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Abstract. We present results on the isovector and isoscalar nucleon axial form factors
including disconnected contributions, using an ensemble of N = 2 twisted mass clover-
improved Wilson fermions simulated with approximately the physical value of the pion
mass. The light disconnected quark loops are computed using exact deflation, while
the strange and the charm quark loops are evaluated using the truncated solver method.
Techniques such as the summation and the two-state fits have been employed to access
ground-state dominance.

1 Introduction

The form factors of the nucleon are important quantities that encapsulate information about its struc-
ture and properties. Contrary to the electromagnetic form factors that are well determined experimen-
tally, the axial form factors are less known. The axial charge of the nucleon is an exception since it can
be measured to high precision from g-decays. The momentum dependence of the axial form factors
can be extracted from elastic scattering of neutrinos and protons [1]. The induced pseudoscalar form
factor has been measured experimentally only for few values of momentum transfer [2] from the cross
section for exclusive 7t electroproduction on the proton.

In this work, we evaluate the nucleon axial G,(Q?) and induced pseudoscalar G ,,(Qz) form factors
using an ensemble of Ny = 2 twisted mass clover-improved Wilson ensemble with light quark mass
tuned to approximately reproduce the physical value of the pion mass [3]. Both connected and dis-
connected contributions are evaluated allowing to compute the isovector, isoscalar as well as strange
and charm form factors.
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2 Lattice Formulation
2.1 Axial form factors

The decomposition of the nucleon matrix element of the axial-vector current A,(x) in Euclidean time
is given by

2
N
En(P)EN(D)

where p, s (p’,s’) are the momentum and spin of the initial (final) nucleon state, N is the nucleon
state, uy the nucleon spinor, my and Ey(p) are the nucleon mass and energy with momentum g and
0% = (p’ - p)? the momentum transfer square. We consider the isovector, isoscalar as well as strange
and charm combinations

in(p’,s') (yﬂGA<Q2> i p<Q2>) ysun(p,s), (1)

(N(p', sHIALIN(p, s)) = i 2my

3
A = BOyys U0, AL = BOys LU, A5 = 500775500 and A5 = 20y,5c). (2)

where 73 is the Pauli matrix acting in flavor space.

2.2 Lattice extraction

Computation of two- and three-point correlation functions is needed to extract nucleon matrix el-
ements. The three-point functions receive contributions from the so-called connected and discon-
nected diagrams. For the isovector combination disconnected contributions cancel out in the isospin
limit. For the connected contributions we employ the standard fixed-sink method where sequential
inversions through the sink are performed. Deflation of the low modes is employed to accelerate the
inversion of the Dirac operator. For the disconnected quark loops we combined the one-end trick [4]
with the truncated solver method (TSM) [5] to reduce the computational cost. Two-point functions
are computed for several source positions per configuration to increase the statistical accuracy.

We construct the following ratio of the appropriate three-point function G,(I'y, 7', B; t;, fins) to
two-functions C(I'y, 7, 1)

Ru(FVa ﬁ/, ﬁ; Lgy tins) = 3

GIJ(FV’ P_”, ﬁ; Is, tins) C(FO, ﬁ; Iy — tins)C(FO’ ﬁl; tins)C(FO’ ﬁ/; ts)
CTo, P'5t5) C(To, P’; 1y — ting) C(To, Ps tins)C(To, P 15)

which, in the large time limit #; — #;,s > 1 and #;,s > 1 yields the desired nucleon matrix element. The
insertion time f;,s as well as the sink time 7, are taken relative to the source. To determine, if indeed,
these time separations are large enough we employ three methods: i) plateau method, which assumes
that the ratio of Eq. (3) is dominated by the ground state and perform a constant fit as a function of
tins to extract the matrix element, ii) summation method, in which one sums over #;,; and extracts the
matrix element from the slope of a linear fit, and iii) two-state fit method which includes besides the
ground state the first excited state in the fit to extract the matrix element. We require that these three
methods give consistent results for the matrix element.

We perform a non-perturbative calculation of both the renormalization functions for the isovector
and isoscalar currents needed for the extraction of physical matrix elements from lattice results us-
ing the Rome-Southampton method [6]. Lattice artifacts are subtracted perturbatively to o) [7]
to yield a better determination of the limit (ap)> — 0. We take the chiral limit to extract the
renormalization functions. We find for the non-singlet case Z;* = 0.7910(4)(5) and for the singlet
Z3 = 0.7968(25)(91), which are compatible within errors.



EPJ Web of Conferences 175, 06003 (2018) https://doi.org/10.1051/epjconf/201817506003
Lattice 2017

2.3 Lattice Setup and Statistics

We analyze an ensemble of Ny = 2 twisted mass clover improved Wilson fermions with pion mass

+ = 0.1304(4) GeV on a lattice of size 48% x 96 and a lattice spacing a=0.0938(3) fm determined
from nucleon mass [8]. In Tab. 1 we give the statistics used for the computation of connected angl
disconnected contributions. For the connected, three values of ¢, analyzed in the frame where g’ = 0,
while for the disconnected all separations are available without additional cost in both the rest frame
of the final nucleon as well as for §’ = 2%’? We note the much larger number of configurations and
source positions analyzed for the evaluation of the disconnected contributions.

Connected H Disconnected
ty/a Neont N || Flavor  Neons N;{P N}P Nere
10 579 16 light 2120 2250 - 100

12 579 16 | strange 2057 63 1024 100
14 579 16 || charm 2034 5 1250 100

Table 1: Statistics used in this study. Ncn¢ is the number of gauge configurations and Ny, is the
number of source positions per configuration. For the disconnected contributions, N'¥ is the number
of high-precision stochastic vectors produced, and NL¥ is the number of low-precision vectors used
when the TSM has been used.

3 Results
3.1 Axial charge

At zero momentum transfer the matrix element of the axial-vector current yields the nucleon axial
charge ga = g} “=d (isovector) and g“*d (isoscalar). In Fig. 1 we present our results for both quantities
showing separately the connected and disconnected contributions in the case of g”*d The ratio for the
connected contributions is computed at three values of #,. We check that the values extracted using the
plateau, summation and two-state methods are consistent as shown in Fig. 1. We include a systematic
error due to the excited states taken as the difference between the plateau value that demonstrates
convergence with ¢, and the one extracted from the two-state fit. We quote these values in Tab. 2.

l ga [ 4477 (Conn.) | ¢4 (Disc.) | gutd \ g, [ g ‘
[1.212(33)(22) [ 0.595(28)(1) [ -0.150(20)(19) [ 0.445(34)(19) [ -0.0427(100)(93) [ -0.00338(188)(667) |

Table 2: Our values for the nucleon axial charges. The first error is statistical and the second is a
systematic due to the excited states contamination.

3.2 Isovector Axial and induced pseudoscalar form factors

In Fig. 2 we show results for the isovector G4 and G,. For the axial form factor we fit our results to a
dipole form: G4(Q?) = W where g4 is fixed by the value of the form factor at zero momentum
transfer and the axial mass my is allowed to vary. We find an axial mass my = 1.322(42)(17) GeV,
which is consistent with the recent experimental value [9] from MiniBooNE experiment but larger
than the one extracted from previous experiments. For the induced pseudoscalar form factor we fit to
a pole form G p(Qz) =G (Qz) an where C and m,, are fit parameters. As shown in Fig. 2 our lattice



EPJ Web of Conferences 175, 06003 (2018) https://doi.org/10.1051/epjcont/201817506003
Lattice 2017

012 Summation 3 t=0.94fm A t=1.31fm
’ — = = fm
- 0.06 Two-state g t=1.13
L« 0.00
=<
1450 Summation O t=0.94fm A t=131fm ?\070-06 % é % é g [ g
—— Two-state 0 t=113fm o -0.12 & %
1.35 -0.18 é =T S
) 0241 pisconnected
I
~
o
b
5<
00
T
~ .
T -0.01
0.45 A
Connected ~ 002
04056 ——=4 92 00 02 04 086 0.03
tins ~ ts/2 [fm]
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

tins — ts/2 [fm]
Figure 1. Left: Ratio from where we extract g4 and the connected contributions to g4™. Results are presented for
three values of 7, namely 7, = 0.94, 1.13 and 1.31 fm shown with open red circles, open blue squares and open
green triangles, respectively. The constant fit using the plateau method is shown with the dotted line spanning
the selected fit range of #,, and its corresponding error band. Results extracted from the summation method
are shown with the brown dashed line and corresponding error band, while results using two-state fits are shown
with the solid black line spanning the entire horizontal axis. Right: Ratio from where we extract the disconnected

contributions to gj‘j" , g3 and g4. The convention is as the left panel.

results display a milder Q?-dependence compared to the one expected from the pion pole dominance.
This discrepancy at low Q” values might be due to volume effects that suppress pion cloud formation
and need to be investigated in future studies using bigger volumes and better interpolating fields.

3.3 Disconnected contributions to the axial form factors

In Fig. 3 we show the disconnected contributions to the isoscalar GZ*”Z and G;*d as well as the strange
G, and G, form factors. We perform a model independent fit to these data using the z-expansion [12]
that yields a good description of the Q*-dependence.

In Fig. 4 we show our results for G;(Qz) extracted from the plateau method for a source-sink time
separation 7, = 0.94 fm. Due to the fact that the statistical uncertainty for this quantity is large it is
not possible to study larger separations. GE(QZ) is clearly negative and non-zero, with values that are
an order of magnitude smaller as compared to Gf_‘(Q2). The z-expansion requires high accuracy and
thus we fit the Q?>-dependence using a dipole form. G;(QZ) is very noisy to display and it is omitted.

3.4 lIsoscalar Axial and induced pseudoscalar form factors

Having both connected and disconnected contributions allows us to compute the total contribution
to the isoscalar form factor. In Fig. 5 we show results for the isoscalar GZ*“’. As can be seen, the
disconnected contribution comes with a different sign compared to the connected one, it is clearly

4
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Figure 2. Results for G4™/(0%) and G%(Q?) using values extracted from the plateau method at 7, = 1.31 fm
(filled blue squares). In the left panel, the solid blue (orange) line shows the fit to our results extracted from the
plateau (two-state fit) using dipole form. Black asterisk shows the experimental value of g4. The purple, red
and green bands are experimental results for G;‘\“I(Qz) taken from Refs. [10], [9] and [11] respectively. For the
induced pseudoscalar, the open blue squares show the pion-pole prediction results to G;‘,‘d (Q?) from our lattice
results of G4~(Q?) together with the corresponding fits, blue (orange) band is a fit extracted from the plateau
(two-state) fit. The filled blue squares show GZ“’ (Q?) extracted directly from the nucleon matrix element with a
pole fit (solid black line) after omitting the two lowest Q? values. The filled black circles are experimental results
of G;‘,"’(QZ) from Ref. [2]. The purple, red and green bands are constructed using the experimental results for
G'“(Q?) and pion pole to infer G ~/(0?).
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Figure 3. Results for the disconnected contributions: Left G4*(Q?) (red) and G5(Q?) (blue. Right: G,(Q*)"*

(red) and G;’,(QZ) (blue). The lattice results are extracted from the plateau method at 7, = 1.31 fm. The bands
show the fit using the z-expansion.

non-zero and changes the Q°-dependence of the form factor. Only after we include the discon-
nected contribution we have agreement with the experimental value of gj;*d . The isoscalar mass
m;‘;rd = 1.736(244)(374) is higher than the one extracted from the isovector case as expected from the
smoother Q*-dependence observed of the isoscalar form factor.

Our results on the isoscalar G;‘;’d are presented in Fig. 5. What is remarkable is the large dis-
connected contribution to the induced pseudoscalar form factor, which is of the same order as the

connected but with the opposite sign. Fitting separately the two contributions we find consistent
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Figure 5. Results for the isoscalar G4™(Q?) and G(Q?) (left) and G4*(Q%) and G}(Q?) (right). Connected
contributions to the isoscalar form factors are shown by the red open circles, disconnected by the blue upper open
triangles, and the total by the right magenta open triangles. The strange form factors are shown by the green
rthombus. The black star shows the experimental value of g%+

pole masses, namely mﬁ*d’ o = 0.324(22)(12) GeV and m;er’ dise — 0.331(81)(36) showing that the
two contributions are dominated by the same pole mass canceling the pion mass dependence in the

isoscalar form factor.

3.5 Comparison with other recent lattice QCD results

In Fig. 6 we show a comparison of our results at the physical point with results from another study
at a higher pion mass that used Ny = 2 + 1 clover-improved Wilson fermions [13] with pion mass
of 317 MeV. As can be seen, the values of GZ“’(QZ) are consistently larger as compared to ours in
particular at larger values of Q? leading to a milder slope than ours. Assuming that lattice artifacts
are small in both calculations this indicates a non-zero pion mass dependence. There is an overall
agreement between results on G;(Qz) Fig. 6 with the exception of the value at Q> = 0. We note that
the results from Ref. [13] used a smaller source-sink time separation. This together with the fact that
the pion mass is larger than physical is reflected in having smaller statistical errors even though our
statistics are twice as large.
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Figure 6. Comparison of our results on G‘[d(Qz) (left) and G;(Qz) (right) using twisted mass fermions (TMFs)
with approximately a physical value of the light quark mass [14] (open red squares) with results using Ny = 2+ 1
clover fermions [13] with light quark mass yielding pion mass of 317 MeV (open black circles). The red band
shows the fit to our results with its jackknife error.
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4 Conclusions

The isovector, isoscalar, strange and charm axial and induced pseudoscalar form factors of the nucleon
are presented using an ensemble of two degenerate dynamical quarks with mass tuned to approxi-
mately reproduce the physical value of the pion mass (physical point) [14]. Disconnected contribu-
tions are evaluated for the first time at the physical point using improved methods providing accurate
results. They are shown to be non-zero and of opposite sign to the connected contribution. For the case
of the induced pseudoscalar form factor the disconnected are of the same magnitude as the connected
canceling the pion pole in the isoscalar GZ*" (Q?). Only after adding the disconnected contribution to
the isoscalar axial charge we have agreement with the experimental value. Additionally, G;(Qz) and
G4(Q?) are found to be non-zero and negative, as is G3(Q%), while G4(Q?) is very noisy.

The value of the nucleon axial charge is lower by one standard deviation as compared to the
experimental value and the slope of Gf“d(Qz) is milder but in agreement with the experimental result
from Ref. [9]. However, one needs to study the Q*>-dependence further since lattice QCD results tend
to underestimate the slope. GZ‘d(Qz) also displays a milder Q>-dependence than expected from pion
pole dominance. We are currently investigating volume effects on these quantities using an ensemble
with the same parameters as the one analyzed here but with a lattice size of 64° x 128.
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