + < i 0.1
o | I | | 1 . o . —_ . . . . . Sl
o T 10 20 30 0 50 0 0.1 02 03 04 05 06 07 08 1

(a) Covariance matrix estimation error

a0
Error

0‘9
Error

(b) First principal component estimation error

FI1G. 2. Sample size n = 1000, dimension d = 100.
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where F' is the derivative of F and F'(S) : C¥*? » C4*4 s the matrix function
in the sense of Definition 2.1.

PROOF. We will first check the claim assuming that F is a polynomial of the
form F(x) = x¥ keN.Let H= H* be a self-adjoint operator, and consider the
directional derivative dG(S; H) of G in direction H:

tr(S/ 1 H S)

k
dG(S; H) = lim ltr((s +1H)* — 5% =
’ o t—0t o 1

J
=tr(kS*"'H) = (F'(S), H),

hence the claim holds for monomials. By linearity, it also holds for arbitrary poly-
nomials. It remains to extend the claim to arbitrary continuously differentiable
function via a standard approximation argument (for instance, see [4], Chapter 5,
Section 3). [

LEMMA A.2. Letl <a <2andcy = O‘T_l\/ ZTTO[ Then 1+ y +cqlyl* >0
and

—log(1+y + colyl®) <log(l —y + calyl¥) forall y e R.

PROOF. To check the first claim, it is enough to note that f(y) =14+ y +
co|y|¥ is convex and its minimum is attained for y,, = —(ﬁ)l/ @=D Tt is easy to
check that f(y;,) =1 — y, + yaﬂ, which implies that f(y,) >0 <= ¢, > "a—}l
which always holds since ¢y > “‘T_l and o > 1.

For the second part, it is enough to show that (1 +cg|y|*+¥)(1 +co|y|* —y) >
1 for all y € R, which is equivalent to claiming that cg V2 4 2cuy* > y2, y > 0.
Note that for any T € (—1,1), p,g >0Osuchthat1/p+1/g=1,and y >0,
yp(lfr) yq(1+t)

y2 — yl—ry1+r <

p q

2=¢ 2 \which is further

Choosing p := ﬁ,q 1= 5%, we get y2 < Z(aa—l)ya+ -

bounded above by 2c, y* + ¢2y2* for ¢y = aT_l 4 ZTTQ [

LEMMA A.3. Functions Y1 (x) and yry(x) defined in Remark 1 are operator
Lipschitz, with Lipschitz constants independent of the dimension.

PROOF. The Lipshitz property of i1 (x) follows from Theorem 1.6.1 in [2].
The result for v, (x) follows from Theorem 1.1.1 in the same paper. [
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A.l. Proof of Lemma 2.1. For a self-adjoint matrices R, Q, ||R]| > || Q|| iff
IR?|| = | Q?]. Clearly,
(S A)z_ S2+ AA*  SA+4 AT
A" T) “\A*S+TA* T?>+A*A)°

It implies that | ( 7, ?)2|| > ||S? + AA*| > |AA*| and |( 2. ?)2” > ||IT? +

A*A| > [|A*A]|. Since (% 4)7 = (44" 2,). we obtain

SA2>OA2
A 1) 1= \a* o

Acknowledgements. I want to thank L. Goldstein, A. Juditsky, A. Ne-
mirovski, as well as the anonymous referees and the Associate Editor for their
insightful suggestions that helped to improve the quality of presentation.

k)

and the result follows.

SUPPLEMENTARY MATERIAL

Supplementary material for the paper: Sub-Gaussian estimators of the
mean of a random matrix with heavy-tailed entries (DOI: 10.1214/17-
AOS1642SUPP; .pdf). The supplement contains technical details and proofs not
included in the main text of the paper.
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