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Abstract. We present results on the isovector and isoscalar nucleon axial form factors
including disconnected contributions, using an ensemble of Nf = 2 twisted mass clover-
improved Wilson fermions simulated with approximately the physical value of the pion
mass. The light disconnected quark loops are computed using exact deflation, while
the strange and the charm quark loops are evaluated using the truncated solver method.
Techniques such as the summation and the two-state fits have been employed to access
ground-state dominance.

1 Introduction

The form factors of the nucleon are important quantities that encapsulate information about its struc-
ture and properties. Contrary to the electromagnetic form factors that are well determined experimen-
tally, the axial form factors are less known. The axial charge of the nucleon is an exception since it can
be measured to high precision from β-decays. The momentum dependence of the axial form factors
can be extracted from elastic scattering of neutrinos and protons [1]. The induced pseudoscalar form
factor has been measured experimentally only for few values of momentum transfer [2] from the cross
section for exclusive π+ electroproduction on the proton.

In this work, we evaluate the nucleon axialGA(Q2) and induced pseudoscalarGp(Q2) form factors
using an ensemble of Nf = 2 twisted mass clover-improved Wilson ensemble with light quark mass
tuned to approximately reproduce the physical value of the pion mass [3]. Both connected and dis-
connected contributions are evaluated allowing to compute the isovector, isoscalar as well as strange
and charm form factors.

�Speaker, e-mail: k.hadjiyiannakou@cyi.ac.cy

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 175, 06003 (2018)	 https://doi.org/10.1051/epjconf/201817506003
Lattice 2017



2 Lattice Formulation

2.1 Axial form factors

The decomposition of the nucleon matrix element of the axial-vector current Aµ(x) in Euclidean time
is given by

〈N(p′, s′)|Aµ|N(p, s)〉 = i

√
m2

N

EN(�p′)EN(�p)
ūN(p′, s′)

(
γµGA(Q2) − i

Qµ

2mN
Gp(Q2)

)
γ5uN(p, s), (1)

where p, s (p′, s′) are the momentum and spin of the initial (final) nucleon state, N is the nucleon
state, uN the nucleon spinor, mN and EN(�p) are the nucleon mass and energy with momentum �p and
Q2 = (p′ − p)2 the momentum transfer square. We consider the isovector, isoscalar as well as strange
and charm combinations

Au−d
µ = ψ̄(x)γµγ5

τ3

2
ψ(x), Au+d

µ = ψ̄(x)γµγ5 ψ(x), As
µ = s̄(x)γµγ5s(x) and Ac

µ = c̄(x)γµγ5c(x), (2)

where τ3 is the Pauli matrix acting in flavor space.

2.2 Lattice extraction

Computation of two- and three-point correlation functions is needed to extract nucleon matrix el-
ements. The three-point functions receive contributions from the so-called connected and discon-
nected diagrams. For the isovector combination disconnected contributions cancel out in the isospin
limit. For the connected contributions we employ the standard fixed-sink method where sequential
inversions through the sink are performed. Deflation of the low modes is employed to accelerate the
inversion of the Dirac operator. For the disconnected quark loops we combined the one-end trick [4]
with the truncated solver method (TSM) [5] to reduce the computational cost. Two-point functions
are computed for several source positions per configuration to increase the statistical accuracy.

We construct the following ratio of the appropriate three-point function Gµ(Γν, �p ′, �p; ts, tins) to
two-functions C(Γ0, �p, t)

Rµ(Γν, �p ′, �p; ts, tins) =
Gµ(Γν, �p ′, �p; ts, tins)

C(Γ0, �p ′; ts)

√
C(Γ0, �p; ts − tins)C(Γ0, �p ′; tins)C(Γ0, �p ′; ts)
C(Γ0, �p ′; ts − tins)C(Γ0, �p; tins)C(Γ0, �p; ts)

, (3)

which, in the large time limit ts − tins � 1 and tins � 1 yields the desired nucleon matrix element. The
insertion time tins as well as the sink time ts are taken relative to the source. To determine, if indeed,
these time separations are large enough we employ three methods: i) plateau method, which assumes
that the ratio of Eq. (3) is dominated by the ground state and perform a constant fit as a function of
tins to extract the matrix element, ii) summation method, in which one sums over tins and extracts the
matrix element from the slope of a linear fit, and iii) two-state fit method which includes besides the
ground state the first excited state in the fit to extract the matrix element. We require that these three
methods give consistent results for the matrix element.

We perform a non-perturbative calculation of both the renormalization functions for the isovector
and isoscalar currents needed for the extraction of physical matrix elements from lattice results us-
ing the Rome-Southampton method [6]. Lattice artifacts are subtracted perturbatively to O(a2) [7]
to yield a better determination of the limit (ap)2 → 0. We take the chiral limit to extract the
renormalization functions. We find for the non-singlet case Zns

A = 0.7910(4)(5) and for the singlet
Zs
A = 0.7968(25)(91), which are compatible within errors.
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A = 0.7910(4)(5) and for the singlet
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A = 0.7968(25)(91), which are compatible within errors.

2.3 Lattice Setup and Statistics

We analyze an ensemble of Nf = 2 twisted mass clover improved Wilson fermions with pion mass
mπ = 0.1304(4) GeV on a lattice of size 483 × 96 and a lattice spacing a=0.0938(3) fm determined
from nucleon mass [8]. In Tab. 1 we give the statistics used for the computation of connected and
disconnected contributions. For the connected, three values of ts analyzed in the frame where �p′ = �0,
while for the disconnected all separations are available without additional cost in both the rest frame
of the final nucleon as well as for �p′ = 2π�̂n

L . We note the much larger number of configurations and
source positions analyzed for the evaluation of the disconnected contributions.

Connected Disconnected

ts/a Nconf Nsrc Flavor Nconf NHP
r NLP

r Nsrc

10 579 16 light 2120 2250 - 100
12 579 16 strange 2057 63 1024 100
14 579 16 charm 2034 5 1250 100

Table 1: Statistics used in this study. Nconf is the number of gauge configurations and Nsrc is the
number of source positions per configuration. For the disconnected contributions, NHP

r is the number
of high-precision stochastic vectors produced, and NLP

r is the number of low-precision vectors used
when the TSM has been used.

3 Results

3.1 Axial charge

At zero momentum transfer the matrix element of the axial-vector current yields the nucleon axial
charge gA ≡ gu−dA (isovector) and gu+dA (isoscalar). In Fig. 1 we present our results for both quantities
showing separately the connected and disconnected contributions in the case of gu+dA . The ratio for the
connected contributions is computed at three values of ts. We check that the values extracted using the
plateau, summation and two-state methods are consistent as shown in Fig. 1. We include a systematic
error due to the excited states taken as the difference between the plateau value that demonstrates
convergence with ts and the one extracted from the two-state fit. We quote these values in Tab. 2.

gA gu+dA (Conn.) gu+dA (Disc.) gu+dA gsA gcA
1.212(33)(22) 0.595(28)(1) -0.150(20)(19) 0.445(34)(19) -0.0427(100)(93) -0.00338(188)(667)

Table 2: Our values for the nucleon axial charges. The first error is statistical and the second is a
systematic due to the excited states contamination.

3.2 Isovector Axial and induced pseudoscalar form factors

In Fig. 2 we show results for the isovector GA and Gp. For the axial form factor we fit our results to a
dipole form: GA(Q2) = gA

(1+Q2/m2
A)

2 where gA is fixed by the value of the form factor at zero momentum
transfer and the axial mass mA is allowed to vary. We find an axial mass mA = 1.322(42)(17) GeV,
which is consistent with the recent experimental value [9] from MiniBooNE experiment but larger
than the one extracted from previous experiments. For the induced pseudoscalar form factor we fit to
a pole formGp(Q2) = GA(Q2) C

Q2+m2
p
where C and mp are fit parameters. As shown in Fig. 2 our lattice
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Figure 1. Left: Ratio from where we extract gA and the connected contributions to gu+dA . Results are presented for
three values of ts, namely ts = 0.94, 1.13 and 1.31 fm shown with open red circles, open blue squares and open
green triangles, respectively. The constant fit using the plateau method is shown with the dotted line spanning
the selected fit range of tins and its corresponding error band. Results extracted from the summation method
are shown with the brown dashed line and corresponding error band, while results using two-state fits are shown
with the solid black line spanning the entire horizontal axis. Right: Ratio from where we extract the disconnected
contributions to gu+dA , gsA and gcA. The convention is as the left panel.

results display a milder Q2-dependence compared to the one expected from the pion pole dominance.
This discrepancy at low Q2 values might be due to volume effects that suppress pion cloud formation
and need to be investigated in future studies using bigger volumes and better interpolating fields.

3.3 Disconnected contributions to the axial form factors

In Fig. 3 we show the disconnected contributions to the isoscalarGu+d
A andGu+d

p as well as the strange
Gs

A andGs
p form factors. We perform a model independent fit to these data using the z-expansion [12]

that yields a good description of the Q2-dependence.
In Fig. 4 we show our results forGc

A(Q
2) extracted from the plateau method for a source-sink time

separation ts = 0.94 fm. Due to the fact that the statistical uncertainty for this quantity is large it is
not possible to study larger separations. Gc

A(Q
2) is clearly negative and non-zero, with values that are

an order of magnitude smaller as compared to Gs
A(Q

2). The z-expansion requires high accuracy and
thus we fit the Q2-dependence using a dipole form. Gc

p(Q
2) is very noisy to display and it is omitted.

3.4 Isoscalar Axial and induced pseudoscalar form factors

Having both connected and disconnected contributions allows us to compute the total contribution
to the isoscalar form factor. In Fig. 5 we show results for the isoscalar Gu+d

A . As can be seen, the
disconnected contribution comes with a different sign compared to the connected one, it is clearly
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A . As can be seen, the
disconnected contribution comes with a different sign compared to the connected one, it is clearly

Figure 2. Results for Gu−d
A (Q2) and Gu−d

p (Q2) using values extracted from the plateau method at ts = 1.31 fm
(filled blue squares). In the left panel, the solid blue (orange) line shows the fit to our results extracted from the
plateau (two-state fit) using dipole form. Black asterisk shows the experimental value of gA. The purple, red
and green bands are experimental results for Gu−d

A (Q2) taken from Refs. [10], [9] and [11] respectively. For the
induced pseudoscalar, the open blue squares show the pion-pole prediction results to Gu−d

p (Q2) from our lattice
results of Gu−d

A (Q2) together with the corresponding fits, blue (orange) band is a fit extracted from the plateau
(two-state) fit. The filled blue squares show Gu−d

p (Q2) extracted directly from the nucleon matrix element with a
pole fit (solid black line) after omitting the two lowest Q2 values. The filled black circles are experimental results
of Gu−d

p (Q2) from Ref. [2]. The purple, red and green bands are constructed using the experimental results for
Gu−d

A (Q2) and pion pole to infer Gu−d
p (Q2).

Figure 3. Results for the disconnected contributions: Left Gu+d
A (Q2) (red) and Gs

A(Q
2) (blue. Right: Gp(Q2)u+d

(red) and Gs
p(Q

2) (blue). The lattice results are extracted from the plateau method at ts = 1.31 fm. The bands
show the fit using the z-expansion.

non-zero and changes the Q2-dependence of the form factor. Only after we include the discon-
nected contribution we have agreement with the experimental value of gu+dA . The isoscalar mass
mu+d

A = 1.736(244)(374) is higher than the one extracted from the isovector case as expected from the
smoother Q2-dependence observed of the isoscalar form factor.

Our results on the isoscalar Gu+d
p are presented in Fig. 5. What is remarkable is the large dis-

connected contribution to the induced pseudoscalar form factor, which is of the same order as the
connected but with the opposite sign. Fitting separately the two contributions we find consistent
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Figure 4. Results for Gc
A(Q

2) extracted using the
plateau method at ts = 0.94 fm. The fit is performed
using a dipole form.

Figure 5. Results for the isoscalar Gu+d
A (Q2) and Gs

A(Q
2) (left) and Gu+d

p (Q2) and Gs
p(Q

2) (right). Connected
contributions to the isoscalar form factors are shown by the red open circles, disconnected by the blue upper open
triangles, and the total by the right magenta open triangles. The strange form factors are shown by the green
rhombus. The black star shows the experimental value of gu+dA .

pole masses, namely mu+d, conn
p = 0.324(22)(12) GeV and mu+d, disc

p = 0.331(81)(36) showing that the
two contributions are dominated by the same pole mass canceling the pion mass dependence in the
isoscalar form factor.

3.5 Comparison with other recent lattice QCD results

In Fig. 6 we show a comparison of our results at the physical point with results from another study
at a higher pion mass that used Nf = 2 + 1 clover-improved Wilson fermions [13] with pion mass
of 317 MeV. As can be seen, the values of Gu−d

A (Q2) are consistently larger as compared to ours in
particular at larger values of Q2 leading to a milder slope than ours. Assuming that lattice artifacts
are small in both calculations this indicates a non-zero pion mass dependence. There is an overall
agreement between results on Gs

A(Q
2) Fig. 6 with the exception of the value at Q2 = 0. We note that

the results from Ref. [13] used a smaller source-sink time separation. This together with the fact that
the pion mass is larger than physical is reflected in having smaller statistical errors even though our
statistics are twice as large.
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Figure 6. Comparison of our results on Gu−d
A (Q2) (left) and Gs

A(Q
2) (right) using twisted mass fermions (TMFs)

with approximately a physical value of the light quark mass [14] (open red squares) with results using Nf = 2+1
clover fermions [13] with light quark mass yielding pion mass of 317 MeV (open black circles). The red band
shows the fit to our results with its jackknife error.

4 Conclusions

The isovector, isoscalar, strange and charm axial and induced pseudoscalar form factors of the nucleon
are presented using an ensemble of two degenerate dynamical quarks with mass tuned to approxi-
mately reproduce the physical value of the pion mass (physical point) [14]. Disconnected contribu-
tions are evaluated for the first time at the physical point using improved methods providing accurate
results. They are shown to be non-zero and of opposite sign to the connected contribution. For the case
of the induced pseudoscalar form factor the disconnected are of the same magnitude as the connected
canceling the pion pole in the isoscalar Gu+d

p (Q2). Only after adding the disconnected contribution to
the isoscalar axial charge we have agreement with the experimental value. Additionally, Gs

A(Q
2) and

Gc
A(Q

2) are found to be non-zero and negative, as is Gs
p(Q

2), while Gc
p(Q

2) is very noisy.
The value of the nucleon axial charge is lower by one standard deviation as compared to the

experimental value and the slope of Gu−d
A (Q2) is milder but in agreement with the experimental result

from Ref. [9]. However, one needs to study the Q2-dependence further since lattice QCD results tend
to underestimate the slope. Gu−d

p (Q2) also displays a milder Q2-dependence than expected from pion
pole dominance. We are currently investigating volume effects on these quantities using an ensemble
with the same parameters as the one analyzed here but with a lattice size of 643 × 128.

Acknowledgments: We acknowledge funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No 642069. This
work was partly supported by a grant from the Swiss National Supercomputing Centre (CSCS) under
project IDs s540 and s625 on the Piz Daint system, by a Gauss allocation on SuperMUCwith ID 44060
and in addition used computational resources from the John von Neumann-Institute for Computing on
the Jureca and the BlueGene/Q Juqueen systems at the research center in Julich. We also acknowledge
PRACE for awarding us access to the Tier-0 computing resources Curie, Fermi and SuperMUC based
in CEA, France, Cineca, Italy and LRZ, Germany, respectively. K. H. and Ch. K. acknowledge sup-
port from the Cyprus Research Promotion Foundation under contract TΠE/ΠΛHPO/0311(BIE)/09.
We also acknowledge financial support from the PRACE-4IP project with grant number 653838.

7

EPJ Web of Conferences 175, 06003 (2018)	 https://doi.org/10.1051/epjconf/201817506003
Lattice 2017



References

[1] L.A. Ahrens et al., Phys. Lett. B202, 284 (1988)
[2] S. Choi et al., Phys. Rev. Lett. 71, 3927 (1993)
[3] A. Abdel-Rehim et al. (ETM), Phys. Rev. D95, 094515 (2017), 1507.05068
[4] C. McNeile, C. Michael (UKQCD), Phys. Rev. D73, 074506 (2006), hep-lat/0603007
[5] G. Bali, S. Collins, A. Schafer, Comput. Phys. Commun. 181, 1570 (2010), 0910.3970
[6] G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa, A. Vladikas, Nucl. Phys. B445, 81 (1995),

hep-lat/9411010

[7] C. Alexandrou, M. Constantinou, H. Panagopoulos (ETM), Phys. Rev. D95, 034505 (2017),
1509.00213

[8] C. Alexandrou, C. Kallidonis, Phys. Rev. D96, 034511 (2017), 1704.02647
[9] A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D81, 092005 (2010), 1002.2680
[10] A. Liesenfeld et al. (A1), Phys. Lett. B468, 20 (1999), nucl-ex/9911003
[11] A.S. Meyer, M. Betancourt, R. Gran, R.J. Hill, Phys. Rev. D93, 113015 (2016), 1603.03048
[12] R.J. Hill, G. Paz, Phys. Rev. D82, 113005 (2010), 1008.4619
[13] J. Green, N. Hasan, S. Meinel, M. Engelhardt, S. Krieg, J. Laeuchli, J. Negele, K. Orginos,

A. Pochinsky, S. Syritsyn, Phys. Rev. D95, 114502 (2017), 1703.06703
[14] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou,

A. Vaquero Aviles-Casco, Phys. Rev. D96, 054507 (2017), 1705.03399

8

EPJ Web of Conferences 175, 06003 (2018)	 https://doi.org/10.1051/epjconf/201817506003
Lattice 2017


