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Abstract: The quickest change detection problem is studied in a general context of monitoring a large num-

ber K of data streams in sensor networks when the “trigger event” may affect different sensors differently.

In particular, the occurring event might affect some unknown, but not necessarily all, sensors, and also could

have an immediate or delayed impact on those affected sensors. Motivated by censoring sensor networks,

we develop scalable communication-efficient schemes based on the sum of those local CUSUM statistics

that are “large” under either hard, soft, or order thresholding rules. Moreover, we provide the detection

delay analysis of these communication-efficient schemes in the context of monitoring K independent data

streams, establish their asymptotic statistical properties under two regimes: one is the classical asymptotic

regime when the dimension K is fixed, and the other is the modern asymptotic regime when the dimension

K goes to ∞. Our theoretical results illustrate the deep connections between communication efficiency and

statistical efficiency.
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1. INTRODUCTION

Sensor networks have broad applications including health and environmental monitoring, biomed-

ical signal processing, wireless communication, intrusion detection in computer networks, and

surveillance for national security. There are many important dynamic decision problems in sensor

networks, as information is accumulated (or updated) over time in the network systems. One of

them is the quickest detection of a “trigger” event when sensor networks are deployed to monitor

the changing environments over time and space, see Veeravalli (2001).

In this article, we consider a general scenario of quickest detection problems when some un-

known, but not necessarily all, sensors might be affected by the “trigger event.” A naive approach

is to monitor each local sensor individually and to raise a global alarm as soon as any local sensor

raises a local alarm. Unfortunately, this specific parallel local monitoring approach does not take
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advantage of global information and may lead to large detection delays if several sensors can pro-

vide information about the occurring event. Indeed, one allegation often made to the parallel local

monitoring approach is that one loses much information at the global level by combining local

detection procedures, not raw observations themselves, to make a global decision.

The main purpose of this article is to demonstrate that the problem is not on the parallel local

monitoring approach itself, but on how to combine the local detection statistics suitably when

the number of affected data streams is moderate. Our proposed methodologies are motivated by

the communication efficiency in censoring sensor network, which was introduced by Rago et al.

(1996) and later by Appadwedula et al. (2005) and by Tay et al. (2007). Figure 1 illustrates the

general setting of a widely used configuration of censoring sensor networks, in which the data

streams Xk,n’s are observed at the remote sensors (typically low-cost battery-powered devices),

but the final decision is made at a central location, called the fusion center. The key feature of such

a network is that while sensing (i.e., taking observations at the local sensors) is generally cheap

and affordable, communication between remote sensors and fusion center is expensive in terms of

both energy and limited bandwidth. Thus, to prolong the reliability and lifetime of the network

system, practitioners often allow the local sensors to send summary messages Uk,n’s to the fusion

center only when necessary. The question then becomes when and how to send summary messages

so that the fusion center can still monitor the network system effectively.

This consideration motivates us to propose communication-efficient schemes that raise a global

alarm based on the sum of those local detection statistics (e.g., local CUSUM statistics) that are

“large” under either hard-, soft- or order- thresholding. We will then investigate the statistical

properties of our proposed communication-efficient schemes under two asymptotic regimes: one

is the classical asymptotic regime for fixed dimension K, and the other is the modern asymptotic

regime when the dimension K goes to ∞. Our theoretical results illustrate the deep connections

between communication efficiency and statistical efficiency.

It is worth pointing out that a well-known view in the standard off-line statistical inference

literature is the necessity of shrinkage or thresholding for high-dimensional data in order to im-

prove statistical power or efficiency, see Candès (2006) and the references there. In the sequential

change-point detection or quickest detection literature, shrinkage or thresholding has been applied

in two different directions for sparse post-change scenarios: one direction is the application on the

shrinkage estimation of sparse post-change parameters of local data streams, see Xie and Sieg-

mund (2013); Wang and Mei (2015); Chan (2017), and the other is an indirect approach of filtering

out non-changing local data streams through the local summary statistics, which was first proposed

in a conference paper by the author in Mei (2011) and were shown to be effective in real-world

applications of profile or image monitoring (Liu et al. (2015); Zhang et al. (2018)). This arti-

cle investigates the asymptotic statistical properties of the indirect approach, and hopefully it will

provide a deeper insight and popularize its use in practice to balance the tradeoff between commu-

nication efficiency and statistical efficiency.

The remainder of this article is organized as follows. In Section 2 we present a rigorous mathe-

matical formulation of sequential change-point detection problems in the context of globally moni-

toring multiple data streams and also discuss existing methodologies. In Section 3, we develop our

proposed methodologies from the communication-efficient viewpoint and provide guidelines how

to choose tuning parameters. Asymptotic statistical properties of our proposed communication-

efficient schemes are presented in section 4 and numerical Monte Carlo simulation results are

provided in section 5. The detailed technical proofs are postponed in the appendix.
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Figure 1: A widely used configuration of censoring sensor networks.

2. PROBLEM FORMULATION AND BACKGROUNDS

Suppose that in a network system as in Figure 1, there are K sensors, and each local sensor Sk

observes a local data stream over time, say, {Xk,n}∞n=1 for k = 1, . . . , K. Initially, the system is

“in control” and the distribution of the Xk,n’s is fk at the k-th sensor. At some unknown time ν, a

“trigger” event occurs to the network system, and the density function of the sensor observations

Xk,n’s changes from one density fk to another density gk at time νk = ν + δk. Here the term

δk ∈ [0,∞] denotes the (unknown) delay of the occurring event’s impact at the k-th sensor, and

δk = ∞ implies that the k-th sensor is not affected. The problem is to find an efficient global

monitoring scheme, so that the system can detect the occurring event as quickly as possible.

To be more rigorous, we assume that the fk’s and gk’s are completely specified densities with

respect to a suitable measure μk, see, for example, Tartakovsky and Veeravalli (2004). For each

1 ≤ k ≤ K, we assume that the Kullback-Leibler (KL) information number

I(gk, fk) =

∫
log

gk(x)

fk(x)
gk(x)dμk(x) (2.1)

is finite and positive, and ∫ (
log

gk(x)

fk(x)

)2

gk(x)dμk(x) < ∞. (2.2)

Denoted by P
(ν)
δ1,δ2,...,δK

and E
(ν)
δ1,δ2,...,δK

the probability measure and expectation of the sensor ob-

servations when the event occurs at time ν, and denoted by P(∞) and E(∞) the same when there

are no changes. Note that P
(ν)
∞,∞,...,∞ is the same as P(∞). A global monitoring scheme can be

defined as a stopping time T with respect to the sequence of K-dimensional random vectors

{(X1,n, · · · , XK,n)}n≥1, and the interpretation of T is that, when T = n, we stop at time n and

declare that a change has occurred somewhere at or before time n. As in the classical quickest

change detection problems in Lorden (1971), our problem can then be formulated as to find a

stopping time T such that the “worse-case” detection delay

Eδ1,δ2,...,δK (T ) = sup
ν≥1

ess supE
(ν)
δ1,δ2,...,δK

(
(T − ν + 1)+

∣∣∣Fν−1

)
(2.3)

is as small as possible for those reasonable combinations of nonnegative δk’s subject to the global

false alarm constraint

E(∞)(T ) ≥ γ, (2.4)

3



where γ > 0 is a pre-specified constant.

When K = 1 or when monitoring a single local data stream, say, the k-th data stream, such a

problem has been well studied in the sequential change-point detection literature, see Page (1954);

Shiryaev (1963); Lorden (1971); Pollak (1985, 1987); Moustakides (1986); Basseville and Niki-

forov (1993); Lai (1995, 2001); Kulldorff (2001). For a review, see the books such as Basseville

and Nikiforov (1993), Poor and Hadjiliadis (2009), Tartakovsky et al. (2014). One efficient local

detection procedure is Page’s CUSUM procedure: it raises a local alarm at the first time n when the

local CUSUM statistic Wk,n exceeds some pre-specified threshold, where Wk,n can be computed

conveniently online via a recursive formula

Wk,n = max
{
0, max

1≤ν≤n

n∑
i=ν

log
gk(Xk,i)

fk(Xk,i)

}

= max
(
Wk,n−1 + log

gk(Xk,n)

fk(Xk,n)
, 0

)
. (2.5)

Below we will develop global monitoring schemes based on the local CUSUM statistics Wk,n in

(2.5), although the ideas can be easily extended to other local detection statistics (in the logarithm

scale of the likelihood) such as Shiryeav-Roberts statistics or scan statistics.

Now let us go back to our global monitoring problem when K is moderately large, and it is

known that the generalized likelihood ratio based methods do not have recursive forms and are

computationally expensive, see Mei (2010). In order to develop efficient scalable global moni-

toring schemes, it is natural to combine the local detection procedures together to make a global

decision, and there are two intuitive approaches. The first one is the “MAX” scheme that raises an

alarm at the global level if the maximum of the local CUSUM statistics is too large, i.e., if one of

the local CUSUM procedures raises a local alarm, see Tartakovsky et al. (2006). Mathematically,

the “MAX” scheme raises a global alarm at time

Tmax(c) = inf{n ≥ 1 : max
1≤k≤K

Wk,n ≥ c}, (2.6)

(= ∞ if such n does not exist) where c > 0 is a pre-specified constant chosen to satisfy the false

alarm constraint (2.4). The second approach is the “SUM” scheme, proposed in Mei (2010), in

which one raises an alarm if the sum of local CUSUM statistics is too large. Specifically, at time

n, each data stream calculates its local CUSUM statistic Wk,n’s as in (2.5), and then one will raise

an alarm at the global level at time

Tsum(d) = inf{n ≥ 1 :
K∑
k=1

Wk,n ≥ d}, (2.7)

where the constant d > 0 is some suitably chosen constant. Intuitively, the “MAX” scheme Tmax(c)
in (2.6) works better when one or very few data streams are affected, whereas the “SUM” scheme

Tsum(d) in (2.7) works better when many data streams are affected, and numerical simulations in

Mei (2010) indeed verified this intuition.

3. COMMUNICATION-EFFICIENT METHODOLOGY

In this section, we propose our global monitoring schemes from the communication efficiency

viewpoint in the censoring sensor networks in Figure 1. To have a better illustration, we divide
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this section to two subsections. In the first subsection, we will present our proposed schemes and

provides the motivation of our proposed schemes in the censoring sensor networks. In the second

subsection, we will discuss the relation between the tuning parameters in our proposed schemes

and the communication costs in the censoring sensor networks and provide guidelines about how

to choose the tuning parameters.

3.1. Our Proposed Schemes

From the communication efficiency viewpoint, in the censoring sensor networks in Figure 1, the

local sensors need to summarize the information and only send “significant” information to the

fusion center to prolong the reliability and lifetime of the network. This inspires us to propose

to transmit only those local CUSUM statistics Wk,n’s that are larger than their respective local

thresholds.

Specifically, at time n, each local sensor calculates its local CUSUM statistic Wk,n recursively

as in (2.5), and then sends the following sensor message Uk,n to the fusion center:

Uk,n =

{
Wk,n, if Wk,n ≥ bk
NULL, if Wk,n < bk

, (3.1)

where bk ≥ 0 is the local censoring (hard threshold) parameter at the k-th sensor. Here the message

“NULL” is a special sensor symbol to indicate the local CUSUM statistic is not large. In practice,

“NULL” could be represented by the situation when the sensor does not send any messages to the

fusion center, e.g., the sensor is silent.

After receiving the local sensor messages Uk,n’s in (3.1), the fusion center then combines them

together suitably to make a global decision. There are several reasonable approaches to do so, and

the first two schemes are based on the summation of all sensor messages Uk,n’s, depending on how

to interpret the “NULL” values. The first approach is to treat the “NULL” values as lower limit 0,
and to raise a global alarm at the fusion center at time

Nhard(a) = inf
{
n ≥ 1 :

K∑
k=1

Uk,n ≥ a
}

= inf
{
n ≥ 1 :

K∑
k=1

Wk,n1{Wk,n ≥ bk} ≥ a
}
. (3.2)

Below this scheme will be referred as the hard-thresholding scheme, since it involve the hard-

thresholding transformation h(w) = w1{w ≥ b} of the local CUSUM statistics Wk,n.
The second approach is to treat the “NULL” values as the upper limit bk’s, in which the fusion

center will compute the global monitoring statistic

Gn =
K∑
k=1

Uk,n =
K∑
k=1

max{Wk,n, bk} =
K∑
k=1

max{Wk,n − bk, 0}+
K∑
k=1

bk.

This is closely related to the soft-thresholding transformation h(w) = max(w − b, 0) of the local

CUSUM statistic Wk,n, and we can define the soft-thresholding scheme that raises an alarm at time

Nsoft(a) = inf
{
n ≥ 1 :

K∑
k=1

max{Wk,n − bk, 0} ≥ a
}
. (3.3)
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Here we keep the threshold of Nsoft(a) as a instead of a−∑K
k=1 bk, so that both Nhard(a) in (3.2)

and Nsoft(a) in (3.3) can be written in a common SUM-shrinkage family of schemes

NG(a) = inf{n ≥ 1 :
K∑
k=1

hk(Wk,n) ≥ a}, (3.4)

also see Liu et al. (2018).

The third approach occurs when the fusion center has a prior knowledge that (at most) r out of

K data streams will be affected by the occurring event. Such a prior knowledge may be defined

by the network fault-tolerant design to avoid risking failure. In this case, it is reasonable for the

fusion center to order all sensor messages Uk,n’s as U(1),n ≥ . . . ≥ U(K),n, and raise an alarm if the

sum of the r largest Uk,n’s is too large. This yields a global monitoring scheme that is based on the

order-thresholding transformation of Uk,n’s:

Ncomb,r(a) = inf
{
n ≥ 1 :

r∑
k=1

U(k),n ≥ a
}
, (3.5)

where one might treats the “NULL” values as lower limit 0, upper limit bk or any other reasonable

values. In this article, Uk,n in the combined scheme Ncomb,r(a) is chosen as the hard-shrinkage of

the local CUSUM statistics, i.e., Wk,n1{Wk,n ≥ bk}.
From the statistical viewpoint, a special case of Ncomb,r(a) in (3.5) is when the order-thresholding

transformation is applied directly to the local detection statistics Wk,n’s in (2.5) themselves. Specif-

ically, we order the K local CUSUM statistics W1,n, . . . ,WK,n from largest to smallest: W(1),n ≥
W(2),n ≥ . . . ≥ W(K),n. Then the order-thresholding scheme can be defined by the stopping time

Norder,r(a) = inf
{
n ≥ 1 :

r∑
k=1

W(k),n ≥ a
}
. (3.6)

Clearly, Norder,r(a) is a special case of Ncomb,r(a) if the local censoring parameter bk ≡ 0, since

the local CUSUM statistics Wk,n’s are non-negative.

Note that each family of schemes, Nhard(a) in (3.2), Nsoft(a) in (3.3), Norder,r(a) in (3.6), and

Ncomb,r(a) in (3.5), can be thought of as a large family that includes both “MAX” and “SUM”

schemes. For instance, the “SUM” scheme Tsum(d) in (2.7) correspond to the hard thresholding

scheme Nhard(a) with bk ≡ a and a = d, or the order-thresholding scheme Norder,r(a) in (3.6) with

r = 1. Similarly, if all threshold parameter bk = 0, then the hard thresholding scheme Nhard(a) in

(3.2), the soft-thresholding schemes Nsoft(a), and Ncomb,r(a) in (3.5) with r = K will become the

“SUM” scheme Tsum(d) in (2.7).

It is useful to mention that our proposed schemes, Nhard(a) in (3.2), Nsoft(a) in (3.3), Norder,r(a)
in (3.6), and Ncomb,r(a) in (3.5), take advantage of the same high-level insights: little information

seems to be lost at the fusion center if we do not observe those local data streams with small val-

ues of Wk,n’s since they make limited contributions to detect the true changes. These ideas and

similar techniques have been applied in other contexts. Banerjee and Veeravalli (2015) essentially

use the hard-thresholding transformation in (3.2) tackle the quickest detection problem when one

purposely miss the observations to reduce costs. Wang et al. (2018) borrowed the soft-threshold

schemes in (3.3) for profile monitoring when a change only affects some but not all principle
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components in the principal component analysis. Liu et al. (2015) applied the order-thresholding

transformation in (3.6) for efficient adaptive sampling policy when one only has ability to observe

r out of K data streams at each time step. This may occur in manufacturing process control when

there are K possible stages in the process but there are only r expensive sensors available to mon-

itor the process. In such a problem, the order-thresholding scheme allows us to adaptively observe

those r data streams with the largest Wk,n’s values at each time step. Zhang et al. (2018) also used

the order-thresholding transformation in (3.6) for monitoring nonlinear profiles when small shifts

may occurred on some unknown regions of the profile data. In addition, along the idea of order

statistics, Banerjee and Fellouris (2016) proposed the stopping time N̂r(a) = inf{n : W(r),n ≥ a}.
This is asymptotically equivalent to our proposed order-thresholding scheme Norder,r(a) in (3.6)

when the prior knowledge of exactly r affected data streams is true. However, our proposed order-

thresholding scheme Norder,r(a) in (3.6) is more robust when the prior knowledge is inaccurate,

particularly when the true affected number of data streams rtrue < r.

3.2. Choice of Thresholding Parameters

So far we simply follow our intuition without discussing how to choose the local threshold param-

eters bk’s. Intuitively we should choose identical local threshold parameters bk’s when the local

sensors are homogeneous, but choose sensor-specified local threshold parameters bk’s when the

sensors are nonhomogeneous. The homogeneous case was discussed in our previous research in

Liu et al. (2018), and here we focus on the possible nonhomogeneous case.

Under the assumption of the finiteness of local KL information numbers I(gk, fk) in (2.1), we

propose to choose the local threshold parameter bk’s as

bk = ρkb (3.7)

for k = 1, . . . , K, where

ρk =
I(gk, fk)∑K
k=1 I(gk, fk)

(3.8)

and b ≥ 0 is the common global-level thresholding parameter that will be discussed in a little bit.

The rigorous statistical justification of (3.7)-(3.8) will be postponed to the next section, and it is

useful to think at the high-level that ρk can be thought of as the weight of the k-th data stream in

the overall final decision, and those local sensors with larger KL information numbers or larger

signal-to-noise ratios will play more important roles in the final decision. Meanwhile, note that

when the sensors are the homogeneous, we have ρk ≡ 1/K and thus local threshold parameters

bk ≡ b/K are the same. Hence, our proposed choices of thresholding parameters in (3.7)-(3.8)

match our intuition in the homogeneous case.

The choice of global-level thresholding parameter b is nontrivial, and may need to consider

some non-statistical constraints. As an illustration, in certain applications of censoring sensor

networks, the censoring parameter b may be chosen to satisfy the constraints on the average fraction

of transmitting sensors when no events occur. For our proposed scheme Nhard(a, b), when no event
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occurs, the average fraction of transmitting sensors at any time step n is

1

K

K∑
k=1

P(∞)(Uk,n �= NULL) =
1

K

K∑
k=1

P(∞)(Wk,n ≥ ρkb)

≤ 1

K

K∑
k=1

exp(−ρkb),

where the last inequality follows from the well-known properties of the local CUSUM statistics,

see, Appendix 2 on Page 245 of Siegmund (1985). In particular, if all K sensors are homogeneous

in the sense that the I(gk, fk)’s are the same for all k, then ρk = 1/K, and the average fraction of

transmitting sensors at any time step is exp(−b/K) when no event occurs. Hence for our proposed

scheme Nhard(a, b), a choice of

b = K log η−1,

or equivalently, the local hard threshold bk = ρkb = b/K = log η−1, will guarantee that on

average, at most 100η% of K homogeneous sensors will transmit messages at any given time

when no event occurs. It is interesting to note that the local threshold bk = log η−1 at each local

sensor is a constant that does not depend on K.
The choice of b becomes more complicated for the combined thresholding schemes Ncomb,r(a, b)

if the thresholding parameter r has been given beforehand. We do not have an explicit answer, and

a general rule of thumb is that the censoring parameter b in (3.5) shall not be too large, as one

generally should keep at least r non-zero Uk,n’s when r data streams are affected by the event.

The choice of thresholding parameter r is straightforward and depends on whether one has

any prior knowledge about the maximum number of affected data streams. If such a knowledge

exists and it is believed that at most r0 data streams will be affected by the occuring event, then

one should use this r0 as the value of thresholding parameter r. Otherwise one may want to be

conservative to choose r = K, e.g., consider the “SUM” scheme or the hard-thresholding scheme

Nhard(a, b) in (3.2).

4. STATISTICAL EFFICIENCY

In this section, we investigate the statistical efficiency of our proposed communication-efficient

schemes, Nhard(a) in (3.2), Nsoft(a) in (3.3), Norder,r(a) in (3.6), and Ncomb,r(a) in (3.5). Here

we assume that the local thresholds ρk are given in (3.7)-(3.8), and rewrite our proposed schemes

as Nhard(a, b), Nsoft(a, b), Norder,r(a, b), Ncomb,r(a, b) so as to emphasize the role of the common

threshold b in (3.7). Our statistical efficiency analysis allows us to provide a rationale justification

of the choice of ρk in (3.8), or bk in (3.7)-(3.8), although we should emphasize that these choices are

a sufficient but not necessarily necessary condition in order for our proposed schemes in (3.2)-(3.6)

to enjoy good properties.

For easy understanding our theoretical results, we divide this section into three subsections.

In the first subsection, we provide the asymptotic upper bound of detection delay of our proposed

schemes under the settings when the number of affected data streams are fixed. In the second

subsection, we derive the upper bound of detection delay of our proposed scheme when the false

alarm constraint (2.4) γ goes to ∞ under the classical asymptotic regime when the number of data
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streams K is fixed. The delay analysis on the high-dimension regime when K goes to ∞ will be

presented in the last subsection.

4.1. Detection Delay Analysis

In this subsection, we consider a general setting when the change is not necessarily instantaneous.

We assume that when the occurring event occurs at time ν, the k-th data stream is affected at time

νk = ν + δk, where the term δk ∈ [0,∞] denotes the delay of the occurring event’s impact on the

k-th data stream. In particular, δk = ∞ implies that the k-th data stream is not affected. In other

words, the density function of the sensor observations Xk,n’s of the k-th data stream changes from

fk to gk at time νk = ν + δk. Most research in the literature assumes that the delay effect δk only

takes two possible values, 0 or ∞. Here we relax such an assumption a little bit, and assume that

the delay effects δk’s satisfy the following post-change hypothesis set Δ :

Δ =
{
(δ1, . . . , δK) : the δk’s either = ∞ or satisfy 0 ≤ δk << log γ and min

1≤k≤K
δk = 0

}
. (4.1)

where γ is the false alarm constraint in (2.4), and x(t) << y(t) implies that x(t)/y(t) → 0 as

t → ∞. Note that the assumption of min1≤k≤K δk = 0 is trivial, since otherwise the system

is actually affected by the occurring event at the “new” change-point ν ′ = ν + min1≤k≤K δk. The

assumption of δk << log γ is a technical assumption to ensure that one is able to utilize all affected

data streams to raise a global alarm subject to the false alarm constraint γ in (2.4). In other words,

we only consider the scenario when the differences on the finite delay affects δk’s are not too large

as compared to the typical order (log γ) of detection delays. A sufficient condition to satisfy this

assumption is when all finite δk’s are uniformly bounded by some constants that do not depend on

the false alarm constraint γ in (2.4).

In the detection delay analysis, the following constant plays a crucial role:

J(δ1, . . . , δK) =
K∑
k=1

I(gk, fk)I{δk < ∞}, (4.2)

and I(gk, fk) is the KL information number defined in (2.1), and I{A} is the indicator function of

set A. Essentially, the constant J(δ1, . . . , δK) in (4.2) states that only those affected data streams

can make contributions in quickest detection.

The following theorem establishes the detection delay properties of our proposed schemes,

Nhard(a, b) in (3.2), Nsoft(a, b) in (3.3), Norder,r(a, b) in (3.6), and Ncomb,r(a, b) in (3.5), as the

global threshold a goes to ∞. The proof of this theorem is presented in detail in the appendix.

Theorem 4.1. Suppose a → ∞.

(i) For any combination (δ1, . . . , δK) ∈ Δ defined in (4.1), as b → ∞

Eδ1,...,δK (Nhard(a, b)) ≤ max

{
a

J(δ1, . . . , δK)
,

b∑K
k=1 I(gk, fk)

}
(4.3)

+O(
√
b) +O

(
max

δk:δk<∞
(δk)

)
,

where J(δ1, . . . , δK) is defined in (4.2).
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(ii) For all b ≥ 0, the soft-thresholding scheme Nsoft(a, b) in (3.3) satisfies

Eδ1,...,δK (Nsoft(a, b)) ≤ a

J(δ1, . . . , δK)
+

b∑K
k=1 I(gk, fk)

(4.4)

+O(
√
b) +O

(
max

δk:δk<∞
(δk)

)
,

(iii) For any integer 1 ≤ r ≤ K, the order-r thresholding scheme Norder,r(a) in (3.6) and the
combined thresholding scheme Ncomb,r(a, b) in (3.5) satisfy (4.3) whenever

∑K
k=1 I{δk <

∞} ≤ r, i.e., when the occurring event affects at most r sensors.

4.2. Classical Asymptotic Regime with Fixed Dimension K

In this subsection, we present the asymptotic optimality properties of our proposed schemes,

Nhard(a, b), Nsoft(a, b), Norder,r(a), and Ncomb,r(a, b), under the classical asymptotic regime in

which the number of data streams K is fix and the false alarm constraint γ goes to ∞.
The following lemma derives the information bound on the detection delays of any globally

monitoring schemes when Δ is defined in (4.1), as the false alarm constraint γ in (2.4) goes to ∞.

Lemma 4.1. Assume a scheme T (γ) satisfies the false alarm constraint (2.4). Then for any given
post-change hypothesis (δ1, . . . , δK) ∈ Δ, as γ goes to ∞,

Eδ1,...,δK (T (γ)) ≥ (1 + o(1))
log γ

J(δ1, . . . , δK)
, (4.5)

where J(δ1, . . . , δK) is defined in (4.2).

When the local censoring parameters bk’s are defined in (3.7)-(3.8) with the common parameter

b, the asymptotic optimality properties of our proposed schemes under the classical asymptotic

regime can be summarized as follow.

Theorem 4.2. For a given K and for any b ≥ 0, with the choice of

a = aγ = log γ + (K − 1 + o(1)) log log γ, (4.6)

the hard-thresholding scheme Nhard(aγ, b) satisfies the false alarm constraint (2.4). Moreover, if
a− b goes to ∞ as γ goes to ∞, then for all b ≥ 0,

Eδ1,...,δK (Nhard(a, b)) ≤ log γ + (K − 1 + o(1)) log log γ

J(δ1, . . . , δK)
+O(

√
b) +O(1) (4.7)

for all possible post-change hypothesis (δ1, . . . , δK) ∈ Δ in (4.1). Therefore, for any given
b = o((log log γ)2), the hard-thresholding schemes Nhard(a, b) in (3.2) asymptotically minimize
Eδ1,...,δK (Nhard(a, b)) (up to the second-order) for each and every post-change hypothesis (δ1, . . . , δK) ∈
Δ subject to the false alarm constraint (2.4), as γ in (2.4) goes to ∞. The conclusion also
holds if Nhard(a, b) is replaced by the soft-thresholding scheme Nsoft(a, b) in (3.3), the order-
thresholding scheme Norder,r in (3.6) or the combined thresholding scheme Ncomb,r(a, b) in (3.5)
when the occurring event affects at most r data streams, i.e., when (δ1, . . . , δK) ∈ Δ satisfies∑K

k=1 I{δk < ∞} ≤ r.
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Theorem 4.2 validated our choices of the local censoring parameters bk’s in (3.7) and the

weights ρk’s in (3.8) in the general nonhomogeneous scenario, as the corresponding schemes are

asymptotically optimal when the KL information numbers I(gk, fk) in (2.1) might be different for

different k. Moreover, by Theorem 4.2, when b = o((log log γ)2), the upper bound of the de-

tection delay in the right hand side of (4.7) is asymptotically first-order equivalent to those with

b = 0. This indicates that we can choose the local threshold b = o((log log γ)2) to achieve both

communication efficiency and statistical efficiency simultaneously.

4.3. Modern Asymptotic Regime When the Dimension K → ∞
In this subsection, we present the asymptotic properties of our proposed schemes, Nhard(a, b),
Nsoft(a, b), Norder,r(a), and Ncomb,r(a, b), under the modern asymptotic regime in which both the

dimension K and the false alarm constraint γ in (2.4) go to ∞ in a suitable rate. In order to

be tractable, we consider the homogenous case when (fk, gk) = (f, g) for all k, and the local

censoring parameters bk’s defined in (3.7)-(3.8) will become bk = b/K with the common parameter

b. In this subsection, denote by I = I(g, f) the KL information number defined in (2.1).

Here we consider the sparse post-change scenario when the number of affected data streams m
is fixed, and focus on the impact of the dimension K on the performance of our proposed schemes.

Two different scenarios will be investigated: K = o(log γ) and K >> log γ. When K and log γ
have the same order, research becomes more challenging and is out of the scope of this article.

Note that Chan (2017) considers the not-so-sparse and not-so-dense post-change scenario when

the number of affected data streams m goes to ∞ by assuming that log(m), log(K), and log log γ
have the same order. Here our asymptotic setting is different, and we consider the case of fixed m
when K and log γ go to ∞.

First, when both the dimension K and the false alarm constraint γ in (2.4) go to ∞, the choice

of a in (4.6) for fixed K might no longer work, and thus it is crucial to find the threshold a to

satisfy the false alarm constraint γ in (2.4) in the modern asymptotic setting when K → ∞. The

following theorem characterizes a general non-asymptotic result on the conservative choice of the

threshold a.

Theorem 4.3. For any given b and K, a choice of

a = (
√

log(4γ) +K −Ke−b/K +
√
K)2 (4.8)

will guarantee the hard-shrinkage scheme Nhard(a, b), the soft-thresholding scheme Nsoft(a, b),
the order-thresholding scheme Norder,r(a, b) or the combined thresholding scheme Ncomb,r(a, b)
satisfy the false alarm constraint (2.4).

It is clear from Theorem 4.3 that the asymptotic property of the conservative threshold a in (4.8)

depends on the relation between K and log γ. The following corollary summarizes the asymptotic

detection delays of our proposed schemes, and it shows that the classical asymptotic detection

delay bounds for fixed K still hold when K = o(log γ), but we will have new asymptotic delay

bounds when K >> log γ.

Corollary 4.1. Assume the number m of affected data streams is fixed, and assume K and log γ
go to ∞,
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(i) if K = o(log γ), for any b ≥ 0, with the choice of

a = aγ = log(4γ) + o(log γ) (4.9)

the hard-thresholding scheme Nhard(a, b) in (3.2) satisfies the false alarm constraint in (2.4)
and has the detection delay

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))
log γ

mI
+O(1), (4.10)

for all possible post-change hypothesis (δ1, . . . , δK) ∈ Δ in (4.1).

(ii) If K >> log γ and b ≥ 0, with the choice of

a = (1 + o(1))K (4.11)

the hard-thresholding scheme Nhard(a, b) in (3.2) satisfies the false alarm constraint in (2.4).
Moreover, if the local censoring parameters bk’s are not too large, i.e., bk = o(K), or
equivalently, the global censoring parameter b = o(K2), we have

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))
K

mI
+O(1), (4.12)

for all possible post-change hypothesis (δ1, . . . , δK) ∈ Δ in (4.1).

(iii) The conclusions of (i) and (ii) also hold if Nhard(a, b) is replaced by the soft-thresholding
scheme Nsoft(a, b) in (3.3), the order-thresholding scheme Norder,r in (3.6) or the combined
thresholding scheme Ncomb,r(a, b) in (3.5) when the occurring event affects at most r data
streams, i.e., when (δ1, . . . , δK) ∈ Δ satisfies

∑K
k=1 I{δk < ∞} ≤ r.

5. NUMERICAL SIMULATIONS

In this subsection we report our numerical simulation results to illustrate the usefulness of the

proposed schemes in (3.2)-(3.6). Suppose that there are K = 100 independent and identical

sensors in a system, and the observations at each sensor are iid with mean 0 and variance 1 before

the change and with mean 1 and variance 1 after the change if affected. In our simulation study, we

simply assume that the change is instantaneous if a sensor is affected, but we do not know which

subset of sensors will be affected.

For the purpose of comparison, we conduct numerical simulations for six families of global

monitoring schemes:

• the “MAX” scheme Tmax(a) in (2.6),

• the “SUM” scheme Tsum(a) in (2.7),

• the order thresholding scheme Norder,r(a) in (3.6) with r = 10,

• the hard thresholding scheme Nhard(a) in (3.2),
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• the soft thresholding scheme Nsoft(a) in (3.3),

• the combined thresholding schemes Ncomb,r(a) in (3.5) with r = 10.

The first three schemes require all local sensors to send all local CUSUM statistics Wk,n’s

values to the fusion center at each and every time step, and corresponds to the case when the

local censoring parameter bk ≡ 0 for all k = 1, · · · , K. For order-thresholding in the families

of Norder,r(a) and Ncomb,r(a), we choose r = 10 to better understand the scenario when 10 out

of 100 sensors are affected by the occurring event. For each of the last three schemes in the list,

i.e., our three proposed schemes (3.2)-(3.5), we further consider three different values of the local

censoring parameters bk’s:

(i) bk ≡ 1/2 ≈ − log(0.607) for all k,

(ii) bk ≡ − log(0.1) = 2.3026 for all k,

(iii) bk ≡ − log(0.01) = 4.6052 for all k.

The choices of these values will guarantee that when no event occurs, on average at most η =
60.7%, 10%, and 1% of K = 100 homogeneous sensors will transmit messages at any given time,

respectively. Therefore, there are a total of 3 + 3 ∗ 3 = 12 specific schemes in our numerical

simulation study.

For each of these 12 specific schemes T (a), we first find the appropriate values of the global

threshold a to satisfy the false alarm constraint E(∞)(T (a)) ≈ γ = 5000 (within the range of

sampling error). Next, using the obtained global threshold value a, we simulate the detection

delay when the change-point occurs at time ν = 1 under several different post-change scenarios,

i.e., different number of affected sensors. All Monte Carlo simulations are based on m = 2500
repetitions.

Table 1 summarizes our simulated detection delays of these 12 schemes under 8 different post-

change hypothesis, depending on the number of affected sensors. From Table 1, among these 12
specific schemes, when a small number (1 ∼ 3) of 100 homogeneous sensors are affected by the

event, the “MAX” scheme Tmax(a) is the best (in the sense of smallest detection delay), the “SUM”

scheme Tsum(a) is the worst, and all other schemes are in-between. Similarly, when a large number

(20 or more) of 100 homogeneous sensors are affected, the order is reserved: Tsum(a) is the best,

Tmax(a) is the worst, and all other schemes are in-between. However, when 5 ∼ 10 sensors are

affected, the schemes with order-thresholding r = 10 yield the smallest detection delays, since

they are designed to detect the scenario when 10 sensors are affected by the event. In addition, it

is clear from Table 1 that for each given scheme, the fewer affected sensors we have, the larger

detection delay it will have. All these results are consistent with our intuition.

It is worth emphasizing that for the families of the hard- and soft- thresholding schemes,

Nhard(a) in (3.2) and Nsoft(a) in (3.3), a larger censoring value of bk actually leads to a smaller

detection delay when only a few sensors are affected. This suggests that a larger censoring value

bk may actually be necessary for efficient detection when the affected sensors are sparse.

A surprising and possibly counter-intuitive result in Table 1 is the effect of not so large values

of censoring parameters bk’s in finite sample simulations. For instance, the performances of the

“SUM” scheme Tsum(a) and the hard thresholding scheme Nhard(a, bk = 0.50) are similar in

view of sampling errors. Likewise, the top-r thresholding scheme Norder,r=10(a) and the combined
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Table 1: A comparison of the detection delays of six families of schemes with γ = 5000. The

smallest and largest standard errors of these 12 schemes are also reported under each post-change

hypothesis based on 2500 repetitions in Monte Carlo simulations.

# sensors affected

1 3 5 8 10 20 30 50 100

Smallest standard error 0.18 0.07 0.05 0.03 0.03 0.02 0.01 0.01 0.00
Largest standard error 0.35 0.12 0.07 0.06 0.05 0.04 0.03 0.03 0.03

Schemes with bk ≡ 0
Tmax(a = 11.27) 23.3 16.3 14.4 13.0 12.4 10.9 10.2 9.5 8.7
Tsum(a = 88.66) 52.1 21.8 14.7 10.3 8.7 5.2 3.9 2.9 2.0
Norder,r=10(a = 44.11) 34.1 15.5 11.2 8.5 7.5 5.5 4.8 4.1 3.4

Schemes Nhard(a) in (3.2) with different positive bk’s

Nhard(a = 85.60, bk = 0.50) 52.9 21.9 14.9 10.3 8.7 5.2 4.0 2.9 2.0
Nhard(a = 52.21, bk = 2.3026) 50.6 20.7 13.8 9.6 8.2 5.2 4.2 3.2 2.4
Nhard(a = 26.31, bk = 4.6052) 39.8 16.0 11.5 8.8 7.9 5.9 5.2 4.4 3.8

Schemes Nsoft(a) in (3.3) with different positive bk’s

Nsoft(a = 63.92, bk = 0.50) 48.2 20.2 13.7 9.7 8.2 5.1 4.0 3.0 2.0
Nsoft(a = 21.56, bk = 2.3026) 33.9 15.4 11.2 8.5 7.5 5.3 4.5 3.7 3.0
Nsoft(a = 8.29, bk = 4.6052) 25.2 13.8 11.1 9.2 8.4 6.7 5.9 5.2 4.4

Schemes Ncomb,r(a) in (3.5) with r = 10 and different positive bk’s

Ncomb,r(a = 44.11, bk = 0.50) 34.1 15.5 11.2 8.5 7.5 5.5 4.8 4.1 3.4
Ncomb,r(a = 43.88, bk = 2.3026) 38.5 16.8 11.7 8.6 7.5 5.5 4.7 4.0 3.3
Ncomb,r(a = 26.31, bk = 4.6052) 39.8 16.0 11.5 8.8 7.9 5.9 5.2 4.4 3.8

thresholding scheme Ncomb,r=10(a, bk = 0.50) also have identical performances. The interpretation

in the censoring sensor networks context is as follows: using our proposed communication policy

in (3.1), we only need exp(−bk) = exp(−0.5) = 60.7% of 100 sensors to transmit information

to the fusion center at any given time when no event occurs, but we can still be as effective as the

full transmission scenario when all sensors transmit information at all time steps. In other words,

much communication costs can be saved by our proposed schemes Nhard(a) or Ncomb,r(a) with not

so large values of bk’s.

It is also interesting to see the effect of the order-thresholding parameter r in finite sample sim-

ulations when the hard-thresholding parameters bk’s are large. From Table 1, when the false alarm

constraint γ in (2.4) is only moderately large, e.g., γ = 5000, the performances of Nhard(a, bk) and

Ncomb,r=10(a, bk) are identical when bk = 4.6052 — they not only have the same global threshold

a, but also have the same detection delays. Intuitively, the stopping time Ncomb,r(a, bk) is decreas-

ing as a function of r, and thus we have Nhard(a, bk) = Ncomb,r=K(a, bk) ≤ Ncomb,r=10(a, bk) when

bk = 4.6052. So one may wonder why our numerical simulations lead to identical results? One

explanation is that with such a choice of bk = 4.6052, when no event occurs, on average there is

at most 1 non-zero sensor message received in the fusion center at any given time, and thus there

is little difference whether one uses the sum of the largest r = 10 sensor messages or uses the
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sum of all K = 100 sensor messages. Hence similar performances are observed in finite-sample

simulations.

APPENDIX: TECHNICAL PROOFS

Below we present the detailed proofs to Theorems 4.1, 4.2, 4.3 as well as Lemma 4.1 and Corollary

4.1.

Proof of Theorem 4.1. Let us first focus part (i) on the properties of the hard-thresholding

scheme Nhard(a, b) in (3.2) with b ≥ 0 being the common constant for bk’s in (3.7)-(3.8).

To prove relation (4.3), it is clear that the worst-case detection delay of Nhard(a, b) occurs

at the change-point ν = 1, and thus it suffices to show that E
(ν=1)
δ1,...,δK

(Nhard(a, b)) satisfies (4.3).

Without loss of generality, we assume that only the first m data steams are affected and no other

data streams are affected. To simplify our notation below, denote δmax = max1≤i≤m δi. It suffices

to show that

E
(ν=1)
δ1,...,δK

(Nhard(a, b)) ≤ max

{
a∑m

k=1 I(gk, fk)
,

b∑K
k=1 I(gk, fk)

}
+O(

√
b) +O(1) + δmax,(5.1)

for any b ≥ 0.
The essential idea in the proof of (5.1) is to compare Nhard(a, b) with new stopping times that

are only based on those affected m data streams. Define a stopping time that is in the form of the

one-sided sequential probability ratio test (SPRT):

τ(a, b) = first n such that

n∑
i=1

m∑
k=1

log
gk(Xk,i)

fk(Xk,i)
≥ a and

n∑
i=1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb for all 1 ≤ k ≤ m, (5.2)

where the weights ρk’s are defined in (3.8), and let τ̂δ(a, b) be the new stopping time that applies

τ(a, b) to the new observations after time δmax.
Now whenever τ̂δ(a, b) stops at time n0 + δmax, we know that τ(a, b) stops after applying it

to n0 observations (Xk,δmax+1, · · · , Xk,δmax+n0) for each k. By the definition of the local CUSUM

statistics in (2.5), we have

Wk,n0+δmax ≥
δmax+n0∑
i=δmax+1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb

for all 1 ≤ k ≤ m. Hence,

K∑
k=1

Wk,n0+δmax1{Wk,n0+δmax ≥ ρkb} ≥
m∑
k=1

δmax+n0∑
i=δmax+1

log
gk(Xk,i)

fk(Xk,i)
≥ a,

where the last relation is from the definition of τ(a, b). This implies that the scheme Nhard(a, b)
must stop at time n0 + δmax, and possibly earlier. Thus

E
(ν=1)
δ1,...,δK

(Nhard(a, b)) ≤ E
(ν=1)
δ1,...,δK

(τ̂δ(a, b)) = δmax + E
(ν=1)
δ∗1 ,...,δ

∗
K
(τ(a, b)),
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where δ∗k is the binary version of δk’s defined in (5.10). To simplify the notation, denote by E(1)

the expectation when the change occurs at time ν = 1 and the event affects the first m data streams

immediately but does not affect the other remaining K − m data streams. So it suffices to show

that the stopping time τ(a, b) in (5.2) satisfies

E(1)(τ(a, b)) ≤ max

{
a∑m

k=1 I(gk, fk)
,

b∑K
k=1 I(gk, fk)

}
+O(

√
b) +O(1). (5.3)

To prove (5.3), for 1 ≤ k ≤ m, let

Mk = inf
{
n ≥ 1 :

n∑
i=1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb

}
,

τk(Mk) = sup
{
n ≥ 1 :

Mk+n∑
i=Mk+1

log
gk(Xk,i)

fk(Xk,i)
≤ 0

}

M̂ = max
1≤k≤m

(
Mk + τk(Mk) + 1

)

t(M̂) = inf
{
n ≥ 1 :

M̂+n∑
i=M̂+1

( m∑
k=1

log
gk(Xk,i)

fk(Xk,i)

)
≥ max{a− (

m∑
k=1

ρk)b, 0}
}
.

Combining these definitions with those of τ(a, b) in (5.2) yields that

τ(a, b) ≤ M̂ + t(M̂) = max
1≤k≤m

(
Mk + τk(Mk) + 1

)
+ t(M̂)

≤
m∑
k=1

τk(Mk) + 1 + t(M̂) + max
1≤k≤m

Mk.

Hence, relation (5.3) holds if we can establish the following three relations:

E(1)
(
τk(Mk)

)
= O(1) for all 1 ≤ k ≤ m; (5.4)

E(1)
(
t(M̂)

)
≤ max

{
a∑m

k=1 I(gk, fk)
− b∑K

k=1 I(gk, fk)
, 0

}
+O(1); (5.5)

E(1)
(

max
1≤k≤m

Mk

)
≤ b∑K

k=1 I(gk, fk)
+O(

√
b) +O(1). (5.6)

Relation (5.4) is well-known in renewal theory, e.g., Theorem D in Kiefer and Sacks (1963), since

log
(
gk(X)/fk(X)

)
has positive mean and finite variance under E(1) by our assumptions in (2.1)

and (2.2).

For relation (5.5), by the definition of t(M̂), when a ≤ (
∑m

k=1 ρk)b, the threshold becomes 0

and thus t(M̂) = 0. When a ≥ (
∑m

k=1 ρk)b, the stopping time t(M̂) is defined when a random

walk exceeds the bound a− (
∑m

k=1 ρk)b, the application of standard renewal theory yields that

E(1)(t(M̂)) =
a− (

∑m
k=1 ρk)b∑m

k=1 I(gk, fk)
+O(1)
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=
a∑m

k=1 I(gk, fk)
− b∑K

k=1 I(gk, fk)
+O(1),

see, for example, (Siegmund, 1985, Ch. VIII). Here the second equation follows from the definition

of ρk in (3.8) that ∑m
k=1 ρk∑m

k=1 I(gk, fk)
=

1∑K
k=1 I(gk, fk)

.

Thus relation (5.5) holds.

The proof of relation (5.6) is a little more complicated, but it can be done along the same line

as that in Mei (2005). The key fact is that the choice of bk = ρkb’s in (3.7)-(3.8) makes sure that

the stopping times Mk’s have roughly the same mean under P(1). Specifically, by renewal theory

and the assumptions of (fk, gk) in (2.1) and (2.2), under P(1),

E(1)(Mk) =
ρkb

I(gk, fk)
+O(1) =

b∑K
k=1 I(gk, fk)

+O(1)

and Var(1)(Mk) = O(b), as b → ∞, see Siegmund (Siegmund, 1985, p. 171). Thus as b → ∞,(
E(1)

∣∣Mk − b∑K
k=1 I(gk, fk)

∣∣)2

≤ E(1)
(
Mk − b∑K

k=1 I(gk, fk)

)2

= Var(1)(Mk) +
(
E(1)Mk − b∑K

k=1 I(gk, fk)

)2

≤ C1kb,

where C1k > 0 is a constant. Taking square root both sides, and noticing that Mk = Mk(b) is an

increasing function of b ≥ 0, it is not difficult to show that for each k = 1, · · · , K, there exists a

constant C2k > 0 so that

E(1)
∣∣Mk − b∑K

k=1 I(gk, fk)

∣∣ ≤ max(C2k,
√
C1k

√
b),

for all b > 0.
Therefore,

E(1)
(

max
1≤k≤m

Mk

)
=

b∑K
k=1 I(gk, fk)

+ E(1) max
1≤k≤m

(
Mk − b∑K

k=1 I(gk, fk)

)

≤ b∑K
k=1 I(gk, fk)

+
m∑
k=1

E(1)
∣∣∣Mk − b∑K

k=1 I(gk, fk)

∣∣∣
≤ b∑K

k=1 I(gk, fk)
+

m∑
k=1

max(C2k,
√
C1k

√
b)

≤ b∑K
k=1 I(gk, fk)

+ C(
√
b+ 1),

where the constant C =
∑K

k=1 max(C2k,
√
C1k) does not depend on b. This proves relation (5.6).

Therefore, relations (5.4)-(5.6) hold, and thus relation (4.3) holds for the hard-thresholding scheme

Nhard(a, b) in (3.2).
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The proof for the soft-thresholding scheme Nsoft(a, b) in (3.3) is similar, except defining the

stoping time τ(a, b) by

τ(a, b) = first n such that

n∑
i=1

m∑
k=1

log
gk(Xk,i)

fk(Xk,i)
≥ a+ b

m∑
k=1

ρk and (5.7)

n∑
i=1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb for all 1 ≤ k ≤ m, (5.8)

instead of (5.2) and prove

E(1)(τ(a, b)) ≤ a∑m
k=1 I(gk, fk)

+
b∑K

k=1 I(gk, fk)
+O(

√
b) +O(1). (5.9)

by replacing the threshold max{a− (
∑m

k=1 ρk)b, 0} in the stopping time t(M̂) by the threshold a.
The remaining arguments are identical and thus omitted.

Now let us provide a sketch of the proof for part (iii) of Theorem 4.1 on the order-thresholding

scheme Norder,r(a) in (3.6) and the combined thresholding scheme Ncomb,r(a, b) in (3.5). Since

Norder,r(a) is a special case of Ncomb,r(a, b) with b = 0, it suffices to prove the theorem for

Ncomb,r(a, b) in (3.5) with b ≥ 0. Clearly relation (5.11) also holds for Ncomb,r(a, b) for any b ≥ 0,
because the “SUM” scheme Tsum(a) again provides the lower bound for Ncomb,r(a, b).

It remains to show that relation (4.3) holds for Ncomb,r(a, b) with b ≥ 0 in the scenario when

the occurring event affects at most r data streams, i.e., when
∑K

k=1 I{δk < ∞} ≤ r. Without loss

of generality, assume that the affected data streams are just the first m data streams with m ≤ r.
Recall that Uk,n = Wk,nI{Wk,n ≥ ρkb}, and we order the Uk,n’s as U(1),n ≥ . . . ≥ U(K),n, and

Ncomb,r(a, b) stops if
∑r

k=1 U(k),n ≥ a. Note that if m ≤ r,

r∑
k=1

U(k),n ≥
r∑

k=1

Uk,n ≥
m∑
k=1

Uk,n,

since Uk,n ≥ 0. Thus, if at some time n0 we have Wk,n0 ≥ ρkb and
∑m

k=1 Wk,n0 ≥ a for 1 ≤ k ≤ m
(i.e., for the first m data streams), then Ncomb,r(a, b) will also stop at time n0 and possibly earlier.

Hence, whenever m ≤ r, the stopping time τ(a, b) in (5.2) also provides an upper bound on the

detection delay of Ncomb,r(a, b). Thus the proposed combined thresholding scheme Ncomb,r(a, b)
in (3.5) satisfies relation (4.3) whenever the occurring event affects at most r data streams. This

completes the proof of the theorem.

Proof of Lemma 4.1. Intuitively, only those affected sensors provide information to detect the

occurring events, and the quickest possible way to detect the occurring event is when the event

affects the sensors instantaneously. More rigorously, if we define

δ∗k =

{
0, if δk is finite

∞, if δk = ∞ , (5.10)

then for any given scheme T (γ),

Eδ1,...,δK (T (γ)) ≥ inf
τ
Eδ∗1 ,...,δ

∗
K
(τ),
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where the infimum is taken over all possible schemes τ satisfying the false alarm constraint γ in

(2.4). An alternative and possible better viewpoint is based on a time-shifting argument in which

one imagines that at time n one observes the observations Xk,n+δk (instead of Xk,n) when δk is

finite, and then applies T (γ) to the new aligned observations.

Without loss of generality, assume that the first m data streams are affected abruptly and simul-

taneously by the event at unknown time ν, and other data streams are unaffected. That is, m out of

K data streams are affected by the event, and δ∗i = 0 for 1 ≤ i ≤ m, and = ∞ for m+1 ≤ i ≤ K.
By (4.2), we have

J(δ1, . . . , δK) = J(δ∗1, . . . , δ
∗
K) =

m∑
i=1

I(gi, fi).

In this case, we face the sequential change detection problem when the distribution of (X1,n, · · · , XK,n)
changes from (f1, · · · , fm, fm+1, · · · , fK) to (g1, · · · , gm, fm+1, · · · , fK). It is well-known (Lor-

den (1971)) that

inf
τ
Eδ∗1 ,...,δ

∗
K
(τ) ≥ (1 + o(1))

log γ∑m
i=1 I(gi, fi)

.

subject to the false alarm constraint γ in (2.4) as γ → ∞. Combining the above results yields

relation (4.5), completing the proof of Lemma 4.1.

Proof of Theorem 4.2: First, we will prove for any a, b ≥ 0,

E(∞)(Nhard(a, b)) ≥ (1 + o(1))
ea

1 + a+ a2

2!
+ · · ·+ aK−1

(K−1)!

. (5.11)

To prove (5.11), note that Nhard(a, b) in (3.2) is increasing as a function of b ≥ 0, and when

b = 0, Nhard(a, b = 0) reduces to the “SUM” scheme Tsum(a) in (2.7). Hence, for any b ≥ 0,
Nhard(a, b) ≥ Tsum(a) and of course, E(∞)(Nhard(a, b)) ≥ E(∞)(Tsum(a)). By Theorem 1 of

Mei (2010), the “SUM” scheme Tsum(a) satisfies relation (5.11), and so are the hard-thresholding

schemes Nhard(a, b) for all b ≥ 0.
Theorem 4.2 follows at once from Theorem 4.1 and 5.11. In particular, the choice of aγ in (4.6)

follows from (5.11) and the fact that 1 + a + a2

2!
+ · · · + aK−1

(K−1)!
∼ aK−1

(K−1)!
if K is fixed and a goes

to ∞.

Proof of Theorem 4.3: Clearly, we can see for any fixed combination of (a, b),E(∞)Nhard(a, b)
is smaller than E(∞)Nsoft(a, b) or E(∞)Ncomb,r(a, b). Therefore, it is sufficient to prove the choice

of a in (4.8) could guarantee the hard-thresholding scheme Nhard(a, b) satisfies false alarm con-

straint (2.4).

First, define W ∗
k = limn→∞ Wk,n as the limit of the CUSUM statistics, which has the following

non-asymptotic result: for any x > 0, the tail probability

G(x) = P(∞)(W ∗
k > x) ≤ e−x, (5.12)

see Appendix 2 on Page 245 of Siegmund (1985). It is clear that W ∗
k are i.i.d. across different k.

Now we define the log-moment generating function of the W ∗
k ’s

ψ(θ) = logE(∞) exp{θW ∗
k1{W ∗

k ≥ b/K}} (5.13)
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For any x ≥ 0, by Chebyshev’s inequality,

E(∞)[Nhard(a, b)] ≥ xP(∞)(Nhard(a, b) ≥ x)
= x

[
1−P(∞)(Nhard(a, b) < x)

]
= x

[
1−P(∞)(

K∑
k=1

Wk,n1{Wk,n ≥ bk} ≥ a) for some 1 ≤ n ≤ x

]

≥ x

[
1− xP(∞)(

K∑
k=1

W ∗
k1{W ∗

k ≥ bk} ≥ a)

]
,

≥ x

[
1− xe−θaE(∞) exp(θ

K∑
k=1

W ∗
k1{W ∗

k ≥ b/K})
]

= x [1− x exp (−θa+Kψ(θ))] . (5.14)

Note that for any u > 0, the function x(1 − xu) is maximized at x = 1/(2u) with the maximum

value 1/(4u). Therefore, we can get for any 0 < θ < 1,

E(∞)[Nhard(a, b)] ≥ 1

4
exp (θa−Kψ(θ)) . (5.15)

By the definition of ψ(θ) in (5.13) and the tail probability W ∗
k in (5.12), for all 0 < θ < 1,

ψ(θ) = log[P(∞)(W ∗
k ≤ b/K)−

∫ ∞

b/K

eθxdG(x)]

= log[1 + (eθb/K − 1)G(b) + θ

∫ ∞

b/K

eθxG(x)dx)]

≤ log[1 + (eθb/K − 1)e−b/K + θ

∫ ∞

b/K

eθxG(x)dx]

≤ log[1 + (eθb/K − 1)e−b/K + θ

∫ ∞

b/K

eθxe−xdx]

= log

(
1 +

1

1− θ
e−b(1−θ)/K − e−b/K

)

≤ 1

1− θ
e−b(1−θ)/K − e−b/K

≤ 1

1− θ
− e−b/K (5.16)

where the second equation is based on the integration by parts. By (5.15) and (5.16), we have

E(∞)Nhard(a, b) ≥ 1

4
exp

(
θa− K

1− θ
+Ke−b/K

)
(5.17)

for all 0 < θ < 1. If K < a, by letting θ = 1−√
K/a yield

E(∞)Nhard(a, b) ≥ 1

4
exp

(
(
√
a−

√
K)2 +Ke−b/K −K

)
(5.18)
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Therefore a choice of

a = (
√
log(4γ) +K −Ke−b/K +

√
K)2 (5.19)

will guarantee the hard-shrinkage scheme Nhard(a, b) satisfies the false alarm constraint (2.4).

Note using the continuity of the soft-thresholding transformation function, a tighter bound for

Nsoft(a, b) was derived for the soft-thresholding scheme in Liu et al. (2018), although they are

asymptotically equivalent to those in Theorem 4.3 and Corollary 4.1 Nhard(a, b) as the dimension

K goes to ∞.

Proof of Corollary 4.1: If K = o(log γ), the corresponding a = aγ = log(4γ) + o(log γ) will

guarantee the false alarm constraint. Moreover, if m is fixed and b = o(log γ), the upper bound of

detection delay in theorem 4.1 could be applied and yields

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))

(
log γ

mI

)
+O(1), (5.20)

which implies the first order detection efficiency will be kept as long as b = o(log γ).
If K >> log γ, the corresponding a = (1 + o(1))K will guarantee the false alarm constraint.

Moreover, since m is fixed and b = o(K2), the upper bound of detection delay in theorem 4.1

could be applied and yields

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))

(
K

mI

)
+O(1), (5.21)

which completes the proof of corollary.
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