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Abstract: The quickest change detection problem is studied in a general context of monitoring a large num-
ber K of data streams in sensor networks when the “trigger event” may affect different sensors differently.
In particular, the occurring event might affect some unknown, but not necessarily all, sensors, and also could
have an immediate or delayed impact on those affected sensors. Motivated by censoring sensor networks,
we develop scalable communication-efficient schemes based on the sum of those local CUSUM statistics
that are “large” under either hard, soft, or order thresholding rules. Moreover, we provide the detection
delay analysis of these communication-efficient schemes in the context of monitoring K independent data
streams, establish their asymptotic statistical properties under two regimes: one is the classical asymptotic
regime when the dimension K is fixed, and the other is the modern asymptotic regime when the dimension
K goes to co. Our theoretical results illustrate the deep connections between communication efficiency and
statistical efficiency.
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1. INTRODUCTION

Sensor networks have broad applications including health and environmental monitoring, biomed-
ical signal processing, wireless communication, intrusion detection in computer networks, and
surveillance for national security. There are many important dynamic decision problems in sensor
networks, as information is accumulated (or updated) over time in the network systems. One of
them is the quickest detection of a “trigger” event when sensor networks are deployed to monitor
the changing environments over time and space, see Veeravalli (2001).

In this article, we consider a general scenario of quickest detection problems when some un-
known, but not necessarily all, sensors might be affected by the “trigger event.” A naive approach
is to monitor each local sensor individually and to raise a global alarm as soon as any local sensor
raises a local alarm. Unfortunately, this specific parallel local monitoring approach does not take
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advantage of global information and may lead to large detection delays if several sensors can pro-
vide information about the occurring event. Indeed, one allegation often made to the parallel local
monitoring approach is that one loses much information at the global level by combining local
detection procedures, not raw observations themselves, to make a global decision.

The main purpose of this article is to demonstrate that the problem is not on the parallel local
monitoring approach itself, but on how to combine the local detection statistics suitably when
the number of affected data streams is moderate. Our proposed methodologies are motivated by
the communication efficiency in censoring sensor network, which was introduced by Rago et al.
(1996) and later by Appadwedula et al. (2005) and by Tay et al. (2007). Figure 1 illustrates the
general setting of a widely used configuration of censoring sensor networks, in which the data
streams X}, ,’s are observed at the remote sensors (typically low-cost battery-powered devices),
but the final decision is made at a central location, called the fusion center. The key feature of such
a network is that while sensing (i.e., taking observations at the local sensors) is generally cheap
and affordable, communication between remote sensors and fusion center is expensive in terms of
both energy and limited bandwidth. Thus, to prolong the reliability and lifetime of the network
system, practitioners often allow the local sensors to send summary messages Uy, ,,’s to the fusion
center only when necessary. The question then becomes when and how to send summary messages
so that the fusion center can still monitor the network system effectively.

This consideration motivates us to propose communication-efficient schemes that raise a global
alarm based on the sum of those local detection statistics (e.g., local CUSUM statistics) that are
“large” under either hard-, soft- or order- thresholding. We will then investigate the statistical
properties of our proposed communication-efficient schemes under two asymptotic regimes: one
is the classical asymptotic regime for fixed dimension K, and the other is the modern asymptotic
regime when the dimension /K goes to oo. Our theoretical results illustrate the deep connections
between communication efficiency and statistical efficiency.

It is worth pointing out that a well-known view in the standard off-line statistical inference
literature is the necessity of shrinkage or thresholding for high-dimensional data in order to im-
prove statistical power or efficiency, see Candes (2006) and the references there. In the sequential
change-point detection or quickest detection literature, shrinkage or thresholding has been applied
in two different directions for sparse post-change scenarios: one direction is the application on the
shrinkage estimation of sparse post-change parameters of local data streams, see Xie and Sieg-
mund (2013); Wang and Mei (2015); Chan (2017), and the other is an indirect approach of filtering
out non-changing local data streams through the local summary statistics, which was first proposed
in a conference paper by the author in Mei (2011) and were shown to be effective in real-world
applications of profile or image monitoring (Liu et al. (2015); Zhang et al. (2018)). This arti-
cle investigates the asymptotic statistical properties of the indirect approach, and hopefully it will
provide a deeper insight and popularize its use in practice to balance the tradeoff between commu-
nication efficiency and statistical efficiency.

The remainder of this article is organized as follows. In Section 2 we present a rigorous mathe-
matical formulation of sequential change-point detection problems in the context of globally moni-
toring multiple data streams and also discuss existing methodologies. In Section 3, we develop our
proposed methodologies from the communication-efficient viewpoint and provide guidelines how
to choose tuning parameters. Asymptotic statistical properties of our proposed communication-
efficient schemes are presented in section 4 and numerical Monte Carlo simulation results are
provided in section 5. The detailed technical proofs are postponed in the appendix.
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Figure 1: A widely used configuration of censoring sensor networks.

2. PROBLEM FORMULATION AND BACKGROUNDS

Suppose that in a network system as in Figure 1, there are K sensors, and each local sensor Sy
observes a local data stream over time, say, { X}, }>°, for k = 1,..., K. Initially, the system is
“in control” and the distribution of the X}, ,,’s is fj, at the k-th sensor. At some unknown time v, a
“trigger” event occurs to the network system, and the density function of the sensor observations
Xp.n’s changes from one density f; to another density g at time v, = v + J;. Here the term
dr € [0, 00| denotes the (unknown) delay of the occurring event’s impact at the k-th sensor, and
dr = oo implies that the k-th sensor is not affected. The problem is to find an efficient global
monitoring scheme, so that the system can detect the occurring event as quickly as possible.

To be more rigorous, we assume that the f;’s and g;’s are completely specified densities with
respect to a suitable measure ji, see, for example, Tartakovsky and Veeravalli (2004). For each
1 < k < K, we assume that the Kullback-Leibler (KL) information number

w0 = [ 1o % Do) e
is finite and positive, and
gr(2)\?
/ (108 fk@:)) g (2)dpir () < oo, (2.2)

Denoted by Pg’){;%_.’ 5, and Ez(s?,)ag,..., 5, the probability measure and expectation of the sensor ob-
servations when the event occurs at time v, and denoted by P(*) and E(*) the same when there
are no changes. Note that Pf)lc’,?oo,,,.,oo is the same as P(*). A global monitoring scheme can be
defined as a stopping time 7' with respect to the sequence of K-dimensional random vectors
{(X1n, -+ Xkn)}n>1, and the interpretation of 7" is that, when 7' = n, we stop at time n and
declare that a change has occurred somewhere at or before time n. As in the classical quickest
change detection problems in Lorden (1971), our problem can then be formulated as to find a
stopping time 7" such that the “worse-case” detection delay

B e (T) = sup essswp By, o (0= v+ 1)7] 5, (2.3)

v>1

is as small as possible for those reasonable combinations of nonnegative J;’s subject to the global
false alarm constraint

EC)(T) > ~, (2.4)
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where v > 0 is a pre-specified constant.

When K = 1 or when monitoring a single local data stream, say, the k-th data stream, such a
problem has been well studied in the sequential change-point detection literature, see Page (1954);
Shiryaev (1963); Lorden (1971); Pollak (1985, 1987); Moustakides (1986); Basseville and Niki-
forov (1993); Lai (1995, 2001); Kulldorff (2001). For a review, see the books such as Basseville
and Nikiforov (1993), Poor and Hadjiliadis (2009), Tartakovsky et al. (2014). One efficient local
detection procedure is Page’s CUSUM procedure: it raises a local alarm at the first time n when the
local CUSUM statistic W}, ,, exceeds some pre-specified threshold, where W}, ,, can be computed
conveniently online via a recursive formula

(X
Win = maX{O, max Zloggk k }

1<v<n fk Xk’L
_ 96(Xn)
— max (W,m_l +log TR, o). (2.5)

Below we will develop global monitoring schemes based on the local CUSUM statistics Wy, ,, in
(2.5), although the ideas can be easily extended to other local detection statistics (in the logarithm
scale of the likelihood) such as Shiryeav-Roberts statistics or scan statistics.

Now let us go back to our global monitoring problem when K is moderately large, and it is
known that the generalized likelihood ratio based methods do not have recursive forms and are
computationally expensive, see Mei (2010). In order to develop efficient scalable global moni-
toring schemes, it is natural to combine the local detection procedures together to make a global
decision, and there are two intuitive approaches. The first one is the “MAX” scheme that raises an
alarm at the global level if the maximum of the local CUSUM statistics is too large, i.e., if one of
the local CUSUM procedures raises a local alarm, see Tartakovsky et al. (2006). Mathematically,
the “MAX” scheme raises a global alarm at time

Thax(c) = inf{n > 1 1%%}% Win > ¢}, (2.6)

(= oo if such n does not exist) where ¢ > 0 is a pre-specified constant chosen to satisfy the false
alarm constraint (2.4). The second approach is the “SUM” scheme, proposed in Mei (2010), in
which one raises an alarm if the sum of local CUSUM statistics is too large. Specifically, at time
n, each data stream calculates its local CUSUM statistic Wy, ,,’s as in (2.5), and then one will raise
an alarm at the global level at time

K
Toum(d) = inf{n > 1:3 Wy, >d}, 2.7)
k=1

where the constant d > 0 is some suitably chosen constant. Intuitively, the “MAX” scheme 7},.x ()
in (2.6) works better when one or very few data streams are affected, whereas the “SUM” scheme
Teum(d) in (2.7) works better when many data streams are affected, and numerical simulations in
Mei (2010) indeed verified this intuition.

3. COMMUNICATION-EFFICIENT METHODOLOGY

In this section, we propose our global monitoring schemes from the communication efficiency
viewpoint in the censoring sensor networks in Figure 1. To have a better illustration, we divide
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this section to two subsections. In the first subsection, we will present our proposed schemes and
provides the motivation of our proposed schemes in the censoring sensor networks. In the second
subsection, we will discuss the relation between the tuning parameters in our proposed schemes
and the communication costs in the censoring sensor networks and provide guidelines about how
to choose the tuning parameters.

3.1. Our Proposed Schemes

From the communication efficiency viewpoint, in the censoring sensor networks in Figure 1, the
local sensors need to summarize the information and only send ‘“‘significant” information to the
fusion center to prolong the reliability and lifetime of the network. This inspires us to propose
to transmit only those local CUSUM statistics W}, ,,’s that are larger than their respective local
thresholds.

Specifically, at time 7, each local sensor calculates its local CUSUM statistic IV}, ,, recursively
as in (2.5), and then sends the following sensor message Uy ,, to the fusion center:

{ Wk,na if Wk:,n Z bk

Ugn = NULL, if Wy, < by

)

3.1

where b, > 0 is the local censoring (hard threshold) parameter at the k-th sensor. Here the message
“NULL” is a special sensor symbol to indicate the local CUSUM statistic is not large. In practice,
“NULL” could be represented by the situation when the sensor does not send any messages to the
fusion center, e.g., the sensor is silent.

After receiving the local sensor messages Uy, ,,’s in (3.1), the fusion center then combines them
together suitably to make a global decision. There are several reasonable approaches to do so, and
the first two schemes are based on the summation of all sensor messages Uy, ,,’s, depending on how
to interpret the “NULL” values. The first approach is to treat the “NULL” values as lower limit 0,
and to raise a global alarm at the fusion center at time

K
Npara(a) = inf {n >1: Z Ukn > a}
k=1

K
— inf {n > 103 Win (Wi = i} > a}. (3.2)
k=1

Below this scheme will be referred as the hard-thresholding scheme, since it involve the hard-
thresholding transformation h(w) = wl{w > b} of the local CUSUM statistics W ,,.

The second approach is to treat the “NULL” values as the upper limit b;’s, in which the fusion
center will compute the global monitoring statistic

K K

K K
Gn = Z Uk,n = Z maX{ka, bk} = Z maX{ka — bk, O} + Z bk

k=1 k=1 k=1 k=1

This is closely related to the soft-thresholding transformation h(w) = max(w — b, 0) of the local
CUSUM statistic Wy, ,,, and we can define the soft-thresholding scheme that raises an alarm at time

K
Nygila) = inf {n > 10 max{Wi, — by, 0} > a}. (3.3)
k=1
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Here we keep the threshold of N,z (a) as a instead of a — Zle b, so that both Nj,4.4(a) in (3.2)
and N, (a) in (3.3) can be written in a common SUM-shrinkage family of schemes

K
Ne(a) =inf{n >1: > hp(Wi,) > a}, (3.4)

k=1

also see Liu et al. (2018).

The third approach occurs when the fusion center has a prior knowledge that (at most) r out of
K data streams will be affected by the occurring event. Such a prior knowledge may be defined
by the network fault-tolerant design to avoid risking failure. In this case, it is reasonable for the
fusion center to order all sensor messages Uy ,,’s as U(y) , = ... > Uk)n, and raise an alarm if the
sum of the r largest Uy, ,,’s 1s too large. This yields a global monitoring scheme that is based on the
order-thresholding transformation of Uy, ,,’s:

Neompr(a) = inf {n >1: Z Ulkyn = a}, 3.5)
k=1

where one might treats the “NULL” values as lower limit 0, upper limit b or any other reasonable
values. In this article, Uy, in the combined scheme N,,.-(@) is chosen as the hard-shrinkage of
the local CUSUM statistics, i.e., Wy, 1{W4,, > by }.

From the statistical viewpoint, a special case of Neomp (@) in (3.5) is when the order-thresholding
transformation is applied directly to the local detection statistics Wy, ,,’s in (2.5) themselves. Specif-
ically, we order the K local CUSUM statistics W1, . .., Wi, from largest to smallest: Wy, >
Wyn = ... = W(k)n. Then the order-thresholding scheme can be defined by the stopping time

Norerp (@) = inf {n = 113" Wi > a . (3.6)
k=1

Clearly, Ny gerr(a) is a special case of Neomp-(a) if the local censoring parameter b, = 0, since
the local CUSUM statistics Wy, ,,’s are non-negative.

Note that each family of schemes, Njq,q(a) in (3.2), Nyofi(a) in (3.3), Nopgerr(a) in (3.6), and
Neompr(@) in (3.5), can be thought of as a large family that includes both “MAX” and “SUM”
schemes. For instance, the “SUM” scheme T}, (d) in (2.7) correspond to the hard thresholding
scheme Nj,,q(a) with b, = a and a = d, or the order-thresholding scheme N, 4., (@) in (3.6) with
r = 1. Similarly, if all threshold parameter b, = 0, then the hard thresholding scheme Nj,.4(a) in
(3.2), the soft-thresholding schemes N, f:(a), and Negpp, (@) in (3.5) with r = K will become the
“SUM” scheme Ty, (d) in (2.7).

It is useful to mention that our proposed schemes, Nj,q,-q(@) in (3.2), Ngoz(a) in (3.3), Norder.r (@)
in (3.6), and N,pmp.-(a) in (3.5), take advantage of the same high-level insights: little information
seems to be lost at the fusion center if we do not observe those local data streams with small val-
ues of W;,,,’s since they make limited contributions to detect the true changes. These ideas and
similar techniques have been applied in other contexts. Banerjee and Veeravalli (2015) essentially
use the hard-thresholding transformation in (3.2) tackle the quickest detection problem when one
purposely miss the observations to reduce costs. Wang et al. (2018) borrowed the soft-threshold
schemes in (3.3) for profile monitoring when a change only affects some but not all principle
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components in the principal component analysis. Liu et al. (2015) applied the order-thresholding
transformation in (3.6) for efficient adaptive sampling policy when one only has ability to observe
r out of K data streams at each time step. This may occur in manufacturing process control when
there are K possible stages in the process but there are only r expensive sensors available to mon-
itor the process. In such a problem, the order-thresholding scheme allows us to adaptively observe
those r data streams with the largest W, ,,’s values at each time step. Zhang et al. (2018) also used
the order-thresholding transformation in (3.6) for monitoring nonlinear profiles when small shifts
may occurred on some unknown regions of the profile data. In addition, along the idea of order
statistics, Banerjee and Fellouris (2016) proposed the stopping time N, (a) = inf{n : Wayn > a}.
This is asymptotically equivalent to our proposed order-thresholding scheme N, 4er-(a) in (3.6)
when the prior knowledge of exactly r affected data streams is true. However, our proposed order-
thresholding scheme N, 4., (@) in (3.6) is more robust when the prior knowledge is inaccurate,
particularly when the true affected number of data streams 7., < 7.

3.2. Choice of Thresholding Parameters

So far we simply follow our intuition without discussing how to choose the local threshold param-
eters b;’s. Intuitively we should choose identical local threshold parameters b;’s when the local
sensors are homogeneous, but choose sensor-specified local threshold parameters b;’s when the
sensors are nonhomogeneous. The homogeneous case was discussed in our previous research in
Liu et al. (2018), and here we focus on the possible nonhomogeneous case.

Under the assumption of the finiteness of local KL information numbers (g, fx) in (2.1), we
propose to choose the local threshold parameter b;’s as

b = pib (3.7
fork=1,..., K, where

S gk, fr)

and b > 0 is the common global-level thresholding parameter that will be discussed in a little bit.
The rigorous statistical justification of (3.7)-(3.8) will be postponed to the next section, and it is
useful to think at the high-level that p; can be thought of as the weight of the k-th data stream in
the overall final decision, and those local sensors with larger KL information numbers or larger
signal-to-noise ratios will play more important roles in the final decision. Meanwhile, note that
when the sensors are the homogeneous, we have p, = 1/K and thus local threshold parameters
by = b/K are the same. Hence, our proposed choices of thresholding parameters in (3.7)-(3.8)
match our intuition in the homogeneous case.

The choice of global-level thresholding parameter b is nontrivial, and may need to consider
some non-statistical constraints. As an illustration, in certain applications of censoring sensor
networks, the censoring parameter b may be chosen to satisfy the constraints on the average fraction
of transmitting sensors when no events occur. For our proposed scheme Ny,.4(a, b), when no event

Pk (3.8)



occurs, the average fraction of transmitting sensors at any time step 7 is

K K
1 1
e Z P)(Uy,, #NULL) = e Z P (W, > pibd)
k=1 k=1
1 K
< =D exp(—pib),
k=1

where the last inequality follows from the well-known properties of the local CUSUM statistics,
see, Appendix 2 on Page 245 of Siegmund (1985). In particular, if all X sensors are homogeneous
in the sense that the I(gy, fi)’s are the same for all k, then p, = 1/K, and the average fraction of
transmitting sensors at any time step is exp(—b/K’) when no event occurs. Hence for our proposed
scheme Nj,.q(a, b), a choice of

b= Klogn™!,

or equivalently, the local hard threshold b, = ppb = b/K = logn~!, will guarantee that on
average, at most 1001n% of K homogeneous sensors will transmit messages at any given time
when no event occurs. It is interesting to note that the local threshold b, = logn~! at each local
sensor is a constant that does not depend on K.

The choice of b becomes more complicated for the combined thresholding schemes N,opmp - (a, b)
if the thresholding parameter r has been given beforehand. We do not have an explicit answer, and
a general rule of thumb is that the censoring parameter b in (3.5) shall not be too large, as one
generally should keep at least r non-zero Uy, ,,’s when r data streams are affected by the event.

The choice of thresholding parameter r is straightforward and depends on whether one has
any prior knowledge about the maximum number of affected data streams. If such a knowledge
exists and it is believed that at most 7, data streams will be affected by the occuring event, then
one should use this 7 as the value of thresholding parameter . Otherwise one may want to be
conservative to choose r = K, e.g., consider the “SUM” scheme or the hard-thresholding scheme
Npara(a, ) in (3.2).

4. STATISTICAL EFFICIENCY

In this section, we investigate the statistical efficiency of our proposed communication-efficient
schemes, Nyqrq(a) in (3.2), Nyopi(a) in (3.3), Nopgerr(a) in (3.6), and N (@) in (3.5). Here
we assume that the local thresholds p;, are given in (3.7)-(3.8), and rewrite our proposed schemes
as Npara(@, ), Noori(@,b), Norderr(a,b), Neompr(a, b) so as to emphasize the role of the common
threshold b in (3.7). Our statistical efficiency analysis allows us to provide a rationale justification
of the choice of p; in (3.8), or b in (3.7)-(3.8), although we should emphasize that these choices are
a sufficient but not necessarily necessary condition in order for our proposed schemes in (3.2)-(3.6)
to enjoy good properties.

For easy understanding our theoretical results, we divide this section into three subsections.
In the first subsection, we provide the asymptotic upper bound of detection delay of our proposed
schemes under the settings when the number of affected data streams are fixed. In the second
subsection, we derive the upper bound of detection delay of our proposed scheme when the false
alarm constraint (2.4) v goes to oo under the classical asymptotic regime when the number of data



streams K is fixed. The delay analysis on the high-dimension regime when K goes to co will be
presented in the last subsection.

4.1. Detection Delay Analysis

In this subsection, we consider a general setting when the change is not necessarily instantaneous.
We assume that when the occurring event occurs at time v, the k-th data stream is affected at time
v = v + O, where the term 0, € [0, o] denotes the delay of the occurring event’s impact on the
k-th data stream. In particular, 9, = oo implies that the k-th data stream is not affected. In other
words, the density function of the sensor observations X, ,,’s of the £-th data stream changes from
fr to g at time v, = v + J,. Most research in the literature assumes that the delay effect J; only
takes two possible values, 0 or co. Here we relax such an assumption a little bit, and assume that
the delay effects d;’s satisfy the following post-change hypothesis set A :

A = {(51, ..., 0k) : the ;s either = oo or satisfy 0 < ), << log~y and 12[]11%1}(51C = 0}. 4.1)

where ~ is the false alarm constraint in (2.4), and z(t) << y(t) implies that x(¢)/y(t) — 0 as
t — oo. Note that the assumption of min;<x<x 0, = 0 is trivial, since otherwise the system
is actually affected by the occurring event at the “new” change-point v’ = v + minj << 5. The
assumption of 6 << log~y is a technical assumption to ensure that one is able to utilize all affected
data streams to raise a global alarm subject to the false alarm constraint v in (2.4). In other words,
we only consider the scenario when the differences on the finite delay affects d’s are not too large
as compared to the typical order (log ) of detection delays. A sufficient condition to satisfy this
assumption is when all finite d;’s are uniformly bounded by some constants that do not depend on
the false alarm constraint «y in (2.4).
In the detection delay analysis, the following constant plays a crucial role:

K
J(01,--,0k) = > T(gi, fi) {0k < 00}, (4.2)
k=1

and I (g, fx) is the KL information number defined in (2.1), and /{ A} is the indicator function of
set A. Essentially, the constant J(d1,...,dk) in (4.2) states that only those affected data streams
can make contributions in quickest detection.

The following theorem establishes the detection delay properties of our proposed schemes,
Npara(a,b) in (3.2), Nyopi(a,b) in (3.3), Nopgerr(a,b) in (3.6), and Neopmp(a,b) in (3.5), as the
global threshold a goes to co. The proof of this theorem is presented in detail in the appendix.

Theorem 4.1. Suppose a — oo.

(i) For any combination (01, ...,0x) € A defined in (4.1), as b — oo

— a b
E Nhara(a, b)) < , 4.3
61,8k (Nhara(a, b)) maX{J(51,.--,5K) Zf;ﬂ(gkafk)} (4.3)

+O(Vb) + O((Smax ((5k)>,

10k <00

where J(01,...,0k) is defined in (4.2).



(ii) For all b > 0, the soft-thresholding scheme N, s:(a,b) in (3.3) satisfies

_ a b
E51 ..... ) Nso a, b S +
[N 72 Sy Igns fo)

FOMVB) +0(( e (30).

4.4)

(iii) For any integer 1 < r < K, the order-r thresholding scheme N, g, ,(a) in (3.6) and the
combined thresholding scheme Nippmp - (a,b) in (3.5) satisfy (4.3) whenever Zszl {6, <
oo} < 1, i.e., when the occurring event affects at most r sensors.

4.2. Classical Asymptotic Regime with Fixed Dimension K

In this subsection, we present the asymptotic optimality properties of our proposed schemes,
Nhara(a,b), Neopi(a,b), Nordgerr(a), and Neomp-(a,b), under the classical asymptotic regime in
which the number of data streams K is fix and the false alarm constraint y goes to co.

The following lemma derives the information bound on the detection delays of any globally
monitoring schemes when A is defined in (4.1), as the false alarm constraint v in (2.4) goes to co.

Lemma 4.1. Assume a scheme T () satisfies the false alarm constraint (2.4). Then for any given
post-change hypothesis (01, ...,0k) € A, as 7y goes to 0o,

= log

Es, 6 (T(7) > (1+ 0(1))m7 (4.5)

where J(01,...,0k) is defined in (4.2).

When the local censoring parameters b;’s are defined in (3.7)-(3.8) with the common parameter
b, the asymptotic optimality properties of our proposed schemes under the classical asymptotic
regime can be summarized as follow.

Theorem 4.2. For a given K and for any b > 0, with the choice of
a=a,=logy+ (K —1+o0(1))loglog~, (4.6)

the hard-thresholding scheme Nya.q(ay,b) satisfies the false alarm constraint (2.4). Moreover; if
a — b goes to oo as vy goes to oo, then for all b > 0,

< logy+ (K —1+oll)loglogy . ) /5 . 1) @D
J((Sl,..-,(SK)

for all possible post-change hypothesis (01,...,0x) € A in (4.1). Therefore, for any given

b = o((loglog)?), the hard-thresholding schemes Nyq.q(a,b) in (3.2) asymptotically minimize

Es, .5 (Nhara(a, b)) (up to the second-order) for each and every post-change hypothesis (81, . . ., 0) €
A subject to the false alarm constraint (2.4), as v in (2.4) goes to oco. The conclusion also
holds if Npara(a,b) is replaced by the soft-thresholding scheme Ny,fi(a,b) in (3.3), the order-
thresholding scheme N, ge,., in (3.6) or the combined thresholding scheme N omp,(a,b) in (3.5)
when the occurring event affects at most r data streams, i.e., when (01,...,0x) € A satisfies
SO T{6, <00} <7

10



Theorem 4.2 validated our choices of the local censoring parameters b;’s in (3.7) and the
weights p;’s in (3.8) in the general nonhomogeneous scenario, as the corresponding schemes are
asymptotically optimal when the KL information numbers [ (gy, fi) in (2.1) might be different for
different k. Moreover, by Theorem 4.2, when b = o((loglog)?), the upper bound of the de-
tection delay in the right hand side of (4.7) is asymptotically first-order equivalent to those with
b = 0. This indicates that we can choose the local threshold b = o((loglog)?) to achieve both
communication efficiency and statistical efficiency simultaneously.

4.3. Modern Asymptotic Regime When the Dimension X' — oo

In this subsection, we present the asymptotic properties of our proposed schemes, Ny,.q(a,b),
Nsosi(a,b), Nopderr(a), and Neomp, - (a, b), under the modern asymptotic regime in which both the
dimension K and the false alarm constraint 7 in (2.4) go to oo in a suitable rate. In order to
be tractable, we consider the homogenous case when (fx,gx) = (f,g) for all k, and the local
censoring parameters by,’s defined in (3.7)-(3.8) will become b, = b/ K with the common parameter
b. In this subsection, denote by I = I(g, f) the KL information number defined in (2.1).

Here we consider the sparse post-change scenario when the number of affected data streams m
is fixed, and focus on the impact of the dimension /K on the performance of our proposed schemes.
Two different scenarios will be investigated: K = o(log~y) and K >> log~y. When K and log
have the same order, research becomes more challenging and is out of the scope of this article.
Note that Chan (2017) considers the not-so-sparse and not-so-dense post-change scenario when
the number of affected data streams m goes to oo by assuming that log(m), log(K), and log log
have the same order. Here our asymptotic setting is different, and we consider the case of fixed m
when K and log vy go to oco.

First, when both the dimension K and the false alarm constraint v in (2.4) go to oo, the choice
of a in (4.6) for fixed K might no longer work, and thus it is crucial to find the threshold a to
satisfy the false alarm constraint v in (2.4) in the modern asymptotic setting when K — oo. The
following theorem characterizes a general non-asymptotic result on the conservative choice of the
threshold a.

Theorem 4.3. For any given b and K, a choice of

a = (y/log(dy) + K — Ke /% + VE)? 4.8)

will guarantee the hard-shrinkage scheme Nyq,q(a,b), the soft-thresholding scheme Ng,pi(a,b),
the order-thresholding scheme Noyqer.(a,b) or the combined thresholding scheme N omp.(a,b)
satisfy the false alarm constraint (2.4).

It is clear from Theorem 4.3 that the asymptotic property of the conservative threshold a in (4.8)
depends on the relation between A and log . The following corollary summarizes the asymptotic
detection delays of our proposed schemes, and it shows that the classical asymptotic detection
delay bounds for fixed K still hold when K = o(logy), but we will have new asymptotic delay
bounds when K >> log 7.

Corollary 4.1. Assume the number m of affected data streams is fixed, and assume K and log~y
g0 1o 00,
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(i) if K = o(log~), for any b > 0, with the choice of
a = a, = log(4y) + o(log~) (4.9)

the hard-thresholding scheme Npu.q(a,b) in (3.2) satisfies the false alarm constraint in (2.4)
and has the detection delay

E;

1
b (Nnapa(a, b)) < (14 0(1)) ‘;f] +O(1), (4.10)

for all possible post-change hypothesis (41, ...,0x) € Ain (4.1).
(ii) If K >> log~y and b > 0, with the choice of
a=(1+o0(1)K 4.11)

the hard-thresholding scheme Nyy,.q(a,b) in (3.2) satisfies the false alarm constraint in (2.4).
Moreover; if the local censoring parameters by’s are not too large, i.e., b, = o(K), or
equivalently, the global censoring parameter b = o( K?), we have

_ K
E51 ,,,,, 5K<Nha7"d(a'> b)) < (1 + 0(1))W + O(l)v (412)

for all possible post-change hypothesis (41, ...,0x) € Ain (4.1).

(iii) The conclusions of (i) and (ii) also hold if Np.q(a,b) is replaced by the soft-thresholding
scheme Ny,pi(a,b) in (3.3), the order-thresholding scheme N, gey., in (3.6) or the combined
thresholding scheme N.opmp-(a,b) in (3.5) when the occurring event affects at most r data
streams, i.e., when (31, ..., 0x) € A satisfies S0 1{0), < co} < 7.

S. NUMERICAL SIMULATIONS

In this subsection we report our numerical simulation results to illustrate the usefulness of the
proposed schemes in (3.2)-(3.6). Suppose that there are K = 100 independent and identical
sensors in a system, and the observations at each sensor are iid with mean 0 and variance 1 before
the change and with mean 1 and variance 1 after the change if affected. In our simulation study, we
simply assume that the change is instantaneous if a sensor is affected, but we do not know which
subset of sensors will be affected.

For the purpose of comparison, we conduct numerical simulations for six families of global
monitoring schemes:

e the “MAX” scheme T},.x(a) in (2.6),
e the “SUM” scheme Ty, (a) in (2.7),
e the order thresholding scheme N, 4, (a) in (3.6) with r = 10,

e the hard thresholding scheme Nj,4,.4(a) in (3.2),

12



o the soft thresholding scheme N, () in (3.3),
e the combined thresholding schemes Ny (@) in (3.5) with = 10.

The first three schemes require all local sensors to send all local CUSUM statistics Wy, ,,’s
values to the fusion center at each and every time step, and corresponds to the case when the
local censoring parameter b, = 0 for all k = 1,--. | K. For order-thresholding in the families
of Norderr(a) and Neomp (@), we choose r = 10 to better understand the scenario when 10 out
of 100 sensors are affected by the occurring event. For each of the last three schemes in the list,
i.e., our three proposed schemes (3.2)-(3.5), we further consider three different values of the local
censoring parameters b;’s:

(i) b =1/2 ~ —10g(0.607) for all k,
(ii) by = —log(0.1) = 2.3026 for all k,
(iii) by = —log(0.01) = 4.6052 for all k.

The choices of these values will guarantee that when no event occurs, on average at most =
60.7%, 10%, and 1% of K = 100 homogeneous sensors will transmit messages at any given time,
respectively. Therefore, there are a total of 3 + 3 = 3 = 12 specific schemes in our numerical
simulation study.

For each of these 12 specific schemes T'(a), we first find the appropriate values of the global
threshold a to satisfy the false alarm constraint E(*)(T'(a)) ~ v = 5000 (within the range of
sampling error). Next, using the obtained global threshold value a, we simulate the detection
delay when the change-point occurs at time ¥ = 1 under several different post-change scenarios,
1.e., different number of affected sensors. All Monte Carlo simulations are based on m = 2500
repetitions.

Table 1 summarizes our simulated detection delays of these 12 schemes under 8 different post-
change hypothesis, depending on the number of affected sensors. From Table 1, among these 12
specific schemes, when a small number (1 ~ 3) of 100 homogeneous sensors are affected by the
event, the “MAX” scheme T},,.« (a) is the best (in the sense of smallest detection delay), the “SUM”
scheme Ty, (a) is the worst, and all other schemes are in-between. Similarly, when a large number
(20 or more) of 100 homogeneous sensors are affected, the order is reserved: Ty, (a) is the best,
Tax(a) is the worst, and all other schemes are in-between. However, when 5 ~ 10 sensors are
affected, the schemes with order-thresholding » = 10 yield the smallest detection delays, since
they are designed to detect the scenario when 10 sensors are affected by the event. In addition, it
is clear from Table 1 that for each given scheme, the fewer affected sensors we have, the larger
detection delay it will have. All these results are consistent with our intuition.

It is worth emphasizing that for the families of the hard- and soft- thresholding schemes,
Npara(a) in (3.2) and N, (a) in (3.3), a larger censoring value of by, actually leads to a smaller
detection delay when only a few sensors are affected. This suggests that a larger censoring value
b, may actually be necessary for efficient detection when the affected sensors are sparse.

A surprising and possibly counter-intuitive result in Table 1 is the effect of not so large values
of censoring parameters b;’s in finite sample simulations. For instance, the performances of the
“SUM” scheme Ty, (a) and the hard thresholding scheme Ny q(a, by = 0.50) are similar in
view of sampling errors. Likewise, the top-r thresholding scheme Ny,4¢;—10(a) and the combined
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Table 1: A comparison of the detection delays of six families of schemes with v = 5000. The
smallest and largest standard errors of these 12 schemes are also reported under each post-change
hypothesis based on 2500 repetitions in Monte Carlo simulations.

# sensors affected
1\3\5 \ 8 \10\20\30\50\100

Smallest standard error 0.18 | 0.07 | 0.05 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.00
Largest standard error 0.35 | 0.12 | 0.07 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03
Schemes with b, = 0
Tax(a = 11.27) 2331163 |14.4|13.0 124|109 |102 | 9.5 | 8.7
Tyum(a = 88.66) 52.1 | 21.8 | 147103 | 87 | 52 | 39 | 29 | 2.0
Norderr=10(a = 44.11) 341|155 (112 | 85 | 7.5 | 55 | 48 | 4.1 | 3.4
Schemes Nj,,q(a) in (3.2) with different positive by’s
Npara(a = 85.60, by, = 0.50) 52.91219|149(103| 87 | 5.2 | 40 | 29 | 2.0

Nyara(a = 52.21, by = 2.3026) | 50.6 | 20.7 | 13.8 | 9.6 | 82 | 52 | 42 | 3.2 | 24
Npara(a = 26.31, b, = 4.6052) 398 160|115 | 88 | 79 | 5.9 | 52 | 44 | 3.8
Schemes N, () in (3.3) with different positive by’s

Nsoft(a = 63.92, b, = 0.50) 4821202 137 97 | 82 | 5.1 | 40 | 3.0 | 2.0
Nsoft(a = 21.56, by, = 2.30206) 339 154 |11.2 | 85 75 | 5.3 | 4.5 3.7 | 3.0
Nuope(a = 8.20, by = 4.6052) | 25.2 | 138 | 11.1 | 92 | 84 | 6.7 | 59 | 5.2 | 4.4
Schemes Neomp-(@) in (3.5) with r = 10 and different positive b’s

Neompr(a = 4411, b, = 0.50) | 34.1] 155 [ 11.2] 85 | 7.5 | 5.5 | 48 | 4.1 | 34
Neompr(a = 43.88,b, = 2.3026) | 38.5 | 16.8 | 11.7 | 86 | 7.5 | 5.5 | 47 | 4.0 | 3.3
Neompr(a = 26.31,b, = 4.6052) | 39.8 | 16.0 | 11.5 | 88 | 7.9 | 5.9 | 52 | 44 | 3.8

thresholding scheme N omp r—10(a, b = 0.50) also have identical performances. The interpretation
in the censoring sensor networks context is as follows: using our proposed communication policy
in (3.1), we only need exp(—b;) = exp(—0.5) = 60.7% of 100 sensors to transmit information
to the fusion center at any given time when no event occurs, but we can still be as effective as the
full transmission scenario when all sensors transmit information at all time steps. In other words,
much communication costs can be saved by our proposed schemes Nyg,q(a) O Neomp, (@) with not
so large values of by’s.

It is also interesting to see the effect of the order-thresholding parameter r in finite sample sim-
ulations when the hard-thresholding parameters by’s are large. From Table 1, when the false alarm
constraint 7y in (2.4) is only moderately large, e.g., v = 5000, the performances of Ny.,.4(a, by.) and
Neompr=10(a, by) are identical when b, = 4.6052 — they not only have the same global threshold
a, but also have the same detection delays. Intuitively, the stopping time Ny (a, by) is decreas-
ing as a function of 7, and thus we have Nj,q.4(a, br) = Neompr=r (@, bx) < Neompr=10(a, b)) when
b, = 4.6052. So one may wonder why our numerical simulations lead to identical results? One
explanation is that with such a choice of b, = 4.6052, when no event occurs, on average there is
at most 1 non-zero sensor message received in the fusion center at any given time, and thus there
is little difference whether one uses the sum of the largest » = 10 sensor messages or uses the
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sum of all ' = 100 sensor messages. Hence similar performances are observed in finite-sample
simulations.

APPENDIX: TECHNICAL PROOFS

Below we present the detailed proofs to Theorems 4.1, 4.2, 4.3 as well as Lemma 4.1 and Corollary
4.1.

Proof of Theorem 4.1. Let us first focus part (i) on the properties of the hard-thresholding
scheme Nyq.q(a,b) in (3.2) with b > 0 being the common constant for b;’s in (3.7)-(3.8).

To prove relation (4.3), it is clear that the worst-case detection delay of Nju.q(a,b) occurs
at the change-point » = 1, and thus it suffices to show that E( )6 (Nhara(a, b)) satisfies (4.3).

Without loss of generality, we assume that only the first m data gféams are affected and no other
data streams are affected. To simplify our notation below, denote ¢, = max;<;<,, d;. It suffices

to show that

a

EVY (thd(a,b))gmax{ -

b
O(Vb) + O(1) + Gmax,(5.1
k1 L(9rs i) Zgzlf(gk’fk>}+ (V) + O(1) + Gmax,(5.1)

for any b > 0.

The essential idea in the proof of (5.1) is to compare Np,-q(a, b) with new stopping times that
are only based on those affected m data streams. Define a stopping time that is in the form of the
one-sided sequential probability ratio test (SPRT):

7(a,b) = first n such that Z Z log > a and
=1 k=1
9r(Xki)
lo —’2 b foralll < k <m, 5.2)
Z ® X))

where the weights p,.’s are defined in (3.8), and let 75(a, b) be the new stopping time that applies
7(a, b) to the new observations after time 0,ay.

Now whenever 75(a,b) stops at time 1y + dpax, We know that 7(a, b) stops after applying it
to ng observations (X s,... 1, * s Xk.dmaxtno) TOr €ach k. By the definition of the local CUSUM
statistics in (2.5), we have

Omax+n0 gk (Xk )
Wk' n (Smax 2 1Og —72 Z pkb
T izgﬂ Ji(X)

for all 1 < k < m. Hence,

m  Omax+no

Z Wk n0+(5mdx]—{Wk no+0max = pkb} > Z Z

k=1 i=0max+1

Z

)

where the last relation is from the definition of 7(a, b). This implies that the scheme Ny,.q(a, b)
must stop at time ng + dyax, and possibly earlier. Thus

EY ) (Niara(@,0)) < BT (75(0,5)) = S + B (7(a,D)),

................
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where &7 is the binary version of d;’s defined in (5.10). To simplify the notation, denote by E*)
the expectation when the change occurs at time v = 1 and the event affects the first m data streams
immediately but does not affect the other remaining KX — m data streams. So it suffices to show
that the stopping time 7(a, b) in (5.2) satisfies

a b
Do L9k f6) S8 I, f)

To prove (5.3), for 1 < k < m, let

M, = 1nf{n>1 Zlggk(X )zpkb},

EY(7(a,b)) < max { } +O0(Vb) +0(1). (5.3)

(le)

M;ﬁ—n
gk sz

(M) = sup{nzl Z log fk (%) O}
i=Mp+1
M = max (Mk+7'k(Mk)+1)
1<k<m
M+n m
t(M) = inf{nzl Z <Zl gk >>max{a— ZpkbO}}
i=M+1 k=1

Combining these definitions with those of 7(a, b) in (5.2) yields that

7(a,b) < M+ t(M)= max (Mk+rk(Mk)+1)+t(]\?[)

1<k<m

< > me(My) + 1+ (M) + max M.
k=1 -

Hence, relation (5.3) holds if we can establish the following three relations:

E(l)(Tk(Mk)) = O(1) foralll <k <m; (5.4)
ED(¢(M)) < B _ b 05+ O(1); 55
(( )) - maX{Zk:ll(gkvfk) > e 1 gk 1) } . 52
b
1)
E (@aéan) < ZkK_ll(gk7fk)+O(\/l_))+O(1). (5.6)

Relation (5.4) is well-known in renewal theory, e.g., Theorem D in Kiefer and Sacks (1963), since
log (gx(X)/ fx(X)) has positive mean and finite variance under E/") by our assumptions in (2.1)
and (2.2).

For relation (5.5), by the definition of ¢(M), when a < (327", pi)b, the threshold becomes 0
and thus t(M) = 0. When a > (327", pi)b, the stopping time (M) is defined when a random
walk exceeds the bound @ — (D _;", px)b, the application of standard renewal theory yields that

s - T o
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a b
- - o
S Lgrs fx) SO (g, fr) +ow,

see, for example, (Siegmund, 1985, Ch. VIII). Here the second equation follows from the definition
of p in (3.8) that
Zk:1 Pk B 1

S Lge f) K g, fr)

Thus relation (5.5) holds.

The proof of relation (5.6) is a little more complicated, but it can be done along the same line
as that in Mei (2005). The key fact is that the choice of b, = pb’s in (3.7)-(3.8) makes sure that
the stopping times M;’s have roughly the same mean under P(). Specifically, by renewal theory
and the assumptions of (f¢, g) in (2.1) and (2.2), under P,

W) = Peb _ b

and Var™ (M;) = O(b), as b — oo, see Siegmund (Siegmund, 1985, p. 171). Thus as b — oo,

b 2 b 2
EW|M, — -
< ‘ y Zle I(gk7fk)|> Zle I(gkufk>>

= Var(l)(Mk) + <E(1)Mk _

+0(1)

< EW <Mk

b 2
ZkK:l I(gx, fk)>

S Clkb7

where C'; > 0 is a constant. Taking square root both sides, and noticing that M, = M;(b) is an
increasing function of b > 0, it is not difficult to show that for each £ = 1,--- | K, there exists a
constant C'y;, > 0 so that

b
E(1)|Mk _ | < max(Cox, v/ CuVb),
25:1 I(Qk, fk)
forall b > 0.
Therefore,
(1) b @ ’
E ( max Mk> = = + EYY max (Mk— 7 )
1<k<m Zk:l [(gk, fk) I<k<m Zkzl [(gka fk)

b b
+Y EM| M, ‘

< _
D Sy 9% % B Sy I gk fr)

b m
< ax(C! | - \/g
S S gy 2 (G VO

+C(WVb+1),

b
ZkK:I I (g, fk)

where the constant C' = Zszl max(Cy, v/C1y) does not depend on b. This proves relation (5.6).
Therefore, relations (5.4)-(5.6) hold, and thus relation (4.3) holds for the hard-thresholding scheme
Npara(a,b) in (3.2).
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The proof for the soft-thresholding scheme Ny, f(a, b) in (3.3) is similar, except defining the
stoping time 7(a, b) by

~ 9r(Xk.i) -
7(a,b) = first n such that log=———= >a+b and (5.7)
(@) 22 ey gzt
ZlogM > ppb forall1 < k < m, (5.8)
— 7 fi(Xki)
instead of (5.2) and prove
a b

EY(7(a,b)) +O0(Vb) +0(1). (5.9)

=S T 70 S E (g o)

~

by replacing the threshold max{a — (>_;", px)b, 0} in the stopping time ¢(M) by the threshold a.
The remaining arguments are identical and thus omitted.

Now let us provide a sketch of the proof for part (iii) of Theorem 4.1 on the order-thresholding
scheme N,,4er,(a) in (3.6) and the combined thresholding scheme N,y-(a,b) in (3.5). Since
Norderr(a) is a special case of Noompr(a,b) with b = 0, it suffices to prove the theorem for
Neompr(a,b) in (3.5) with b > 0. Clearly relation (5.11) also holds for N,y (a, b) for any b > 0,
because the “SUM” scheme Ty, (a) again provides the lower bound for Ny (a, b).

It remains to show that relation (4.3) holds for N,y (a,b) with b > 0 in the scenario when
the occurring event affects at most 7~ data streams, i.e., when S"1 | [{d), < oo} < r. Without loss
of generality, assume that the affected data streams are just the first m data streams with m < r.
Recall that Uy ,, = Wy, /{W}, > pib}, and we order the Uy ,’s as Uty > ... > Ugyn, and
Neomp,r(a,b) stops if >, Uy, > a. Note that if m <,

since Uy, , > 0. Thus, if at some time ny we have Wy, ,,, > prb and Z;nzl Wi, > aforl <k <m
(i.e., for the first m data streams), then N,o5.-(a, b) will also stop at time ny and possibly earlier.
Hence, whenever m < r, the stopping time 7(a, b) in (5.2) also provides an upper bound on the
detection delay of N ymp(a,b). Thus the proposed combined thresholding scheme Ny -(a, b)
in (3.5) satisfies relation (4.3) whenever the occurring event affects at most r data streams. This
completes the proof of the theorem. O

Proof of Lemma 4.1. Intuitively, only those affected sensors provide information to detect the
occurring events, and the quickest possible way to detect the occurring event is when the event
affects the sensors instantaneously. More rigorously, if we define

5t _{ 0, if 0y is finite 7 (5.10)

then for any given scheme 7'(y),



where the infimum is taken over all possible schemes 7 satisfying the false alarm constraint vy in
(2.4). An alternative and possible better viewpoint is based on a time-shifting argument in which
one imagines that at time n one observes the observations Xy 1, (instead of X} ,) when dy, is
finite, and then applies 7'(+y) to the new aligned observations.

Without loss of generality, assume that the first m data streams are affected abruptly and simul-
taneously by the event at unknown time v, and other data streams are unaffected. That is, m out of
K data streams are affected by the event, and 6 = 0for 1 <7 <m,and=ooform+1<: < K.
By (4.2), we have

T, 0k) =T, .05) = Y (g, o).
=1

In this case, we face the sequential change detection problem when the distribution of (X ., - - - , X )
changes from (f1, -, fun, font1s -+ 5 ) 0 (91, s Gmy frns1, -+, [ ). It is well-known (Lor-
den (1971)) that

log
Z:; (g, fi)
subject to the false alarm constraint v in (2.4) as v — oo. Combining the above results yields
relation (4.5), completing the proof of Lemma 4.1. |

infE(;I ,,,,, 5;((7') > (14 0(1))

Proof of Theorem 4.2: First, we will prove for any a,b > 0,

ea

E®)(Npara(a, b)) > (1 + o(1)) = (5.11)

1+a+§+"'+m

To prove (5.11), note that Ny,.q(a,bd) in (3.2) is increasing as a function of b > 0, and when
b =0, Npara(a,b = 0) reduces to the “SUM” scheme Ty, (a) in (2.7). Hence, for any b > 0,
Nhara(a,b) > Tyum(a) and of course, E)(Nygra(a, b)) > E)(T,m(a)). By Theorem 1 of
Mei (2010), the “SUM” scheme Ty, (a) satisfies relation (5.11), and so are the hard-thresholding
schemes Nyq,.q(a,b) for all b > 0.

Theorem 4.2 follows at once from Theorem 4.1 and 5.11. In particular, the choice of a. in (4.6)

-1 1

follows from (5.11) and the fact that 1 4+ a + ‘;—? + (}Kfl)! ~ (‘I‘(K:l)! if K is fixed and a goes
to 00. []

Proof of Theorem 4.3: Clearly, we can see for any fixed combination of (a, b), B N,.q(a, b)
is smaller than E(®) N, se(a,b) or E(”)Ncombvr(a, b). Therefore, it is sufficient to prove the choice
of @ in (4.8) could guarantee the hard-thresholding scheme Np,,.4(a, b) satisfies false alarm con-
straint (2.4).

First, define W} = lim,,_,o, W}, as the limit of the CUSUM statistics, which has the following
non-asymptotic result: for any x > 0, the tail probability

G(z) =P(W > z) <e®, (5.12)

see Appendix 2 on Page 245 of Siegmund (1985). It is clear that 1V} are i.i.d. across different k.
Now we define the log-moment generating function of the W}!’s

() = log E® exp{W;1{W; > b/K}} (5.13)
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For any z > 0, by Chebyshev’s inequality,

E(OO) [Nhard(aa b)]

I IV

v

>

.%’P(OO)(Nhard(&, b) Z .’E)
x [1 — P(Oo)(th«d(a, b) < Q?)}

Xz

Xz

2|

K

1 — P(OO)(Z WinIH{ Wi, > b} > a) forsome 1 < n < ZL‘]

L k:}(

1— 2P Wr{W > by} > a)] :

| k=1 .

1 — ze PR exp(@ Z lel{wl: 2 b/K})]

i k=1

1 —zexp(—fa+ K¢(0))]. (5.14)

Note that for any u > 0, the function (1 — zu) is maximized at x = 1/(2u) with the maximum
value 1/(4u). Therefore, we can get for any 0 < 6 < 1,

E(©)

Noawal )] > exp (6 — K(6)). (5.15)

By the definition of ¢(#) in (5.13) and the tail probability W} in (5.12), forall 0 < 6 < 1,

»(0)

IN

IN

<

<

log[PC) (W} < b/K) — / : 4G (z)]

log[1 + (™K —1)G(b) + 6 N G (x)dx)]

b/K
log[1 + (/K —1)e K 4 9// " G(z)dx]
b/K
log[1 + (/K —1)e K 4 9// e " da]
b/K
log (1 + ee—b(l—e)/K _ e—b/K)
1
_ 1 b(1-0)/K _ b/K
1-46
1 —b/K
—_— — 5.16
T4 ¢ (5.16)

where the second equation is based on the integration by parts. By (5.15) and (5.16), we have

1 K
E(OO)Nth(a, b) > —exp (Ha -+ Ke’bﬂ() (5.17)

4 1-46

forall0 < 0 < 1.If K < a, by letting § =1 — /K /a yield

1

E Nira(a,0) = g exp ((Va— VE) + Ke ¥ - K) (5.18)
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Therefore a choice of

a = (y/log(dy) + K — Ke 0% + VE)? (5.19)

will guarantee the hard-shrinkage scheme Ny,,.4(a, b) satisfies the false alarm constraint (2.4).
Note using the continuity of the soft-thresholding transformation function, a tighter bound for
Nsopi(a,b) was derived for the soft-thresholding scheme in Liu et al. (2018), although they are
asymptotically equivalent to those in Theorem 4.3 and Corollary 4.1 Nj,,q(a, b) as the dimension
K goes to . O

Proof of Corollary 4.1: If K = o(log ), the corresponding a = a., = log(47) + o(logy) will
guarantee the false alarm constraint. Moreover, if m is fixed and b = o(log ), the upper bound of
detection delay in theorem 4.1 could be applied and yields

Es, s (Npara(a, b)) < (14 0(1)) (1‘%7) +O(1), (5.20)

which implies the first order detection efficiency will be kept as long as b = o(log ).

If K >> log~y, the corresponding a = (1 + o(1)) K will guarantee the false alarm constraint.
Moreover, since m is fixed and b = o(K?), the upper bound of detection delay in theorem 4.1
could be applied and yields

Bayin (Vira(0,) < (1 0(1) () +O), 521

which completes the proof of corollary. O

ACKNOWLEDGEMENTS

This research is partially supported by NSF grants CMMI-1362876, DMS-1613258, and DMS-
1830344.

REFERENCES

Appadwedula, S., Veeravalli, V. V., and Jones, D. (2005). Energy-Efficient Detection in Sensor
Networks. IEEE Journal on Selected Areas in Communications 23: 693-702.

Banerjee, S. and Fellouris, G. (2016). Decentralized Sequential Change Detection with Ordered
CUSUMs. Proceedings of 2016 IEEE International Symposium on Information Theory (ISIT
2016), July 10-15, 2016, pp. 36-40. Barcelona, Spain.

Banerjee, T. and Veeravalli, V. V., (2015). Data-Efficient Quickest Change Detection in Sensor
Networks. IEEE Transactions on Signal Processing 63: 3727-3735.

Bartroff, J. (2018). Multiple Hypothesis Tests Controlling Generalized Error Rates for Sequential
Data. Statistica Sinica 28: 363-398.

21



Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory and Applications.
Englewood Cliffs, Prentice-Hall.

Candes, E. J. (2006). Modern Statistical Estimation via Oracle Inequalities. Acta Numerica 15:
257-325.

Chan, H. P. (2017). Optimal Sequential Detection in Multi-Stream Data. The Annals of Statistics
45: 2736-2763.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal Spatial Adaptation by Wavelet Shrinkage.
Biometrika 81: 425-455.

Durrett, R. (1996). Probability: Theory and Examples. Second edition. Duxbury Press, Belmont,
CA.

Fan, J. and Lin, S. K. (1998). Test of Significance When Data are Curves. Journal of American
Statistical Association 93: 1007-1021.

Fuh, C.D. and Mei, Y. (2015). Quickest Change Detection and Kullback-Leibler Divergence for
Two-State Hidden Markov Models. IEEE Transactions on Signal Processing 63: 4866—4878.

Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics. Springer-Verlag, New York.

Gordon, L. and Pollak, M. (1994). An Efficient Sequential Nonparametric Scheme for Detecting a
Change of Distribution. The Annals of Statistics 22: 763—-804.

Kiefer, J. and Sacks, J. (1963). Asymptotically Optimum Sequential Inference and Design. The
Annals of Mathematical Statistics 34: 705-750.

Kulldorff, M. (2001). Prospective Time-Periodic Geographic Disease Surveillance Using a Scan
Statistic, Journal of Royal Statistical Society, Series A 164: 61-72.

Lai, T. L. (1995). Sequential Change-Point Detection in Quality Control and Dynamical Systems
(with Discussion). Journal of Royal Statistical Society, Series B 57: 613-658.

Lai, T. L. (2001). Sequential Analysis: Some Classical Problems and New Challenges. Statistica
Sinica 11: 303-408.

Lévy-Leduc, C. and Roueff, F. (2009). Detection and Localization of Change-points in High-
Dimensional Network Traffic Data. The Annals of Applied Statistics 3: 637-662.

Liu, K., Mei, Y. and Shi, J. (2015). An Adaptive Sampling Strategy for Online High-Dimensional
Process Monitoring. Technometrics 57: 305-319.

Liu, K., Zhang, R. and Mei, Y. (2018). Scalable Sum-Shrinkage Schemes for Distributed Monitor-
ing Large-Scale Data Streams. Statistica Sinica (In press).

Lorden, G. (1971). Procedures for Reacting to a Change in Distribution, The Annals of Mathemat-
ical Statistics 42: 1897-1908.

22



Lorden, G. and Pollak, M. (2008). Sequential Change-Point Detection Procedures That Are Nearly
Optimal and Computationally Simple. Sequential Analysis 27:476-512.

Mei, Y. (2005). Information Bounds and Quickest Change Detection in Decentralized Decision
Systems. IEEE Transactions on Information Theory 51:2669-2681.

Mei, Y. (2010). Efficient Scalable Schemes for Monitoring a Large Number of Data Streams.
Biometrika 97: 419-433.

Mei, Y. (2011). Quickest Detection in Censoring Sensor Networks. In IEEE International Sympo-
sium on Information Theory (ISIT), Aug. 2011, pp. 2148-2152.

Montgomery, D. C. (1991). Introduction to Statistical Quality Control (2nd edition). Wiley, New
York.

Moustakides, G. V. (1986). Optimal Stopping Times for Detecting Changes in Distributions. The
Annals of Statistics 14:1379—-1387.

Neyman, J. (1937). Smooth Test for Goodness-of-Fit. Skand. Aktuarietidskr 20: 149-199.
Page, E. S. (1954). Continuous Inspection Schemes. Biometrika 41: 100-115.

Pollak, M. (1985). Optimal Detection of a Change in Distribution. The Annals of Statistics 13:
206-227.

Pollak, M. (1987). Average Run Lengths of an Optimal Method of Detecting a Change in Distri-
bution. The Annals of Statistics 15: 749-779.

Poor, H. V. and Hadjiliadis, O. (2009). Quickest Detection. Cambridge University Press, New York,
20009.

Rago, C., Willett, P. and Bar-Shalom, Y. (1996). Censoring Sensors: A Low-Communication-Rate
Scheme for Distributed Detection. IEEE Transactions on Aerospace and Electronic Systems 32:
554-568.

Roberts, S. W. (1966). A Comparison of Some Control Chart Procedures. Technometrics 8: 411—
430.

Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product. D Van Norstrand,
New York. Preprinted by ASQC Quality Press, Wisconsin, 1980.

Shiryaev, A. N. (1963). On Optimum Methods in Quickest Detection Problems. Theory of Proba-
bility & Its Applications 8: 22-46.

Siegmund, D. (1985): Sequential Analysis: Tests and Confidence Intervals. Springer, New York.

Tartakovsky, A., Nikiforov, I. and Basseville, M. (2014). Sequential Analysis: Hypothesis Testing
and Changepoint Detection. Chapman and Hall/CRC.

23



Tartakovsky, A. G., Rozovskiia, B. L., Blazeka, R. B. and Kim, H. (2006). Detection of Intru-
sions in Information Systems by Sequential Change-Point Methods (with discussions). Statisti-
cal Methodology 3: 252-340.

Tartakovsky, A. G. and Veeravalli, V. V. (2004). Change-Point Detection in Multichannel and Dis-
tributed Systems, Applications of Sequential Methodologies, N. Mukhopadhyay, S. Datta and S.
Chattopadhyay, eds., pp. 339-370, New York: Marcel Dekker.

Tay, W. P., Tsitsiklis, J. N. and Win, M. Z. (2007). Asymptotic Performance of a Censoring Sensor
Network. IEEE Transactions on Information Theory 53: 4191-4209.

Veeravalli, V. V. (2001). Decentralized Quickest Change Detection. IEEE Transactions on Infor-
mation Theory 47: 1657-1665.

Wang, Y. and Mei, Y. (2015). Large-Scale Multi-Stream Quickest Change Detection via Shrinkage
Post-Change Estimation, IEEE Transactions on Information Theory 61: 6926—6938.

Wang, Y., Mei, Y., and Paynabar, K. (2018). Thresholded Multivariate Principal Component Anal-
ysis for Phase I Multichannel Profile Monitoring, Technometrics 60: 360-372.

Xian, X., Wang, A., and Liu, K. (2018). A Nonparametric Adaptive Sampling Strategy for Online
Monitoring of Big Data Streams. Technometrics 60:14-25.

Xie, Y., Huang, J. and Willett, R. (2013). Changepoint Detection for High-Dimensional Time
Series with Missing Data. IEEE Journal of Selected Topics in Signal Processing 7: 12-27.

Xie, Y. and Siegmund, D. (2013). Sequential Multi-Sensor Change-Point Detection. The Annals of
Statistics 41: 670-692.

Zhang, R., Mei, Y., and Shi, J. (2018). Wavelet-Based Profile Monitoring Using Order-
Thresholding Recursive CUSUM Schemes. Accepted as a book chapter in New Frontiers in
Biostatistics and Bioinformatics, Y. Zhao, and D.G. Chen, eds., Switzerland: Springer.

24



