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Using Ny = 2 + 1 + 1 lattice QCD, we determine the fermionic connected contributions to the first and
second moments of the pion parton distribution function. Based on gauge configurations from the
European Twisted Mass Collaboration, chiral and continuum extrapolations are performed using pion
masses in the range of 230 to 500 MeV and three values of the lattice spacing. Finite volume effects are
investigated using different volumes. In order to avoid mixing under renormalization for the second
moment, we use an operator with two nonzero spatial components of momentum. Momenta are injected

using twisted boundary conditions. Our final values read (x)2™* = 0.2075(106) and (x?)2™" = 0.163(33),
determined at 2 GeV in the MS scheme and with systematic and statistical uncertainties summed in

quadrature.
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I. INTRODUCTION

In quantum chromodynamics (QCD), the pion represents
the Goldstone boson of spontaneously broken chiral
symmetry and is the lightest hadronic state in the spectrum.
As such it is of deep importance both for the long range part
of the nucleon-nucleon interaction and for the inner
structure of the nucleon. In the latter case, it is now widely
recognized that the pion is responsible for most, if not
for all, of the excess of d over i antiquarks in the proton sea
[1-4]. Despite this importance, compared to the relatively
detailed knowledge of the quark and gluon substructure of
the nucleon, the pion substructure is largely unknown
because pion fixed target experiments cannot be built.
Nevertheless, Drell-Yan lepton-pair production and prompt
photon production in totally inclusive pion-nucleon scat-
tering [5-7], as well as leading neutron electroproduction
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[8], have been used to determine the pion structure
functions.

Among the most important tools for understanding
hadron structure are parton distribution functions (PDFs),
which have been extensively studied both experimentally
and theoretically. The determination of PDFs from exper-
imental data requires fits based on phenomenological
models affected by systematic uncertainties that are not
easy to quantify. Therefore, a direct determination of parton
distribution functions from first principles is highly desir-
able. The method of choice is thus lattice QCD, a non-
perturbative tool based on discretized Euclidean spacetime.
However, due to their light-cone nature PDFs cannot be
computed directly on a Euclidean lattice. Nevertheless, a
recent proposal by Ji [9] has led to the exciting possibility
of computing the Bjorken x dependence of PDFs from
lattice QCD [10-13] based on quasidistributions instead of
using the light cone. Indeed, this method has recently been
applied to the nucleon unpolarized [14,15], helicity [14,16],
and transversity [17,18] distributions, directly at the
physical point, where the pion mass assumes its physical
value. For the valence quark distributions of the pion with
mass of M, ~ 310 MeV results can be found in Ref. [19].
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The alternative proposal of using pseudodistributions was
put forward by Radyushkin in Ref. [20]. It was studied for
the first time on the lattice for the nucleon case in Ref. [21].
Its relation to moments of PDFs is analyzed in Ref. [22]. A
third proposal by Ma and Qiu can be found in Ref. [23].

Although these efforts have opened a new direction to
access PDFs demonstrating remarkable qualitative agree-
ment with phenomenological parametrizations, there are still
a number of improvements that have to be implemented
before one reaches the reliability for a direct quantitative
comparison with systematic uncertainties under control.
For doubts on the aforementioned approaches we refer
to Ref. [24].

In lattice QCD there is a long history of calculations of
moments of PDFs. In principle the PDFs can be obtained, as
outlined in Ref. [25] and references therein, using the inverse
Mellin transform and the operator product expansion. Such a
reconstruction can be reliable only if several moments of
PDFs are available [26]. However, the signal-to-noise ratio
decreases for high moments and mixing with lower dimen-
sional operators becomes unavoidable. Nevertheless, there
have been advances in noise reduction techniques and
methods to disentangle mixing between operators, which
allow one to extract moments beyond the leading one. This
progress has led to investigations of interesting physics
questions, such as the momentum and spin decomposition
of the nucleon in terms of their quark and gluon contents.
Within our European Twisted Mass Collaboration (ETMC),
this has been accomplished by lattice QCD simulations
directly at the physical point [27], where both momentum
and spin sum rules have been verified without imposing any
constraints. For the pion, however, the situation is much less
satisfactory. Earlier studies have computed the first three
moments either in the quenched approximation [28-30] or
for connected insertions only [31-34], all of them using
simulations with quark masses away from their physical
value. Only a few results for realistic QCD simulations
appear in the literature, that is, Ref. [33] at about 150 MeV for
the pion mass, and a determination directly at the physical
point with Ny = 2 in Ref. [34] for the lowest moment. Given
the importance of the pion for ongoing and planned experi-
ments, further study of the pion structure is imperative. For
the extraction of reliable estimates, systematic uncertainties
such as discretization and volume effects must be properly
addressed and quantified.

In this work we present a multicomponent effort in the
aforementioned direction, with a variety of improvements
compared to the studies available in the literature, in terms of
the ensembles employed and level of control over systematic
uncertainties in the computed moments. We calculate the
light quark connected contributions of the first and second
moments—(x) and (x?)—of the pion using lattice QCD
simulations that include degenerate light as well as strange
and charm quarks in the sea (Ny =2+ 1+ 1). We use
several ensembles produced by the ETMC corresponding to

three values of the lattice spacing, which allow us to study
discretization effects. These ensembles have pion mass
values that range between 230 MeV and 500 MeV, which
are combined in a chiral extrapolation to obtain the value at
the physical pion mass. Different volumes are used to
investigate finite size effects and excited state contamina-
tions. In addition, a way around possible mixing for (x?) is
the choice of an operator that is free from mixing under
renormalization. A first preliminary account of this work can
be found in Ref. [35].

The remainder of the paper is organized as follows: In
Sec. II we discuss the technical aspects of the lattice
calculation, while in Sec. IIT we discuss the method used
for the determination of the required renormalization
functions in the RI’-MOM scheme and the conversion to
the MS scheme. The main results of this work are presented
in Sec. IV, followed by a discussion and a summary in
Sec. V. Technical details related to renormalization can be
found in Appendix A, while correlation coefficients of fit
parameters are collected in Appendix B.

II. LATTICE DETAILS

The calculation presented in this paper is based on gauge
configurations generated by ETMC with Ny =2 + 1 + 1
dynamical quark flavors at three values of the lattice spacing.
Details for the configuration generation and analyses for
basic quantities can be found in Refs. [36-38]. The ensem-
bles were generated using the Iwasaki gauge action [39]
and the Wilson twisted mass fermion action at maximal
twist [40—42]. Working at maximal twist guarantees O(a)
improvement for most physical quantities [40], and in
particular for the quantities considered here.

The bare parameters of the ensembles used here are
summarized in Table I. u, is the bare light quark mass
directly proportional to the renormalized light quark mass.
U, and ps parametrize the strange and charm quark masses
[36,41]. For the subset of configurations we used from each
ensemble we have computed the autocorrelation times for
the relevant quantities to verify their statistical independ-
ence. The error analysis is performed using the stationary
blocked bootstrap procedure [43] with 1500 bootstrap
samples.

In general, the computation of the moments requires the
computation of three-point functions of the form

Co(t,p) = Y (x(T/2,% P)O(t, )% (0,0,5)) (1)

Xy

with operator O inserted at Euclidean time 7. We fix here
the time difference between the two pions to 7/2, which is
not necessary, but convenient. The operators for the two
moments will be detailed below. The particular choice of
operators is motivated by their transformation properties
under the symmetries of the lattice as well as the require-
ment of minimal mixing with lower-dimensional operators
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TABLE L.

The Ny =2 + 1 + 1 ensembles used in this investigation. The notation of Ref. [38] is used for labeling

the ensembles. We list the bare parameters 3, u, u,, and us. T/a and L/a are time and spatial extents of the lattice,
respectively. N ¢ is the number of configurations we used to estimate the moments.

Ensemble s apy ap, ajls L/a T/a N eonf

A30.32 1.90 0.0030 0.150 0.190 32 64 280

A40.24 1.90 0.0040 0.150 0.190 24 48 280

A40.32 1.90 0.0040 0.150 0.190 32 64 250

A60.24 1.90 0.0060 0.150 0.190 24 48 313

A80.24 1.90 0.0080 0.150 0.190 24 48 304

A100.24 1.90 0.0100 0.150 0.190 24 84 312

B25.32 1.95 0.0025 0.135 0.170 32 64 212

B35.32 1.95 0.0035 0.135 0.170 32 64 249

B55.32 1.95 0.0055 0.135 0.170 32 64 310

B85.24 1.95 0.0085 0.135 0.170 24 84 357

D15.48 2.10 0.0015 0.120 0.1385 48 96 161

D30.48 2.10 0.0030 0.120 0.1385 48 96 174

D45.32sc 2.10 0.0045 0.0937 0.1077 32 64 300
under renormalization; see Refs. [25,44,45] for details. The 1
; ; . b (*hoare = 5777 (7(0)[Oa4|7(0)). (5)
interpolating operators for the pions read e 2M2

)
(1.3 5) = (1. %, é)i}’s Tt w(t, % 5/)’ (2) with M, the mass of the pion. The matrix element

2

with the momentum p 0 — @' realized via twisted boun-
dary conditions; see below. 7/, i = 1, 2, 3 are the Pauli
matrices acting in flavor space, and y = (u, d)" is the light
quark field.

A. The first moment (x)

A convenient operator in Euclidean spacetime for the
calculation of the first moment (x) is

O2p = Ouy(x)

SR

Here, BM =1(V, + V) is the symmetric, gauge covariant
lattice derivative with V, (V) being the usual gauge
covariant forward (backward) derivative on the lattice. The
above operator has the advantage that (x) is extracted
without the need for an external momentum, because
external momentum in general increases the noise. For
the first use of this operator with Wilson twisted mass
fermions we refer to Refs. [30,46].

The bare moment (x),,.. is related to the matrix element
of the operator O,y as follows:

) ®. 0

1

SOula(p) =217 =357 ) (s (4

where p = (p°, p) is the four momentum of the pions.
With pions at rest one obtains

(7(0)|O44|7(0)) between two pions at rest is calculated
from the ratio

((0)|Oy4|m(0)) = 41\@%’61)

CAT/2.0 (0xt<T/2) (6)

of the three point function

Caa(1,0) = Y (#(T/2,%.0)04(1,7.0)a7(0,0,0))  (7)

X,y

over the two point function

Co(T/2.5) =Y (a(T/2.% p)x"(0,0,p)).  (8)

X

In Eq. (6) a factor of 2M ,, relates the lattice and continuum
matrix elements of J,4 between pion states, and a further
factor of 2 relates the ratio of correlation functions to the
value of the matrix element. This leads to

2 Cult, 0)

<x>bare(t) = M,Z C,,(T/Z, 6)

0<xt<T/2). (9)

There are two contributions in the Wick contractions of
Cyy: the first is extracted when the current couples to the
quarks of the pion directly (connected diagram), while the
second is obtained from the so-called quark loop (dis-
connected diagram) in which the current interacts with the
pion via gluon exchange. Both are visualized in Fig. 1. The
disconnected contribution is ignored in our calculation,
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O(t) Og) which leads to
2 Con(t,p)
2 012
0 T/2 <x >bare(t) =122 =\ (13)
m(0) m(T/2) (0) 7(T/2) p'p*Ci(T/2,p)
FIG. 1. Connected (left) and disconnected (right) contributions For details on the implementation of Oy, we refer to

to the three-point functions. The lines represent quark propagators.

assuming that it is small, which is indeed the case for the
nucleon [47]. A computation of the disconnected contri-
butions is, however, planned for the near future.

B. The second moment (x?)

In order to avoid mixing under renormalization with
lower dimensional operators [44], we use for the second
moment the operator (in Euclidean spacetime)

1+
2

1 _ < <
Oona = ?WV{ODlDZ} ( >l// —traces, (10)

which is related to (x*) via

(7(P)|Ooi2lz(p)) = =2(P°P' P?) (X )pare- (1)

In contrast to (x), nonzero momentum is needed to extract
(x?), due to the presence of the kinematic factor (p°p!p?)
multiplying the quantity of interest. We use twisted
boundary conditions here to inject momentum; see below.
As in the case of the first moment, the matrix element of the
second moment is related to a ratio of three point to two

point functions,

Con(t.P)

(z(p)|Oo12|7(p)) = 4E,(P) C.(T/2.p)

(12)

TABLE IL
as M, L for all ensembles.

Ref. [44]. We employ the convention given therein for the
discretization of terms involving DD.

C. The pion mass and decay constant

The pion mass enters the equations leading to (x) and
(x*), and thus, it must be computed. It can be obtained by
fits of the functional form

ft, A M,) = A(e™Ms! 4 e~M=(T-1)) (14)
to the data for C,,(¢) for sufficiently large Euclidean times.

In twisted mass lattice QCD at maximal twist the pion
decay constant is directly related to the amplitude A via

VA

fr :zﬂf@ (15)

without the need for renormalization [48].

We note that M, and f, are affected significantly by
finite size effects [49]. Therefore, we use the corrections
computed in Ref. [49], which are summarized in Table II
for all the ensembles used in this work.

In Egs. (9) and (13) one needs to divide by the two-point
function at 7/2. We explore two possibilities to perform
this division: the first one is to use the data of C, for
t = T/2. The second one is to first fit Eq. (14) to the data
for C; in the region where the ground state dominates, and
then use the best fit parameters to reconstruct C,(7/2). The
latter procedure can help to average out fluctuations.
However, the differences between the two procedures are

0 values, pion mass aM ,, pion decay constant af ;, finite volume correction factors K ; and K, as well

Ensemble 0 M, fx Ky K, M, L
A30.32 0.4242640 0.12361(48) 0.06459(25) 0.9757 1.0023 4.0
A40.24 0.2828425 0.14423(62) 0.06567(34) 0.9406 1.0099 3.5
A40.32 0.3771235 0.14147(47) 0.06809(22) 0.9874 1.0013 4.5
A60.24 0.3535535 0.17253(72) 0.07148(26) 0.9716 1.0047 4.1
A80.24 0.3535535 0.19953(48) 0.07596(21) 0.9839 1.0025 4.8
A100.24 0.4242640 0.22117(49) 0.07931(22) 0.9900 1.0015 53
B25.32 0.4242640 0.10882(52) 0.05518(32) 0.9605 1.0136 35
B35.32 0.4242640 0.12450(53) 0.06056(22) 0.9794 1.0025 4.0
B55.32 0.4242640 0.15534(28) 0.06513(16) 0.9920 1.0009 5.0
B85.24 0.4242640 0.19253(53) 0.06984(21) 0.9795 1.0032 4.6
D15.48 0.5185450 0.06986(43) 0.04298(20) 0.9762 1.0081 3.4
D30.48 0.4714045 0.09786(28) 0.04721(13) 0.9938 1.0021 4.7
D45.32 0.3771235 0.11980(48) 0.04826(18) 0.9860 1.0047 3.8
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always well below the statistical uncertainty for both (x)
and (x?). As our method of choice, we henceforth use the
second of the two methods.

D. Stochastic evaluation

The above two and three point correlators are evaluated
by using a stochastic time slice source (Z(2) noise in both
real and imaginary parts) [50-52] for all color, spin, and

spatial indices. That is, the quark propagator X;’,é (y) for

quark flavor f and twist angle 0 is obtained by solving1

D Dily)Xp(y) =
y.p.b

£(2)46,,0 (sourceatr=0)  (16)

for X, where the Z(2) random source £(7)% satisfies the
random average condition
(& (N)aE()) = 62300400 p- (17)

This allows one to estimate for instance the pion two-point
function C,() at zero momentum from

Zx

X(l ,a

X“O( 1)]* + noise,

where the y5 hermiticity D, = y5D 475 has been used. The

Z’;?”
/ !
putation of Cyy(7) is obtained by solving

generalized propagator [53] (v) needed in the com-

Zng?, Z,y Zﬁ??(y) ys XS f(z) .7/2 (sinkat?=T/2)

(18)

for X. This approach was first applied for (x) of the pion in
Ref. [32], and we used it recently in a computation of the
pion vector form factor [35,54], where further details can be
found. To further improve the signal, we use Ny, =5
sources per gauge configuration and average. The source
time slices are chosen uniformly randomin [0, 1, ..., T — 1].

E. Twisted boundary conditions

In order to realize nonzero momentum of arbitrary values
for the pions as needed for (x?), we make use of so-called
twisted boundary conditions [55-57]. Enforcing the spatial
boundary conditions y(x + €;L) = ™%y (x) on the quark
fields changes the momentum quantization condition in
finite volume to p; = 2”6' + = 2”"1 . In the time direction we
chose 6, = 1/2 to obtam antlperlodlc boundary conditions

'Greek indices represent spin and latin indices color degrees of
freedom. f = u, d indexes the (light) quark flavors.

in time. We chose the 6 in the spatial directions to obtain
nonzero momentum for the pions.

For the two quarks in the pion, we always chose a zero
twist angle for one of the quarks and nonzero 6 for the other
one. The pion three-momentum p is then given by (n; = 0)

2719

P="r
We recall that for the computation of (x?) two nonzero
spatial components of the pion momentum are needed
when Oy, is used; see Eq. (13). We chose the two nonzero

elements of @ to be equal, for instance 0= (0,0,0). The
corresponding values for § for each ensemble are compiled
in Table II. We always perform the computation for (x?) for
both £ and average. The such obtained result is auto-
matically O(a) improved.

The main reason for using twisted boundary conditions
is the fact that noise in the three point and two point
functions increases significantly with increasing modulus
of the injected momentum. With twisted boundary con-
ditions we are able to chose the momentum as small as
possible. However, we remark that twisted boundary
conditions induce additional finite volume effects, which
might influence our results [58]. As will be discussed later,
we do not see such effects in (x?) within statistical
uncertainties.

F. Chiral extrapolations

In Ref. [59] the pion mass dependence of pion moments
has been computed in leading order (LO) chiral perturba-
tion theory (ChPT). The functional form for (x) reads

2
M
f
with low energy constants (LECs) ¢, and c,. For the second
moment it reads

(X)(M37) = co+ ¢y (19)

() (M2) = b0<1 = M M’Zf) o Mi o)

— log—" =
Arf.)* " ug 12

where we denote the corresponding LECs with b, and b;.
We chose the renormalization scale conventionally
Ur = f,. In contrast to Ref. [59], we have expressed the
two moments as a function of M,/ f,, which has the big
advantage of fully dimensionless expressions. In principle

one should then use f2™*, i.e., the physical value of the
decay constant. However, we use here f, as estimated for
each ensemble, because scale setting is required only to
estimate the moments at the physical point. Since f, is a
constant in leading order ChPT, this procedure is consistent
to the order of ChPT we are working here. Unfortunately,
the next-to-leading-order expressions for the moments are
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not known. Still, in contrast to the case of nucleons, in the
pion sector ChPT works well such that we already expect
the lowest order to provide a reliable tool for our set of pion
masses. In order to account also for lattice spacing artifacts
we add terms c¢,a?/r and b,a?/r} to the expressions for
the first and the second moments, respectively.

III. RENORMALIZATION FUNCTIONS

A renormalization factor (Z factor) must be applied to
the bare matrix elements of the operators defined in Egs. (3)
and (10), in order to obtain physical quantities. More
precisely, the bare and the renormalized moments are
related as follows:

<x>R = ZVD<x>bare7 <x2>R = ZVDD<x2>bare‘ (21)
In particular, the renormalization procedure eliminates
divergences with respect to the lattice regulator and allows
the continuum limit to be taken. In this section we present
the methodology and results for the renormalization func-
tions, which are finally converted to the MS scheme at a
scale =2 GeV. We employ the Rome-Southampton
method (RI' scheme) [60] to compute the Z factors non-
perturbatively determined by the conditions

Z, = L e((t(p))1 S ()]

= , 22

=

Z3'Zo ST ()| =1 (23)

=

The momentum p is set to the RI' renormalization scale, ),
§Bom (T'Bom) ig the tree-level value of the fermion propa-
gator (operator), and the trace is taken over spin and color
indices.

We obtain the Z factors using several ensembles at
different values of the pion mass, so that the chiral limit can
be safely taken. In addition, on each ensemble we use
several values of the momentum p (to be set equal to the Rl
renormalization scale ) to control systematic uncertain-
ties as explained below. The RI' values for the Z factors are
converted to the MS scheme and are evolved to a reference
scale of 2 GeV using an intermediate renormalization group
invariant scheme defined in continuum perturbation theory.
Renormalized matrix elements can be compared to phe-
nomenological and experimental estimates that typically
refer to quantities renormalized in the MS scheme.

For a proper chiral extrapolation we compute the Z
factors on ensembles generated specifically for the renorm-
alization program of ETMC that include four degenerate
quarks (Ny =4) at the same values of # as the N, =
24 1+ 1 ensembles used for the calculation of (x) and
(x?). The parameters of the ensembles are given in
Table III, where the lattice spacing is determined using

TABLE III.  Simulation details for the ensembles used for the
renormalization functions.

ap K AUPEAC aMpg Lattice size
p =190, a =0.0934 fm
0.0080  0.162689  40.0275(4)  0.280(1) 243 x 48
0.163476  —0.0273(2)  0.227(1)
0.0080  0.162876  +0.0398(1)  0.279(2) 243 x 48
0.163206  —0.0390(1)  0.241(1)
p =195, a =0.082 fm
0.0020  0.160524  +0.0363(1) 243 x 48
0.161585  —0.0363(1)
0.0085  0.160826  +0.0191(2)  0.277(2) 243 x 48
0.161229  —-0.0209(2)  0.259(1)
0.0180  0.160826  +0.0163(2)  0.317(1) 243 x 48
0.161229  —-0.0160(2)  0.292(1)
p =210, a = 0.064 fm
0.0030  0.156042  4+0.0042(1)  0.127(2) 323 x 64
0.156157  —0.0040(1)  0.129(3)
0.0046  0.156017  40.0056(1)  0.150(2) 323 x 64
0.156209  —0.0059(1)  0.160(4)
0.0064  0.155983  40.0069(1)  0.171(1) 323 x 64
0.156250  —0.0068(1)  0.180(4)
0.0078  0.155949  40.0082(1)  0.188(1) 323 x 64
0.156291 —0.0082(1)  0.191(3)

the nucleon mass computed with the Ny, =2+ 1+ 1
twisted mass configurations [61,62].

We employ the momentum source method introduced in
Ref. [63] and used in Ref. [64], which leads to a high
statistical accuracy with a small number of configurations.
For the Z factors presented in this work we use between 10
to 50 configurations depending on the ensemble under
study. To reduce discretization effects we use momenta that
have the same spatial components, that is,

o =(

n,€(2,20],

n; 1 n, n, n,
L, 2L, Ly’ L;'L,)’

nee(l,10], (24)

where L, (L,) is the temporal (spatial) extent of the
lattice, and we restrict the momenta up to (ap)* ~7. A
useful constraint for the chosen spatial momenta is
STipt/(O0ip?)? < 0.3 which ensures reduced discretiza-
tion effects. This is based on empirical arguments [65], as
this ratio appears to suppress O(a?) terms in the perturba-
tive expressions for Green’s functions. The procedure we
follow in this work is the same as our previous work in
nonperturbative renormalization, and thus, we refer the
interested reader to Refs. [64,66,67] for technical details. It
is worth mentioning that in the renormalization of the one-
derivative operator we also employ improvements by
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subtracting lattice artifacts [64]. The latter are computed to
one loop in perturbation theory and to all orders in the
lattice spacing, O(g?>a*). These artifacts are present in the
nonperturbative vertex functions of the fermion propagator
and fermion operators under study. Such an improvement is
not yet available for the two-derivative operator, but finite a
effects are partly removed upon the (ap)? — 0 extrapola-
tion. In this section we focus on the results for Z,pp, which
are presented for the first time to our knowledge, while
results on Z,, have been extracted within the work of
Ref. [64].

To extract the renormalization functions in the chiral
limit we perform an extrapolation using a quadratic fit
with respect to the pion mass of the ensemble, that is,
a®’ (ug) + bRV () - M2 where a and b depend on the
scheme and scale. In addition, these parameters depend on
the coupling constant, and separate fits are performed at
each value of . We find that the renormalization functions
under study have a very mild dependence on the pion mass,
which becomes slightly larger for (ap)*> < 1. However,
these points do not participate in the fit (ap)?> — 0 for the
final estimates. Allowing a slope, b # 0, and performing a
linear extrapolation with respect to M2, the data yield a
slope that is compatible with zero within the small
uncertainties. This is demonstrated in Fig. 2 for ZRY for
B = 1.95, plotted as a function of the initial scale (ap)?.
For clarity we only show two values of the twisted mass
ap*®®, while the statistical errors are too small to be visible.
The corresponding plot for Z,p is shown in Ref. [64].

In order to compare lattice values to experimental results
one must convert to a universal renormalization scheme and
use a reference scale ji. Typically one chooses the MS
scheme at i = 2 GeV. The conversion from the RI' to the
MS scheme uses the intermediate renormalization group
invariant (RGI) scheme, which is scale independent and thus,

28 = Z§ (o) AZE (no)
— ZM5(2 GeV)AZYS(2 GeV). (25)

O ap*** = 0.0020
i 0 ap™® = 0.0085

RI
ZVDD

(ap)®

FIG. 2. Pion mass dependence of ZRY, at f =195 as a
function of the initial RI' renormalization scale (p = uy).

The conversion factor can be extracted from the above
relation,

ZEGY) AZS ) e

CRIMS (402 GeV) . =2 .
o v Z8 (o) AZMS(2GeV)

The quantity AZ)(uo) is expressed in terms of the f
function and the anomalous dimension 7% =y® of the
operator,

9 (u)2> &

Azfo(ﬂ) = <2ﬁom

ol [ (5 2} o

with all necessary ingredients defined in Appendix A. We
employ a three-loop approximation, for which AZ?)(x)
takes a simpler form [64].

In Fig. 3 we present representative results for Z,pp (at
p =2.10) in the RT [ZRU(4y)] and MS [Z)5,(2 GeV)]
schemes as a function of the initial RI renormalization

scale, py = p. Note that Z%SD has been evolved to 2 GeV,
but there is residual dependence on the initial scale. This
dependence is removed by extrapolating to zero, using the
Ansatz

Zolap) = 2 +2g - (ap)* (28)
where Zgg) corresponds to our final value on the renorm-
alization functions for the operator O. For each value of f
we consider momenta 6 > (a p)2 > 2 for which perturba-
tion theory is trustworthy and lattice artifacts are still under
control.

=
— 7] e ZRI
m ZMS
o
= 1_‘“,.,./“-"""/ o
—_ °
o -~ o an®®
< | e T e
A s,
2 | .- %eoq ° .".. .
L) l-..... %eene,
o
= I T T T I
0 2 4 6 8
(ap)?
FIG. 3. Chirally extrapolated renormalization function for {x?)

in the RI' [ZR (uo)] and MS [ZM5(2 GeV)] schemes at
p =2.10, as a function of the initial renormalization scale
(p = mo). A black diamond represents the final estimate upon
(ap)* — 0 and the solid line to fit in the interval [3, 6] of ZMS,
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TABLE IV. Our final values of the renormalization functions
ZMS and ZM5, at i =2 GeV renormalization scale. The first
error is the statistical error. The second error corresponds to
the systematic error obtained by varying the fit range in the
(ap)* — 0 extrapolation.

RFs B =210 B =195 B =1.90
Z9 1.0991(29)(55)  1.0624(108)(33)  1.0268(26)(103)
295 1.406(1)(20) 1.356(1)(18) 1.307(1)21)

In Table IV we report our chirally extrapolated values for
7% and Z°), in the MS scheme at 2 GeV. Z\% has been
extracted upon subtraction of the O(g?a®) terms, which
improves the estimates as explained in Ref. [64]. The

statistical and systematic uncertainties are given in the first

and second parentheses, respectively. For ZQD we chose as

appropriate fit interval (ap)?:[3 —6]. The reported sys-
tematic uncertainty is extracted from the difference of Z&%
between various intervals for the (ap)? — 0 extrapolation.

In Ref. [68] Z, has been determined on the same gauge
configurations using a different method. The authors find
generally lower values for Z,,, which are within the quoted
systematic uncertainties compatible with what we quote in
Table IV. In order to be consistent in our treatment of (x)
and (x?), we stick here to the values compiled in Table TV.

IV. RESULTS

In the left panel of Fig. 4 we show the bare three-point
function Cy(f) for ensemble D30.48. The plot demon-
strates the quality of the data we are able to obtain for

$ §

S @
¢
¢ chs 5

0 10 20 30 40
t/a

Cys(1). In Ref. [69] it was found that, in the quenched
approximation, with Schrodinger functional boundary con-
ditions and clover improved Wilson fermions, finite size
effects to (x) are quite sizable. This persists even at values
of M, - L where finite size effects in M, are no longer
visible. The authors measured these effects to be about 5%
at values of M, - L ~ 4. In this work we use two ensembles,
A40.24 with M, - L = 3.5 and A40.32 with M, - L = 4.5,
which differ only in the volume and can be used for
investigation of finite size effects. In the right panel of
Fig. 4 we show a comparison of (x)(7) between A40.24 and
A40.32. We find that the values of the bare (x)(r) in the
plateau regions for A40.24 and A40.32 agree within error
bars. This indicates that in our lattice discretization for the
given values of M, - L, finite size effects play a minor role,
if any. This is in agreement with the finding in the quenched
approximation [46].

In Fig. 5 we show two examples for the bare data of the
three-point function Cy;, for the ensembles A100.24 in the
left panel and A30.32 in the right panel. One nicely
observes the asymmetry in Cy, around ¢t = T/2. The
signal-to-noise ratio deteriorates significantly with decreas-
ing light quark mass value. Compared to C, a strong
increase in the statistical uncertainty is clearly visible. Still,
the determination of (x?) is feasible for all quark mass
values. Finite size effects for the case of (x?) are within the
reported statistical uncertainties.

For determining an estimate of (x) and (x?) we perform
plateau fits to the (anti)symmetrized data for (x)(¢) and
(x?)(t). Following the ideas put forward in Ref. [70], we
perform such fits for many different fit ranges. The
estimates for M, and f, are obtained by fitting all possible

2 |

O %
- %
el 4
\—; [e=}
S
= %%
3
§ S

o A40.24
2 o A40.32
()

FIG. 4. Left: The bare three point function C,4(z) for ensemble D30.48 as a function of #/a. Right: The bare (x)(#) as a function of #/a

for A40.24 and A40.32.
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FIG. 5.

fit ranges with at least six consecutive time slices. Each of
these fits obtains a weight according to

_ (1=2|p; = 1/2|)
i~ A2 .

(29)

Here, p; is the p value of the corresponding fit and A, is the
statistical error on M, or f, determined from the bootstrap
procedure for this fit range. This procedure is repeated for
each bootstrap replica. In addition, a systematic uncertainty
from the fit range choice can be specified from the
68% confidence interval of the weighted distribution.
The estimates for the moments are then obtained in a very
similar manner, just that also M, is needed. Thus, we
combine all possible fit ranges with at least six consecutive
time slices for C,, with all possible fit ranges with at least six
consecutive time slices to the corresponding three point
function. The weight for a moment with a specific fit range
combination is obtained by multiplying the corresponding
weights of the fit to C,, and the fit to the three-point function.
The estimates extracted as explained above for the first
and second moments are compiled in Table V. The values
are renormalized at 2 GeV in the MS scheme. Statistical
errors coming from the renormalization functions are
included via the parametric bootstrap procedure. The
second error quoted comes from the different fit ranges
estimated as discussed before. One observes that this
systematic uncertainty is for the first moment usually of
the order of the statistical error. For the second moment it is
sometimes a bit larger. D15.48 and B25.32 have, unfortu-
nately, a large statistical and systematic uncertainty on (x?).
In particular for D15.48 the significance of the result
strongly depends on the chosen fit range. The reason is

4.-1076
|

2-1076
|
—O=—
|
»—e‘—o
:'—e»——‘e—os
—=—
| %‘
==
|
==y
|
|
|
|
|

The bare three-point function Cy,(7) as a function of #/a for ensemble A100.24 (left) and for ensemble A30.32 (right).

the significant increase of noise toward smaller light quark
mass values.

These results for the renormalized first and second
moments of the pion are shown in Fig. 6 in the left and
right panels, respectively. They are plotted as a function of
(M,/f,)? with statistical errors only.

A. Chiral and continuum extrapolations

The ChPT expressions Eqgs. (19) and (20) plus terms
proportional to (a/ry)? for (x) and (x?) read

TABLE V. The results for the renormalized (x)g and (x?)g for
the ensembles used in this investigation. (x)y and (x?)y are given

at i = 2 GeV in the MS scheme. In addition we give the values of
M, L.

Ensemble (x)r (x*)r

A30.32 0.2586(41)(28) 0.131(18)(24)
A40.24 0.2630(44)(16) 0.116(20)(26)
A40.32 0.2652(37)(26) 0.114(16)(29)
A60.24 0.2782(36)(17) 0.116(15)(08)
A80.24 0.2835(33)(10) 0.115(10)(08)
A100.24 0.2921(33)(05) 0.123(08)(08)
B25.32 0.2523(51)(71) 0.132(40)(53)
B35.32 0.2617(41)(33) 0.109(21)(28)
B55.32 0.2770(36)(17) 0.134(12)(16)
B&5.24 0.2902(35)(47) 0.139(09)(07)
DI15.48 0.2331(50)(32) 0.18(06)(20)
D30.48 0.2510(25)(37) 0.122(20)(38)
D45.32 0.2610(31)(20) 0.153(14)(12)
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FIG. 6. (x) of the pion (left) and (x?)g

(right) as functions of (M,/f,)? at i = 2 GeV in the MS scheme. Dashed colored lines

represent the best fit functions Eq. (30) at the three lattice spacing values, respectively. The solid black line represents the continuum
curve. The black triangles represent the estimates at the physical point in the continuum limit. The error bars represent only the statistical

uncertainty.
1 M2
<x>b‘dIC[(Mﬂ/f7[)2;ﬁ] - m |:CO +c E]
+ Ca(a/rO(ﬂ))Z’
1 M: M2
el M/ 771 = 5 o (1 10 )

2

+bl%}+ba<a/ro<ﬂ>>2. (30)

T

We perform fits of these functional forms to all the data of
the first and second moments separately. For these fits we
have the data for the bare (x) ((x?)) and the estimates for
Z.p (Z,pp) and ry/a. To properly account for the uncer-
tainties in the renormalization functions and the Sommer
parameter ry/a, we use the augmented y> function as

follows:
) N Z( (/)’))2.

g =1+ Z(

(31)
Here, Z and AZ denote the relevant renormalization factor
and its statistical uncertainty either for the first or the
second moment. P, and P, are additional fit parameters

per f value. The usual y* function entering )(azug reads

Y () @

Here i(f) index the data points for the corresponding /3
value, y; are the bare data for {x) ((x?)), and x; are the data
for (M,/f,)* With {P} we label the set of fit parameters
{co.c1.¢40 Py Py} ({bg. by, by, P, Py }) and with g
the corresponding ChPT expression. The equation for the

y? function above is written for the uncorrelated case,

because all data points stem from independent ensembles,
ro/a, and the renormalization constants from independent
analyses. Errors of fit parameters are again computed using
the bootstrap procedure by performing a fit on every
bootstrap replica.

In principle one could also include the erroron (M /f . )?
in the fit. However, these errors are so small compared to the
ones for the moments that they do not alter the fit results. We
also do not include systematic uncertainties in the fit,
because they lack a statistical interpretation and would
increase all error bars more or less uniformly.

For the first moment we obtain the following best fit
parameters:
co=0.199(5), ¢;=0.0083(5), «¢,=0.92(20). (33)
The p value of the fit equals 0.61 with y2,,/dof = 8.2/10.
Thus, the fit is acceptable and the continuum value of (x) at
the physical point—defined via M,/ f, = 1.0337—reads

()P — 0.2075(53). (34)

The best fit curves for the three lattice spacings are included
as dashed lines in the left panel of Fig. 6. The continuum
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curve is the black solid line with the estimate of the first
moment at the physical point indicated with the black
triangle.

If we had used the values for Z,, from Ref. [68] instead
of the ones we quote in Table IV, we would have obtained

an equally good fit with result (x)2™* = 0.189(16). This
value is compatible with the value above, but with larger
uncertainties. We include half of the difference as a
systematic error in our final value.

For the second moment, the best fit parameters read

by=0.16(2), b;=0.005(2), b,=-1.6(7). (35)
With a p value of 0.89 (y3,e/dof = 5/10) the continuum
estimate at the physical point reads

(x2)PS — 0.163(23). (36)

As for (x)g, the corresponding curves are shown in the right
panel of Fig. 6 in addition to the data. Again, the black
triangle represents the estimate of the second moment at the
physical point in the continuum limit.

For both the first and the second moments the fit
parameters for the renormalization factors and for ry/a
agree very well with the input data. All best fit parameters,
their uncertainties, and correlations are compiled in
Appendix B.

As is visible from Fig. 6 and from the p values, the data
are well described by the ChPT expressions in the full range
of pion mass values we have available. However, it is
questionable whether one-loop ChPT works for pion
masses up to about 500 MeV. Therefore, we have repeated
the fits excluding all data points with (M,/f,)? > 6. The
so obtained results are well compatible within error bars
with the results quoted above. Also the p values of the fits
do not improve. Thus, we conclude that our statistical
uncertainty covers this systematics. This point needs to be
reconsidered once NLO formulas are available.

V. DISCUSSION

In this work we demonstrate the feasibility of the lattice
calculation for the first and second moments of the pion
PDFE. Despite the challenges present in calculations of
higher moments, we find sufficiently long plateau regions
for the bare matrix elements for all ensembles used here,
with the dependence on the fit range of the order of the
statistical uncertainties. For the first moment, where our
bare values are precise to the few percent level, we observe
a sizable dependence on M2 and significant lattice artifacts;
cf. the left panel of Fig. 6. From the value of (x)g of
ensemble D15.48, which is the smallest pion mass value
closest to the continuum limit, there is still a 10% difference
to the continuum value at the physical point.

The statistical errors for (x?) are significantly larger than
for (x), since two derivatives and two nonzero spatial
components of momentum are required. Therefore, pion
mass and lattice spacing dependences are both not signifi-
cant: all the data could be fitted to a constant in M,/ f, with
a result similar to the one we quote above. For both
moments, finite size effects turn out to be not relevant,
which is in agreement with the finding of Ref. [34], where
the twisted mass formulation was used as well.

Our results for the first moment can be compared to other
lattice computations, including our recent work using N p =2
simulations directly at the physical point, however, without
extrapolation to the continuum limit [34]. The value found
in Ref. [34] also neglecting disconnected contributions at
the physical point reads (x)g = 0.214(15)(*3?). It is fully
compatible with the result we find here. In Refs. [31,71] a
value of (x)g = 0.271(2)(10) at i =2 GeV in the MS
scheme is quoted for Ny = 2 flavor QCD also neglecting
disconnected diagrams, which is significantly larger than
our value. In these two references almost no lattice artifacts
appear to be visible, in contrast to our findings. In the
work of Bali et al. [33] a significantly lower value is
reported, using a single ensemble at a near physical pion
mass value.

It is not so easy to identify a reason for the differences we
observe. It seems the number of flavors is not so important,
because our result with Ny =2 + 1+ 1 quark flavors is
fully compatible with the Ny =2 result at the physical
point. Even though the latter computation is at a single
lattice spacing only, lattice spacing effects seem to be small
with this action [72]. Thus, differences are likely to come
from the chosen lattice discretization leading to different
lattice artifacts and finite size effects. This clearly demands
further careful investigations of systematic uncertainties in
the future.

References [31,71] present the calculation for (x?) using
a different operator that possibly mixes under renormaliza-
tion. The authors compute only the connected diagram,
too, and find (x*)g = 0.128(9)(4) at i = 2 GeV in the MS
scheme, compatible with our result.

It is utterly important to relate the values of the moments
computed in this paper to what is measured experimentally.
But, in our computation fermionic disconnected contribu-
tions to the three-point functions Cyy and Cy;, have been
neglected. Thus, strictly speaking from a quantum field
theory point of view, the spectral decomposition of the
(connected only) three-point functions is not possible.
A meaning is recovered only if we rely on the assumption
that the fermionic disconnected contributions have a
negligible share to the total three-point functions.

On the other hand, in practice the fermionic connected
and eventually also the disconnected contributions can be
determined. It is then very appealing to identify the part
coming from the disconnected contributions as purely sea
moments; see Fig. 1. This allows one to make contact to the
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phenomenological point of view, where typically the
following sum rule is used, here for (x):

2(x),(B%) + 2N (x) (%) + (x)6(B*) = 1. (37)

where the v, s, G denote the valence quark, sea quark, and
gluon contributions, respectively. On the other hand, for a
lattice calculation one would write

()5 (B2) + () (i) + Y () §e (@) + (g (E?) = 1,
(38)

where conn (disc) stands for a lattice computation per-
formed with only fermionic connected (disconnected)
contributions to the corresponding three-point function
taken into account. The sum in g is over all active quark
flavors. As defined in Eq. (4), the quantity calculated in this
work is the total connected only contribution:

ORY(7?) = ()™(@%) = ()™ @).  (39)

Still, from Eq. (39) it is clear that (x)2™*(#2) cannot be the
valence contribution of Eq. (37), because the connected
contributions also receive contributions from so-called Z
diagrams, which are counted as sea quark distributions in
Eq. (37). Nevertheless, since the following equality must
hold:

(™) + (™ GR) + D (08 R)

= 2(x), (%) + 2Ny {x), (7). (40)

we may, keeping the caveat discussed above in mind,
compare (x)2™(#2) with phenomenology if we understand
the quantity computed here as an upper limit for (x), (i?).
Phenomenological results for average x and x? are
provided in Refs. [73,74]. Below we compare to the more
recent results from Ref. [73], which are based on a larger set
of experimental data, where they find
2(x), = 0.49(1), 2(x%), =0.217(4),  (41)
both in the MS scheme at ji = 2 GeV. Compared to our
results in Egs. (34) and (36), i.e., 2(x)<°™ and 2(x?)c°mn,
respectively, we observe a tension for (x). In particular, the
value for (x) we observe is smaller than the phenomeno-
logical estimate, which is opposite to what we expect from
our discussion above. This tension might be explained with
the caveats lined out above, noticing also that according to
Ref. [73], the extraction of (x), is still sensitive to the
inclusion of new datasets, being reduced when leading
neutron production data are added to previously existing
Drell-Yan data. The results we find here point to the

direction of further reductions of (x),. In this context,
experimental efforts planned at COMPASS [75,76] and
JLab [77] to measure the pion structure functions will be
instrumental to settle this matter, having also an impact in
the decomposition of the pion momentum sum rule. Our
value for (x?) is larger than 2(x?),, but its also has a large
error bar.

Finally, we note that the relative share of connected to
disconnected contributions to the total (x) may well depend
on the pion mass.

VI. SUMMARY

In this paper we have presented results for the first
and second moments of the pion PDF computed in Ny =
241+ 1 lattice QCD. While we still neglect fermionic
disconnected diagrams for both moments, we have thor-
oughly investigated the extrapolations to the physical point
and to the continuum. This was possible due to ETMC
ensembles spanning three values of the lattice spacing and
pion masses ranging from 270 to 500 MeV. For (x) and (x?)
we use operators which avoid any mixing under renorm-
alization. By studying two ensembles with all identical
parameters but the lattice size, we can exclude finite
volume effects significantly larger than our statistical
uncertainties.

For the computation of (x?) nonzero spatial momenta are
required which we inject using twisted boundary condi-
tions. These allow us to chose the momenta optimally for
the signal-to-noise ratio in the corresponding three-point
function. Still, our results for (x?) have significantly larger
statistical uncertainties than the ones for (x), which is of
course also due to the second derivative needed for (x?).

It turns out that the choice of fit ranges represents a major
systematic uncertainty in the calculation of the moments.
We approach this uncertainty by performing many fits and
include them all weighted appropriately in the final
estimates. From the weighted distribution a systematic
error can be estimated which is typically of the order of
the statistical error. The only exception is our ensemble at
the smallest lattice spacing and pion mass value, where the
systematic errors prevent us from obtaining a significant
result. In summary we obtain

(xX)PMYS = 0.2075(53) ,(20)
()R = 0.163(23),,,(25)

«s(90)7 and

sys?

determined at 2 GeV in the MS scheme. In the bare matrix
elements we find on average a 1% systematic error on {x)
and a 15% systematic error on (x*), which we have added
to the final results in order to reflect the systematic
uncertainty coming from the fit range choice. In (x) we
add the systematic uncertainty from using the Z factors
determined in Ref. [68] instead of the ones compiled in
Table IV.
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The comparison to phenomenology is difficult, because in
our computation fermionic disconnected contributions to
the three-point functions have been neglected. However, if
one identifies the quantities computed here with an upper
limit to what is called valence contribution in phenomenol-
ogy, we observe that our value for (x) is smaller compared to
phenomenology, while the value for (x?) is also larger
compared to phenomenology, but has large error bars.

From the discussion in the previous section it is clear that
a computation including fermionic disconnected diagrams
is highly desirable. Thus, we are planning to repeat this
computation by including fermionic disconnected contri-
butions to the three-point functions. Then also the gluonic
moments ought to be computed to properly perform the
renormalization procedure.
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APPENDIX A: # FUNCTION AND
ANOMALOUS DIMENSIONS

In this appendix we provide the definition of the f function
and the anomalous dimension of the two operators presented
in this work. To simplify the expressions we give the
perturbative coefficients in the Landau gauge and in SU(3).

The perturbative expansion of the anomalous dimension
in a renormalization scheme S is given as follows:

d
r$= —Hg logZs
1

_, gs(ﬂ)eryf(g‘S(ﬂ)z)eryg <g‘9(/4>2>3+..., (A1)

%1672 1672 1672

while the f function is defined as

ﬂS Zﬂags(ﬂ)
PP 9 (u)° 9 (u)’
= P2 P (167%)2 _ﬁ§(16n2)3 oo (A2)

For the conversion from the RI’ to the MS scheme we use
the three-loop expressions, to which the coefficients of the
f function coincide and are given by [84,85]

2
38
=102 -22N,, Ad
B 3N (A4)
2857 5033 325
=0 o N2 A5
) 18 gy (A3)

All necessary expressions to convert to the MS scheme are
presented below. An upper index appears for scheme-
dependent quantities, in order to denote the scheme that
they correspond to.

One-derivative vector/axial [86,87]:
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Two-derivative vector/axial [87-89]:
100
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APPENDIX B: CORRELATION COEFFICIENTS OF FIT PARAMETERS

The chiral fit for (x) gives the following best fit parameters:

Co
Cq
Cll

Pz (p =1.90)
Py (B =1095)
Pz (p=2.10)
P.(f =1.90)
P.(f=1.95)
P.(f =2.10)

0.199(5)
0.0083(5)
0.92(20)
1.033(9)
1.053(7)
1.100(6)
5.32(8)
5.76(6)
7.60(8)

with correlation coefficients in the same order as above:

1.0

-0.37
1.0

-0.84 -0.49
-0.10 0.10
1.0 0.68
1.0

-0.32 053 -0.24 0.03 0.09
0.13 -0.03 0.05 -0.004 0.01
049 -043 0.28 0.02  -0.06
0.68 -0.04 -0.07 0.09 0.03

1.0 007 022 =014 0.07
1.0 -0.08 0.07 -0.04

1.0 0.01 0.03

1.0 0.03

The chiral fit for (x?) gives the following best fit parameters:

by

b,

b

Py (B =1.90)
Py (f=195)
Py (B =2.10)
P, (= 1.90)

P (p =1.95)
P, (= 2.10)

0.16(2)
0.005(2)
~1.6(7)
1.31(2)
1.35(2)
1.41(2)
5.30(7)
5.78(6)
7.60(8)

with correlation coefficients in the same order as above:

1.0

-0.38
1.0

-0.73 -0.14
-0.33 -0.04
1.0 0.22

1.0

006 0.16 004 006 -0.05
0.05 001 -0.03 0.01 0.004
-0.07 -0.16 -0.07 -0.09 0.04
0.03 -0.05 0.06 -001 0.03
1.0 001 -0.02 0.05 -0.03
1.0 0.02 0.003 -0.01

1.0 0.01  0.04

1.0 0.01
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