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In this paper we present one-loop results for the renormalization of nonlocal quark bilinear
operators, containing a staple-shaped Wilson line, in both continuum and lattice regularizations. The
continuum calculations were performed in dimensional regularization, and the lattice calculations for
the Wilson/clover fermion action and for a variety of Symanzik-improved gauge actions. We extract the
strength of the one-loop linear and logarithmic divergences (including cusp divergences), which appear in
such nonlocal operators; we identify the mixing pairs which occur among some of these operators on the
lattice, and we calculate the corresponding mixing coefficients. We also provide the appropriate RI'-like
scheme, which disentangles this mixing nonperturbatively from lattice simulation data, as well as the one-
loop expressions of the conversion factors, which turn the lattice data to the MS scheme. Our results can be
immediately used for improving recent nonperturbative investigations of transverse momentum-dependent
distribution functions on the lattice. Finally, extending our perturbative study to general Wilson-line lattice
operators with n cusps, we present results for their renormalization factors, including identification
of mixing and determination of the corresponding mixing coefficients, based on our results for the staple

operators.
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I. INTRODUCTION

One of the main research directions of nuclear and
particle physics is the study of the rich internal structure
of hadrons, which are the building blocks of the visible
Universe. Quantum chromodynamics (QCD) is the theory
governing the strong interactions, which are responsible for
binding partons (quark and gluons) together into hadrons.
Despite the various theoretical models that have been
developed for the investigation of hadron structure (e.g.,
diquark spectator and chiral quark models), an ab initio
calculation is desirable to capture the full QCD dynamics.
Due to the complexity of the QCD Lagrangian, an analytic
solution is not possible, and numerical simulations (lattice
QCD) may be used as a first principle formulation to study
the properties of fundamental particles.

Distribution functions consist of a set of nonperturbative
quantities that describe hadron structure and have the
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advantage of being process-independent and accessible
both experimentally and theoretically. They are expressed
in terms of variables defined in the longitudinal and
transverse directions with respect to the hadron momen-
tum. Based on this, the distribution functions may be
classified into parton distribution functions (PDFs),
generalized parton distributions (GPDs) and transverse-
momentum dependent parton distribution functions
(TMDs). Important information is still missing for all three
types of distributions: The most well-studied are PDFs,
which are single-variable functions, while the TMDs
are only very limitedly studied due to the difficulty in
extracting them experimentally and theoretically. However,
TMDs are crucial for the complete understanding of hadron
structure as they complement, together with GPDs, the
three-dimensional picture of a hadron.

Due to their light cone nature, distribution functions
cannot be computed directly on a Euclidean lattice and
typically are parametrized in terms of local operators that
give their moments. The distribution functions can thus
be recovered from an operator product expansion (OPE),
which is, however, a very difficult task: Signal-to-noise
ratio decreases with the addition of covariant derivatives in
the operators, and an unavoidable power-law mixing under
renormalization appears for higher moments. Nevertheless,
information on distribution functions (mainly PDFs and, to

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.074508&domain=pdf&date_stamp=2019-04-15
https://doi.org/10.1103/PhysRevD.99.074508
https://doi.org/10.1103/PhysRevD.99.074508
https://doi.org/10.1103/PhysRevD.99.074508
https://doi.org/10.1103/PhysRevD.99.074508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CONSTANTINOU, PANAGOPOULOS, and SPANOUDES

PHYS. REV. D 99, 074508 (2019)

a lesser extent GPDs) from lattice QCD was obtained from
their first moments, via calculations of matrix elements of
local operators. These moments are directly related to
measurable quantities, for example, the axial charge and
quark momentum fraction.

Novel approaches for an ab initio evaluation of distri-
bution functions on the lattice have been employed in
recent years. In these approaches, nonlocal operators,
including a Wilson line, are involved. While local operators
have been used extensively in perturbative and nonpertur-
bative calculations, nonlocal operators were limitedly
studied. In particular, calculations using nonlocal operators
with Wilson lines in a variety of shapes appear in the
literature within continuum perturbation theory. Starting
from the seminal work of Mandelstam [1], Polyakov [2],
Makeenko-Migdal [3], there have been investigations of the
renormalization of Wilson loops for both smooth [4] and
nonsmooth [5] contours. Due to the presence of the Wilson
line, power-law divergences arise for cutoff regularized
theories, such as lattice QCD. It has been proven that in the
case of dimensional regularization and in the absence of
cusps and self-intersections, all divergences in Wilson
loops can be reabsorbed into a renormalization of the
coupling constant [4]. Wilson-line operators have been
studied with a number of approaches, including an aux-
iliary-field formulation [6,7], and the Mandelstam formu-
lation [8]. Particular studies of Wilson-line operators with
cusps in one and two loops, can be found in Refs. [5,9,10].
There is also related work, in the context of the heavy quark
effective theory (HQET)' [12—15), including investigations
in three loops [16].

Computations of matrix elements using nonlocal
operators with a straight Wilson line have been revived
in lattice QCD and phenomenology mainly due to their
connection to PDFs via the quasi-PDFs approach proposed
by X. Ji [17].% Several aspects of the properties of nonlocal
Wilson-line operators have been addressed, including the
feasibility of a calculation from lattice QCD [22-25], their
renormalizability [26—32] and appropriate renormalization
prescriptions [33-35]. The renormalization has proven to
be a challenging and delicate process in which a number
of new features emerge, as compared to the case of local
operators: There appears an additional power-law diver-
gence, and the matrix elements are nonlocal and contain an
imaginary part.

While information on physical quantities is obtained
from hadron matrix elements, calculated nonperturbatively
in numerical simulations of lattice QCD, perturbation
theory has played a crucial role in the development of a
complete renormalization prescription based on Ref. [33].

'"The interrelation between Wilson-line operators and HQET
currents is demonstrated in Ref. [11].

The same operators are used in an alternative approach
(pseudo-PDFs) to extract light cone PDFs [18-20]. Earlier ideas
for accessing x-dependent PDFs are summarized in Ref. [21].

FIG. 1. Staple-shaped gauge links as used in analyses of SIDIS
and Drell-Yan processes. For notation, see Ref. [42].

In the latter work the renormalization was addressed in
lattice perturbation theory and a finite mixing was identi-
fied among nonlocal operators of twist-2 and twist-3. The
complete mixing pattern discussed in Ref. [33] led to the
proposal of a nonperturbative RI-type scheme [34,36], also
employed in Ref. [37]. This development of the renorm-
alization of nonlocal operators has been a crucial aspect in
state-of-the-art numerical simulations, e.g., the work of
Refs. [38,39] (for a recent overview on lattice QCD
calculations see Ref. [21] and references therein).

In this work we generalize the calculation of Ref. [33] to
include nonlocal operators with a staple-shaped Wilson
line. We compute their Green’s functions to one-loop level
in perturbation theory using dimensional (DR) and lattice
(LR) regularizations. The functional form of the Green’s
functions reveals the renormalization pattern and mixing
among operators of different Dirac structure, in each
regularization. We find that these operators renormalize
multiplicatively in DR, but have finite mixing in LR.
Results for both regularizations have been combined to
extract the renormalization functions in the lattice MS
scheme. In addition, the results in DR have been used to
obtain the conversion factor between Rl-type and MS
schemes. We also present an extension to operators con-
taining a Wilson line of arbitrary shape on the lattice, with n
cusps. Preliminary results of the current work have been
presented in Ref. [40].

Staple-shaped nonlocal operators (see Fig. 1) are crucial
in studies of TMDs, which encode important details on the
internal structure of hadrons. In particular, they give access
to the intrinsic motion of partons with respect to the
transverse momentum, through the formalism of QCD
factorization, that can be used to link experimental data
to the three-dimensional partonic structure of hadrons. An
operator with a staple of infinite length, 7 — oo, (see Fig. 1)
enters the analysis of semi-inclusive deep inelastic scatter-
ing (SIDIS) processes3 in a kinematical region where the
photon virtuality is large and the measured transverse
momentum of the produced hadron is of the order of
Agep [41].

3Stalple—shaped operators appear also in Drell-Yan process,
with the staple oriented in the opposite direction compared to
SIDIS.
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To date, only limited studies of TMDs exist in lattice QCD
(see, e.g., Refs. [42-45] and references therein), such as the
generalized Sivers and Boer-Mulders transverse momentum
shifts for the SIDIS and Drell-Yan cases. These studies
include staple links of finite length that is restricted by the
spatial extent of the lattice volume. To recover the desired
infinite length one checks for convergence as the length
increases, and an extrapolation to # — oo is applied. More
recently, the connection between nonlocal operators with
staple-shaped Wilson line and orbital angular momentum
[46,47] has been discussed. This relies on a comparison
between straight and staple-shaped Wilson lines, with the
staple-shaped path yielding the Jaffe-Manohar [48,49] def-
inition of quark orbital angular momentum and the straight
path yielding Ji’s definition [49-51]. The difference between
these two can be understood as the torque experienced by the
struck quark as a result of final state interactions [49,50].

An important aspect of calculations in lattice QCD is the
renormalization that needs to be applied on the operators
under study (unless conserved currents are used). As is
known from older studies [4,6-8,52], the renormalization
of Wilson-line operators in continuum theory (except DR)
includes a divergent term e~%", where ém is a dimen-
sionful quantity whose magnitude diverges linearly with
the regulator, and L is the total length of the contour. For
staple-shaped operators, L = (2|y| + |z|), where y S 0 and
7 $ 0 define the extension of the staple in the y-z plane,
chosen to be spatial. The existing lattice calculations of
staple-shaped operators assume that the lattice operators
have the same renormalization properties as the continuum
operators, in particular that there is no mixing present.
This allows one to focus on ratios between such operators
[42-45] in order to cancel multiplicative renormalization,
which is currently unknown.” However, as we show in this
paper, this is not the case for operators where finite mixing
is present and must be taken into account.

One of the main goals of this work is to provide
important information that may impact nonperturbative
studies of TMDs and potentially lead to the development
of a nonperturbative renormalization prescription similar
to the case of quasi-PDFs discussed above. The paper is
organized in five sections including the following: In Sec. II
we provide the set of operators under study, the lattice
formulation, the renormalization prescription for nonlocal
operators that mix under renormalization and the basics of
the conversion to the MS scheme. Section III presents our
main results in dimensional and lattice regularization. This
includes both the renormalization functions and conversion
factors between the RI' and MS schemes. An extension
of the work to include general nonlocal Wilson-line
operators with n cusps is presented in Sec. IV, while in

“The question of whether nonlocal operators with staple-
shaped Wilson lines renormalize multiplicatively was raised in
Ref. [45] after our work on straight Wilson-line operators [33].

Sec. V we give a summary and future plans. For com-
pleteness we include two appendixes where we give the
expressions for the Green’s functions in dimensional
regularization (Appendix A) as well as the expressions
related to the renormalization of the fermion fields
(Appendix B).

II. CALCULATION SETUP

In this section we briefly introduce the setup of our
calculation, along with the notation used in the paper. We
give the definitions of the operators and the lattice actions;
we also provide the renormalization prescriptions that we
use in the presence of operator mixing.

A. Operator setup

The staple-shaped Wilson-line operators have the fol-
lowing form:

Or =W (x)TW(x, x + yfla, X + yjto + zily, x + zjy)
xyr(x + ziy), (1)

where W denotes a staple with side lengths |z| and |y|,
which lies in the plane specified by the directions fi; and ji,
(see Fig. 2); it is defined by

W+ g x + yjia + 2, X + 2
= P{(ei!/ﬁ;" d(Auz(X-Fé,ﬁz)) . (eigﬁ;d(A”l (X+Yﬁ2+gﬁ1))

(e 2 dca,, (X+Zﬁ1+Cﬁz))T}' 2)

The symbol I' can be one of the following Dirac matrices:
1, ¥s» Yu» Vs¥u» 0w (Where p, v=1, 2, 3, 4 and
6, = [747,]/2). For convenience, we adopt the following
notation for each Dirac matrix: S=1, P=ys, V,=v,,
A, =vsYy Ty =0, and the standard nomenclature for
the corresponding operators: Og: scalar, Op: pseudosca-
lar, Ovﬂ: vector, (’)A#: axial-vector and OTIW: tensor. Of
particular interest is the study of vector, axial-vector and
tensor operators, which correspond to the three types of
TMDs: unpolarized, helicity and transversity, respectively.

The fermion and antifermion fields appearing in Or
can have different flavor indices. Operators with different

T+ yjis T+ yilo + zfl
ﬂ2L
fi1
T T+ 2

FIG. 2. Staple-shaped Wilson line W(x,x + yfi,, x + yi, +
Zy, x + z1y ).
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plaquette rectangle

FIG. 3.

flavor content cannot mix among themselves; further,
for mass-independent renormalization schemes, flavor-
nonsinglet operators which differ only in their flavor
content will have the same renormalization factors and
mixing coefficients. Results for the flavor-singlet case
will be identical to those for the flavor-nonsinglet case
at one loop, but they will differ beyond one loop and
nonperturbatively; however, the setup described below
[Egs. (7)—(12)] will be identical in both cases.

B. Lattice actions

In our lattice calculation we make use of the Wilson/
clover fermion action [53]. In standard notation it reads

:_le,,f

x.fou
+ (r+7,)Ul(x—ap)y(x—aj)]
@Y ) A+ amd ()
xf

3 Z cswipp(x

X, [y

(r=1,) U (@) (x4 )

Ou Q;u/( ) Qv/,t(x)h//f(x>7 <3)

where a is the lattice spacing and

QWZU (x)U, (x+ at) Uj (x + ad) U (x)
(XUl (x+ab— a@)U} (x— a) U, (x— ajt)

—I—UTx ap) U} (x — afi—ab)

(x ap—ab)U,(x—ab)

—au)Uﬂ(x—aﬁ)U,,(x—Faﬁ—aﬁ)U}:(x). 4)
Following common practice, we henceforth set the Wilson
parameter 1 equal to 1. The clover coefficient cgy will be
treated as a free parameter for wider applicability of the

results. The mass term (~m0) will be irrelevant in our one-loop
calculations, since we will apply mass-independent renorm-
alization schemes. The above formulation, and thus our
results, are also applicable to the twisted mass fermions
[54] in the massless case. One should, however, keep in mind
that, in going from the twisted basis to the physical basis,
operator identifications are modified (e.g., the scalar density,
under “maximal twist”, turns into a pseudoscalar density, etc.).

chair parallelogram

The four Wilson loops of the Symanzik improved gauge actions.

For gluons, we employ a family of Symanzik improved
actions [55], of the form,

2
Se== [COZReTr{ 1—
9%

plag.

Uplag. } + €1 ZReTr{l -

rect.

Urect. }

+ CZZReTr{l -

chair

Uchair} +c3 ZRGTI'{ 1=

paral.

Uparal.}] ,
(5)

where Uy, i the 4-link Wilson loop and Uyec, Uchairs
Uparar. are the three possible independent 6-link Wilson
loops (see Fig. 3). The Symanzik coefficients c; satisfy the
following normalization condition:
C0+861+16C2+8C3 = 1 (6)
For the numerical integration over loop momenta we
selected a variety of values for c;; for the sake of compact-
ness, in what follows we will present only results for some
of the most frequently used sets of values, corresponding to
¢y = ¢3 =0, as shown in Table 1.

C. Renormalization prescription

The renormalization of nonlocal operators is a nontrivial
process. As shown in our study of straight-line operators in
Ref. [33], a hidden operator mixing is present in chirality-
breaking regularizations, such as the Wilson/clover fer-
mions on the lattice. This mixing does not involve any
divergent terms; it stems from finite regularization-
dependent terms, which are not present in the MS renorm-
alization scheme, as defined in dimensional regularization
(DR). Thus, our first goal is to compute perturbatively all
renormalization functions and mixing coefficients which
arise in going from the lattice regularization (LR) to the
MS scheme. Ultimately, a nonperturbative evaluation of all

TABLEI Values of the Symanzik coefficients for selected gluon
actions. The coefficients ¢, and c¢; equal zero for these actions.
Gluon action co cy
Wilson 1 0
Tree-level Symanzik 5/3 -1/12
Iwasaki 3.648 —-0.331
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these quantities is desirable; to this end, and given that the
very definition of MS is perturbative, we must devise an
appropriate, RT'-type renormalization prescription which
reflects the operator mixing. We will proceed with the
definition of the renormalization factors of operators, as
mixing matrices, in textbook fashion. We modify our
prescription in Ref. [33] to correspond to the resulting
operator-mixing pairs of the present calculation, which are
different from those found in the straight-line operators.
The reason behind this difference is explained in detail in
Sec. IV. The mixing pairs found from our calculation on
the lattice are (see Sec. IIIB 2): (Op, OAMZ)’ (Oy,, OTmz)’
where i can be any of the three orthogonal directions to the
fi, direction. The remaining operators do not show any
mixing, and thus their renormalization factors have the
typical 1 x 1 form [see Eq. (9)]. Taking into account all the
above, we define the renormalization factors which relate
each bare operator Or with the corresponding renormalized
one via the following equations:

-1
XY XY
(ng - ZP Z<P’A/42) OP (7)
- XY XY )
OA;:; Z< A P) Z A, OA,‘2

-1

XY

Zy.r
XY
T

v XY
OVi Vi i) Vi
@

Y

XY
Z »
T (Tiﬂz

Ti;42

)- (o

>’ (i#u)

ina Vi)

iny

(8)

OY:(ZI)"(.Y)_IOF’ F:S’VﬂszivTij’ (l;é]?éMZ#l)’

©)

where X (Y) stands for the regularization (renormalization)
scheme: X = DR,LR,...,and Y = MS,RT, .... As we will
see, in dimensional regularization there is no operator
mixing and thus the mixing matrices are diagonal.

As is standard practice, the calculation of the renorm-
alization factors of O stems from the evaluation of
the corresponding one-particle-irreducible (1-PI) two-
point amputated Green’s functions Ar = (z;/f(’)rz,i/f/>amp.
According to the definitions of Egs. (7)—(9), the relations
between the bare Green’s functions and the renormalized
ones are given by5

v ZXY Xy -1 ¥

( . ) = @A L ( : ) (10
Y - ! r XY XY X ’
AAM VA (A, P) Zz 4, AAM
-1

A, zy' Zyg, ) Ay,
(AY ) = (Z'I)ify)lm(zif?/)l/z XY X,YM2 AX ’ (l ?I: HZ) (11)

Tiyy Z(Tiyz Vi) Ty, Tiyy
N = (Zy) P2y ) PZE) TN T =8V, AuTy, (i#j#m#i), (12)

where Zﬁ}.y ,Zl,)f’; are the renormalization factors of the
external quark fields of flavors f and f’ respectively,
defined through the relation,

y2 (13)

Wiy = Zugi) "W).
We note that in the case of massless quarks, the flavor
content does not affect the renormalization factors of
fermion fields or the Green’s functions of O, and thus
we omit the flavor index in the sequel. We also note that
for regularizations which break chiral symmetry (such as
Wilson/clover fermions), an additive mass renormalization

is also needed, beyond one loop; however, this is irrelevant

In the right-hand sides of Egs. (10)—(12) it is, of course,
understood that the regulators must be set to their limit values.

[
for our one-loop calculations. The expressions of Ar
depend on the coupling constant g, whose renormalization
factor is defined through

g = uP=IZET ) g, (14)

where u is related to the MS renormalization scale j
(i = u(4r/e’)'/2, yp is Euler’s constant) and D is the
number of Euclidean spacetime dimensions (in DR:
D =4 —2¢,in LR: D = 4). For our one-loop calculations,
Z;,(’Y is set to 1 (tree-level value).

There are four one-loop Feynman diagrams contributing
to Ar, shown in Fig. 4. Diagrams d, —d, are further
divided into subdiagrams, shown in Fig. 5, depending on
the side of the staple from which gluons emanate.

In our computations we make use of two renormalization
schemes: the modified minimal-subtraction scheme (MS) and

074508-5
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d d

FIG. 4. Feynman diagrams contributing to the one-loop calculation of the Green’s functions of staple operator O. The straight (wavy)
lines represent fermions (gluons). The operator insertion is denoted by a filled rectangle.

i N

p %%J—%‘r*
; %%%

= g — —>Q ——
dy dy (a)
—>—LV\‘§ ——
dy (d)

FIG. 5.

ke

e TR
d4 (b) d4 (C)
. _,_7;‘_,_
ds (e) ds (f)

Subdiagrams contributing to the one-loop calculation of the Green’s functions of staple operator Or. The straight (wavy) lines

represent fermions (gluons). The operator insertion is denoted by a staple-shaped line.

a variant of the modified regularization-independent scheme
(RT'). The second one is needed for the nonperturbative
evaluations of the renormalized Green’s functions A on the
lattice, which will be converted to MS, through appropriate
conversion factors. For our perturbative lattice calculations,
the renormalization factors of O in the MS scheme can be

|

derived by calculating Egs. (10)—(12) for both X = LR and
X = DR, and demanding that their left-hand sides are X-
independent and, thus, identical in the two regularizations.

For the RI' scheme, we extend the standard renormal-
ization conditions for the bilinear operators, consistently
with the definitions of Egs. (10)-(12),

ARI’ A}gee
tree\ T ( A tree o tree tree o
(e ) (e, - =) (e ) (A2 . (15)
vu) &)
RI' ree
. AV,~ ((Atree)'}'(Atree )T) —tr AtV ((Atree) (Atree) ) — 4N .1 ( ;é ) (16)
Al;l’ Vi Tiyy q,=17q, At]rpe = cl2x2, LF W),
i (Vo) iny
tr[Allgl/ (Abree) ]| = tr[Ale (Alee) 7] = 4N, C=8V,. ATy, (i#j#m#i), (17)

9, =1q,
(Vv)

where Af® =Texp(iq, z) is the tree-level value of the
Green’s functions of O, g is the RI' renormalization scale
4-vector, and N, is the number of colors. Note that the
traces appearing in Eqgs. (15)—(17) regard only Dirac and
color indices; in particular, Egs. (15) and (16) retain their
2 x 2 matrix form, and thus they each correspond to four
conditions. We mention that an alternative definition of the

I' scheme can be adopted so that the renormalization

factors depend only on a minimal set of parameters,
(E]z,c‘]ﬂ],?]m), rather than all the individual components
of g; this can be achieved by taking the average over all
allowed values of the indices i, j, in conditions (16) and
(17), whenever i, j are present. This alternative scheme is
not so useful in lattice simulations, where, besides the two
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special directions of the plane in which the staple lies, the
temporal direction stands out from the remaining spatial
directions; this leaves us with only one nonspecial direc-
tion, and thus this choice of normalization is not particu-
larly advantageous in this case.

The RT' renormalization factors of fermion fields can be
derived by imposing the massless normalization condition,

tr[SRI’(Stree)—]]l oy = tr[stree(stree)—l]

=4N,, 18
q2 =g c ( )
where SR = (yRU'pRl') is the RI-renormalized quark
propagator and S = (ig)~! is its tree-level value.
|

MS.RI MS.RI X.MS X.MS
Cp> y VA z7
P (PA,,) P (PA,,)
MS.RI MSRI | XMS X MS
i B Z B Z )
C(A#2 P) CA#2 (A, .P) A,
MS.RI MS.RI X.MS X.MS
cy> c Z Z%

V; (ViTi,) Vi (ViTiny)
CM_S,RI’ MS.RI ZX,M_S X MS
(Tiyy Vi) T, (Tiwy Vi) Ty
MSRI' _ ;7XMS\~!/ X Rl
Cro™ = (Z0™) (Zp™),

Being regularization independent, they can be evaluated
more easily in X = DR; in this regularization there is no
operator mixing, and thus the conversion factors of Or turn
out to be diagonal. We note in passing that the definition
of the MS scheme depends on the prescription used for
extending y5 to D dimensions®; this, in particular, will affect
conversion factors for the pseudoscalar and axial-vector
operators. However, such a dependence will only appear
beyond one loop.

Given that the conversion factors are diagonal, the
Green’s functions of O in the RI' scheme can be directly
converted to the MS scheme through the following relation,
valid for all T":

AFS = ()OSR ARY, (22)

MS.RI MSy 1 ;L .
where CyPR' = (Z5M5) 7 ZERU is the conversion factor
for fermion fields.

ITII. CALCULATION PROCEDURE AND RESULTS

In this section we proceed with the one-loop calculation
of the renormalization factors of the staple operators in the
RI' and MS renormalization schemes, both in dimensional
and lattice regularizations. We apply the prescription

(’See, e.g., Refs. [56-61] for a discussion of four relevant
prescriptions and some conversion factors among them.

-1

D. Conversion to the MS scheme

The conversion of the nonperturbative RI’-renormalized
Green’s functions AR! to the MS scheme can be performed
only perturbatively, since the definition of MS is perturba-
tive in nature. The corresponding one-loop conversion
factors between the two schemes are extracted from our
calculations, and their explicit expressions are presented in
Sec. III. As a consequence of the observed operator-pair
mixing, some of the conversion factors will be 2 x 2
matrices, just as the renormalization factors of the oper-
ators. Following the definitions of Egs. (7)—(8), they are
defined as

7N 7 "
28, 7 )
2N A
2R, o ([ # ). (20)
r=s, VﬂszhTij? (i?éj#ﬂz#i) (21)

|

described above, and we present our final results. We also
include the one-loop expressions for the conversion factors
between the two schemes.

A. Calculation in dimensional regularization

1. Methodology

We calculate the bare Green’s functions of the staple
operators in D Euclidean spacetime dimensions (where D =
4 —2¢ and ¢ is the regulator), in which momentum-loop
integrals are well-defined. The methodology for calculating
these integrals is briefly described in our previous work
regarding straight Wilson-line operators [35,61], and it is
summarized below: We follow the standard procedure of
introducing Feynman parameters. The momentum-loop inte-
grals depend on exponential functions of the y;- and/or p,-
component of the internal momentum [e.g., exp(ip,, z),
exp(ipy,{)]. The integration over the components of momen-
tum without an exponential dependence is performed using
standard d-dimensional formulas (e.g., [62]), followed by a
subsequent nontrivial integration over the remaining com-
ponents p, and/or p,,. The resulting expressions contain a
number of Feynman parameter integrals and/or integrals
over {-variables stemming from the definition of Or, which
depend on modified Bessel functions of the second kind,
K,, and which do not have a closed analytic form; they are
listed in Appendix A. We expand these expressions as
Laurent series in &, and we keep only terms up to O(e”). The
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full expressions of the bare Green’s functions of O are
given in Appendix A; these can be used for applying any
renormalization scheme.

2. Renormalization factors

Our one-loop results for the renormalization factors of
the staple operators in both MS and RI' schemes are
presented below.

In the MS scheme, only the pole parts [O(1/¢) terms]
contribute to the renormalization factors. Diagram d; has
no 1/e terms, as it is finite in D = 4 dimensions. Also, it
gives the same expressions with the corresponding
straight-line operators, because it involves only the zero-
gluon operator vertex. This statement is true in any
regularization. As we expected, the divergent terms arise
from the remaining diagrams d, — dy, in which end point
[Eq. (24)], contact [Eq. (25)] and cusp divergences
[Eq. (26)] arise. We provide below the pole parts for each
subdiagram,

d d7ll dab
Arl|1/e—Ar( )|1/e:Ar'( )|l/£
dsy(c dy(e
)|1/5':AF3()|1/5:AF4( >|1/e:0, (23)
g ’C e |
|1/£ *A |1/s = 167 gAtr 8(1 _ﬂ)7 (24)
dy(a dy(b dy(c 92 ee
( )|1/8:Al“4( )|1/e:A ( )|1/£ 167 gAH (2+ﬁ)
(25)
2
d d ICr | e 1
e = A lye =T 2 ML (P), (26)

where Cp = (N2—1)/(2N.) and f is the gauge fixing
parameter, defined such that = 0(1) corresponds to the
Feynman (Landau) gauge. It is deduced that diagrams d,, d;
give the same pole terms as in the case y =0, since
only end points affect these diagrams (no cusps). Also, the
result for the cusp divergences of angle z/2 [Eq. (26)]
agree with previous studies of nonsmooth Wilson-line oper-
ators for a general cusp angle 6 [5,9,10]: it follows from these
studies that the one-loop result corresponding to each of the
diagrams d,(d) and d4(f) is given by —(g*Cy)/(167%€)x
(20cot® + ). By imposing that the MS-renormalized

!
CRI MS __

log< >)+2(/)’+2

Green’s functions of Or are equal to the finite parts (exclude
pole terms) of the corresponding bare Green’s functions,
we derive the renormalization factors of Op in MS, using
Egs. (10)—(12); the result is given below,

MS ’C
7ZDRMS _ g F_ O
r T lee (g%,

(27)

where we make use of the one-loop expression for the
renormalization factor ZBR'MS, given in Appendix B
[Eq. (B1)]. Since the pole parts are multiples of the tree-
level values A, the nondiagonal elements of the MS
renormalization factors, defined in Eqgs. (7) and (8), are equal
to zero. The diagonal elements, shown in Eq. (27), depend
neither on the Dirac structure, nor on the lengths of the staple
segments; further, they are gauge invariant.

In the RI’ scheme, there are additional finite terms, which
contribute to the renormalization factors of Or [according
to the conditions of Egs. (15)—(17)]. These terms depend on
the external momentum, and they stem from all Feynman
diagrams. They are also multiples of the tree-level values of
the Green’s functions. As a consequence, the RI' mixing
matrices, defined in Eqs. (7) and (8), are also diagonal.
Therefore, there is no operator mixing in DR. The results

for ZrD R’RI/, together with Z?R‘m [Eq. (27)], lead directly to

the conversion factors C@'Rll through the relation,
’ MS RT C 7
ZPRRI _ CMSRI +£{26 =L o). (28)

Our resulting expressions for the conversion factors are
given in the following subsection [Eqgs. (29)-(33)].

3. Conversion factors

We present below our results for the conversion factors of
staple operators between the RI' and MS schemes. Since the
renormalization factors of O are diagonal in both MS and
RI' schemes, the conversion factors will also be diagonal.
Our expressions depend on integrals of modified Bessel
functions of the second kind K,, over one Feynman
parameter and possibly over one of the variables ¢ appearing
in Eq. (2). These integrals are denoted by P; = P;(3>,
th] ’ Z)’ Qi = Qi(ézv le ’ Qﬂzv <, y) and Ri = Ri(qzv le ) Qﬂz’
z,y); they are defined in Eqs. (A11)-(A28) of Appendix A.

6 {(15 ) +2(8 +6)7E+710g(/?—§>+(ﬂ+2)log(¥>+410g<q4y>+4<2 tan‘l(z)

—28\/IIPs - 213, (20, - Be(Py

m+wm&—&ﬁ+0@>

(29)
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CRI’MS_1+g CF

||

i
o

CRI/.MS —
v, 16 2

+4log<q4y > 4—4<2§tan‘1 <y

01 = 22(f(P, — Pa) —4P5) + P2l (P

{15 +2(8 +6)yi +Tlog <ﬁ2) (B+2)log <q4z ) + 4log <q4y ) + 4<2§tan_1 (%)

1
)) +2(pP, —2P,) - 2\/7|Z| (BP4 —2Ps) ——/)751222(P1 —P,) +4q,,(Rs — R,)

_P5

(B=2)Ps +2P5) +/3z2P3)} Lo (30)

- 2.2
1+9CF{<15 B) +2(+6) yE—|—7log</(_;2> +(B+2) log<q4z>

> —10g< y—2>> £ 2(BP, - 2P,)

— B\ PlelPy ~2id,, 20, = B(P) = P)) + 43, (Rg — Ry)
+c‘1y<2\|/zc|1—((ﬂ 2,429 - 2P ) | + O, ) (1)

=2

_ 2
RI' MS g Cr

MS _ 1542 Jog [ X W ioe (L) & 4108 (12
Cr, _1+16JT2 5+ (,/)’+6)}/E+70g? + (B + >OgT +4log( =~

-1 y? _ _ =2 L ~ _
+4(2%an ! (2) - 1og +2(p = 2P, = B\ PIelPs — 55T (P) - Pa) + 43, (R — Ro)

= P3) +ﬂ\/72|2|

= CjV,AI s CAL = CV )

—iq,, (40, —2pz(P

Cp=Cs, Cy

H

We note that the real parts of the above expressions, as well
as the bare Green’s functions, are not analytic functions of
z (y) near z — 0 (y — 0); in particular, the limit z — 0 leads
to quadratic divergences, while the limit y — 0 leads to
logarithmic divergences. The singular limits were expected,
due to the appearance of contact terms beyond tree level.
In the case y =0, the staple operators are replaced by
straight-line operators of length |z|, the renormalization of
which is addressed in our work of Ref. [33]. In the case
z = 0, the nonlocal operators are replaced by local bilinear
operators, the renormalization of which is studied, e.g., in
Refs. [59,60,63,64].

Since our results for the conversion factors will be
combined with nonperturbative data, it is useful to employ
certain values of the free parameters mostly used in simu-
lations. To this end, we set: 7 = 2 GeV and = 1 (Landau
gauge). For the RT' scale we employ values which are relevant

for simulations by ETMC [25], as follows: ag = ( ny,

2 n,,2n3,%% (ny +1)), where a is the lattice spacing,

(L? x T) is the lattice size and (n;, n,, n3, ny) is a 4-vector
defined on the lattice. A standard choice of values for n; is the
case n; = n, = n3 # Ny, in which the temporal component
ny stands out from the remaining equal spatial components.
As an example we apply (ny,n,,n3,ny) = (4,4,4,9),

) +I2AG, 4 RIP 4 O). () (32)
Cr,=Cr,,. (u.v,p oare all different). (33)

|

L =32, T =64 and a = 0.09 fm. For a better assessment

of our results, we plotin Fig. 6 the real and imaginary parts of

the quantities Cy-, defined through CR/'™MS — 1 4 512625‘ Cr+
O(g*), as functions of the dimensionless variables
z/a and y/a, using the above parameter values. In the case
y = 0, we use the expressions of the conversion factors for
straight-line operators, calculated in Ref. [33], while in the
case z =0, we use the one-loop expressions of the con-
version factors for local bilinear operators, written in
Refs. [60,64]. For definiteness, we choose p; =1 and
Uy = 2. Graphs for CV = CA4’ CTlz = CTH Cr, =
CT3 , and CT1 . CT32 are not included in Fig. 6, as their
resulting values are very close to those of C v, (fractional
differences: <1073).

The real parts of Cr- are even functions of both z/a and
y/a. In Fig. 6, one observes that, for large values of z/a,
they tend to stabilize, while for large values of y/a they
tend to increase; thus, a two-loop calculation of the
conversion factors is essential for more sufficiently con-
vergent results. Further, the dependence on the choice of I"
becomes milder for increasing values of z/a and y/a.
Regarding the imaginary parts of Cr, they are odd functions
of z/a and even functions of y/a. For large values of z/a or
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FIG. 6. Real (left panels) and imaginary (right panels) parts of the quantities Cs = Cp, Cy, = C4, and Cy, = Cy, = C,, = Cy,,

involved in the one-loop expressions of the conversion factors: CIEI/’M_S =1+ ’{26?; Cr + O(g"), as functions of z/a and y/a [for f = 1,
fi=2GeV, a=009fm, ag= (3n;,%ny,%n3, % (ny+1)), L =32, T =064, (n,,ny,n3,n4) = (4,4,4,9)]. Here, we choose

Ml=1andy2=2.

v/a, they tend to converge to a positive value. In particular, demonstrate a small fluctuation around zero, which differs
when both z/a and y/a take large values, the imaginary  for each I, either in form (e.g., Cvz and Cg have opposite
parts tend to zero. For large values of y/a and, simulta-  signs for given values of z/a, y/a) or in magnitude (e.g.,

neously, small values of z/a, the imaginary parts of Cr the fluctuation of Cg is bigger and sharper than the
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fluctuation of Cy, ). As regards the g dependence, we have
not included further graphs for the sake of conciseness;
however, testing a variety of values for the components of
ag, used in simulations, we find no significant difference,
especially for large values of z/a and y/a.

B. Calculation in lattice regularization

1. Methodology

At first, let us give the lattice version of the staple
operators,

Ot = g (x)TW(x, x + mafly, x + maji, + nafiy,
x + naji )y (x + napy). (34)

W (x,x+maji,,x+maf, +naft,,x+ nafi,)
mF1 n¥l
(H Uiﬂz(x—l—faﬁz)) . (HUiﬂl (x+maﬂ2+faﬁ1)>
=0 =0
m¥F1 T
: <H Uy, (x+nafy +fa/22)> ,
£=0

n=z/a, m=y/a, (35)

where upper (lower) signs of the first and third parenthesis
correspond to m > 0 (m < 0) and upper (lower) signs of
the second parenthesis correspond to n > 0 (n < 0). The
calculation of the bare Green’s functions of such nonlocal
operators on the lattice is more complicated than the
corresponding calculation of local operators; the products
of gluon links lead to expressions whose summands, taken
individually, contain possible additional IR singularities
along a whole hyperplane, instead of a single point [terms
~1/sin(p,/2) or 1/sin*(p,/2)]. Also, the UV-regulator
limit, a — 0, is more delicate in this case, as the Green’s
functions depend on a through the additional combinations
z/a, y/a, besides the combination ag (where ¢ is the
external quark momentum). Thus, we have to modify the
standard methods of evaluating Feynman diagrams on
the lattice [65], in order to apply them in the case of
nonlocal operators.

The procedure that we used for the calculation of the
bare Green’s functions of OF is briefly described in our
previous work regarding straight Wilson-line operators [33],
and it is summarized below: The main task is to write the
lattice expressions, in terms of continuum integrals, which are
easier to calculate, plus lattice integrals independent of aq;
however, the latter will still have a nontrivial dependence on
z/a and y/a. To this end, we perform a series of additions and
subtractions to the original integrands: we extend the standard
procedure of Kawai et al. [65], in order to isolate the possible
IR divergences stemming from the integration over the p,
component, which appears on the integrals’ denominators
[~1/sin(p,/2) or 1/sin*(p,/2)]. To accomplish this, we

add and subtract to the original integrands the lowest order of
their Laurent expansion in p,,. Also, in order to end up with
continuum integrals, we add and subtract the continuum
counterparts of the integrands; then, the integration region
can be split up into two parts: the whole domain of the real
numbers minus the region outside the Brillouin zone. The
above operations allow us to separate the original expressions
into a sum of two parts: one part contains integrals which can
be evaluated explicitly for nonzero values of a, leading to
linear or logarithmic divergences, and a second part for which
a naive a — 0 limit can be taken, e.g.,

[ avfetcion o,

s (2p) =3 [ aprio). o)

The numerical integrations entail a very small systematic
error, which is smaller than the last digit presented in all
results shown in the sequel.

2. Green’s functions and operator mixing
The results for the bare lattice Green’s functions
of the staple operators are presented below in terms of
the MS-renormalized Green’s functions, derived by the
corresponding calculation in DR,

gLr CF ol
1677

ALR — AMS _ F4+0("),  (37)

|z| +2]y|
a

F= [F<a1—|—3.7920ﬂ—|—a2 +log (a?i?)(8 - ﬂ)>

+sgn(y) [ y,)(as +asesw) |, (38)

where «; are numerical constants which depend on the
gluon action in use; their values are given in Table II for the
Wilson, Tree-level Symanzik and Iwasaki gluon actions.’
We note that a,, a3, and @, have the same values (up to a
sign) as the corresponding coefficients in the straight-line
operators [33].

In Egs. (37) and (38), we observe that there is a linear
divergence [O(1/a)], which depends on the length of
the staple line (|z| 4+ 2|y|); this was expected according to
the studies of closed Wilson-loop operators in regularizations
other than DR [4]. This divergence arises from the tadpole-
like diagram d; and in particular from the subdiagrams
dy(a), dy(b), dy4(c). We note that the coefficient a, entering
the strength of the linear divergence, is given by

’A more precise result for the numerical constant 3.7920,
which multiplies the f parameter, is 167°P,, where P, =
0.02401318111946489(1) [66].
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TABLE II. Numerical values of the coefficients a;—a, appear-
ing in the one-loop bare lattice Green’s functions ALR.
Gluon action o a o ay
Wilson —22.5054 19.9548 7.2250 —4.1423
Tree-level Symanzik —22.0931 17.2937 6.3779 —3.8368
Iwasaki —18.2456 129781 4.9683 —-3.2638
1 [~ dp
o = —— —=D(p),, 39
2 2/_” (27[)3 (p)l/l/ ( )

where D(p),, is the gluon propagator, © is the direction
parallel to each straight-line segment of the Wilson line and p
equals the four-vector momentum p with p, — 0. Moreover,
additional contributions of different Dirac structures than the
original operators appear ([I", y,,,| terms); these contributions
arise from the “sail” diagrams d,, d3 and in particular from
the subdiagrams d,(c), d3(a). In order to obtain on the lattice
the same results for the MS-renormalized Green’s functions
as those obtained in DR, we have to subtract such regulari-
zation dependent terms in the renormalization process.
A simple multiplicative renormalization cannot eliminate
these terms; the introduction of mixing matrices is therefore
necessary. However, for the operators with I' =S, Vm,
A;.T;;, where i # j # u, # i, the contribution [I',y, ] is
zero, and, thus, there is no mixing for these operators. In
conclusion, there is mixing between the operators
(Op. 04, ). (Oy,,Or,, ), where i # p,, as we have men-

tioned previously. This feature must be taken into account in
the nonperturbative renormalization of TMDs.

3. Renormalization factors

The MS renormalization factors can be derived by
the requirement that the terms in Eq. (38) vanish in
the renormalized Green’s functions. Thus, through
Egs. (10)—(12), one obtains the following results for
the diagonal and nondiagonal elements of the renormal-
ization factors:

— 2
LR MS 9 Cr |z +2]yl
ZF :1+167[2 |:(el{/+1—al)—(127+egCSW
el ey = Toe(@) | + 0l (0
LRMS _ —-LRMS _ ~LRMS _ ~LRMS
2P ) = Lp) = 200, = 2,00
QZCF 4
= ngn(y)(—Z)[c@ +agesw] +O(g).  (41)
where the coefficients ¢! stem from the renormali-
zation factor of the fermion field ZL"MS given in

Appendix B [Eq. (B5)].
A number of observations are in order, regarding the
above one-loop results: both diagonal and nondiagonal

elements of the renormalization factors are operator inde-
pendent, just as the corresponding renormalization factors in
DR. Also, the dependence of the diagonal elements on the
clover coefficient cgy is entirely due to the renormalization
factor of fermion fields; on the contrary, the dependence of
the nondiagonal elements on cgyy is derived from the Green’s
functions of the operators, and in particular it is different for
each choice of gluon action. Consequently, tuning the clover
coefficient we can set the nondiagonal elements of the
renormalization factors to zero and, thus, suppress the
operator mixing. At one-loop level, this can be done by
choosing cgyy = —a3/a,. For the gluon actions given in this
paper, the values of the coefficient cgy, which lead to no
mixing at one loop, are 1.7442 for Wilson action, 1.6623 for
tree-level Symanzik action and 1.5222 for Iwasaki action;
these values are the same as those, which eliminate the
mixing in the case of straight-line operators [33].

In the RI' scheme, the renormalization factors can be
read off our expressions for the conversion factors, given in
Egs. (29)—(33), in a rather straightforward way,

|z| +2]y|
— gy HEEW

U MS.RT ngF
Ze N = SR (e ) a

+e‘5csw+e;’”céw—7log<a2ﬁ2>}+<9<g4>, 2)

LR RI LR.RI' LR RI LR.RT
Z s — Z s — Z s — N
<P~Au2) (AlAz vP) (Vi~Ti;42) (Tiyz sVi>
2
g Cr

sgn(y)(=2)[as + ascsw] + O(gh).  (43)

- 167>

Since the conversion factors are diagonal, the one-loop
nondiagonal elements of the RI' renormalization factors are
equal to the corresponding MS expressions.

IV. EXTENSION TO GENERAL WILSON-LINE
LATTICE OPERATORS WITH n CUSPS

The current study of staple operators, along with our
previous work on straight-line operators [33], lead us to
some interesting conclusions about nonlocal operators.
From these two cases, we can completely deduce the
renormalization coefficients of a general Wilson-line oper-
ator with n cusps, defined on the lattice; in particular, we
determine both the divergent (linear and logarithmic) and
the finite parts of multiplicative renormalizations, as well as
all mixing coefficients. We can also justify the nature of the
mixing in each case.

All the above coefficients can be deduced from the
difference between the bare Green’s functions on the lattice
and the corresponding MS-renormalized Green’s functions,

obtained in DR: AAp = AR — AMS. Below we have
gathered our results for these differences, in the case of
both straight-line (Ref. [33]) and staple (this work) oper-
ators, presented separately for each Feynman diagram,
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Straight-line operators,

(Astraight)LR _ (Astraight>M_

r d; T d;
2
gCr ; strai .
= fe e L O, (1=1.2.3.4)
(44)
where

Fat=o. (45)

Fyet = oT[as + 379208 + (1 — ) log(a*R?)]
+sgn(2)(Ty,, +7,1)(as + asesw). (46)

Fet =Tl ag — 3.79208 + (2 + ) log(a?R) + a2|2—| .

(47)
Staple operators,
(Alsjaple)]{;}Q _ (A;taple)f
2
gCr , _
= ez FRT 10, (i=1.2.3.4),
(48)
where
FaPe =0, (49)
Fye = 20[as +3.79208 + (1 — B) log(a’i?)]
+ Sgn()’) (FY/JZ - }’MZF) ((13 + a4CSW)a (50)

]—';‘:‘Ple = F{S[a6 —3.79208 + (2 + p) log(a*ii?)]

2
T FE2 L ot 4379208 - plog(a?)) }
a

(51)

The coefficients a; are numerical constants, which depend
on the Symanzik coefficients of the gluon action in use;
their values for Wilson, tree-level Symanzik and Iwasaki
gluons are given in Tables II and III. Comparing the above
results for the two types of operators, we come to the
following conclusions which can be generalized to Wilson-
line lattice operators of arbitrary shape:
(i) The linear divergence [O(1/a)] depends on the
Wilson line’s length.
(i) Diagram d; gives a finite, regulator-independent
result in all cases.

TABLE III. Numerical values of the coefficients as—a; appear-
ing in the one-loop bare lattice Green’s functions of Wilson-line
operators (straight line and staple).

Gluon action as Qg oy
Wilson —4.4641 —4.5258 0
Tree-level Symanzik —4.3413 —3.9303 —0.8099
Iwasaki —4.1637 —1.9053 —2.1011

(iii) The only contribution of sail diagrams (d, and d5) to
AAr comes from their end points. This is because
any parts of a segment which do not include the end
points will give finite contributions to AR, in which
the naive continuum limit ¢ — 0 can be taken,
leading to the same result as in DR and thus to a
vanishing contribution in AAp. Consequently the
shape of the Wilson line is largely irrelevant and,
indeed, all numerical coefficients in Eq. (50)
coincide with those in Eq. (46). The only depend-
ence on the shape regards the Dirac structure of the
operator which mixes with Op. The mixing terms
depend on the direction of the Wilson line in the
end points. For the straight Wilson line, the direc-
tion in both end points is sgn(z)i;, which leads to
the appearance of the additional Dirac structure
sgn(z)(T'y,, +7,T) upon adding together sail dia-
grams d, and d3. For the staple Wilson line, the
direction in the left end point is sgn(y)/, and in the
right end point is —sgn(y)fl,; thus, the additional
Dirac structure which appears upon adding the two
sail diagrams is sgn(y)(I'y,, —7,,I).

The mixing pairs for each type of nonlocal
operator can be also explained (partially) by sym-
metry arguments. For straight-line operators, there is
a residual rotational (or hypercubic, on the lattice)
symmetry (including reflections) with respect to the
three transverse directions to the /i direction parallel
to the Wilson line. As a consequence, operators
which transform in the same way under this residual
symmetry can mix among themselves, under re-
normalization; i.e., mixing can occur only among
the pairs of operators (O, Or, ). This argument can
now be applied to a general Wilson line: given that
only end points contribute, mixing can occur only
with OFW where fi refers to the directions of the

two end points of the line. Clearly, the subsets of
operators which finally mix depend on the commu-
tation properties between I" and y,. We note that, if
the fermion action in use preserves chiral symmetry,
then none of the operators will mix with each other.
(iv) The tadpole diagram (d,) for the staple operators
gives, aside from the linearly divergent terms, two
types of contributions: one corresponds to each of
the three straight-line segments [first square bracket
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in Eq. (51)], which is identical to the corresponding

contribution from the straight Wilson line, multi-

plied by a factor of 3, and another contribution for

each of the two cusps [second square bracket in

Eq. (51)], multiplied by a factor of 2, which cannot

be obtained from the study of straight-line operators.
As a consequence of the above, it follows that the
difference AR — AMS for a general Wilson-line operator
with n cusps (and, hence, n + 1 segments), defined on the
lattice, can be fully extracted from the combination of our
results for the straight-line and the staple operators: the
contributions of each straight-line segment and each cusp,
appearing in the general operators, are obtained from
Eqgs. (44)—(51). Therefore, without performing any new
calculations, the result for the Green’s functions of
general Wilson-line lattice operators with n cusps, is
determined below,

I\LR 1\MS
(Algenera )di _ (Alg,:enera )di

2
= _g CF eiq“lz X ]_—ganera] + 0(94)’

e ! (i=1,2.3.4).

(52)
where

Fi?neral _ O, (5 3)

FE — DTy +3.79206 + (1 - f) log(a2i?)]

+ (T + ﬂfr)(% + aycsy), (54)

f:éljneral = F{(n + 1ag —3.79205

+ [2(n+ 1) + p]log(a*i?) +%az + now},
(55)

L is the Wilson line’s length and 2, (#,) is the direction of
the Wilson line in the initial (final) end point. In the above
relations, it is explicit that there is mixing between the
pairs of operators (Or, Op;, +,7¢fr)‘ Proceeding further with
the renormalization of these operators, we extract the
renormalization factors in the MS scheme,

_ 2
g C L .
2 = 1+ T o~ Dok ey + ey
- (n+3)log ()| + O, (56)
LR MS g°Cr 4
ZF(nondiag./mix.) = W (—1)[03 + a4CSW] + O(g )’ (57)

where e = [¢¥ + 1 —2as5— (n+ 1)ag — nay] and e¥ are
given in Appendix B. It is worth noting that the results
in Egs. (56) and (57) are both gauge invariant, as was
expected.

V. CONCLUSIONS AND FUTURE PLANS

In this paper, we have studied the one-loop renormal-
ization of the nonlocal staple-shaped Wilson-line quark
operators, both in dimensional regularization (DR) and on
the lattice (Wilson/clover massless fermions and Symanzik-
improved gluons). This is a follow-up calculation of
Ref. [33], in which straight-line nonlocal operators are
studied. These perturbative studies are parts of a wider
community effort for investigating the renormalization of
nonlocal operators employed in lattice computations of
parton distributions (PDFs, GPDs, TMDs) of hadronic
physics. A novel aspect of this calculation is the presence
of cusps in the Wilson line included in the definition
of the nonlocal operators under study, which results in
the appearance of additional logarithmic divergences.
Perturbative studies of such nonsmooth operators had
not been carried out previously on the lattice. As in the
case of the straight-line operators, certain pairs of these
nonlocal operators mix under renormalization, for chirality-
breaking lattice actions, such as the Wilson/clover fermion
action. The path structure of each type of nonlocal operator
(straight-line, staple, ...) leads to different mixing pairs.
The results of the present study provide additional infor-
mation on the renormalization of general nonlocal oper-
ators on the lattice.

Particular novel outcomes of our calculation are

(i) The one-loop results for the amputated two-point
one-particle-irreducible (1-PI) Green’s functions of
the staple operators both in DR [Egs. (A1)-(A10)]
and on the lattice [Egs. (37) and (38)].

The mixing pairs of the staple operators:
(Op. 04, ). (Oy,,Or,, ). i # pp (for notation, see
Sec. ITA). We propose a minimal RT-like con-
dition [Eqgs. (15)-(17)], which disentangles this
mixing and which is appropriate for nonperturba-
tive calculations of parton-distribution functions
on the lattice.

The one-loop expressions for the renormalization
factors of the staple operators in both dimensional
and lattice regularizations, in the MS scheme
and the proposed RI' scheme [Egs. (27), (28),
(40)-(43)].

The one-loop conversion factors between the RT' and
MS schemes [Egs. (29)~(33)].

An extension of our calculations to general Wilson-
line lattice operators with n cusps; we have
provided results for their renormalization factors
[Egs. (56) and (57)].

(ii)

(iii)

(iv)
v)
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Our results are useful for improving the nonperturbative
investigations of transverse momentum-dependent distri-
bution functions (TMDs) on the lattice. Such an example is
the calculation of the generalized g;7 worm-gear shift in the
TMD limit (Jy| - o); this quantity involves a ratio
between the axial and vector operators. A recent study
of TMDs on the lattice [45] reveals tension between results
for g;7 in the clover and domain-wall formulations. This is
not observed in other structures and is an indication of
nonmultiplicative renormalization. Our proposed RT-type
scheme can be applied to the nonperturbative evaluation of
renormalization factors and mixing coefficients of the
unpolarized, helicity and transversity quasi-TMDs; this
is expected to fix the inconsistency between the two
calculations of g;r. Also, our one-loop conversion factors
can be used to convert the RT' nonperturbative results to
the MS scheme. Our results for general Wilson-line lattice
operators with n cusps can be used in the nonperturbative
renormalization of more general continuum nonlocal
operators.

Comparing our results for the staple operators with the
corresponding ones for the straight-line operators, we
deduce that the strength of the linear divergences is the
same for both types of operators; the presence of cusps lead
to additional logarithmic divergences in the staple oper-
ators. Also, the observed mixing pairs among operators
with different Dirac structures depend on the direction of
Wilson line in the end points, and thus, they are different
between the two types of operators: the straight-line
operator O mixes with O{Wm }» While the staple operator

Or mixes with O[r%] (for notation, see Sec. II A).

However, the values of the mixing coefficients are the
same in the two cases.

Further perturbative investigations of the staple oper-
ators can lead to improved and more robust results. Our
future plans include three extensions of the present
calculation:

(i) The first one is the one-loop evaluation of lattice
artifacts to all orders in the lattice spacing, for a
range of numerical values of the external quark
momentum, of the momentum renormalization
scales, and of the action parameters, which are
mostly used in simulations. Such a procedure has
been successfully employed to local operators
[67—-69]. The subtraction of the unwanted contribu-
tions of the finite lattice spacing from the non-
perturbative estimates is essential in order to reduce
large cutoff effects in the renormalized Green’s
functions of the operators and to guarantee a rapid
convergence to the continuum limit.

(i) Secondly, we intend to add stout smearing on
gluon links appearing in the definition of the staple

operators and to investigate its impact to the elimi-
nation of ultraviolet (UV) divergences and of oper-
ator mixing; modern simulations employ such
smearing techniques for more convergent results.
(iii) Thirdly, a natural continuation of the present work is
the two-loop calculation of the conversion factors
between the RI’ and MS schemes; higher-loop
corrections will eliminate large truncation effects
from the nonperturbative results. Based on our
extensive studies for systematic uncertainties on
the renormalization functions for the straight Wilson
line [34,70], we find empirically that the one-loop
conversion factor is sufficient for lattice spacing
satisfying |z|/a < 7-8 and (au)?* within the interval
[2 — 4]. Outside these regions, a two-loop conver-
sion factor would be called for; clearly, however,
other systematic uncertainties will also become more
relevant (lattice artifacts, volume effects, etc).
Finally, our perturbative analysis can be also applied to
the study of further composite Wilson-line operators,
relevant to different quasidistribution functions, e.g.,
gluon quasi-PDFs, etc.
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APPENDIX A: GREEN’S FUNCTIONS IN
DIMENSIONAL REGULARIZATION

In this appendix, the full expressions for the one-loop
amputated Green’s functions of the staple operators A{-',
calculated in dimensional regularization (DR), are pre-
sented in a compact form [Egs. (A1)-(A10)]. From these
expressions it is straightforward to derive the renormalized
Green’s functions, both in the MS scheme [by removing
the O(1/¢) terms] and in any variant of the RI' scheme,
as described in Sec. II C; the corresponding conversion
factors [Egs. (19)—(21)] also follow immediately. The
functions A '°” depend on integrals of modified Bessel
functions of the second kind, K,, over Feynman para-
meters and/or over {-variables stemming from the defi-
nition of the staple operators. These integrals are
denoted by Pi = Pi(qz’ qu] ’ Z)7 Qi = Qi(qz’ qy] ’ qyz’ 2, y)
and R; = R;(¢?, Qu,+ Ay, 2+ Y); they are listed at the end of
this appendix [Eqgs. (A11)-(A28)].
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In Egs. (A9), (A10), &,,,,,, is the Levi-Civita tensor, €134 = 1.
List of integrals: In what follows, we use the notation: s = /¢*(1 — x)x.
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0

074508-17



CONSTANTINOU, PANAGOPOULOS, and SPANOUDES PHYS. REV. D 99, 074508 (2019)

1 b4 .
Ql(q2, Quys 9uy s z,y) = /0 dxA dCe_”’ﬂGC COS(qﬂzxy)KO (S y2 + C2>, (A16)
1 z .
0, (4, Gy Gy 20 Y) = A dxA dee i m>e cos(q,,xy) Ko (s 2+ Cz) (1 -x), (A17)
0;(¢* ,y) = 1dx Zdé’e"'qﬂl)‘ccos( xy)K (s 2—1—52) NACEIL (A138)
3q’qﬂl’qﬂ2’ DY) = 0 0 quy 1 y m’
1 z .
04(4*. 4y, 4,,.2.9) = A dx/) dge™" % sin(q,,xy)K (S ¥+ Cz> (1-x), (A19)
05 (¢ y= [lax [Tdceisin(q, xy)K (s 2+§2) (1 - x)x (A20)
s\ 9™ 9,9y, 2:Y) = 0 0 9y, Xy 1 y y2+€2 ’
1 y
Rl(qz,qm,y) EA dxA d¢ cos(q,,xC)Ko(s[¢])(1 = x), (A21)
1 y .
Ro(qP g, ) = /0 dx /0 dz sin(g, x0)Ko(sI21). (A22)
1 y .
R3(qz,qﬂ2,y)5/0 dx/o d¢ sin(q,,x¢)Ko(s[¢])(1 = x), (A23)
1 y .
R4(q?, Q> Gy 22Y) = A dxA dge™"m** cos(q,,x¢) K (S\/ 2+ Cz) (1=x), (A24)
1 y . (I —x)x
2 — —iq,, X2 2 2
Rs(q%. G+ 4y 2. Y) _A dxA dge™"m™ cos(q,,x{) K, (S\/Z +é’) \/m (A25)
1 y . 3
Rs(q?, G Gy 2 Y) = A dx% dCe™' I sin(q,,x¢) K (s 2+ Cz>, (A26)
1 y . .
R;(q?, G+ Gy 22Y) = /0 dx/o dge "™ sin(q,,x{) K, (s 2+ {2) (1 —=x), (A27)
Ry(¢ V= [ ax [ dzein e sin(q, x0)K (s 2 +g2) (1= x)x (A28)
8\ dpy» 4y V) = o o 9p, 1 < 2+ 2

APPENDIX B: RENORMALIZATION OF FERMION FIELDS

In this Appendix, we have gathered useful expressions regarding the renormalization of fermion fields in both dimensional
(DR) and lattice (LR) regularizations, taken from, e.g., Refs. [63,71], respectively. We give the one-loop expressions for the
renormalization factors in the MS and RI' schemes, as well as the conversion factors between the two schemes,

ZDRMS _ | +92CF -1) ! + O(g") (Bl
v = e P DT O, )
2 =2
DR.RI' _ 9Cr _ 1 H- 4
Zy " =145 (8 1)<£+1+10g(512>> +0(g"), (B2)
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TABLE IV. Numerical values of the coefficients e —e

fermion fields on the lattice.

appearing in the one-loop renormalization factors of

Gluon action eV 134 ey
Wilson 11.8524 —2.2489 —1.3973
Tree-level Symanzik 8.2313 —2.0154 —1.2422
Iwasaki 3.3246 —-1.6010 -0.9732
LR,RI g°Cr % w w2 2-2 4
Zy =1+ 1622 le] +4.79200 + €5 csw + e3Cgy + (1 =p)log (a*g*)] + O(g*). (B4)
LR.MS ZI/L/R’RII ¢*Cr
Zi " = s~ g (€1 D 3790208+ efeq + efcqy + (1= plog (@] + O(). - (BS)
IV

The numerical constants ¢! depend on the gluon action in use; their values for Wilson, tree-level Symanzik and Iwasaki

improved gluon actions are given in Table TV.
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