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Abstract

A massive gap exists between current quantum computing
(QC) prototypes, and the size and scale required for many
proposed QC algorithms. Current QC implementations are
prone to noise and variability which affect their reliability,
and yet with less than 80 quantum bits (qubits) total, they
are too resource-constrained to implement error correction.
The term Noisy Intermediate-Scale Quantum (NISQ) refers
to these current and near-term systems of 1000 qubits or
less. Given NISQ’s severe resource constraints, low reliabil-
ity, and high variability in physical characteristics such as
coherence time or error rates, it is of pressing importance
to map computations onto them in ways that use resources
efficiently and maximize the likelihood of successful runs.
This paper proposes and evaluates backend compiler ap-
proaches to map and optimize high-level QC programs to
execute with high reliability on NISQ systems with diverse
hardware characteristics. Our techniques all start from an
LLVM intermediate representation of the quantum program
(such as would be generated from high-level QC languages
like Scaffold) and generate QC executables runnable on the
IBM Q public QC machine. We then use this framework to
implement and evaluate several optimal and heuristic map-
ping methods. These methods vary in how they account for
the availability of dynamic machine calibration data, the rel-
ative importance of various noise parameters, the different
possible routing strategies, and the relative importance of
compile-time scalability versus runtime success. Using real-
system measurements, we show that fine grained spatial and
temporal variations in hardware parameters can be exploited
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to obtain an average 2.9x (and up to 18x) improvement in
program success rate over the industry standard IBM Qiskit
compiler. Despite small qubit counts, NISQ systems will soon
be large enough to demonstrate “quantum supremacy,’ i.e., an
advantage over classical computing. Tools like ours provide
significant improvements in program reliability and execu-
tion time, and offer high leverage in accelerating progress
towards quantum supremacy.
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1 Introduction

Quantum computing (QC) aims to solve intractable compu-
tational problems by leveraging quantum mechanical prin-
ciples like superposition and entanglement to manipulate
information efficiently. QC algorithms show potential to sig-
nificantly impact areas such as quantum chemistry [31, 50],
cryptography [61], machine learning [4], and others. Unfor-
tunately, a massive gap exists between the resources required
by most proposed QC algorithms, and the resources which
exist in current prototype hardware.

QC systems have been announced with 49-72 qubits [25,
26, 32] and current operational systems have been demon-
strated publicly with roughly 20 qubits or fewer [28]. A
QC system with 72 fully-entangled qubits and sufficiently-
precise operations (“gates”) would likely be sufficient to show
“quantum advantage” over the largest classical supercomput-
ers, but would still be 5-6 orders of magnitude smaller than
the resource requirements of Shor’s well-known QC algo-
rithm for factoring large numbers [14, 55, 61].

The term Noisy Intermediate-Scale Quantum (NISQ) com-
puters refers to the current and near-term QC systems which
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have roughly 1000 qubits or fewer—typically too small to em-
ploy error correction codes (ECC) [52]. While resource con-
strained, NISQ machines offer an important step forward: if
used well, they can demonstrate QC applications generating
useful results. Making good use of NISQ hardware, however,
requires very efficient, near-optimal mappings of algorithms
onto them. This paper proposes a suite of optimization- and
heuristic-based approaches for mapping applications onto
NISQ hardware, and evaluates them by running the mapped
executables on a public 16-qubit IBM system'.

A good mapping of a QC algorithm onto NISQ hardware
requires first an intelligent initial placement of the program
qubits onto the hardware qubits in order to reduce commu-
nication requirements. Second, it requires efficient orches-
tration of operations both for the computation itself, and
also for the additional SWAP operations which communicate
state between hardware qubits. Third and most importantly,
mapping decisions must reduce the likelihood of operational
or decoherence errors which cause the program run to fail
to achieve a useful answer. Our work performs mappings
using the daily calibration data provided by IBM in order to
avoid using unreliable qubits and to prioritize qubit position-
ing which reduces the likelihood of communication (SWAP)
errors. For example, Figure 1 shows large daily variations
in the gate error rates and coherence times of the qubits of
IBMQ16 on which we experiment. Our contributions are:

First, we develop an LLVM [36] compiler which optimally
or near-optimally maps quantum programs to OpenQASM
assembly code [10] and then to the web-accessible IBMQ16
machine for real-system evaluation. For 12 QC programs
written in the Scaffold quantum programming language [1],
we use this framework to explore how optimal and heuristic
mapping methods, qubit movement policies, and the intelli-
gent adaptation to machine calibration data can affect the
quality of the compiled code.

In particular, our compiler provides up to 1.68x gain in
execution time and 9x gain in success rate over an optimal
but calibration-unaware baseline. Our compiler obtains an
average 2.9x improvement (up to 18x) in success rate, and an
average 2.7x improvement in execution time (up to 6x), com-
pared to the IBM Qiskit compiler [27], which is the industry
standard for IBMQ16.

Furthermore, although compile-time is not a first-order
design goal, QC compilers must scale well enough for intel-
ligent compilation to be tractable throughout NISQ-range
machines. We show that our methods based on Satisfiability
Modulo Theory (SMT) scale well up to 32 qubits. Further, we
have developed calibration-aware heuristic methods which
produce executables with similar reliability and execution

1We run all experiments on the 16-qubit IBM instance named IBMQ 16
Rueschlikon [28]. For the remainder of the paper, we shorten this name to
IBMQ16.
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Figure 1. Daily variations in qubit coherence time (larger
is better) and gate error rates (lower is better) for selected
elements in IBMQ 16 Rueschlikon. The qubits and gates that
are most or least reliable are different across days.

time as the SMT approaches, but with more scalable compile-
times beyond 32 qubits.

Finally, across the 12 benchmarks, we study the influ-
ence of application instruction mix and time varying qubit
error characteristics on compiled programs. For example,
applications for which our compiler can identify zero-qubit-
movement mappings have substantially higher likelihood of
success (up to 2.8x), compared to programs which require
even a single qubit movement operation.

Overall, NISQ systems are important to QC progress be-
cause their success in demonstrating quantum supremacy
and running small but useful QC programs is an important
stepping-stone in the maturation of this technology. In its
leveraging of intelligent and calibration-aware mapping tech-
niques to significantly improve execution time and success
rate of quantum executions, our tool makes an important
contribution in helping close the gap to quantum supremacy
and advancing toward practical QC.

2 Background on Quantum Computing

Principles of Quantum Computing: A qubit is the basic
unit of quantum information. Unlike classical bits, which
take two values (0 and 1), superposition allows qubits to
be in a probabilistic combination of the two states. If we
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consider the states |0) and |1) as basis vectors of C?, we can
express the state of a qubit |/) as |/) = a |0) + S |1), where
and 8 are complex amplitudes such that |«|? + |§|*> = 1. The
state of one or more qubits can be manipulated by modifying
the complex amplitudes using operations termed as gates.
Single-qubit operations include: H, X, Y, Z and others. The
act of measurement or readout collapses the superposition
state to one of the two basis vectors, a classical output.

A controlled NOT (CNOT) gate is an example of a two-
qubit gate. A CNOT gate has a control and target qubit. When
the control qubit is in the state |1), the state of the target bit
is flipped. In quantum CNOT gates, the gate can operate on
qubits to entangle them to have non-classical correlations in
their states and measurement outputs. We use the notation
CNOT C, T for a CNOT gate with control C and target T.

A quantum computer with n fully-entangled qubits has an
exponential state space of size 2". In a QC application, a set
of qubits are initialized to encode a given problem including
its data input. As the program executes, qubit amplitudes
are manipulated, typically to boost the probabilities of the
desired outcomes in the state space. Finally, the qubits are
measured to produce classical output for the given problem.
NISQ Systems: NISQ systems are near-term quantum sys-
tems expected to scale to a few hundred qubits, paving the
way towards large-scale QC [52]. Qubits in NISQ systems
have short coherence time, high gate error rates and and
limited qubit connectivity. They are typically too resource-
constrained to implement error-correcting codes (ECC).

As a concrete NISQ example, Figure 2b shows the lay-
out of the qubits in the 16-qubit IBM system. This system
implements a set of 1- and 2-qubit operations, akin to an
instruction set. For 2-qubit operations, this machine only
supports hardware CNOT gates being performed between
adjacent qubits, based on the topology shown in Figure 2b.
To perform CNOT gates between non-adjacent qubits, we
should use SWAP operations between adjacent qubits until
the two of interest for a given CNOT computation are in
adjacent locations. Each SWAP operation between two adja-
cent qubits itself requires 3 CNOT gates? Our compiler aims
to reduce the time cost of these operations. More importantly,
each one of these operations incurs some error, so a key goal
of our optimization is to reduce operation counts and error
rates in order to increase the likelihood of an overall success-
ful run. We refer to this as reliability and it is the primary
design goal of this work.

In addition to compiler optimization based on attributes
like gate counts, our approach also adapts based on publicly-
available experimental data. In particular, the IBM Q ma-
chines are calibrated twice a day. Once a day there are pub-
lic postings of experimental measurements of key proper-
ties: qubit relaxation time (T1), coherence time (T2), gate

2For two qubits X and Y, SWAP(X,Y) := {CNOT X,Y; CNOT Y,X; CNOT

X, Y} [41].
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errors and readout errors [29]. From daily calibration logs,
we observe that qubit coherence time is 70 microseconds
on average, but varies up to 9.2x spatially and temporally
across qubits and daily calibrations. The average error rate
for CNOTs is 0.04, readouts is 0.07 and single qubit gates is
0.002. CNOT and readout error rates exhibit up to 9.0x and
5.9x variation across qubits and calibration cycles, respec-
tively. CNOT gate durations vary up to 1.8x across qubits.
These fluctuations stem from material defects caused by the
lithographic processes used to manufacture the qubits and
are expected to be present in future generations of supercon-
ducting qubits also [33].

These error rates imply only very short programs can
execute reliably on the machine. A program with more than
16 CNOT operations, has less than 50% chance of executing
correctly. A key goal of our compiler optimizations is to use
this calibration data to boost the success rate of individual
program runs, by avoiding portions of the machine with
poor coherence, operation, or readout errors.

3 Compilation Framework: Overview

Our framework takes a Scaffold program [1] as input, and
produces compiled OpenQASM code [10]. The Scaffold quan-
tum programming language extends C with quantum gates.
Scaffold programs are independent of the machine topol-
ogy, size and qubit properties. The ScaffCC compiler [30, 58]
performs automatic gate and rotation decomposition, imple-
ments high level operations like the Toffoli gate and produces
an LLVM Intermediate Representation (IR) [36] of the pro-
gram. The IR version of the program includes the qubits
required for each operation and the data dependencies be-
tween operations. For example, Figure 2a shows the IR for
the simple 4-qubit Bernstein-Vazirani algorithm which is
chosen because it fits on machines of this size and has an
answer which can be calculated to check our results [3]. We
use the program IR as a starting point for the noise-aware
backend described here.

Starting from the IR, the noise-aware backend has three
primary tasks. First, qubits in the program must be mapped
to distinct qubits in the hardware implementation, preferably
in a way that reduces qubit state movement required as the
program executes. Second, the compiler performs operation
scheduling while respecting data dependencies between
gates. To accomplish this, each operation is assigned a start
time constraint, and the scheduler emits control code that
enforces this. Third, to perform 2-qubit operations on non-
adjacent qubits, the compiler should orchestrate commu-
nication through SWAPs. That is, it automatically inserts
the required SWAP operations to bring the qubits adjacent
to each other before the operation is performed.

Consider a simple compilation method where program
qubits are assigned to random qubits on the hardware. Figure
2b shows such a mapping for the BV4IR. In this mapping, the
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Figure 2. Figure (a) shows the intermediate representation of the Bernstein-Vazirani algorithm on 4 qubits (BV4). Each program
qubit is represented by a line. X and H are single qubit gates. The CNOT gates from each qubit py 1, to ps are marked by vertical
connectors. The measurement or readout operation is indicated by the meter. Figure (b) shows the layout of the hardware qubits
in IBMQ16 and a naive mapping of BV4’s program qubits. The black circles denote qubits and the edges indicate permitted
CNOT gates. The numbers on the labelled edges indicate the CNOT gate error (X1072). The hatched qubits and crossed gates
are unreliable. In this mapping, qubit movement is required to perform the CNOTs and error-prone operations are used. Figure
(c) shows a mapping where qubit movement is not required and unreliable qubits and gates are avoided.
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Figure 3. Optimization Pipeline. Inputs are a QC program,
details about the specific hardware configuration, and a set
of options, such as routing policy and solver approach. From
these, compiler generates a set of appropriate constraints
and uses them to map program qubits to hardware qubits
and schedule operations. Finally, the compiler generates an
executable version of the program, here for IBMQ16.

compiler must insert qubit movement or swap operations to
perform the CNOT gates between p; and ps. In contrast, the
mapping shown in Figure 2c requires no qubit movement
because the qubits required for the CNOTs are adjacent. In
addition, this mapping is noise-aware; namely, it uses the
calibration data to select a mapping that avoids using qubits
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with low coherence time and gates with high error rates.
Our compiler uses machine topology and calibration data to
automatically generate such mappings for a given program.

Our primary goal is to maximize the likelihood that the
program runs successfully. To accomplish this, we have three
main strategies. First, the compiler places program qubits on
hardware locations with high reliability, based on the cali-
bration data. The compiler considers the effect of errors due
to CNOTs and readouts; for this machine, single-qubit error
rates are considerably smaller so our formulation chooses to
ignore them. Second, to mitigate errors due to decoherence,
the compiler should schedule all gates to finish before the
coherence time of the hardware qubits (intuitively analogous
to making use of data within the refresh interval of a DRAM).
Third, the compiler optimizes for the qubit topology to avoid
unnecessary qubit movement. Qubit movement not only in-
creases execution duration, but more importantly leads to
high error rates since each qubit SWAP operation includes
three error-prone CNOTs. We have designed a set of optimal
and heuristic compilation variants to accomplish these goals.

Table 1 enumerates the full set of compiler variants we con-
sider in this paper. In addition to the publicly-available IBM
Qiskit compiler we use as a comparative baseline, we also de-
velop several approaches which are either truly optimization-
based or heuristic. We give an overview of these approaches
here, before offering details in the following section.

3.1 Optimization-Based Mappings

In the optimization-based variants of our compiler, we imple-
ment the above goals by posing the compilation problem as
a constrained optimization problem to be solved by a satisfia-
bility modulo theory (SMT) solver. The optimization problem
has variables and constraints which express program infor-
mation, machine topology constraints, and machine error
information. The variables include program qubit locations,
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l Algorithm ‘ Objective Parameters Constraints
Qiskit Heuristic, minimize duration - -
T-SMT SMT solver, minimize duration Routing policy: RR, 1BP 1-4,7-9

T-SMT* SMT solver, minimize duration | Routing policy: RR, 1BP 1-3, 5-9

R-SMT* | SMT solver, maximize reliability

Routing policy: 1BP
Readout weight w € [0,1]

1-3, 5-6, 9, 10-11

GreedyV* Heuristic, maximize reliability | Routing Policy: Best Path -

GreedyE* Heuristic, maximize reliability | Routing Policy: Best Path -

Table 1. List of compiler configurations used in our study. The IBM Qiskit 0.5.7 compiler is used as a the baseline. The use of

calibration data is marked by a ¥%.

gate start times and routing paths. The constraints spec-
ify qubit mappings should be distinct, gates should start in
program dependency order, and routing paths should be
non-overlapping. Fig. 3 summarizes the general compilation
pipeline for the solver-based approach, beginning with an
IR of a program and resulting in execution-ready code.

The optimization objective is to maximize the reliability
or success rate of program runs. We express the reliability
of the program as the product of the reliability of all gates
in the program. (Because of the degree of entanglement in
QC programs, this serves as a useful measure of overall
correctness.) For a given mapping, the solver determines the
reliability of each program CNOT, readout operation and
single qubit gate and computes an overall reliability score.
For the optimization variants which are noise-aware, the
solver can maximize the reliability score over all mappings
by tracking and adapting to the error rates, coherence limits,
and qubit movement based on program qubit locations.

Given a target machine, our framework converts the pro-
gram IR into an optimization problem by expressing an objec-
tive and constraints that can be solved using an Satisfiability
Modulo Theory (SMT) solver [5, 11]. For classical programs,
these solvers have been used to obtain optimal hardware
mapping and scheduling for spatial architectures [43], but to
our knowledge, ours is the first use of them for QC systems.
SMT solvers take as input a set of linear constraints, and an
objective function and search for an optimal solution. Al-
though the reliability objective is a product of individual gate
reliability scores (and therefore non-linear), we linearize the
objective by instead optimizing for the additive logarithms
of the reliability scores. An SMT solver can then be invoked
to find a mapping which maximizes the log reliability.
Does maximizing the reliability score achieve our goal
of increasing program success rate? Optimizing for the
reliability score induces the compiler to place qubits at loca-
tions where CNOT and readout errors are low. It also indi-
rectly minimizes qubit movement because CNOTs between
far away qubits are error-prone. For example, for the BV4 IR,
consider mapping shown in Figure 2b. Here, the reliability of
the CNOT between p, and ps is 0.8 (80% chance of executing
correctly), while the reliability of the CNOT between p; and
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p3 is only 0.65%. Thus, the compiler will choose mappings
where communicating qubits are close together, minimiz-
ing unnecessary qubit movement and allowing gates to be
scheduled to finish within the coherence window.

3.2 Heuristic Mappings

We also determine whether heuristic techniques can ap-
proach the optimization-based results, but with better scal-
ability. For this, we develop two comparative algorithms
based on greedy heuristics. The greedy heuristics analyze the
CNOTs in the program IR, and determine a gate frequency
for each qubit and program CNOT.

We explore two policies. In the first policy, GreedyV*,
we place program qubits on hardware qubits in the heaviest
qubit first order. In the second policy, GreedyE*, we place
program CNOTs and their control and target qubits in a
heaviest edge first order. Intuitively, the first policy places
qubits which use more CNOTs in locations which have good
CNOT and readout error rates. The second policy places
pairs of qubits which have the most frequent CNOTs first.

4 Optimal Compilation
4.1 Notations and Assumptions

Let Qp be the set of program qubits. Let Qy be the set of
hardware qubits. In this work, we assume hardware qubits
are arranged as a 2-D grid of dimensions M, x M. Likewise,
due to the connectivity characteristics of IBMQ16, we assume
only hardware qubits which are adjacent in the grid are per-
mitted to participate in two qubit operations. More elaborate
topology and routing assumptions can be handled in future
work. For g € Qp, the ordered pair (g.x, q.y) corresponds to
the location of the hardware qubit assigned to the program
qubit g. Let G be the set of operations in the program. This
includes single-qubit gates such as H, and the 2-qubit CNOT
gate and qubit measurement or Readout operations. CNOT
and readout operations dominate the reliability outcomes,
so the reliability score focuses on them. The subset of CNOT

3p1 has to swap once to move to a location adjacent to p3. The net reliability
of the 3 CNOTs required to perform the SWAP is 0.93 = 0.729. Then the
actual CNOT operation can be performed with reliability 0.9. Hence, the
overall CNOT reliability is 0.65.
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gates is denoted by GenoT, and the subset of readout opera-
tions is Greadou:- For each gate g in the program, the start
time is denoted by (g.7), duration by (g.9), and reliability by
(g.€). To denote data dependencies between the operations,
we use a binary relation > on the gates, so that for two oper-
ations g, > ¢ if g, depends on g;. Although the reliability
objective focuses on a subset of operations, we map and
schedule all operations (including single-qubit operations)
to provide a valid real-system executable.

4.2 Constraints

Qubit Mapping Constraints: Constraint 1, guarantees all
program qubits are mapped to actual hardware qubits. Con-
straint 2 guarantees each program qubit is assigned a unique
location.

VgeQp:0<qgx <My A0 qy<M,y (1)
Vq1,q2 €E0p : 1. X # Q2. XV q1.Y # Q2.Y (2)

Gate Scheduling Constraints: For each gate g in the pro-
gram, the compiler determines the start time and execution
duration. If two gates g; and g, both operate on the same
qubit, and g, uses the output of g;, g, should start only after
g1 finishes. For every such edge in the dependency graph,
Constraint 3 shows the form we use to enforce such data
dependencies.

®)

The durations, d, for single qubit operations are set using
the documented durations in timeslots of the corresponding
hardware operations. For CNOTs, the duration includes both
the operation itself as well as the time to bring the relevant
program qubit states into adjacent hardware qubits; this
depends on the routing policy and is discussed below.
CNOT Duration based on Grid Distance: The duration
of a CNOT gate accounts for both CNOT time and the du-
ration of the swap paths before and after the CNOT. For a
CNOT g € Genor, let the control and target qubits be g, and
q:- Then the duration of the CNOT is: 9.6 = 2*(||qc — q:|l; —
1) * tswap + TcNor Where [|qc — q/ll; = [ge.x —qr.x| +
|gc-y — q¢.y| and Tswap, TeNoT are the times to complete a
SWAP or CNOT operation, respectively.

The compiler must schedule operations before the individ-
ual qubits decohere. For T-SMT (noise-unaware) we simply
use an assumption of My as 1000 timeslots of coherence time,
which is the long-term average for the machine:

V91,92 €G: g2 > g1 = G2.T 2 §1.T + g1.0

Vge G:g.1+9g.0 < Mr 4)

CNOT Duration based on Calibration Data: For T-SMT*
and R-SMT*, we set durations based on calibration data. In
particular, since qubit coherence time changes daily (Figure
1a) and CNOT gate durations vary across qubits, these ap-
proaches use the calibration-based data in the optimization
constraint. To set durations based on calibration data, we

1020

c, Iy

ASPLOS’19, April 13-17, 2019, Providence, RI, USA
T,

09 9
090 66069
6666 6 66

(b) One Bend Paths
(1BP)

(a) Rectangle Reser-
vation (RR)

Figure 4. Two routing policies for swap-based architectures.

assume a routing policy and compute the CNOT durations
for each hardware qubit pair. Let A be an |Qg| X |Qy| ma-
trix where Ahi,h,-’ i # j, specifies the duration of a CNOT
between hardware qubits h;, h; € Qp. The duration of a
program CNOT can be set as: for all g € Genor and for all
hl, hz € QH:

ge =M Agr =hy = g.0 =Ap, 1, (5)

For the calibration-aware coherence time bound, con-
straint 6 ensures every gate finishes before the coherence
time of the qubits it acts on i.e., if a gate uses a hardware
qubit A, it should complete before h decoheres, with h.7 as
the coherence time of a hardware qubit h € Qy. We have for
all g € G and for all hy, hy € Qy:

ge =hiAgr =g = g1+ 9.0 <min(hy.t,hy.T) (6)

4.3 Routing for CNOT Gates

To route multiple CNOTs in parallel, the compiler uses two
routing policies based on policies in VLSI routing [19, 20].
Rectangle Reservation: In this policy, for every CNOT in
the program, the compiler blocks a 2D region bounded by
the control and target qubit, during the CNOT execution. For
example, in Figure 4a, the highlighted rectangle is reserved
for the duration of the CNOT.

Consider a CNOT gate g; € Genor- Let (I, lé) and (rl, r;)
denote the top left and bottom right corners, respectively,
of the bounding rectangle of g;. These variables are defined
using min and max relations on the qubit mapping variables
of the CNOT. For two CNOTs g; and g;, the routing constraint
is:

SRi.R)) ==L >, vri<E VI >rjvri<B) ()
T(9i,9j) = ~(g;.T > gj.t +g;.0 V g;.T > g;.T +¢;.6) (8)

Constraint S checks if the two rectangles overlap in space.
Constraint T checks whether CNOTs overlap in time. For
any pair of CNOTs g; and g;, they cannot overlap in time if
they overlap in space: S(g;,g;) = -T(gi,g;)-

One Bend Paths: In this policy, CNOT routes are restricted
to the two paths along the bounding rectangle of the control
and target qubit. For example, in Figure 4b, the CNOT is al-
lowed to use one of the two highlighted paths. To implement
this policy, the solver selects one of the two routes for every
CNOT in the program.
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To express constraints for this policy, we use variables
to record the junction through which the CNOT is routed.
The one bend path is composed of two segments: control
to junction and junction to target. For generality, we can
consider these segments as rectangles, and apply the same
overlap check as in rectangle reservation. Denote the control
to junction path for CNOT i as Rfj . Then, we can check if
two CNOTs g; and g; overlap using:

o o -
Overlap(i, j) =S(Rfj, RJC.]) \% S(Rfj, Rj \%

Jjt pcj Jjt pit
SRR VSR, R)) 9)
Similar to rectangle reservation, we impose the condition
that CNOTs do not overlap in time if they overlap in space.

4.4 Reliability Constraints

To optimize the reliability of program executions, we use
a set of constraints to track the reliability scores of CNOT
and readout operations in the program. Let g.e denote the
reliability score for the operation g. For readout operations,
we set the reliability as

Vg € Greadour : Vh€ Qn:9.q=h = g.e =Ef  (10)
where Ef is the reliability score for readout operations on
hardware qubit i, and Gg € G is the set of readout opera-
tions.

In R-SMT* we perform reliability optimization using
the one bend paths routing policy. Under this policy, for
CNOT gate, we set reliability tracking variables based on
the junction used for routing. For each pair of hardware
qubits, we compute the reliability of the two possible paths,
and store them in a matrix EC, indexed by the hardware
qubits and junction. This reliability factors in the reliability
of the swap paths through the junction and the actual CNOT
operation. Let g.j be the junction for gate g € Genor. The
constraints to track CNOT error are given for all g € Genor
and for all hy, hy, h; € Qn:

hyANgj=hj=ge=E (11)

In our experiments, considering the error rates of single
qubit gates such as H, X, Y etc. is not required for IBMQ16,
because their error rates are much smaller than CNOTs and
readouts. For systems where such errors matter, they can
be easily incorporated into the optimization using similar
constraints.

_ C
ge =hi A g; b o

4.5 Optimal Compilation: Objective Function

The different optimization variants use different objective
functions. For the time-oriented variants T-SMTand T-SMTX*,
the objective function is based on the execution time for the
program. Using the gate scheduling and duration constraints
in Section 4, the objective is to minimize the finish time of
the last gate in the dependency order.
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For the reliability-oriented variant, R-SMTX*, the objec-
tive function is based on the reliability of a program ex-
ecution. We define the reliability of a program execution
as the product of the reliability of each of its gates. Since
single qubit gates have low error, we define the reliabil-
ity using CNOT and readout operations only. Ideally, the
reliability objective would be the product across all gates
of the readout and CNOT errors for the whole program:
max [ Ivgecp,uionsUGenor (9-€)- Because the SMT solver re-
quires linear operations, we convert this to an additive linear
objective function by considering the logarithm of the opera-
tion reliabilities, instead of their product. Finally, to allow for
different emphases on readout error versus CNOT error, we
convert the above objective into a weighted objective using
a weight w which is applied to the readout error rates:

Z log(g.€) + (1 — w) Z log(g.€).

gEGReadout gEGCNOT

«w

(12)

We use this objective to study the relative importance of
CNOT and readout error rates.

Optimizing reliability places qubits at hardware locations
with high CNOT and readout reliability. It indirectly opti-
mizes qubit movement because CNOT gates between non-
adjacent qubits have low reliability. This objective is used
by R-SMTX in our experiments. The output of the solver
has the optimal reliability with respect to the program and
machine model assumptions. Our experiments show that it
is also near-optimal in execution duration.

To compute a qubit mapping and gate schedule which max-
imizes this objective, we set up an optimization problem us-
ing this along with the mapping and scheduling constraints,
gate durations using calibration data, routing approaches,
and reliability constraints discussed before. The reliability
constraints make the g.e variables dependent on the qubit
mapping variables.

5 Heuristic Compilation

Where tractable, the SMT-based compilation approach offers
the best chance at successful application runs on real hard-
ware. However, effective heuristic approaches may offer sim-
ilar reliability but scale better to future NISQ systems with
hundreds of qubits. Here we propose and evaluate heuris-
tic mapping/scheduling alternatives as comparators to the
optimization-based approaches.

Our heuristic techniques are also based on a program
graph constructed from the program IR. The program graph
has a node for every qubit, and an edge between every pair
of qubits which is involved in a CNOT. For example, the
program graph of BV4 has 4 nodes for py 1,23 and 3 edges, one
from each of py, 1,2 to ps. For each heuristic, we first compute
the most reliable path between every pair of hardware qubits
using Dijkstra’s algorithm, where edge weights are given as
the negative log of the CNOT errors from the calibration data.
For both heuristics, once we map the qubits, we schedule
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gates using an earliest ready gate first policy [24] and route
based on the precomputed paths.

5.1 Greatest Vertex Degree First

The GreedyV* heuristic seeks to minimize communication
distance (and therefore reduce the number of error-prone
SWAP operations) by considering qubits in descending order
of degree. The degree of the qubit is the number of CNOTs
in which the qubit is used. First, place the highest degree
program qubit at the hardware location which has highest
readout reliability among high degree hardware qubits. Next,
for each program qubit which shares a CNOT with an al-
ready placed qubit, place this qubit in order to maximize the
total reliability of paths between it and each of its placed
neighbors, where the total reliability is given by the sum of
the path lengths computed between it and its neighbors.

5.2 Greatest Weighted Edge First

In GreedyE*, we map edges in the descending order of
weight. The weight of an edge between two nodes is the
number of times a CNOT gate is invoked between them.
Therefore, placing edges with high weight first allows qubits
which interact highly to be close together. Such placement
reduces qubit movement and increases reliability. The al-
gorithm starts by placing the highest weighted edge at on
hardware location with maximum CNOT and readout re-
liability. Next, for each edge which has one mapped one
unmapped endpoint, we map the unmapped qubit to the po-
sition which maximizes the total reliability of CNOTs with
already mapped qubits, where the total reliability is given
by the sum of the path lengths computed from before be-
tween it and its neighbors. The process is repeated for each
unmapped edge in weight order.

6 Experimental Setup

Benchmarks: Table 2 lists 12 quantum programs derived
from prior work on compilation and system benchmarking
[2, 40, 64]. These benchmarks include the Bernstein-Vazirani
algorithm [3], Hidden Shift Algorithm [7], Quantum Fourier
Transform [42], a one bit adder and important quantum ker-
nels such as the Toffoli gate [41]. We used or created Scaffold
programs for each benchmark and obtained LLVM IR using
the ScaffCC compiler [30]. To be runnable on real-system QC
hardware, the benchmarks must be relatively small in qubit
counts and short in execution time steps. Nonetheless, our
ability to show order-of-magnitude improvements in success
rate for these programs is a promising indicator of the value
of such compilation techniques for future larger systems and
programs. Furthermore, several of these programs—such as
QFT and Toffoli—are important kernels for larger programs.

Beyond these, to study scalability trends across different
qubit and gate counts, we generate a synthetic benchmark
where we can specify the number of qubits and gates and
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Name Qubits Gates CNOTs CNOT Graph
Bv4 4 12 3
BV6 6 12 3 {.,
BV8 8 18 3
HS2 2 16 2 Pury
HS4 4 28 4 —e oo
HS6 6 42 6| e—eeoe-e
Fredkin 3 19 8
Or 3 17 6
Peres 3 16 5 A
Toffoli 3 18 6
Adder 4 23 10 S
QFT 2 13 5 e

Table 2. Characteristics of benchmark programs.

from this, we experiment with randomly generated quantum
programs with 4-128 qubits and 128-2048 gates. We generate
these circuits by uniformly sampling gates from the universal
gate set of H, X, Y, Z, S, T, CNOT.

Compiler Configurations: To study various compilation
schemes, our framework includes various options for the
solver, routing policy, use of calibration data and other pa-
rameters. We evaluate these options one factor at a time
using the configurations listed in Table 1. We compare R-
SMT*and T-SMT*to demonstrate the benefits of noise-
adaptive compilation. We compare T-SMT*and T-SMT to
demonstrate the importance of considering gate times and
coherence times from calibration data.

Experimental Setup: Our compilation experiments use an
Intel Skylake processor (2.6GHz, 12GB RAM) using Python3.5
and gcc version 5.4. Our optimization approach uses the Z3
SMT solver [11]. To perform experiments on IBMQ16, we
use the IBM Quantum Experience APIs [28, 29]. The daily
machine calibration data is available through the Quantum
Experience APIs. The calibration data includes time data
such as single qubit gate time, qubit coherence time (T2
time), durations for CNOT gates, and error rates such as
single qubit gate error, CNOT gate error, and read out (mea-
surement) error. We use IBM’s Qiskit compiler/mapper as
our baseline for comparison, version 0.5.7.

Metrics: Before each run, we obtain the latest calibration
data, and recompile the benchmark. We execute each bench-
mark on IBMQ16, using 8192 trials in each run. We mea-
sure the success rate as the fraction of trials which gave
the correct answer. For example, success rate of 0.6 means
the execution produced the correct answer in 60% of the
trials. The ideal success rate is 1, where all trials succeed.
Results within a single graph are performed closely in time
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Figure 5. Measured success rate of R-SMT* compared to
Qiskit and T-SMT*. (Of 8192 trials per execution, success
rate is the percentage that achieve the correct answer in
real-system execution.) R-SMT* obtains higher success rate
than Qiskit because it simultaneously adapts placement ac-
cording to dynamic error rates and avoids unnecessary qubit
movement.
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Figure 6. Executions of three benchmarks for 1 week. R-
SMT*is more resilient to errors compared to T-SMT*. Sim-
ilar trends for other benchmarks.

so are comparable. Results from different graphs may not be
comparable because the machine error characteristics can
be different across runs. We also study quantum execution
time and compilation time. Because timing granularity is so
coarse, execution time is estimated using real gate duration
data from the IBMQ16 system. We report durations in terms
of timeslots on IBMQ16, where each timeslot is 80ns.

7 Optimizing Execution Reliability
Baseline Comparison to IBM Qiskit: We compare the suc-
cess rate of program runs from our compiler versus the IBM
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Qiskit compiler for real-system runs on IBMQ16. Figure 5
shows the success rate of the IBM Qiskit compiler, T-SMT*
and R-SMT* with @ = 0.5 on all the benchmarks. In all
benchmarks, R-SMT* has higher success rate than Qiskit,
indicating that its reliability-oriented objective function is ef-
fective. In fact, R-SMT* obtains geomean 2.9x improvement
over Qiskit, with up to 18x gain. Figure 8 shows the mapping
used by Qiskit, T-SMT*and R-SMT* for BV4. Qiskit places
qubits in a lexicographic order without considering CNOT
and readout errors and incurs extra swap operations. For
BV8, the compiled code produced by Qiskit used 15 CNOT
operations to move qubits (in addition to the 3 CNOTs re-
quired by the algorithm), while R-SMT* obtains a mapping
which require no qubit movement. Each extra CNOT gate
increases both the error rate and the execution duration of
the code and leads to poor success rate. Benchmarks which
require no qubit movement such as BV, HS, QFT and Adder
have higher reliability than Toffoli, Fredkin, Or, and Peres,
which require at least one qubit swap.

In all benchmarks, R-SMT* outperforms T-SMT*, even
though they use the same number of qubit movement opera-
tions. While optimizing qubit communication is important,
it is essential to optimize for gate error rates to improve
success rate. In fact, in our experiments, when the machine
state has high variability, R-SMT* can obtain up to 9.2x
improvement in success rate over T-SMTX (see Fig. 7 and 8).

Resilience to Daily Variations: Since IBM limits the
executions researchers may perform per day, we perform
detailed experiments on three benchmarks, BV4, HS6 and
Toffoli. These benchmarks are chosen as examples of differ-
ent CNOT patterns (see Table 2). Figure 6 compares the suc-
cess rate of R-SMT* and T-SMT* over a week for the three
benchmarks. The success rate of the programs change every
day because error rates of the hardware CNOT and readout
units change daily. (We recompile each day before running.)
For all three benchmarks, R-SMTX is more resilient to error
than T-SMT, since it adapts the qubit mappings to account
for daily variations in operation error rates. Since T-SMT*
compiles based on static information (qubit topology and
gate duration), it uses the same qubits and hardware gates
every day, irrespective of their dynamic error characteristics.

7.1 Choice of Optimization Objective

Figure 7 compares R-SMT* withw = {0,0.5,1} and T-SMT*
on the three benchmarks. R-SMT* with w = 0.5 achieves the
highest success rate among the methods, with up to 9.25x
gain over T-SMT*. For BV4, we illustrate the mappings
obtained by the these methods in Figure 8. T-SMT* obtains
a mapping which requires no qubit movement, but it uses
a hardware CNOT with very high error rate. With v = 1,
R-SMT* optimizes only for readouts and uses long swap
paths which reduce success rate. With v = 0.5, R-SMT*
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Figure 7. Measured success rate, execution duration and compile time for three representative benchmarks. T-SMT* which
directly optimizes for execution duration obtains the minimum execution durations, but R-SMT* with w = 0.5 is close, and
more resilient to errors (higher success rate). All benchmarks compile in less than 1 minute.
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Figure 8. For real data/experiment, on IBMQ16, qubit mappings for Qiskit and our compiler with three optimization objectives,
varying the type of noise-awareness. In each figure, the edge labels indicate the CNOT gate error rate (x1072), and the numbers
inside each node indicate that qubit’s readout error rate (x1072). The thin red arrows indicate CNOT gates. The yellow thick
arrows indicate SWAP operations. (a) Qiskit finds a mapping which requires SWAP operations and uses hardware qubits with
high readout errors (b), T-SMT* finds a a mapping which requires no SWAP operations, but it uses an unreliable hardware
CNOT between ps and po. (c) Program qubits are placed on the best readout qubits, but py and p; communicate using swaps.
(d) R-SMT*finds a mapping which has the best reliability where the best CNOTs and readout qubits are used. It also requires

no SWAP operations.

maps qubits to simultaneously optimize CNOT gate error,
readout error and qubit movement.

R-SMT* with w = 0.5 also achieves near-optimal exe-
cution durations, comparable to T-SMT*, which directly
optimizes for duration. From the perspective of compilation
time, optimizing for reliability is harder than optimizing
execution duration. However, each method finds optimal
mappings in under a minute, for each benchmarks.

R-SMT* was executed with w € [0, 1] to determine the rel-
ative importance of optimizing for readout error and CNOT
error. In general, choosing an o roughly near 0.5 is appro-
priate to obtain good success rates. On the IBMQ16 machine,
readout and CNOT error rates are fairly balanced, and hence
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we see that an equal weighted combination of both is suitable
for optimization.

7.2 Sensitivity to Gate Durations and Coherence
Time

We test whether the use of real gate time data significantly
affects the execution duration of NISQ benchmarks. Our
compiler is run on three settings: T-SMT(RR) which assumes
all hardware CNOTs have the same gate duration and T-
SMT™* (RR) and R-SMT* (1BP) which use real gate durations.
We restrict R-SMT* to the 1BP policy to reduce the number
of experimental configurations; we show in Section 7.3 that
the choice of routing policy doesn’t affect execution duration
for NISQ benchmarks.
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Figure 9. Effect of gate durations, routing policy and objec-
tive function on execution duration. Although reliability is
our primary objective, several variants perform well on run
time as well. T-SMT* (either RR or 1BP) has the best exe-
cution duration, but R-SMTXis very close in run time and
offers better success rates. Noise-aware policies, R-SMT* and
T-SMTX, are 1.6x better than T-SMT.
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Figure 10. Noise-aware Heuristics: GreedyE* heuristic
mapping offers reliability comparable to R-SMT* on most
benchmarks.

Gate Durations: Figure 9 shows execution duration, com-
puted using the gate time data, for the three methods. Consid-
ering real gate durations can improve the execution duration
for each benchmark, with up to 1.68x gain on Toffoli. Con-
sidering real durations increases the number of constraints
in the optimization problem and increases the compilation
time by up to 3x (not shown). Even with real durations, each
benchmark requires only a few seconds of compilation time.

Coherence Time: Each benchmark finishes in less than
150 timeslots using the R-SMT* method. Since the coherence
time of the worst qubit on the machine is more than 300
timeslots, considering fine grained variations in coherence
time is not necessary for our benchmarks.

7.3 Effect of Routing Policy

Figure 9 compares the execution duration and compilation
time of T-SMT* with two routing policies (RR and 1BP) and
R-SMT* (1BP). The three policies produce executables with
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Figure 11. Scalability of optimal and heuristic methods on
synthetic benchmarks. The legend shows a line’s qubit count.

similar execution duration since NISQ benchmarks are small,
and have only few parallel CNOTs. Hence, most CNOTs
execute without swapping or blocking qubits. Although R-
SMT™* optimizes reliability, it obtains execution durations
close to T-SMT* on all benchmarks.

7.4 Success Rate and Scalability of Heuristics

We compare the success rate of heuristics to the optimal
methods and evaluate the scalability of all methods.

Figure 10 compares the success rate of the heuristics and
R-SMT*. Greedy methods are comparable to R-SMTX in
success rate and in some cases, they outperform R-SMT*
marginally because w = 0.5 may not the optimal value for
every benchmark and machine state. GreedyE™X is as success-
ful as R-SMT™ in all cases. Our study reveals the edge based
heuristic GreedyE*, is more successful than the vertex based
heuristic GreedyV*. Considering edges instead of vertices
allows the heuristic to prioritize the reliability of the most
frequent CNOTs.

To study the scalability of optimal and heuristic methods,
we used a benchmark of randomly generated quantum pro-
grams. Figure 11 shows the compilation time on the bench-
mark. R-SMT™* requires up to 3 hours to compile a program
with 32 qubits and 384 gates. On the other hand, the greedy
methods compile programs in under one second in all cases.

8 Related Work

Quantum programming languages and their compilers have
been developed by extending languages such as C and C#
with quantum functionality. Examples include Quipper [21,
22], LIQUi|) [69], and Scaffold [30, 58]. ProjectQ [65] is a
Python framework to describe quantum circuits and compile
them for different backends. PyQuil, developed at Rigetti [53,
54] is another such Python framework. Until very recently,
most backends were simulators or resource-estimators, rather
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than real hardware. Our work here is an early example of
top-to-bottom compilation from a high-level QC language
(Scaffold) to real hardware.

OpenQASM [10] and Quil [63] are low-level assembly
language interfaces to QC hardware [28]. To target IBM ma-
chines, our compiler produces optimized OpenQASM code.
Our compiler can be easily extended to generate code for
other low-level interface languages also.

QC compilation has been studied for different hardware
technologies and topologies. [23] develops a heuristic to
schedule quantum circuits on linear topologies where all
gates (including swaps) consume unit time. [67] uses Al
planners for scheduling a specific class of quantum circuits.
[24] develops heuristic techniques for ion trap systems. Re-
cently, [62] compiled small benchmarks for IBM systems,
based on only qubit topology information, not calibration
data. Two recent works [71, 72] reduce swap operations and
optimize 1-qubit gates for 5-qubit IBM systems. Other prior
work [6, 8,13, 15, 18, 34, 37, 38, 49, 51, 56, 57, 60, 70] are either
manual methods or restricted to a specific architecture, or a
specific class of quantum programs; none account for real
gate durations, gate errors and variations in qubit coherence
time. Similarly, other work has focused on compilation issues
in future QC systems with ECC [35, 39, 44-48]. In contrast
to these works, our compiler is designed and evaluated using
a real IBM QC system. Using real-system measurements, we
show that driving compilation decisions based on machine
calibration and configuration data dramatically improves
program success rates.

[66, 68] observed the usefulness of calibration data. While
[68] uses error data manually to improve execution success,
[66] proposes the use of calibration data-aware qubit map-
ping and movement policies on the 20-qubit IBM system.
However, they do not perform any real hardware executions
of their mapped code, making it difficult to compare results
based on reliability. Their work also does not discuss how
program success rates are computed on the simulator and
uses error rates which are scaled by 10x. Simulated or scaled
success rates may not correlate well with real performance.
[16] is another recent work which maps circuits in described
in the low-level OpenQASM language to IBMQ16. Their sim-
ulated annealing based method considers only CNOT error
rates to compute the qubit mapping. In contrast, our work
develops a toolflow which maps high-level programs onto
IBMQ16, using both CNOT and readout error rates, gate
times, coherence times and qubit layout. Using real-system
evaluations our work determines the relative importance of
these parameters and compares the performance of heuristic
and optimal techniques.

9 Conclusions

This paper proposed and evaluated calibration-aware com-
piler techniques for NISQ systems. We considered optimal
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and heuristic compilation methods, the use of calibration
data, different objective functions and routing policies. Our
evaluations show it is crucial to adapt quantum program
compilation to dynamic operation error characteristics of the
machine. It is most important to consider CNOT and readout
error rates, since these operations are more noisy than single
qubit gates. Optimization based on qubit coherence time is
also useful, but less critical here because gate errors severely
limit useful computation time. Our research has shown that
SMT approaches are very effective for current and near-term
systems, but may not scale well to the far-NISQ machines of
500 qubits or more. For those, we have developed heuristic
approaches, GreedyV* and GreedyE*, which offer nearly
as good results but with much more tractable compile times.

This paper’s results offer important insights on QC based
on real-system measurements. Our work shows the impor-
tance of initial qubit placement. Namely, benchmarks which
require more qubit movement are hard to reliably execute on
systems with grid topologies. Our results show that proper
placement could result in over 10X improvements in run
success rate. Mapping and scheduling based on calibration
data offer further benefits. Ultimately the best-performing
approach offered up to 18X improvement (2.9X average) in
success rate and up to 6X (2.7X average) improvement in
runtime over the current IBM Qiskit baseline. Our results
also give insights to future system designers. Developing
richer qubit topologies will reduce the need for SWAP op-
erations and improve the reliability of important quantum
primitives such as the Toffoli gate.

Our work is relevant for future QC systems for several
reasons. Fundamental unreliability in qubits [33] and short
coherence times, even with Schoelkopf’s coherence scaling
law [59], necessitate optimizations based on error rates and
gate times. Although QEC is promising in the long run, even
a single logical error-corrected qubit will be composed of
many noisy qubits and our methods will be useful to per-
form noise-adaptive compilation of error correcting circuits.
Our methods can also be extended to map programs to log-
ical qubits based on their error properties. Our techniques
can be adapted for other qubit technologies such as trapped
ions [12] and other routing approaches such as teleportation-
based communication [9] by choosing the appropriate con-
straints in the optimization.

Opverall, given the challenges of building reliable and scal-
able QC hardware, the key for the next five years or more will
lie in ultra-efficient use of the resources available in NISQ
systems. Our tool offers important leverage in stewarding
runtime resource usage and optimizing reliability.
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