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Optimal Stopping for Interval Estimation in
Bernoulli Trials
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Abstract—We propose an optimal sequential methodology for
obtaining confidence intervals for a binomial proportion θ.
Assuming that an i.i.d. sequence of Bernoulli(θ) trials is observed
sequentially, we are interested in designing (i) a stopping time
T that will decide the best time to stop sampling the process,
and (ii) an optimum estimator θ̂T that will provide the optimum
center of the interval estimate of θ. We follow a semi-Bayesian
approach, where we assume that there exists a prior distribution
for θ, and our goal is to minimize the average number of samples
while we guarantee a minimal specified coverage probability level.
The solution is obtained by applying standard optimal stopping
theory and computing the optimum pair (T, θ̂T ) numerically.
Regarding the optimum stopping time component T , we demon-
strate that it enjoys certain very interesting characteristics not
commonly encountered in solutions of other classical optimal
stopping problems. In particular, we prove that, for a particular
prior (Beta density), the optimum stopping time is always
bounded from above and below; it needs to first accumulate
a sufficient amount of information before deciding whether or
not to stop, and it will always terminate before some finite
deterministic time. We also conjecture that these properties are
present with any prior. Finally, we compare our method with
the optimum fixed-sample-size procedure as well as with existing
alternative sequential schemes.

Index Terms—Sequential estimation, confidence intervals, bi-
nomial proportion, optimal stopping, sequential analysis.

I. INTRODUCTION

INTERVAL estimation of a binomial proportion θ is one of
the most basic problems in statistics, with many important

real-world applications. Some classical applications include
interval estimation of the prevalence of a rare disease [1];
interval estimation of the overall response rate in clinical
trials [2]; and accuracy assessment in remote sensing [3]. In
these applications, the sample size is fixed in advance, and
a confidence interval for θ is obtained. There is an extensive
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bibliography regarding derivations of confidence intervals for
θ when the sample size is fixed. Perhaps the most widely
known in this category is Wald’s interval, which takes the

form θ̂T ± zα/2
√
θ̂T(1− θ̂T)/T, where T is the fixed sample

size, 1 − α expresses the desired coverage probability, θ̂T is
the sample mean of θ and zα/2 satisfies Q(zα/2) = α/2
with Q(x) denoting the complementary cumulative density
function (cdf) of a standard N(0, 1) Gaussian random variable.
This confidence interval is derived based on the asymptotic
normality of θ̂T and, therefore, exhibits poor behavior when
Tθ(1− θ) is small [4]–[7]. Several efforts to improve Wald’s
classical method are reported in [4], [8]–[12]. There are also
Bayesian-based techniques [5], [13], [14] while [4]–[7], [15]
give interesting surveys that evaluate the relative performance
of the above methods. Finally we mention that [16] provides
explicit formulas for the required sample size that can guaran-
tee a prescribed coverage probability for the Clopper-Pearson
[9] method.

In many modern applications, sampling observations is
costly and time consuming. Therefore, there is a desire to
limit the sampling size without compromising the quality
of the interval estimate. For instance, in automatic fraud
detection in finance, one needs to manually go through the
“suspect” financial transactions that are automatically detected
as fraudulent by some machine learning or other computer
algorithm. Since the manual process is expensive in terms
of labor and cost, it is desirable to quickly estimate, with
high confidence, what percentage of the suspect transactions
are truly fraudulent. A different motivating application is
in Statistical Model Checking, where with an approximate
verification method, one overcomes the state space explosion
problem for probabilistic systems by the use of Monte Carlo
simulations. Given an executable stochastic system, we seek
to verify that the system satisfies a particular property via
simulation; and we desire to estimate the probability θ by
which the system actually satisfies the property in question.
The goal is to estimate θ within acceptable margins of error
and confidence (see [17] and references therein). Because
Monte Carlo simulations very often tend to require extensive
time and computing power, it is advantageous to reduce their
number assuring, at the same time, satisfactory quality levels
for the corresponding estimate. The sequential version of the
interval estimation aims exactly at reducing the sample size
by selecting it to be random and, in particular, a stopping
time controlled by the observations themselves. The literature
focusing on the sequential setup of the problem is limited
compared to its fixed sample-size counterpart (see [18]–[20]).
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However, none of these articles that focus on sequential fixed-
width confidence intervals for θ is able to claim optimality of
their schemes.

The objective of our current work is to offer optimum
sequential methods for interval estimation of θ, with the
quality of the estimate expressed through the coverage prob-
ability. In addition to deriving the optimum scheme, we will
also demonstrate some very uncommon but highly interesting
properties of the optimum solution. These properties are not
encountered in optimum sequential schemes derived for other
well known sequential problems (i.e. sequential hypothesis
testing). In particular, we show that the optimum stopping
time is bounded from above for a rich class of priors, proving
that the stopping time will always terminate in finite time.
Furthermore, we show that the optimum stopping time is
bounded from below for the Beta density prior, which implies
that we first need a sufficient number of samples before we
start applying our stopping rule. We also develop an efficient
recursion to obtain numerically the coverage probability and
the expected number of samples for the optimum scheme
without using any Monte Carlo simulations.

We must also add that our methodology for interval estima-
tion exhibits similarities with the work developed in [21] for
point estimation. The main similarity is using Bayesian risk
minimization and reducing this minimization to a standard
optimal stopping problem as we explain in Section II. The
second similarity is showing that the optimum stopping time
is bounded from above. However, the focus in [21] is on the
actual point estimate of θ with the adopted risk function being
a variation of the classical mean square error; as a result, the
corresponding optimum solution has a simple, explicit form.
Note that there is a significant difference between point and
interval estimation. In point estimation, the objective is to
estimate an unknown population parameter with a single value
based on the observed data. On the other hand, in interval
estimation, the objective is to obtain a range of values within
which, we believe, the true population parameter lies with high
coverage probability. In our work, as we pointed out, we focus
on confidence intervals and coverage probabilities. In this case,
the width of the interval and the confidence coefficient jointly
provide a sense of precision and accuracy. We unify these
criteria under an appropriately defined indicator loss function
that leads to the risk function being the complementary cov-
erage probability. As it turns out, this difference makes our
derivations and proofs far more complicated, requiring original
analytical methodology. This becomes particularly apparent
when our optimum solution does not have an explicit analytic
form, and we attempt to establish the validity of the unique
properties, mentioned before, that characterize our optimum
solution.

The remainder of this article is organized as follows. In
Section II we discuss our proposed framework for interval
estimation for θ and propose a well-defined optimization
problem and discuss its general solution. In Section III we
focus on the computational aspects of the optimum scheme and
the unique properties that they characterize it. In Section IV
we compare the proposed scheme against the fixed-sample-size
and two existing sequential methods in the literature. Finally,

Section V contains our conclusions.

II. PROPOSED FRAMEWORK

We observe sequentially an independent and identically
distributed (i.i.d.) process X1, X2, . . . of Bernoulli random
variables with Xt ∈ {0, 1} and P(Xt = 1) = θ = 1−P(Xt =
0) for some unknown θ ∈ [0, 1]. The goal is to provide
a confidence interval for θ. We are interested in confidence
intervals of fixed width equal to 2h for some pre-specified
h ∈ (0, 1/2). We would also like our scheme to be able
to guarantee a coverage probability equal to 1 − α, where
α ∈ (0, 1) is given. Our scheme consists of a pair (T, θ̂T ), that
is, a stopping time T and a mid-point estimator1 θ̂T , where
T is adapted to the observation history (filtration generated
by the observations) and θ̂T is a function of the observations
accumulated up to the time of stopping T . We would like to
solve the following constrained optimization problem for the
optimum pair

inf
T,θ̂T

E[T |θ], subject to: P(|θ̂T − θ| > h|θ) ≤ α, (1)

where the desired interval estimate is [θ̂T − h, θ̂T + h] (with
the two ends cropped at 0 and 1, respectively, whenever they
exceed the two limits) and where P(·|θ) and E[·|θ] denote
probability and expectation for given θ.

Although (1) seems as the ideal formulation, it unfortunately
targets an infeasible goal. We note that we are asking for
the pair (T, θ̂T ) to minimize the average number of samples
for every value of the parameter θ. In other words, it is
impossible to find a scheme that is optimal for each and
every θ. In order to be able to find a solution that has a
well-defined form of optimality, we adopt a semi-Bayesian
approach2 and assume that a prior π(θ) for θ is available.
This allows for the following modification of the previous
constrained optimization

inf
T,θ̂T

E[T ], subject to: P(|θ̂T − θ| > h) ≤ α (2)

where P(·) and E[·] denote probability and expectation in-
cluding averaging over θ with the help of the prior; P(·) =∫ 1

0
P(·|θ)π(θ)dθ and E[·] =

∫ 1

0
E[·|θ]π(θ)dθ, respectively.

Remark 1. We must emphasize that the constraint in (2) does
not guarantee that the desired coverage probability will also
hold for each individual θ, namely P(|θ̂T − θ| > h|θ) ≤ α, a
property which is particularly desirable in practice. Perhaps,
a more meaningful problem to consider in place of (2) would
have been

inf
T,θ̂T

sup
θ

E[T |θ], subject to: sup
θ

P(|θ̂T − θ| > h|θ) ≤ α, (3)

that assures a coverage probability of at least 1− α for every
θ. In principle, this setup has an optimal solution and does not

1The estimate θ̂T does not have the meaning of a classical parameter
estimator. It is the mid-point of the confidence interval [θ̂T − h, θ̂T + h]
and does not necessarily constitute an efficient estimate of θ.

2The term “semi-Bayesian” is used because our setup involves two different
components where one is optimized while the other is constrained, unlike
full-Bayesian approaches that combine all terms into a single performance
measure.
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require a prior for θ, since it is a min-max problem. However,
deriving the optimal solution for this min-max formulation is
usually very complicated, and such solution has not yet been
derived even for the fixed-sample-size case. Instead, we focus
on (2) as the optimum scheme we would like to develop, but
in our numerical examples, we will also evaluate E[T |θ] in
terms of supθ P(|θ̂T − θ| > h|θ) ≤ α.

Let c > 0 denote a Lagrange multiplier that we use to
combine the two terms in (2) into a single cost function
J(T, θ̂T ) = cE[T ] + P(|θ̂T − θ| > h), and consider the
unconstrained optimization problem

inf
T,θ̂T

J(T, θ̂T ) = inf
T,θ̂T

{
cE[T ] + P(|θ̂T − θ| > h)

}
. (4)

Note that for any estimator θ̂ of θ, the complementary coverage
probability P(|θ̂− θ| > h|θ) can be written as a risk function
in the Bayesian setting if we define the loss function to be
L(θ̂, θ) = 1{|θ̂−θ|>h}, where P(|θ̂ − θ| > h|θ) = E[L(θ̂, θ)|θ].
This allows us to combine the frequentist idea of confidence
intervals into a Bayesian setting; the constraint in (1) be-
comes E[L(θ̂T , θ)|θ] ≤ α, and the constraint in (2) becomes
E[L(θ̂T , θ)] =

∫
E[L(θ̂T , θ)|θ]π(θ)dθ ≤ α. By doing so, (4)

can be solved using standard optimal stopping theory. We will
first identify the solution to (4) and then demonstrate that a
proper selection of c can also solve the constrained problem
in (2).

A. The Unconstrained Problem

We start by considering the classical Bayes estimation
problem for fixed sample size t

inf
θ̂t

P(|θ̂t − θ| > h). (5)

If we observe Ft = σ{X1, . . . , Xt} then, given that {Xt} is
i.i.d. Bernoulli(θ), the probability to obtain a specific combi-
nation of samples given θ is equal to θSt(1 − θ)t−St , where
St =

∑t
k=1Xk is the number of “successes” up to time t.

This implies that the posterior probability density of θ given
the observations can be written as

πt(θ|Ft) = πt(θ|St) =
θSt(1− θ)t−Stπ(θ)∫ 1

0
θSt(1− θ)t−Stπ(θ) dθ

. (6)

From Bayesian estimation theory [22, Page 142], we have that
the optimization in (5) is achieved by the following Bayes
estimator

ϑ̂t(St) = arg inf
θ̂t

P(|θ̂t − θ| > h|Ft)

= arg sup
θ̂t

∫ min{θ̂t+h,1}

max{θ̂t−h,0}
πt(θ|St) dθ,

(7)

yielding the corresponding optimum conditional complemen-
tary coverage probability

Ct(St) = inf
θ̂t

P(|θ̂t − θ| > h|Ft)

= 1− sup
θ̂t

∫ min{θ̂t+h,1}

max{θ̂t−h,0}
πt(θ|St) dθ

= 1−
∫ min{ϑ̂t(St)+h,1}

max{ϑ̂t(St)−h,0}
πt(θ|St) dθ.

(8)

From (7) and (8) we observe that both quantities
ϑ̂t(St),Ct(St) are Ft-measurable and, more precisely, func-
tions of St. For known prior π(θ), we can, at least numerically,
compute the Bayes estimate and the corresponding optimum
conditional complementary coverage probability for each com-
bination of integer pair (t, St).

Remark 2. By focusing on (7), we can make a small but
interesting observation: Regarding the Bayes estimate ϑ̂t(St)
it is easy to verify that

h ≤ ϑ̂t(St) ≤ 1− h. (9)

Indeed, this is clear, because if in (7) we select θ̂t < h or
θ̂t > 1 − h, this will yield an inferior cost compared to the
selection θ̂t = h or θ̂t = 1−h, respectively. The implication of
this observation is that ϑ̂t(St) will be biased and inconsistent
when considered as an estimate of the true parameter θ, at least
for values of θ outside the interval [h, 1−h]. As we mentioned,
the correct meaning of this quantity is that it constitutes the
mid-point of the confidence interval [ϑ̂t(St) − h, ϑ̂t(St) + h]
with the latter enjoying, for each fixed t, the largest possible
coverage probability.

Consider now the optimization in (4) which will be per-
formed in two steps: First we fix the stopping time T and
minimize J(T, θ̂T ) with respect to θ̂T ; the resulting expression
is then minimized, during the second step, over T in order to
obtain the optimum pair. We have the following lemma that
addresses the first problem.

Lemma 1. For any given stopping time T , we have

J(T, θ̂T ) = cE[T ] + P(|θ̂T − θ| > h)

≥ E[cT + CT ] = J(T ), (10)

with equality when we apply the corresponding Bayesian
estimator θ̂T = ϑ̂T at the time of stopping.

Proof. The proof depends on whether E[T ] = ∞ or E[T ] <
∞. The details are presented in the Appendix.

A side-product of Lemma 1, as it can be verified from
the corresponding proof in the Appendix, is the fact that the
Bayesian estimator is not only optimum for fixed sample size,
but it retains its optimality property when the sample size is
controlled by any stopping time T adapted to the observations.

Using (10) from Lemma 1, we are now left with the op-
timization of the stopping time T . Assuming that N is an
integer which is sufficiently large, we consider the following
optimization over stopping times that are bounded by N

inf
0≤T≤N

J(T ) = inf
0≤T≤N

E[cT + CT ]. (11)
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This is a classical finite horizon optimal stopping problem
with cost per sample equal to c and cost for stopping at t
equal to Ct. Of course, it is only natural to wonder why we
limited our analysis to finite horizons instead of considering
the more classical infinite horizon version. As we will see in
the sequel, for the most common prior we will be able to
demonstrate that the infinite horizon assumption is completely
unnecessary. Indeed, the optimum stopping time will turn out
to be bounded by a deterministic quantity, suggesting that by
limiting ourselves to a (sufficiently large) finite horizon, we
do not suffer any performance loss.

In order to solve the optimization problem defined in (11),
we follow the classical optimal stopping theory [23]. For t =
0, 1, . . . , N define the sequence of optimal average residual
costs

Vt = inf
t≤T≤N

E[c(T − t) + CT |Ft], (12)

then we have

Vt = min{Ct, c+ E[Vt+1|Ft]}, t = N, . . . , 1, 0, (13)

with the backward recursion initialized with VN+1 = 1.
Regarding this last selection, it produces VN = CN since the
latter is a probability. In fact, this is exactly what the optimum
residual cost at N must be, because if we have not stopped
before N , then we necessarily stop at N and this produces cost
CN (simply the cost of stopping at N ). The total optimum cost
is expressed through V0, namely V0 = inf0≤T≤N J(T ). The
next lemma specifies in more detail the recursion in (13).

Lemma 2. Consider the recursion in (13) then, the optimal
residual cost Vt, t = N, . . . , 0 is a function Vt(St) of St and
therefore Ft-measurable. Furthermore, (13) can be written as

Vt(St) = min{Ct(St), c+ Ṽt(St)}, t = N, . . . , 0, (14)

where Ṽt(St) expresses the optimum average residual cost to
continue, satisfying

Ṽt(St) = gt+1(St)Vt+1(St + 1) +
(
1− gt+1(St)

)
Vt+1(St),

(15)

gt+1(St) = P(Xt+1 = 1|Ft) =

∫ 1

0
θSt+1(1− θ)t−Stπ(θ) dθ∫ 1

0
θSt(1− θ)t−Stπ(θ) dθ

.

(16)

Finally, if the prior π(θ) is symmetric around 1
2 then the

functions Ct(St),Vt(St), Ṽt(St) are symmetric with respect
to St around the value t

2 .

Proof. The validity of this lemma is straightforward and can
be easily established using induction. We therefore give no
further details.

Once the sequence of optimal residual costs has been
obtained through the solution of (14), it is then immediate
to define the optimum stopping time To that solves the
minimization problem in (11). Again, optimal stopping theory
[23] suggests that

To = inf{0 ≤ t ≤ N : Vt(St) = Ct(St)}
= inf{0 ≤ t ≤ N : Ct(St) ≤ c+ Ṽt(St)}.

(17)

In other words, when the optimum residual cost Vt(St)
matches, for the first time, the cost for stopping Ct(St) or,
equivalently, the cost of stopping is smaller than the residual
cost of continuing, this is when we stop. Since the functions
involved depend on St, this quantity can serve as our test
statistic and we can express the stopping rule in (17) in terms
of St. Specifically, for each time t, we can find the sampling
region Ωt = {0 ≤ St ≤ t : Vt(St) < Ct(St)} = {0 ≤ St ≤ t :
c+ Ṽt(St) < Ct(St)} with ΩN = ∅, and we can equivalently
define the stopping time as To = inf{0 ≤ t ≤ N : St 6∈ Ωt}.

B. The Constrained Problem

Let us now turn to the constrained problem in (2) which
we can solve with the results we have so far. We will show
that (2) can be recovered as an instance of the unconstrained
version (4) corresponding to a special selection of the La-
grange multiplier c. Our result is summarized in the following
theorem.

Theorem 1. For the solution of (2) we distinguish two cases,
depending on the value of C0 = P(|ϑ̂0 − θ| > h), where
ϑ̂0 = arg inf θ̂0 P(|θ̂0 − θ| > h), i.e., the Bayes estimator in
(7) at t = 0 with π0(θ|S0) = π(θ).
i) If C0 ≤ α, then the optimum is to stop without taking any
samples, i.e. To = 0 and use as mid-point of the optimum
confidence interval the value ϑ̂0 that is based only on the
prior π(θ).
ii) If C0 > α, then for any horizon N ≥ Nα where Nα satisfies
P(|ϑ̂Nα − θ| > h) < α, there exists Lagrange multiplier
c∗ ∈ (0, 1), independent from N, with c∗ being the solution
to P(|ϑ̂To(c∗) − θ| > h) = α, such that the solution of (4) is
also the solution to (2).

Proof. The proof of this theorem is presented in the Appendix.

III. PROPERTIES OF THE OPTIMUM SOLUTION

If we fix the value N of the horizon and the cost per sample
c, we can then compute the mid-points {{ϑ̂t(St)}tSt=0}Nt=0

of the confidence intervals from (7). Assuming that π(θ)
is continuous, candidates for ϑ̂t(St) can be obtained from
the solution of the following equation which we obtain by
differentiating (7) with respect to θ̂t

(θ̂t + h)St(1− θ̂t − h)t−Stπ(θ̂t + h)

− (θ̂t − h)St(1− θ̂t + h)t−Stπ(θ̂t − h) = 0. (18)

The previous equation has clearly a solution in the interval
[h, 1 − h] when 0 < St < t with the corresponding value
providing a (local) extremum for the coverage probability.
To these candidate mid-points we must include the two end
points h, 1 − h since the global maximum can occur at the
two ends as well. Therefore, we need to examine which of
these cases provides the best coverage probability and select
the corresponding value as our optimum mid-point ϑ̂t(St).
When St = 0, t it is possible (18) not to have any solution in
[h, 1 − h]. In this case, ϑ̂t(0) and ϑ̂t(t) are equal to one of
the two end values h or 1−h. Having identified the optimum
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mid-points {{ϑ̂t(St)}tSt=0}Nt=0, we apply (8) to compute the
corresponding optimum complementary conditional coverage
probabilities {{Ct(St)}tSt=0}Nt=0.

The next step consists in computing {{gt+1(St)}tSt=0}Nt=0

for t = 0, . . . , N and St = 0, . . . , t with numerical in-
tegration. Once we have available {{Ct(St)}tSt=0}Nt=0 and
{{gt+1(St)}tSt=0}Nt=0, we can then use them in the backward
recursion (14) to find the sequence {{Ṽt(St)}tSt=0}Nt=0 and
the optimum residual cost sequence {{Vt(St)}tSt=0}Nt=0. To
identify the stopping rule, according to (17) we must compare
the two sequences {{Ct(St)}tSt=0}Nt=0, {{Vt(St)}tSt=0}Nt=0

element-by-element. At coordinates (t, St) where the se-
quences differ, we decide to continue sampling; whereas if
they are equal, we decide to stop. This generates the sequence
of sampling regions {Ωt}Nt=0. Equivalently, we can compare
{{Ct(St)}tSt=0}Nt=0 with {{c + Ṽt(St)}tSt=0}Nt=0, and wher-
ever the first is no larger than the second, we stop, while we
continue sampling in the opposite case.

We now present a conjecture that contains two significant
claims for the optimum stopping time for the problem in (4)
which we believe are valid for any prior π(θ). We were able to
provide a proof for the first claim (Lemma 3) for a rich class
of priors, and prove both claims (Theorem 2) providing also
quantitative information when the prior is the Beta density.
Regarding the latter case we should note that the Beta density
is among the most popular priors for the problem we are
considering in this work.

Conjecture. For any prior π(θ) and sufficiently large horizon
N the optimum stopping time To of the unconstrained problem
in (4) enjoys the following two properties:
i). There exists constant tup depending only on c and not on
N such that To ≤ tup.
ii). For sufficiently small c there exists constant tlo ≥ 1
depending only on c and not on N such that tlo ≤ To.

Below we present a general proof of property i) of the
Conjecture under the following additional assumption: Define
the maximal conditional variance

σ2
t = max

0≤St≤t
E
[(
θ − E[θ|St]

)2|St]
= max

0≤St≤t

∫ 1

0

(θ − E[θ|St])2πt(θ|St)dθ,
(19)

where πt(θ|St) is the posterior pdf defined in (6) and assume
that σt → 0 as t→∞. This forces the conditional variance to
converge to 0 uniformly in St. It also implies that the posterior
distribution πt(θ|St) converges, uniformly, to a degenerate
measure at a single point (often the true θ) as t → ∞.
This is clearly related to the consistency concept of posterior
distributions in Bayesian statistics and is often considered a
valid assumption (see [24]).

Lemma 3. Let σt be defined as in (19) with limt→∞ σt = 0.
Then for sufficiently large horizon there exists constant tup

depending only on c such that To ≤ tup, i.e. property i) in the
Conjecture is true.

Proof. The proof is a simple application of the Chebyshev
inequality in combination with (19). Indeed we observe that

Ct(St) = inf
θ̂t

P(|θ − θ̂t| > h|Ft) ≤ P
(
|θ − E[θ|Ft]| > h|Ft

)
≤ 1

h2
E
[(
θ − E[θ|St]

)2|St] ≤ σ2
t

h2
.

(20)

Since σt → 0 as t→∞, there exists N such that CN ≤ σ2
N

h2 ≤
c and, therefore, from (14) we conclude that CN ≤ c + ṼN ,
which suggests that we will necessarily stop at N for any
value of SN . Quantity tup is the smallest N for which this is
true.

Remark 3. The assumption limt→∞ σt = 0 does not hold
for all prior distribution. A counterexample where it fails is
when the prior is a two-point probability mass function, say
P(θ = 0.4) = P(θ = 0.6) = 0.5. However, even for this
case the Conjecture might still be valid since the requirement
CN (SN ) ≤ σ2

N/h
2 < c used in our proof, is only sufficient

for the validity of our claim.

An interesting example where the assumption holds is when
the prior is the Beta density π(θ) = Beta(θ, p, q), where

Beta(θ, p, q) =
θp−1(1− θ)q−1∫ 1

0
θp−1(1− θ)q−1 dθ

, p, q > 0. (21)

To see this, we note that the posterior pdf is of the same type,
namely π(θ|St) = Beta(θ, p + St, t − St + q), and thus the
maximal conditional variance in (19) becomes

σ2
t = max

0≤St≤t

(p+ St)(t− St + q)

(t+ p+ q)2(t+ p+ q + 1)

≤ 1

4(t+ p+ q + 1)
, (22)

where the equality is attainable when St = (t + q − p)/2
is an integer. Clearly, for fixed p, q > 0 we have σt → 0 as
t→∞, and thus the assumption of Lemma 3 holds. Moreover,
by the proof of Lemma 3, the optimum stopping time satisfies
To ≤ max{0, 1/(4h2c)−p−q−1} for all c > 0. This bound is
of the order of c−1. In Theorem 2, Section III-B, by applying
a more advanced analysis, we will be able to improve it and
provide an alternative estimate which is of the order of | log(c)|
for the case of the symmetric prior p = q.

Remark 4. Property i) of the Conjecture suggests that the
number of samples, under the optimum scheme, will never
exceed the value tup even if we allow the horizon to grow
without limit. This interesting and uncommon characteristic
was also observed in [21] but with cost function a variance
of the classical mean square error. However, what is more
intriguing in our conjecture is property ii), namely that we
need first to accumulate a sufficient volume of information
before we start asking ourselves whether we should stop
sampling or not. This is an extremely uncommon feature and,
to our knowledge, has never been reported before in Sequential
Analysis as a property of optimum schemes. As we claim in
our conjecture, we believe that both properties are valid for any
prior π(θ). Fortunately, as we mentioned before, this double
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claim is not without solid evidence. Indeed with Theorem 2,
we demonstrate its validity when the prior is the symmetric
Beta density.

A. Performance Evaluation

What we presented so far allows for the determination of
the stopping rule of the proposed scheme. We would like
now to compute its performance but also the performance of
any stopping time which uses St as its test statistic and is
defined in terms of a sequence of sampling regions {Ωt} in
terms of {St}. In particular, we are interested in computing
E[T |θ],E[T ],P(|θ̂T − θ| ≤ h|θ) and P(|θ̂T − θ| ≤ h).
Of course, we could obtain these quantities using Monte-
Carlo simulations, but it is also possible to determine them
numerically. The following lemma provides the necessary
formulas.

Lemma 4. Let the stopping time T be bounded by N having
as test statistic the process {St}. Assume for each t that
Ωt denotes the sampling region. Suppose also that for the
combination (t, St) the scheme provides the mid-point esti-
mate θ̂t(St) and the corresponding conditional complementary
coverage probability Ct(St) = P(|θ̂t(St) − θ| > h|Ft). For
t = N − 1, . . . , 0, we then define the following backward
recursions that must be applied for St = 0, 1, . . . , t

Ut(St) = 1 + θ1{St+1∈Ωt+1}Ut+1(St + 1)

+ (1− θ)1{St∈Ωt+1}Ut+1(St), (23)
Ūt(St) = 1 + gt+1(St)1{St+1∈Ωt+1}Ūt+1(St + 1)

+
(
1− gt+1(St)

)
1{St∈Ωt+1}Ūt+1(St), (24)

Wt(St) = 1{|θ̂t−θ|>h}1{St 6∈Ωt}

+
{
θWt+1(St + 1) + (1− θ)Wt+1(St)

}
1{St∈Ωt},

(25)

W̄t(St) = Ct(St)1{St 6∈Ωt} +
{
gt+1(St)W̄t+1(St + 1)

+
(
1− gt+1(St)

)
W̄t+1(St)

}
1{St∈Ωt}, (26)

where gt+1(St) is defined in (16) and the four recursions
are initialized with UN (SN ) = ŪN (SN ) = 0,WN (SN ) =
1{|θ̂N−θ|>h}, W̄N (SN ) = CN (SN ),ΩN = ∅. Then, E[T |θ] =

U0(S0),E[T ] = Ū0(S0),P(|θ̂T − θ| > h|θ) = W0(S0) and
P(|θ̂T − θ| > h) = W̄0(S0).

Proof. The validity of these expressions is established in the
Appendix.

The applicability of Lemma 4 is clearly not limited to the
proposed scheme but can be used to compute the performance
of the fixed-sample-size and of other sequential alternatives
that we intend to compare against the method we have
developed.

B. Beta Density as Prior

Let us now find the particular form of our scheme when
we adopt as our prior the Beta density π(θ) = Beta(θ, a, a),
where Beta(θ, p, q) is defined in (21).

We observe that the selection a = 1 in the prior corresponds
to the uniform density in [0, 1]. It is now straightforward to
verify that the posterior pdf accepts a similar form, namely

π(θ|St) = Beta(θ, a+ St, a+ t− St), (27)

while the conditional complementary coverage probability at
time t becomes

P(|θ̂t − θ| > h|Ft) = 1− Imin{1,θ̂t+h}(a+ St, a+ t− St)
+ Imax(0,θ̂t−h)(a+ St, a+ t− St), (28)

where Ix(p, q) is the incomplete Beta function (see [25, Page
944]) which is the cdf of Beta(θ, p, q).

The Bayes estimator, according to (18), can be found as the
solution of the equation

ϑ̂t = arg

θ̂t :

(
θ̂t − h
θ̂t + h

)a+St−1

=

(
1− h− θ̂t
1 + h− θ̂t

)a+t−St−1


corresponding to the root in the interval [h, 1 − h]. Such
root always exists except when a = 1 and St = 0 or t.
For these cases, ϑ̂t is equal to h or 1 − h, depending on
which value provides a larger conditional coverage probability.
The resulting optimum conditional complementary coverage
probability becomes

Ct(St) = 1− Imin{1,ϑ̂t+h}(a+ St, a+ t− St)
+ Imax(0,ϑ̂t−h)(a+ St, a+ t− St). (29)

Finally, as indicated in (15) and (16), we need to find the
probability gt+1(St), for which we have the following simple
formula

gt+1(St) = P(Xt+1 = 1|Ft)

=
Γ(St + a+ 1)Γ(t+ 2a)

Γ(St + a)Γ(t+ 2a+ 1)
=
St + a

t+ 2a
.

(30)

We can now compute the sequences
{{Vt(St)}tSt=0}Nt=0, {{Ṽt(St)}tSt=0}Nt=0 as explained in
(14) and compare, element-by-element, {{Ct(St)}tSt=0}Nt=0

with {{Vt(St)}tSt=0}Nt=0 or {{Ct(St)}tSt=0}Nt=0 with
{{c+ Ṽt(St)}tSt=0}Nt=0 to identify the sampling and stopping
regions.

For the particular prior adopted in (21), as we mentioned
before, the resulting optimum stopping time To enjoys the
unique properties claimed in the Conjecture. The next theorem
provides the necessary evidence.

Theorem 2. The Conjecture is true when the prior is the Beta
density π(θ) = Beta(θ, a, a) with the optimum stopping time
To satisfying C0| log(c)| ≤ To ≤ C1| log(c)| for constants
C0 < C1 that depend only on a and h.

Proof. The proof is very technical and detailed in the Ap-
pendix. Unfortunately, the analytical techniques developed for
the specific prior are not directly extendable to the general
case.

Perhaps, it is worth mentioning the fact that from the
proof of Theorem 2, we conclude that the two estimates for
tup in (45) and tlo in (47) grow linearly in | log(c)| having
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Fig. 1. Sampling (green) and stopping (red) regions for a = 1, h = 0.05 and
c = 0.0001. Upper and lower bounds for optimum stopping time: tlo = 59
and tup = 561. No possibility of stopping (light green).

Fig. 2. Average sample size (red), lower tlo (blue) and upper tup limit
(green), as functions of c for optimum stopping time To when a = 1 and
h = 0.05.

drastically different multiplicative coefficients (C0 of the order
of 1/| log(0.5 − h)| versus C1 of the order of 1/(2h2)) and
different offsets.

As an illustration for these properties we consider a =
1, h = 0.05, and c = 0.0001. Fig. 1 depicts the sampling
(green) and the stopping (red) region in terms of the test
statistic St. Both regions are clearly limited between the lines
St = t and St = 0. Even though we have marked a whole
region in red, only the points that are next to the green region
are actually accessible because St can increase at most by
one unit as we go from t to t + 1. We can also see the two
bounds tup = 561 and tlo = 59 for To. For t ≤ tlo the light
green region covers all points 0 ≤ St ≤ t, thus identifying
the time instances we can never stop. Also, we note that once
we pass tup we are in the stopping region suggesting that
we must necessarily stop at tup. For each tlo ≤ t ≤ tup the
stopping region has an upper rut and a lower rlt threshold
and, as long as St is between these two limits, we need to
sample. Since the prior distribution is symmetric with respect
to 1/2, then, according to Theorem 1, the sampling region is
symmetric around t/2, implying that rut + rlt = t.

In Fig. 2, after using (24), we plot the average sample size

TABLE I
CHOICES OF k AND γ IN TF IN (31) FOR 90%, 95%, AND 99%

CONFIDENCE INTERVALS OF FIXED HALF-WIDTH h IN [20].

90% 95% 99%

h k γ k γ k γ
0.10 4 0.0754 4 0.0356 6 0.0068
0.05 4 0.0859 6 0.0433 8 0.0083
0.01 8 0.0972 10 0.0487 14 0.0097

and the two limits tlo, tup of To as functions of c for a = 1 and
h = 0.05. We can see that the lower limit tlo is significantly
smaller than the resulting average, suggesting that the optimum
scheme very quickly regards the accumulated information as
capable of providing reliable interval estimates and therefore
starts the process of questioning whether to stop or continue
sampling.

IV. COMPARISONS

Let us now compare our scheme with the optimal fixed-
sample-size (FSS) and two sequential methods: The first was
proposed by Frey in [20] and the second, the Conditional
Method, was proposed in our earlier work in [26]. Frey’s
method uses a modified Wald-type sequential confidence in-
terval based on the stopping time

TF = inf

{
t ≥ 0 :

θ̃t,k(1− θ̃t,k)

t
≤
(

h

zγ/2

)2
}
, (31)

where θ̃t,k = (St + k)/(t + 2k), k > 0 is a pre-specified
constant and γ = γ(k, h, α) is chosen so that the confidence
interval [θ̂TF

− h, θ̂TF
+ h], with θ̂t = St/t, has a confidence

level of at least 1− α. Table I provides the values of k and γ
recommended in [20] for best results.

From (31) and using the fact that x(1 − x) ≤ 1/4 we
conclude that the corresponding stopping time satisfies TF ≤
d 1

4h2 z
2
γ/2e = N . Regarding the finite-sample-size method, it

uses the optimum Bayes estimator ϑ̂t, obtained in (7) and the
number of samples t is selected to meet the desired coverage
probability. Finally, for the conditional method in [26], we
should point out that it is a general sequential parameter
estimation technique based on conditional costs which is not
limited to binomial proportions. For the problem of interest,
we have TC = inf{t ≥ 0 : Ct ≤ β} and θ̂TC

= ϑ̂TC
, where

ϑ̂t,Ct are the Bayes estimator and the corresponding optimum
conditional complementary coverage probability defined in
(7),(8). Threshold β is selected to guarantee that the resulting
coverage probability is 1−α. For Ct we have from the proof
of Theorem 1, eq. (33), that Ct ≤ 2 exp{−2h2(t + 2a + 1)},
consequently TC ≤ dmax{ 1

2h2 | log(β2 )| − 2a − 1, 0}e = N .
In other words, all four schemes satisfy the assumption of
Lemma 4 of bounded stopping time, therefore the correspond-
ing performance can be computed numerically by applying the
recursions of the lemma without the need to perform Monte-
Carlo simulations.

For the competing methods using (24),(26), we plot in
Fig. 3 the average number of samples E[T ] versus the coverage
probability P(|θ̂T − θ| ≤ h) when a = 1 and h = 0.05.
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Fig. 3. Average samples size versus coverage probability for proposed (red),
Frey (black +), fixed-sample-size (blue) and conditional (green), for a = 1
and h = 0.05.

Note that we have three points for Frey’s scheme because
of the tuning parameters k and γ which are provided in
Table I only for three confidence levels. As we can see,
the proposed method outperforms the fixed-sample-size and
both alternative sequential techniques. It is only at very high
coverage probability levels that the difference between the
three sequential schemes becomes less pronounced.

As we pointed out in Remark 1, Section II, there is practical
interest in evaluating the performance for each individual θ.
Clearly in this case, the requirement is to be able to guarantee
a minimal coverage probability for all θ. Again, we resort
to Lemma 4 and use (23),(25) to evaluate the performance of
the competing methods for each θ. In Fig. 4a, we plot the
coverage probability for each test versus θ and in Fig. 4b,
the corresponding average sample size required to obtain this
performance. Parameters were selected so as all competing
schemes provide the same worst-case coverage probability
assuring a coverage of at least 0.95 for all θ. By observing the
two figures, we can draw the following conclusions: The fixed-
sample-size scheme can require up to almost eight times more
samples compared to the proposed. Of course, one may argue
that it produces higher coverage probability levels. Indeed this
is true, but, unfortunately, this increased performance cannot
be traded for a reduced sample size without compromising the
worst-case level. Consequently, what we observe is in fact the
best the fixed-sample-size method can offer. The conditional
scheme, around θ = 0.5, requires up to 30% more samples
which, as in the case of fixed-sample-size, produce higher
coverage probabilities. Again, it is impossible to sacrifice part
of this increased performance to improve the corresponding
sample size without degrading the worst-case coverage proba-
bility. Finally, we can see that the proposed and Frey’s scheme
require similar samples over most θ. However, we observe
that the proposed method has a coverage probability profile
which is better than Frey’s, since for most θ the corresponding
probability is larger. Frey’s scheme is slightly better only for
θ close to 0 and 1. But even for these values of θ the proposed

(a)

(b)

Fig. 4. Coverage probability (a) and Average sample size (b) as a function
of proportion θ for proposed (red), Frey (black), fixed-sample-size (blue)
and conditional (green) when a = 1, h = 0.05 and worst-case coverage
probability 0.95.

scheme requires almost 50% less samples.

V. CONCLUSIONS

We proposed an optimal sequential scheme for obtaining
confidence intervals for a binomial proportion under a well
defined formulation. We proved that, for a particular prior
(Beta density), our optimum stopping time enjoys certain
uncommon properties not encountered in solutions of other
classical optimal stopping problems. We also conjectured that
these properties are present with any prior. Specifically, our
claim is that our stopping time is always bounded from above
and below, suggesting that we need to first accumulate a
sufficient amount of information before we start applying our
stopping rule, and that our stopping time will always terminate
before or at a specific deterministic time even if we allow the
time horizon to be infinite. Finally, our scheme was compared
against the optimum fixed-sample-size procedure and against
existing sequential alternatives. Numerical performance eval-
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uations showed that the proposed method exhibits an overall
improved performance profile compared to its rivals.
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APPENDIX

Proof of Lemma 1: When E[T ] =∞, then (10) trivially holds,
since both sides are equal to infinity. Thus, it is sufficient to
consider the case when E[T ] < ∞, which implies that T is
finite with probability (w.p.) 1. For any given integer N , from
(10) we have

J(T, θ̂T ) = cE[T ] + P(|θ̂T − θ| > h)

= E

[ ∞∑
t=0

{
ct+ 1{|θ̂t−θ|>h}

}
1{T=t}

]

= lim
N→∞

E

[
N∑
t=0

{
ct+ 1{|θ̂t−θ|>h}

}
1{T=t}

]
(32)

= lim
N→∞

N∑
t=0

E
[{
ct+ 1{|θ̂t−θ|>h}

}
1{T=t}

]
= lim
N→∞

N∑
t=0

E
[
E
[
ct+ 1{|θ̂t−θ|>h}|Ft

]
1{T=t}

]
= lim
N→∞

N∑
t=0

E
[{
ct+ P(|θ̂t − θ| > h|Ft)

}
1{T=t}

]
(33)

≥ lim
N→∞

N∑
t=0

E

[{
ct+ inf

θ̂t

P(|θ̂t − θ| > h|Ft)

}
1{T=t}

]
(34)

= lim
N→∞

N∑
t=0

E
[
{ct+ Ct}1{T=t}

]
= lim
N→∞

E

[
N∑
t=0

{ct+ Ct}1{T=t}

]

= E

[ ∞∑
t=0

{ct+ Ct}1{T=t}

]
= E[cT + CT ]. (35)

The exchange of limit and expectation in (32) is possible, since
the sum contains nonnegative terms and is therefore monotone
increasing in N with a limit having finite expectation. Hence
monotone convergence assures the validity of the exchange.
Equation (33) is true because 1{T=t} is Ft-measurable, while
we have equality in (34) if we select θ̂t = ϑ̂t when {T = t}.
Finally the exchange of limit and expectation in (35) is again
possible due to monotone convergence. This completes the
proof.

Proof of Theorem 1: If α ≥ P(|ϑ̂0 − θ| > h) then stopping at
To = 0 corresponds to the smallest possible (average) number
of samples while, at the same time, we satisfy the coverage
probability constraint.

To prove ii) we first show that there exists Nα such that
P(|ϑ̂Nα − θ| > h) < α. Note that

P(|ϑ̂t − θ| > h) ≤ P

(∣∣∣∣Stt − θ
∣∣∣∣ > h

)
≤ 1

h2
E

[(
St
t
− θ
)2
]

=
1

h2
E

[
E

[(
St
t
− θ
)2 ∣∣∣θ]]

=
1

h2
E

[
θ(1− θ)

t

]
≤ 1

4h2t
, (36)

where we used the fact that St/t is not the optimum Bayes
estimator of the mid-point, then we applied the Chebyshev’s
inequality, then the fact that St/t is an estimator of θ with
estimation error variance equal to θ(1 − θ)/t and finally that
θ(1−θ) ≤ 1/4. From (36) we conclude that P(|ϑ̂t−θ| > h)→
0 as t→∞ therefore, there exists Nα such that P(|ϑ̂Nα−θ| >
h) < α.

Fix N ≥ Nα and denote Vt(St, c) = inft≤T≤N E[c(T −
t) + CT |Ft], where we underline the dependence of Vt on c
(in addition to St). For 0 ≤ c1 ≤ c2 and T ≥ t we can write

c1(T − t) + CT ≤ c2(T − t) + CT ,

which, after taking expectation conditioned on Ft and then
infimum over t ≤ T ≤ N , proves that Vt(St, c) is increasing
in c. The increase of Vt(St, c) with respect to c also suggests
that the optimum stopping time To(c), defined in (17), is a
decreasing function of c.

Consider now the sequence of optimum complementary
coverage probabilities {Ct}, we observe

Ct = inf
θ̂
P(|θ̂−θ| > h|Ft) = inf

θ̂
E[P(|θ̂−θ| > h|Ft+1)|Ft]

≥ E

[
inf
θ̂
P(|θ̂ − θ| > h|Ft+1)|Ft

]
= E[Ct+1|Ft]. (37)

We can then write

P(|ϑ̂To(c) − θ| > h) = E[CTo(c)]

= C0 − E

To(c)−1∑
t=0

{Ct − Ct+1}


= C0 − E

[
N∑
t=0

{Ct − Ct+1}1{To(c)>t}

]

= C0 − E

[
N∑
t=0

{Ct − E[Ct+1|Ft]}1{To(c)>t}

]
, (38)

where for the last equality we used the fact that 1{To(c)>t} is
Ft-measurable. This combined with (37) and the decrease of
To(c) with respect to c, implies that P(|ϑ̂To(c) − θ| > h) is
increasing in c.

For c = 1 we stop at 0 and, therefore, P(|ϑ̂To(1)−θ| > h) =

P(|ϑ̂0 − θ| > h) > α. Set now c = 0 which suggests that the
cost of sampling is zero and therefore the optimum is to stop
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at N (we also deduce this by combining (17) and (37)). This
yields P(|ϑ̂To(0)− θ| > h) = P(|ϑ̂N − θ| > h) = E[CN ]. Now
from (37) by averaging we conclude that E[Ct] is decreasing
in t and for N > Nα we have E[CN ] ≤ E[CNα ] < α, implying
P(|ϑ̂To(0) − θ| > h) < α. As mentioned, P(|ϑ̂To(c) − θ| > h)
is increasing in c, if it is also continuous then there exists
0 < c∗ < 1 satisfying P(|ϑ̂To(c∗) − θ| > h) = α which
means that To(c∗) solves the constrained problem. In case
the function P(|ϑ̂To(c) − θ| > h) exhibits a jump at c∗ such
that for c∗- the probability is strictly smaller than α while
for c∗+ it is strictly larger, then before taking any samples
we need to perform a randomization to decide which of the
two stopping times To(c∗-), To(c∗+) to use. The randomization
probability must be selected so that we satisfy the constraint
with equality.

Proof of Lemma 4: We prove (23) first. Set ΩN = ∅, i.e. we
stop necessarily at N . Then we note that

T =
N−1∑
t=0

1{T>t} = (1 + · · · (1 + 1{SN−1∈ΩN−2}(1

+ 1{SN−1∈ΩN−1}(1 + 1{SN∈ΩN}))) · · · )

suggesting that

E[T |θ] = E[(1 + · · ·E[(1 + 1{SN−1∈ΩN−1}E[(1

+ 1{SN∈ΩN})|FN−1, θ)|FN−2, θ] · · · )|θ].

If we set UN (SN ) = 0 then we can define the backward
recursion

Ut(St) = E[1 + 1{St+1∈Ωt+1}Ut+1(St+1)|Ft]

= 1 + E[1{St+1∈Ωt+1}Ut+1(St+1)|Ft]

= 1 + P(Xt+1 = 1|St, θ)1{St+1∈Ωt+1}Ut+1(St + 1)

+ P(Xt+1 = 0|St, θ)1{St∈Ωt+1}Ut+1(St)

= 1+θ1{St+1∈Ωt+1}Ut+1(St+1)+(1−θ)1{St∈Ωt+1}Ut+1(St),

which proves (23) and, also, that U0(S0) = E[T |θ]. For (24)
we proceed similarly the only difference being that P(Xt+1 =
1|St) = gt+1(St) with this probability being defined in (16).

For (25) and (26) we follow similar steps. We have

1{|θ̂T−θ|>h} =
N∑
t=0

1{|θ̂t−θ|>h}1{T=t}

=
N∑
t=0

1{|θ̂t−θ|>h}1{St 6∈Ωt}

t−1∏
j=0

1{Sj∈Ωj}

= (1{|θ̂0−θ|>h}1{S0 6∈Ω0}) + (1{|θ̂1−θ|>h}1{S1 6∈Ω1})1{S0∈Ω0}

+ · · ·+ (1{|θ̂N−θ|>h}1{SN 6∈ΩN})
N−1∏
j=1

1{Sj∈Ωj}.

Applying expectation given θ yields

P(|θ̂T − θ| > h|θ) = E[1{|θ̂0−θ|}1{S0 6∈Ω0} + · · ·
+ E[1{|θ̂N−1−θ|>h}1{SN−1 6∈ΩN}

+ (E[1{|θ̂N−θ|>h}1{SN 6∈ΩN}|FN−1, θ])

× 1{SN−1∈ΩN−1}|FN−2, θ]) · · · |θ].

Defining WN (SN ) = 1{|θ̂N−θ|>h} it is straightforward to see
that the recursion in (25) computes the desired complementary
coverage probability. Similarly for (26) only now instead of
conditioning with respect to both Ft and θ we condition only
with respect to Ft. This concludes the proof.

Proof of Theorem 2: Let us first find upper and lower bounds of
Ct(St) that are independent from St. From [27, Theorem 2.1]
and for a random variable X with density Beta(x, p, q) we
have that

E[eλ(X−µ)] ≤ e
λ2

8(p+q+1) , λ > 0, (39)

where µ = p
p+q is the average under the Beta density. Using

the Markov inequality we can then write

P(|X − µ| > h) = P(X − µ > h) + P(X − µ < −h)

= P(X − µ > h) + P(1−X − (1− µ) > h)

≤ E[eλ(X−µ)]

eλh
+

E[eλ(1−X−(1−µ))]

eλh
≤ 2e

λ2

8(p+q+1)
−λh, (40)

where we used the fact that if X is Beta distributed with
parameters p, q then 1−X is also Beta with parameters q, p.
Selecting in (40) λ = 4(p+ q + 1)h yields the tightest upper
bound, namely

P(|X − µ| > h) ≤ 2e−2h2(p+q+1). (41)

We can now use this result to upper bound Ct(St). We observe
that

Ct(St) = inf
θ̂t

P(|θ − θ̂t| > h|Ft)

≤ P
(
|θ − E[θ|Ft]| > h|Ft

)
≤ 2e−2h2(t+2a+1). (42)

For for the last inequality we used (41) and the fact that θ
given Ft is Beta distributed with parameters p = St + a and
q = t− St + a.

Let us now find a lower bound for Ct(St). From [25, Page
944, Formula 26.5.15] we conclude that Ix(p, q) > Ix(p +
1, q − 1) for q > 1. Using this inequality repeatedly in (28)
we conclude

P(|θ̂t − θ| > h|Ft) = 1− Imin{1,θ̂t+h}(St + a, t− St + a)

+ Imax(0,θ̂t−h)(St + a, t− St + a)

= Imax{0,1−h−θ̂t}(t− St + a, St + a)

+ Imax(0,θ̂t−h)(St + a, t− St + a)

≥ Imax{0,1−h−θ̂t}(t+ 2na + δa, δa)

+ Imax{0,θ̂t−h}(t+ 2na + δa, δa), (43)

where for the second equality we used the property 1 −
Ix(p, q) = I1−x(q, p) and where na, δa are defined as

na =

{
[a] if a not an integer
a− 1 if a an integer,

and
δa =

{
a− [a] if a not an integer

1 if a an integer,

where [a] denotes integer part of a. Since a > 0 we have
na ≥ 0, 1 ≥ δa > 0 and a = na+δa. By taking the derivative
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of the last sum in (43) with respect to θ̂t we can show that it
has the same sign as the following expression

φ(θ̂t) =
(θ̂t − h)t+2na+δa−1

(1 + h− θ̂t)1−δa
− (1− h− θ̂t)t+2na+δa−1

(θ̂t + h)1−δa
.

Now it is easy to verify that φ(1− θ̂t) = −φ(θ̂t) therefore it is
sufficient to analyze the sign of φ(θ̂t) for h ≤ θ̂t ≤ 0.5. When
t ≥ 1 and because 1 ≥ δa we can see that the sign is negative
for any value of a, suggesting that we have a minimum for
θ̂t = 0.5. Therefore, if Γ(x) denotes the Gamma function,
then for t ≥ 1 we can write

Ct ≥ 2I0.5−h(t+ 2na + δa, δa)

≥ 2
Γ(t+ 2na + 2δa)(0.25− h2)δa

Γ(t+ 2na + δa + 1)Γ(δa)
(0.5− h)t+2na

= 2
Γ(t+ 2na + 2δa + 1)(0.25− h2)δa

(t+ 2na + 2δa)Γ(t+ 2na + δa + 1)Γ(δa)
(0.5−h)t+2na

≥ 2
(0.25− h2)δa

(t+ 2na + 2δa)Γ(δa)
(0.5− h)t+2na . (44)

In the previous expression the second inequality comes from
[25, Page 944, Formula 26.5.16]; for the next equality we used
the property Γ(x + 1) = xΓ(x); while for the last inequality
we used the increase of Γ(x) for x ≥ 1.5, which is true in
our case for t ≥ 1 and any a > 0.

Having established bounds for Ct we can now compute an
upper bound N for tup and a lower bound ν for tlo therefore
proving their existence and demonstrating properties i) and ii).
We first note that if CN ≤ c in (14) we will have CN ≤ c+ṼN
meaning that VN = CN and consequently N is a stopping
instant for all values of St. This implies that To ≤ N . Quantity
tup is the smallest N for which this inequality is true for all
St. Requiring 2e−2h2(N+2a+1) ≤ c we obtain

N =

⌈
max

{
0,
| log(c)|+ log(2)

2h2
− 2a− 1

}⌉
. (45)

To find a lower bound ν for tlo we combine the lower
bound of Ct with an upper bound for Vt. Finding the latter is
straightforward. Indeed if we start from time instant N which,
as we argued, is selected so that CN ≤ c, then using induction
and the fact that

Vt = min{Ct, c+ E[Vt+1|Ft]} ≤ c+ E[Vt+1|Ft]

we can show that Vt ≤ c + c(N − t) = c(N + 1 − t). It is
then clear that, as long as c(N + 1) ≤ C0, for any t ≥ 1 for
which we have

c(N + 1− t)(t+ 2na + 2δa) ≤ 2
(0.25− h2)δa

Γ(δa)
(0.5−h)t+2na

(46)
we do not stop at this time instant. In fact we can see that we
have an interval of the form t ∈ [0, . . . , ν] during which no
stopping can occur. A rough estimate of ν can be obtained by
solving instead of (46) the simpler alternative

max
t
c(N + 1)(t+ 2na + 2δa) =

c

4
(N + 2na + 2δa)2

≤ 2(0.25− h2)δa

Γ(δa)
(0.5− h)ν+2na ,

which yields

ν =

⌊
max

{
0,
| log(c)| − log(I1) + log(I2)

| log(0.5− h)|
− 2na

}⌋
,

(47)
where

I1 = (N + 2na + δa)2Γ(δa), I2 = 8(0.25− h2)δa ,

provided c satisfies c ≤ C0

N+1 . Regarding the latter, if we are
in the non-trivial case where we do not stop at time 0 then
α < C0, consequently it is sufficient to have c ≤ α

N+1 . We
thus conclude that for small enough c there is a lower limit
tlo ≥ ν which is nontrivial. This concludes the proof.
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