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Spinon confinement and a sharp longitudinal
mode in Yb2Pt2Pb in magnetic fields
W.J. Gannon1,8, I.A. Zaliznyak 2, L.S. Wu3,9, A.E. Feiguin4, A.M. Tsvelik2, F. Demmel 5, Y. Qiu6,

J.R.D. Copley6, M.S. Kim7 & M.C. Aronson1,8

The fundamental excitations in an antiferromagnetic chain of spins-1/2 are spinons,

de-confined fractional quasiparticles that when combined in pairs, form a triplet excitation

continuum. In an Ising-like spin chain the continuum is gapped and the ground state is

Néel ordered. Here, we report high resolution neutron scattering experiments, which reveal

how a magnetic field closes this gap and drives the spin chains in Yb2Pt2Pb to a critical,

disordered Luttinger-liquid state. In Yb2Pt2Pb the effective spins-1/2 describe the dynamics

of large, Ising-like Yb magnetic moments, ensuring that the measured excitations are

exclusively longitudinal, which we find to be well described by time-dependent density matrix

renormalization group calculations. The inter-chain coupling leads to the confinement of

spinons, a condensed matter analog of quark confinement in quantum chromodynamics.

Insensitive to transverse fluctuations, our measurements show how a gapless, dispersive

longitudinal mode arises from confinement and evolves with magnetic order.

https://doi.org/10.1038/s41467-019-08715-y OPEN

1 Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA. 2 Condensed Matter Physics and Materials Science
Division, Brookhaven National Laboratory, Upton, NY 11973, USA. 3Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN
37830, USA. 4 Department of Physics, Northeastern University, Boston, MA 02115, USA. 5 ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QZ,
UK. 6NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. 7Department of Physics and
Astronomy, Stony Brook University, Stony Brook, NY 11794, USA. 8Present address: Stewart Blusson Quantum Matter Institute, University of British
Columbia, Vancouver, BC V6T 1Z4, Canada. 9Present address: Department of Physics, South University of Science and Technology of China, 518055
Shenzhen, China. Correspondence and requests for materials should be addressed to W.J.G. (email: william.gannon@ubc.ca)

NATURE COMMUNICATIONS |         (2019) 10:1123 | https://doi.org/10.1038/s41467-019-08715-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8548-7924
http://orcid.org/0000-0002-8548-7924
http://orcid.org/0000-0002-8548-7924
http://orcid.org/0000-0002-8548-7924
http://orcid.org/0000-0002-8548-7924
http://orcid.org/0000-0003-3203-4136
http://orcid.org/0000-0003-3203-4136
http://orcid.org/0000-0003-3203-4136
http://orcid.org/0000-0003-3203-4136
http://orcid.org/0000-0003-3203-4136
mailto:william.gannon@ubc.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The one-dimensional (1D) XXZ Hamiltonian for quantum
spin chains given by Eq. (1) is a cradle of exactly solvable
quantum theory models of interacting many-body sys-

tems1. The exact solution features purely quantum-mechanical
entities and concepts such as fractional excitations and the
quantum-critical Luttinger-liquid state2–9. The Hamiltonian
considers the components Sαi (α= x, y, z) of a spin angular
momentum operator, Si (S= 1/2) at site i on a 1D chain, with J a
nearest neighbor exchange coupling for x, y spin components, Δ a
uniaxial coupling anisotropy, and H magnetic field (with g and μB
the Lande g-factor and Bohr magneton respectively),

H ¼ J
X
i

Sxi S
x
iþ1 þ Syi S

y
iþ1

� �þ ΔSzi S
z
iþ1 � gμB

X
i

H � Si: ð1Þ

The low energy excitations of this model Eq. (1) are spin-1/2
quasiparticles called spinons. In the limit of strong Ising aniso-
tropy, Δ � 1, spinons can be visualized as domain walls in an
antiferromagnetically ordered ground state of the chain (Fig. 1a).
Angular momentum conservation mandates that spinons are
always created in pairs, such that each spinon carries a fraction,
±1/2, of the angular momentum change, ΔSz= 0, ±1, required to
initially introduce the domain walls in an infinite chain. Since
moving these domain walls is an energy and angular momentum
conserving process, the walls will propagate freely, carrying the
quanta of energy, E, and linear momentum, q, introduced by their

creation (Fig. 1a). The physics contained in Eq. (1) leads directly
to the separation of the spin from other electronic degrees of
freedom, mapping directly onto that of the Luttinger liquid for
−1 ≤ Δ ≤ 12,6–10.

Coupling the chains described by Eq. (1) leads to new and
emergent physics. Analogous to quark confinement in quantum
chromodynamics4,5,8, the dimensional crossover from 1D chains
to 3D coupled chains leads to quasiparticle confinement, thereby
stabilizing long range magnetic order at temperature T > 0. A new
excitation of the longitudinal degree of freedom of the order
parameter is predicted when the interchain coupling is weak6.
These phenomena have been the subject of a considerable
amount amount of recent experimental work in XXZ spin chain
materials11–15. Like a similar longitudinal mode previously
observed near the critical point in a system of coupled spin-1/2
dimers16,17, this excitation can be interpreted as a condensed
matter analog of the Higgs boson18.

Here, we report neutron scattering experiments on the one
dimensional rare-earth antiferromagnet Yb2Pt2Pb to investigate
these fundamental processes in detail, using an external magnetic
field as a tuning parameter.

Results
Inelastic neutron scattering on Yb2Pt2Pb. Yb2Pt2Pb is a
metal with a planar crystal structure where orthogonal pairs
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Fig. 1 Spinons on decoupled chains. a An anisotropic AFM spin chain (top). If two spins are interchanged, two domain walls are created between the
original antiferromagnetic domain (green) and a new domain (blue) (middle). Those domain walls form the basis for the propagating states carrying
energy and momentum quanta (bottom). b The magnetic excitation spectrum and dispersion along the qL direction in reciprocal space measured at T= 0.1
K, summed over −1≤ qHH≤ 1 rlu. The lower boundary of the spectrum (white circles) is shown along with the boundaries of the two spinon continuum
obtained by fitting the lower boundary (red lines, Δ= 3.46) and comparing the total measured spectrum to theory (white lines, Δ= 2.6)26. The color scale
for parts b–d is shown above part c. Error bars represent one standard deviation. c The magnetic excitation spectrum along the qHH direction in reciprocal
space measured at T= 0.1 K, summed over 0≤ qL≤ 2 r.l.u. d The spinon spectrum obtained from tDMRG calculations for the XXZ model Eq. (1) with Δ=
2.6 on the 96-site chain. The continuum boundary (black lines) is the same as that shown in b for Δ= 2.6. e The dispersions of particle-like (red) and hole-
like (black) spinons, symmetric about E= 0 in zero magnetic field, are sketched with the real Δ= 2.6 parameters for Yb2Pt2Pb. The bandwidth parameter I
and the spinon gap ΔS are indicated by arrows, with 2ΔS the energy separation between the particle and hole bands at qL= 0, 1, and 2 rlu
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of Yb ions form a Shastry-Sutherland lattice (SSL) motif in
the tetragonal a−b plane19–25. High resolution neutron
scattering experiments recently showed that the physics
of 4f-orbital overlaps leads to unusual consequences for the
magnetism in Yb2Pt2Pb26. The low energy magnetic excitations
are spinons, having a quantum continuum for momentum along
the chain direction qL that can be measured with inelastic
neutron scattering27, with an excitation bandwidth that is con-
siderably larger than the excitation gap (Fig. 1b). For momenta
in the interchain qHH direction (Fig. 1c), the continuum is
entirely flat, indicating that the spinons are completely incoherent
between the chains.

In zero field, our measurements agree well with time-
dependent density matrix renormalization group (tDMRG)
calculations28 for the XXZ model Eq. (1) (Fig. 1d), although
experiment indicates that the spectral weight is spread through-
out the spinon Brillouin zone (BZ) more evenly and to higher
energies than these calculations predict, suggesting non-negligible
next-neighbor coupling26. Comparisons of our data to theory
indicate only a modest anisotropy, Δ ~ 2–3. It is clear that the
XXZ Hamiltonian Eq. (1) is an appropriate description for
Yb2Pt2Pb despite the large and orbitally dominated moment of
the Yb ions. Due to their Kramers doublet ground state of almost
pure jJ;mJi ¼ j7=2; ± 7=2i, the Yb moments have a pseudospin
S= 1/2 character26,29. Rather than quenching the quantum
spin dynamics, the strong Ising magnetic anisotropy imposed
by the crystal electric field acting on the f–orbital wave function
instead singles out the longitudinal excitation channel in two
orthogonal sublattices of 1D chains with moments oriented
along the (110) and (�110) crystal directions.

The essential features of the quantum continuum can be
understood by noting that each spinon carries spin 1/2, and so
the angular momentum selection rules dictate that neutron
scattering in Yb2Pt2Pb measures two-spinon states where the total
spin is zero, with one spinon in each spin state, ±1/2. In order
to describe the boundaries of the two-spinon continuum, it is
convenient to adopt the language of particles and holes occupying
the fermionic spinon dispersion along the chain direction,

Ep;h ¼ ± I2 sin2 πqLð Þ þ Δ2
Scos

2 πqLð Þ� �1=2
, 0 ≤ qL < 1 rlu, where

ΔS is an energy gap brought on by the XXZ anisotropy Δ > 1,
and I defines the dispersion bandwidth and encodes the
coupling J (Fig. 1e)1,26,30,31. In place of electric charge, these
particles and holes each carry a half unit of spin angular
momentum. The boundaries of the two-spinon continuum
are defined by the extremal energy and momentum conserving
combinations of one particle and one hole, and they are shown
in Fig. 1b for both Δ= 2.6 and 3.46, the range of values
determined in previous work26 (see Supplementary Note 1).
At zero magnetic field, the chemical potential is in the middle
of the gap separating the particle and the hole bands, which
describes the antiferromagnetic (AFM) state with zero total
spin, Sz= 0. The size of the T= 0 ordered moment implied
by the XXZ anisotropy is consistent with our measurements at
T= 0.1 K, within the precision of our data26. This implies that
the interchain coupling responsible for moving the Néel
temperature away from T= 0, the value predicted by the XXZ
model, to TN= 2.07 K is less than both the intrachain exchange
J ¼ 0:206meV and the spinon gap ΔS= 0.095 meV, the
dominant 1D energy scales. The flat dispersion of the excitations
between the chains in zero field (Fig. 1c), despite the apparent
ladder geometry of the crystal structure, suggests that the effect of
interchain interactions on low energy excitations is quenched
when ΔS is nonzero.

A magnetic field along the z (110) direction introduces the
Zeeman term �gμBH

P
i S

z
i to Eq. (1), which lowers the chemical

potential, μ=−gμBHSz. The potential needed to close the
energy gap for creating a hole on the spinon dispersion is |μ|=
ΔS= 0.095 meV. Taking g= 7.326, |μ|= ΔS corresponds to a
critical field of μ0H= 0.5 T. An abrupt increase in the bulk
magnetization is seen at this field when oriented parallel to the
magnetic moments of either sublattice at temperatures kBT < ΔS

(Fig. 2a)23,25. On the other extreme of the magnetization, when
|μ| > I, the entire hole band lies above the chemical potential, the
field having transformed all holes to particles. Particle-hole pairs
can no longer be produced, quenching spinon excitations, and
producing a ferromagnetic (FM) state. The saturation field in
Yb2Pt2Pb is 2.3 T, precisely the field needed for μ= 0.485 meV,
the value of I when Δ= 2.6, the number obtained by requiring
that Eq. (1) provides best description of the entire μ0H= 0
excitation spectrum26. The comparison is less favorable when Δ is
taken to be 3.46, the value derived directly from fitting the lower
boundary of the continuum. As the static properties correspond
to an integration over all energies, it is not surprising that they are
better captured by Δ= 2.6 and we adopt this value of Δ here.

At intermediate fields, 0.5 < μ0H < 2.3 T, the hole band is
partially emptied. The chemical potential crosses the hole
dispersion at four points in the spinon BZ (Fig. 2b), defining a
Fermi wavevector kF that directly links particle and hole states.
There are now eleven unique extremal states made from a single
particle and hole, rather than the three that are possible in zero
field. The boundaries of the two spinon continuum change
dramatically, as the possible extremal states are heavily influenced
by the restrictions of the hole energies and momenta and the
additional phase space occupied by particles.

That is precisely what is measured in the neutron scattering
spectra of Yb2Pt2Pb (Fig. 2d–f). At μ0H= 1.0 T, there is strong
scattering concentrated at low energies within a range 1 ± 2kF
around the BZ center, with a weaker continuum at higher
energies. As the magnetic field is increased, the low-energy
spectral weight spreads throughout the zone as kF increases, with
higher energy pockets of spectral weight bounded by the extremal
two spinon states comprising the continuum. While the measured
continua are in broad agreement with the results of tDMRG
calculations performed on isolated chains (Fig. 2g–i), there are
marked differences at low energies where interchain interactions
are important. The measured lower boundaries are gapped at
small energies and also slightly distorted relative to theoretical
expectations, with the increased spectral weight indicative of a
bound state. This is a direct demonstration of spinon confine-
ment induced by interchain coupling, which is not accounted for
in the 1D calculations of Fig. 2g–i, and also shows how a magnetic
field tunes the coexistence of confined and free spinons in
Yb2Pt2Pb for μ0H > 0.5 T.

The schematic picture of spinons and their propagation
presented in Fig. 1a needs to be modified in the presence of the
interchain interactions, where the creation of spinons on one
chain leads to frustration of the AFM interactions between the
chains. As two spinons separate, the energy of this frustration
grows with the number of FM aligned neighbors (Fig. 2c). This
provides a linear confining potential, just as quarks are confined
by the gluon-mediated strong force in QCD, which also increases
with quark separation. When spinons are created with energies
above the highest energy level existing in the confining potential
introduced by the interchain coupling, these high energy
quasiparticles propagate freely within the two spinon continuum,
demonstrating the same asymptotic freedom as experienced by
unbound quarks32. A spinon bound state is observed in a neutron
scattering experiment as excess spectral weight of resolution-
limited energy width, which prominently appears near 1 ± 2kF,
the two soft spots around the BZ center, below the quantum
continuum10.
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Perhaps the most interesting aspect of these free and confined
excitations is how their dispersions develop in the qHH direction,
perpendicular to the chains. Spinons are continually created in
pairs on all chains, and in the absence of interchain coupling they
are free to propagate. Order and frustration in coupled chains
naturally lead to the bound states, which develop an interchain
dispersion that reflects the underlying AFM order. Spinons are
generated in registry on adjacent chains, thus minimizing the
interchain frustration.

Figure 3a shows a complex phase diagram consisting of
several distinct phases that differ markedly in the behavior

of the inter-chain dispersion. Most notably, for 0.5≲ μ0H≲ 2.3 T,
we observe a new excitation that emerges from the featureless
spinon continuum found along qHH in the gapped zero field
Néel phase where the chains are effectively decoupled. This
mode resides within the low-energy window of the two spinon
bound states, but has a pronounced dispersion in the qHH
(interchain) direction that changes considerably with increasing
field (Fig. 3b–d). Remarkably, at 1.0 T the dispersive interchain
mode appears nearly gapless, while its intensity is markedly
larger than that of the continuum, Figs. 2d and 3b. The mode
becomes clearly gapped with increasing fields, while the
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Fig. 2 Spinons in a magnetic field. a The magnetic field dependence of the static magnetization at kBT <ΔS [red, right axis, H||(110)] shows several
discontinuous jumps (blue and green dashes), corresponding to transitions among different 3D ordered phases that are more clear in dM/dμ0H (black, left
axis)23,25. These phases correspond to different ways that magnetic moments arrange into registry minimizing the energy of magnetic dipole interactions
between the Yb moments. b When a magnetic field is applied along the chain direction, the chemical potential μ=−gμBHSz (yellow) is lowered, emptying
part of the hole band when |μ| > |ΔS|. μ crosses the hole dispersion at four points in the Brillouin zone (black arrows), defining the Fermi wavevector kF.
c Two AFM ordered, 1D spin chains (top). If two spins on one chain are interchanged, two domain walls are formed between the original domain (green)
and a new one (blue). The new domain frustrates the interchain interaction, represented by the red interchain bonds. This frustration creates a linear
potential confining low energy spinons to bound states (bottom). d–f The magnetic excitation spectrum and its dispersion along the qL direction in
reciprocal space measured at T= 0.1 K and μ0H= 1.0 T (d), 1.5 T (e), and 1.7 T (f), summed over −1≤ qHH≤ 1 rlu. The dispersions for the extremal
combinations of particles and holes are shown (black lines) (See Supplementary Note 2). The spinon bound states are manifest from the enhanced low
energy spectral weight around 1 ± 2kF (black arrows). g–i The spinon spectrum computed using tDMRG calculations for the XXZ model Eq. (1) on a 96-site
chain with Δ= 2.6 at equivalent chain magnetizations as (d–f), shown on the same color scale. The dispersions for the extremal combinations of
particles and holes are also shown as black lines
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relative spectral weight of the continuum grows. We model the
energy dependence of the scattering at a specific qHH as a damped
harmonic oscillator (DHO) response centered at the mode
position and the product of a Lorentzian and step function
accounting for the continuum at higher energies, all convolved
with the instrument resolution (Fig. 3e). The energy width of the

new mode is roughly resolution limited at all fields, and it is
always distinguishable from the spinon continuum for fields
μ0H ≤ 1.7 T. The connection of the mode and the confined spinon
states can be emphasized by integrating over the energies of the
mode and plotting the intensity as a function of momentum
along the chains (Fig. 3(e-Inset)). At all fields, ≈85% of the
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Fig. 3 A coherent, longitudinal interchain mode in Yb2Pt2Pb. a The field-temperature phase diagram of Yb2Pt2Pb deduced from specific heat measurements
(see Supplementary Note 3). Symbols representing phase lines of the low field AFM order (red), gapped phase when kBT <ΔS (blue), and second, weaker
order (green) are obtained from the magnetic field dependence of the magnetization along the (110) direction at fixed temperatures. Refer to Fig. 2a for an
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> 0 for clarity (see Supplementary Note 4). The continuum boundary appears at 2ΔM
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(Inset) The integrated intensity of the scattering over the energy of the interchain mode extracted from the fits is shown in parts b–d as a function of
momentum qL along the chain. Magnetic fields of 1.0 T (red), 1.5 T (black), and 1.7 T (blue) are offset for clarity. qL= 1±2kF is shown at each field (gold
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spectral weight is concentrated within the momentum range
qL= 1 ± 2kF.

Importantly, this interchain mode is longitudinally polarized.
We confirm its longitudinal character by using the fact that
neutron scattering cross-section is uniquely sensitive to magnetic
fluctuations that are perpendicular to the wave vector transfer27.
The intensity measured at 4 T, in the FM state precisely
follows the projection of the scattering wave vector on the
(110) direction, revealing fluctuations polarized along the in-
plane Ising moments, which are insensitive to magnetic fields
(Fig. 3f). When this field-independent contribution is subtracted
as a background, the resulting field-dependent intensity [Figs. 2
and 3) does not depend on the wave vector orientation in the
scattering plane, indicating magnetic fluctuations polarized
along the vertical direction, collinear with the magnetic field26

(see Supplementary Note 5). At all fields, our measurements
unambiguously probe the longitudinal response. The Ising

anisotropy of the 7/2, ±7/2 ground state doublet of the Yb
moments nearly completely suppresses any transverse magnetic
fluctuations from our measurements.

The longitudinal interchain mode changes dramatically over
a relatively narrow range of fields as the underlying antiferro-
magnetic order is weakened and ultimately destroyed. The
low temperature H−T magnetic phase diagram of Yb2Pt2Pb
(Fig. 3a) has several different AFM ordered phases22–25. In zero
field, there is a five by five periodicity to the order in the
tetragonal a−b plane, evidenced by neutron diffraction peaks
that index as qHH = 0.2 rlu (Fig. 4a)29. When the gap ΔS closes
at μ0H= 0.5 T, those peaks move from qL= 1 rlu to incommen-
surate positions along qL (Fig. 4b), consistent with the long-
itudinal component of the spin-spin correlation function probed
by our neutron scattering measurements being locked to twice
the Fermi wave vector10. The ordering wave vector follows 2kF in
turn, connecting to the softest parts of the excitation spectrum.
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Fig. 4 Magnetic order and phase diagram of Yb2Pt2Pb. a–d. Time of flight data with energy transfer E= 0 in the qHH, qL plane, measured at T= 0.1 K in
fields of 0.025 T (a), 0.75 T (b), 1.2 T (c), and 1.7 T (d). The magnetic Bragg diffraction peaks in each part of the phase diagram are labeled 1–4. (e, f) The
location in reciprocal space along qL (e) and qHH (f) of the magnetic Bragg scattering as a function of the field in the regions plotted in parts a–d. Data
shown are an average, symmetrized about qL= 1 and qHH= 0. The open symbols correspond to the peaks labeled 1-4 in panels b–e, with black indicating
peak 1, blue peak 2, red peak 3, and green peak 4. Magnetization divided by the saturation magnetization M/Msat as a function of the field along the (110)
crystal direction is also shown in panel e (pink line, right axis), demonstrating the initial trend, M/Msat≈ (qL− 1) and the concurrence of the jumps in
magnetization with the abrupt changes in the position of elastic scattering. (g) The intensity of the diffraction peaks in parts b–f. The AFM order that
emerges for μ0H > 1 T is considerably weaker than the low field order, while the low field order falls off very abruptly for μ0H > 1.2 T. Symbols are the same
as in panels e, f. (h) The zero field magnetic structure and dipole interactions in Yb2Pt2Pb. Yb moments in five unit cells are shown along the diagonal, (110)
direction, with the interchain couplings, J?

n , as indicated. The Yb SSL AFM layers are highlighted (blue and green arrows), with the periodicity given by FM
pairs every five unit cells (black and red arrows)
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There are several small and abrupt shifts in the ordering wave
vector along both qL and qHH (Fig. 4a–f) that coincide with
abrupt jumps in the derivative of the low temperature
magnetization [Figs. 2a and 4e, f), which manifest changes in
3D magnetic ordering as the magnetic moments re-arrange to
minimize the energy of magnetic dipole interactions. For fields
μ0H > 1.0 T, there is an emergence of a second incommensurate
AFM ordered phase that is accompanied by the swift collapse
of the original five by five order for μ0H > 1.2 T and even a
third incommensurate order that persists up to the saturation
field (Fig. 4c–g). As the new longitudinal interchain mode is
an excitation of the underlying order, it is not surprising that it
changes so dramatically between 1.0 and 1.5 T.

For 0.5≲ μ0H≲ 1 T, the qL component of the magnetic Bragg
peak follows the magnetization (Fig. 4e), which reflects the
position of the spinon Fermi wavevector, 2kF (Fig. 2b) (See
Supplementary Note 6). Theoretical description of the excitation
spectrum in this spin-density-wave (SDW) phase can be obtained
by applying bosonization methods for quasi-1D spin-1/2
antiferromagnets33,34. The low energy sector of such an antiferro-
magnet is described by the theory of noninteracting bosonic field
ϕ governed by the Lagrangian,

L ¼ 1
4π

Z
dx v�1 ∂τϕð Þ2þv ∂xϕð Þ2� �

; ð2Þ

where v ~ J/a. The expression for the z-component of the spins is

Sz �M ¼ 1
2π

∂xϕþ A sin½ϕþ πð1� 2MÞx�; M ¼ Szh i; ð3Þ

where A is an amplitude with dimension of inverse length. A
quantitative description of the interchain dispersion requires
knowledge of the relevant couplings for the underlying order.
In Yb2Pt2Pb, the interchain interaction is predominantly of
dipole-dipole origin. The symmetry of the Yb lattice sites
suppresses magnetic dipole interaction between the two ortho-
gonal sublattices, which cancels on the mean field level. On
the other hand, due to the Ising nature of Yb magnetic
moments the intra-sublattice interactions J?

intra involve only z-
components of effective spins-1/2 (Fig. 4h). Hence, the interchain
coupling can be written as, J?

m

R
dxSzðn; xÞSzðmþ n; xÞ, where n,

n + m label different chains. Using (3) and neglecting the
marginal terms with derivatives of ϕ we get the following
contribution to (2),

L′ ¼
X
n;m

A2J?
m

Z
dx cos½ϕðn; xÞ � ϕðmþ n; xÞ�: ð4Þ

Since fluctuations in 3D do not lead to divergencies, we can
expand cosines in L′ around its minimum and get the Lagrangian
quadratic in ϕ. The zero field magnetic structure in Yb2Pt2Pb
suggests couplings up to fifth neighbors in the basal plane. We
thus obtain a gapless longitudinal “phason” mode with the
interchain dispersion,

Emode qHHð Þ2¼ 2
X5
n¼1

J?
n 1� cos 2πnqHHð Þ½ �; ð5Þ

which accurately describes the 1.0 T data in Fig. 3b.
The situation is different at 1 T < μ0H < 2.2 T (region marked

by green circles on the phase diagram, Fig. 3a). In this region,
the static susceptibility is nonzero and magnetization smoothly
increases, but the longitudinal interchain mode is gapped and
magnetic Bragg peaks are locked to qL ≈ 0.29 rlu and do not
change their qL positions with field (Fig. 4e). In principle,
this presents a puzzle, which could be resolved by assuming

that the transverse components of the effective spins order in a
spiral configuration, while the z-component has a field indepen-
dent ordering wave vector. Since neutrons do not register
transverse fluctuations in Yb2Pt2Pb, the corresponding
Goldstone mode is invisible. In order to describe the gapped
longitudinal mode observed in this phase, we add a phenomen-
ological gap term, Δ2

M, to Eq. (5), resulting in a dispersion,
EmodeðqHHÞ2 = Δ2

Mð1� 1
3J?

tot

P5
n¼1 J?

n cosð2πnqHHÞÞ, and we

normalize the couplings to the total interchain exchange,
J?

tot ¼
P5

n¼1 J?
n . We fit this expression to the measured modes

by varying the relative couplings J?
n =J?

tot, resulting in excellent
agreement at all fields (Fig. 3b–d). Increasing the field from 1.0
to 1.5 T dramatically changes the relative interchain coupling
strengths. The nearest neighbor coupling is reduced by
approximately a factor of 11 when the field is increased from
1.0 to 1.5 T, while the next nearest neighbor coupling is
reduced by a factor of 2 and changes sign from ferromagnetic
to antiferromagnetic. Smaller changes are found in the higher
order terms. These changes are consistent with the observation
from the magnetic diffraction (Fig. 4) of a tendency towards
a weaker, frustrated longitudinal antiferromagnetic order as
the applied magnetic field progressively polarizes the moments
(See Supplementary Note 7).

Discussion
It is difficult to visualize the nature of the interchain mode
itself, as it is purely quantum mechanical in its origin, with
no simple classical analog. In a conventional 3D ordered
magnet, these interchain excitations would be transverse spin
waves–pseudo-Goldstone modes of an antiferrromagneic order
parameter, acquiring a small gap (mass) in the presence of
spin anisotropy. The longitudinal polarization reveals that the
new excitations observed here in Yb2Pt2Pb, which are separated
from E= 0 with a field-dependent gap δ < 0.12 meV, are in fact
far more exotic. They represent amplitude excitations of the
AFM order parameter, i.e., the staggered magnetization16,17,
analogous to the amplitude modes of the superconducting
order parameter found in NbSe235,36 and the Higgs boson18 itself.
There is a large literature on the subject in the context of the
theory of quantum magnets (e.g., refs. 33,34,37,38), but so far
there have been few experiments among weakly coupled chain
systems that probe this mode and its dispersion across different
regimes of interchain coupling, or its decay into transverse
magnons in detail39. This damping causes the longitudinal
mode to appear as a resonance in the longitudinally polarized
continuum rather than the dispersing quasiparticle like
excitation observed here in Yb2Pt2Pb6,40, which often obscures
the physics entirely and has even led some to question the
assumptions behind the theory41. Recently, some evidence for
a sharp longitudinal mode coexisting with the transverse
spin waves has been obtained via polarized neutron scattering
measurements in a more strongly coupled 2D ladder system42,
while other materials with similar XXZ anisotropy to Yb2Pt2Pb
tend to confine all spinons into many modes11–15. Here
we overcome the limitations of such experiments thanks to the
tuning parameters of Yb2Pt2Pb, which uniquely single out
the longitudinal channel and allow us to clearly identify the
dispersing amplitude mode and the deconfined 1D excitations
at higher energies.

The physics of Yb2Pt2Pb that suppresses transverse spin waves
also protects these longitudinal excitations and allows detailed
observation of this mode dispersion and its dependence on an
applied magnetic field, which tunes the ordered state across dif-
ferent phases. Accompanying transverse excitations—the spin
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waves—must exist, but are not observed (Fig. 3f). They are sup-
pressed by a factor (g||/g⊥)2≳ 100 and can not be measured in this
scattering geometry, where even the application of a substantial
magnetic field leaves behind the longitudinal continuum from
magnetic moments perpendicular to the field. While further
experiments are needed in alternate scattering geometries to
clearly observe the accompanying transverse excitations, the
present results quantify in unique detail an unusual dispersing
longitudinal mode, a Higgs-like excitation of a effective spin-1/2
order parameter across different ordered phases induced by
magnetic fields in Yb2Pt2Pb.

Methods
Neutron scattering. The Yb2Pt2Pb sample used in these measurements was the
same sample used in ref. 26. The sample consists of approximately 400 co-aligned
Yb2Pt2Pb single crystals (total mass ≈6 g) mounted to aluminum plates. For all
measurements the sample was oriented with the (1�10) crystal direction vertical
leaving the (110) and (001) directions in the horizontal scattering plane, making
the scattering plane (H, H, L) in reciprocal space. All momenta are given in
reciprocal lattice units (rlu), with 1 rlu given by 2π/a= 2π/7.76 Å= 0.810 Å−1

along the H direction and 2π/c= 2π/7.02 Å= 0.895 Å−1 along L. The crystal-
lographic unit cell is twice the Yb-Yb near neighbor spacing along the c-axis—the
relevant spacing for spinons. Therefore, the Brillouin zone for spinons is indexed
from 0 to 2 rlu along (0, 0, L), rather than the typical 0 to 1 rlu. Notationally, qHH is
parallel to the (H, H, 0) direction, with scattering primarily coming from (H, H, 1)
while qL is along the (0, 0, L) direction.

The inelastic neutron scattering measurements on Yb2Pt2Pb making up the
bulk of the data in this paper were made on the OSIRIS spectrometer at the
ISIS neutron source at Rutherford Appleton Laboratory in Didcot, Oxfordshire,
UK43. The sample was mounted in a dilution refrigerator inside of a 7 T
superconducting magnet with the field in the vertical direction parallel to the (1�10)
crystal direction. OSIRIS is an indirect geometry, time-of-flight neutron
spectrometer. The incident neutron beam is a white beam of cold neutrons. The
PG002 analyzer was used with a final neutron energy Ef= 1.84 meV (λ= 6.67 Å).
The energy resolution was ≈0.03 meV at E= 0 meV. Due to the magnet
construction, only scattering into a range of angles 45° < 2θ < 135° is permitted. We
therefore discard the 14 detector channels at the lowest scattering angles and the
3 channels at the highest scattering angles, determined by measurements of a
vanadium standard in the magnet. All data were corrected for the Yb3+ form
factor44.

The measurements on OSIRIS were made at T= 0.140 K. A field greater than
2.3 T along the (1�10) crystal direction polarizes all of the magnetic moments
parallel to that direction, while leaving the orthogonal moments along the (110)
direction in the horizontal plane unaffected due to the ground state doublet of the
Yb ions26. Measurements made at μ0H= 4 T can therefore be used as a background
for measurements made at μ0H < 2.3 T, isolating only the lower field scattering
contribution from magnetic moments oriented parallel to the field. All neutron
scattering results from OSIRIS have a measurement made at T= 0.140 K and
μ0H= 4 T subtracted in this fashion. For the nominal zero field measurements, a
small bias field of 0.025 T was used to suppress superconductivity in the aluminum
sample holder.

In general, inelastic neutron scattering probes the dynamical spin correlation
function27. Because of the crystal field ground state doublet of the Yb ions in
Yb2Pt2Pb we are sensitive only to the longitudinal component of this function (see
Supplementary Note 5).

Because our detector coverage does not include an entire Brillouin zone, (0 < qL
< 2 rlu, 0 < qHH < 1 rlu) we integrate all data in the scattering plane in the
reciprocal space direction orthogonal to the direction being considered. The qL
dependencies show in Figs. 1b and 2d–f (And Supplementary Fig. 1) integrate
the entire measured range of qHH. The same qHH integration was used to
demonstrate the amount of low energy spectral weight in the bound state
(main text Fig. 3e inset). Similarly, all qL were integrated to examine the qHH
dependence in Figs. 1c and 3b–d (and Supplementary Figs. 4 and 5) and in the
cuts used to extract the interchain mode dispersion in Fig. 3e. Although our data
from OSIRIS do not cover an entire Brillouin zone, the symmetry of our
measurements about both qL= 1 rlu and qHH= 0 rlu confirms that our coverage
is sufficient.

Inelastic scattering measurements of the polarization factor (main text, Fig. 3f)
and diffraction measurements (main text, Fig. 4a–g) were performed on the Disk
Chopper Spectrometer (DCS) at the Center for Neutron Research at the National
Institute for Standards and Technology in Gaithersburg, MD, USA45. For these
measurements, the same sample was mounted in the same scattering geometry as
the OSIRIS experiments, inside of a dilution refrigerator inside of a 10 T vertical
superconducting magnet. DCS is a direct geometry spectrometer and Ei= 3.27
meV (λ= 5.00 Å) was used. The energy resolution was ≈0.1 meV. The temperature
of these measurements was T= 0.07 K. Measurements on DCS have a similarly
measured background subtracted and the scattering was corrected for the Yb3+

form factor44 and neutron absorption using the DAVE software package46 in the

same manner described in the Supplementary Materials for26. The measurement at
μ0H= 4 T of the polarization factor (main text Fig. 3f) is simply the μ0H= 4 T
measurement on its own, with no background subtracted. For the nominal zero
field measurements, a small bias field of 0.025 T was used to suppress
superconductivity in the aluminum sample holder.

Specific heat and magnetization. Specific heat measurements used in the
phase diagram shown in Fig. 3a (and Supplementary Figs. 2 and 3) were made
using a Physical Property Measurement System (PPMS) made by Quantum
Designs on a single crystal of Yb2Pt2Pb (note: the identification of the equipment
used in the various measurements is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that this equipment is necessarily the best available for the
purpose.) Measurements for T < 1.8 K utilized a PPMS dilution refrigerator
insert. The (110) direction was oriented vertically, parallel to the magnetic field.
Magnetization measurements for T < 1.8 K in Figs. 2a and 4e (and Supplementary
Fig. 6) were made using a PPMS Hall sensor magnetometer in a dilution refrig-
erator insert at T= 0.150 K. Magnetization measurements for T > 1.8 K in Fig. 3a
were made using a Quantum Designs Magnetic Property Measurement System
SQUID magnetometer. The magnetic field for both sets of measurements was along
the (110) direction.

Obtaining the position of the interchain mode. The interchain mode dispersions
shown in Fig. 3b–d (and Supplementary Fig. 5) were extracted by integrating a
window of qHH= 0.1 rlu and fitting the resulting cuts of the scattering function as a
function of energy S(E), examples of which are shown in Fig. 3e of the main text.
The fitting function represents the mode as a damped harmonic oscillator – the
product of the Bose population factor with the difference of two Lorentzians,
centered at positive and negative energies Emode, with a width Γ and amplitude A,
Eq. (6).

I Eð Þ ¼ A

1� e�E=kBT

Γ

E � Emodeð Þ2þΓ2
� Γ

E þ Emodeð Þ2þΓ2

 !
ð6Þ

This function was added to the product of another Lorentzian and step function
each centered at energy E > Emode representing the continuum. The fit itself was
performed to these two functions convolved with a gaussian representing the
instrumental resolution.

Time-dependent density matrix renormalization group calculations. The
longitudinal component of the dynamical spin structure factor S(q, ω) was
obtained by means of the time-dependent density matrix renormalization group
(tDMRG) method28,47–49. The approach has been extensively described in the
literature and essentially consists of calculating the time-dependent correlation
function:

S x � x0; tð Þ ¼ ψh jeiĤt ŜzðxÞe�iĤt Ŝz x0ð Þ ψj i: ð7Þ

The operator Ŝzðx0 ¼ L=2Þ is applied at the center of the chain and the resulting

state is evolved in real-time. At every step, the overlap with the state ŜzðxÞe�iĤt ψj i
is measured and the correlations function in real time and space is recorded. The
results are Fourier transformed to frequency and momentum using a properly
chosen Hann window that determines the resolution of the final result. In our case,
in order to compare to experiments we have used a window of half-width Δt= 7 in
units of 1/J. Only two things differ from conventional calculations: since the
parameters considered fall into the Ising phase of the model, which tends to break
translational symmetry at finite magnetization, the simulations were carried out
using periodic boundary conditions and the time-targeting method with a Krylov
expansion of the evolution operator50. In addition, we plot the results for the
operator ŜzðxÞ �m=2

� �
(instead of ŜzðxÞ), where m is the magnetization value.

The offset allows us to resolve the density fluctuations and eliminates large con-
tributions at low frequencies and momenta51. Surprisingly, due to the low entan-
glement in the Ising phase, truncation errors smaller than 10−5 are easily
achievable using 300 states, even on a chain of length L= 96 with periodic
boundary conditions.

The color scale for the calculations displayed in Figs. 1d and 2g–i was
determined by normalizing the integral of the E > 0 portion of the calculation to the
measured integral of the inelastic intensity at the the same field.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request. Original time-of-flight data is available for the
experiments at the ISIS neutron source at https://doi.org/10.5286/ISIS.E.42580328.
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