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Abstract— This paper presents further contributions to smart 

grids cyber-physical security as a malicious data attack. The 
contributions are twofold. First, a formal proof of how parameter 
errors spread out on the measurement function having a 
parameter with error. The largest composed measurement error 
property, in its normalized form, is then demonstrated for this case 
of error.  Second, a methodology for smart grid cyber-physical 
malicious data injection correction is presented. Current state of 
the art solutions corrects simultaneous attacks assuming 
measurements or parameters without error. However, how may 
one correct a measurement if the parameter might be 
simultaneously in error or the other way around? In this paper, a 
relaxed model strategy for such is presented. Attacks are 
processed simultaneously and analyzed using only the framework 
of measurement gross error analysis. Cyber-attack detection is 
made through a Chi-square (χ2) Hypothesis Testing (HT) applied 
to the normalized composed measurement error (CMEN). 
Composed errors are estimated with measurements’ innovation 
index (II). Cyber-attack identification is made through the largest 
normalized error test property. Cyber-attack correction is made 
considering cyber-attack type and using the composed normalized 
error (CNE) in a relaxed model strategy. The proposed solution 
works for malicious measurement and parameter data attacks. 
Still, the state estimation software does not need major changes. 
Validation is made on the IEEE 14-bus and 57-bus systems.  

 
Index Terms—Smart grid, cyber-physical security, malicious 

data injection, weighted least squares, innovation 
 

I.  INTRODUCTION 
OWER system state estimation (PSSE) is the process of 
estimating unknown state variables in a power grid based 

on the network’s data (system topology and transmission lines 
parameters) and meter’s remote measurements. Both network 
data and measurements are subject to noises and/or 
interferences. The output of state estimation, the state variables 
(buses complex voltages), is used in the contingency analysis, 
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which will then be used to control the power grid components 
to maintain the reliable operation of the grid, even if some faults 
may occur. 

However, due to the constant modernization of the power 
system with the installation of new electrical devices and 
structures, the research on power system vulnerabilities to 
cyber-attacks is crucial to keep the grid operation secure. 
Considering smart grids cyber-physical security, the paper by 
Liu et al. [1] is one of the first papers that modeled stealthy 
attack vectors in state estimation and showed that it is possible 
for an attacker to introduce malicious measurements in the state 
estimation process, as illustrated in Figure 1. The relevant 
literature, as presented in [2], [3] and [4], can be classified in 
three main topics: vulnerability analysis (weaknesses of the 
traditional state estimation bad data detection methods), impact 
analysis (consequences of an undetected malicious attack) and 
development of countermeasures (improvement of bad data 
detection methods and communication systems). 

 

 
Figure 1. State estimator under a cyber-attack (adapted from [21]). 

 
This work is intended as a contribution to the third category 

(development of countermeasures). The objective of this work 
is to implement methodologies to detect malicious data attacks 
and protect the power grid, by improving bad data detection 
schemes. In the following, a brief literature review on this 
subject will be presented. 

In [5], it is demonstrated that it is possible to defend against 
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malicious data injection if a small subset of measurements can 
be made immune to the attacks. It is also proposed an algorithm 
to strategically allocate secure phasor measurement units 
(PMUs) at key buses in the network to defend against those 
attacks. This optimal PMU placement is also studied in [6]. In 
[7], the authors propose a mechanism for detection of PMU data 
manipulation attacks. The proposed mechanism is based on 
continuously monitoring the equivalent impedances of 
transmission lines and classifying observed anomalies for 
detecting the presence and location of attacks. In [8] and [9], 
the authors propose multiple robust state estimators, such as the 
least trimmed squares estimator, to improve the overall cyber-
security of power systems considering attacks on both the 
measurement vector and measurement function. In [10], the 
authors study the cyber-security of power systems from the 
perspective of the attacker, where different kind of attacks are 
considered, and the control center, where a generalized 
likelihood ratio (GLR) detector that incorporates historical data 
is proposed. In [11], the authors propose data attack scenarios 
that combine data integrity and availability attacks on state 
estimation, also using cyber-physical models to propose 
security metrics and mitigation schemes. In [12], the authors 
developed methods to estimate the state of the power grid 
following a joint cyber and physical attack, and study the 
resilience of different topologies as well as the resilience to 
different kinds of attacks. The authors also present conditions 
on the structure of a grid, so the presented method is guaranteed 
to recover the state of the grid inside an attacked zone. Finally, 
in [13], the authors provide an overview of graphical methods 
for performing cyber-security analysis in power system state 
estimation. First, the method to model power networks in a 
graph is described. Then, the authors establish a graph-based 
characterization of state estimation security, and introduce 
representative graphical algorithms to solve security problems 
in state estimation. 

The main question of all previous solutions is that they detect 
the malicious data attacks based on the measurement residual, 
which is just one component of the measurement error 
[16],[17], [25]. With this approach, any measurement having 
error and being close to the Jacobian range space will be hidden 
from the malicious data attack detection test. In our previous 
work [21], we have introduced the concept of Innovation for 
smart grids cyber-physical security. On such work, we have 
presented a new hypothesis testing for cyber-attack as a 
malicious data injection detection. The significance of the 
method is most important, since it considers the error 
component contained in the Jacobian range space, which is 
hidden from the classical SE methodology. Another novelty 
presented in [21] was the processing of simultaneous malicious 
cyber-attacks in measurements and parameters. Multiple cyber-
attacks types, including cyber-attacks on system parameters, 
were investigated. Once cyber-attacks were detected, 
identification proposed in [21] was based on the error pattern 
analysis. Observations suggested pattern behavior and were 
used on [21] to design an identification solution. However, with 
respect to the later, no specific proofs of such observations were 
provided.  

This work presents further contributions to the smart grid 
cyber-security as a malicious data attack problem. First, a 
formal proof of how parameter errors spread out on the 
measurement function having a parameter with error is 
presented. The largest composed measurement error property, 
in its normalized form, is then demonstrated for this case of 
error. Second, simultaneous data attack types are considered in 
[21], assumptions are that the parameters attacks are to be 
corrected when measurements are without error. However, how 
may one correct measurements if parameters might be 
simultaneously in error [23], [24], or the other way around? 
This work presents a relaxed model strategy for simultaneous 
malicious data injection attacks. Attacks are processed 
simultaneously and analyzed using only the framework of 
measurement gross error analysis. Method validation is made 
on the IEEE 14-bus and 57-bus systems. Case study shows 
methodology reliability and robustness. Comparative test 
results highlight the precision, even when the cyber-attack 
vector belongs to the subspace spanned by the columns of the 
Jacobian matrix of the electrical network, presenting a clear 
contribution to the state-of-the-art of cyber-physical security. 
Still, test results show that the presented methodology is 
accurate even when of low magnitude cyber-attack vectors. 
Multiple and simultaneous cyber-attacks on measurements and 
parameters are detected and identified correctly in all of the 
simulated cases. Corrections of identified attacks are precise, 
independently of the intrusion type.  

The remaining of this paper is organized as follows. Section 
II presents a summary of Innovation concept on the State 
Estimation Theory. Section III presents the theorem and proof 
of error spreading out on the measurements functions having 
the parameter in error. Section IV presents the methodology to 
defend from the malicious cyber-attack. Section V presents a 
case study and test results discussion. The conclusions of this 
work are presented on Section VI.   

 
II.  INNOVATION CONCEPT IN STATE ESTIMATION THEORY   
The power system is modelled as a set of non-linear 

equations as described in the following: 
𝑧 = ℎ(𝑥) + 𝑒,            (1) 

with 𝑧 ∈ ℝ+ is the measurement vector, 𝑥 ∈ ℝ, is the state 
variables vector. Also, ℎ:ℝ, → ℝ+, (m>N) is a continuously 
nonlinear differentiable function, 𝑒 ∈ ℝ+ is the measurement 
error vector assumed having zero mean, standard deviation 𝜎 
and Gaussian probability distribution and N = 2n – 1 is the 
number of unknown state variables to be estimated (n is the 
number of buses of the power system). 
OBS.: one should be aware that in fact the previous 𝑒 is not the 
error but the residual, however not the optimal one. Wrongly, 
researchers from SE field call it as the measurement error 
vector. The error vector is in fact in the measurement 𝑧 direction 
[22].  

As it is very well known, the objective of the classical 
weighted least squares (WLS) state estimator is to find the best 
estimative for the N-dimensional state vector 𝑥0, which 
minimizes the cost function 𝐽(𝑥):  

  𝐽(𝑥) = ‖𝑧 − ℎ(𝑥)‖456
7 = [𝑧 − ℎ(𝑥)]:𝑅<=[𝑧 − ℎ(𝑥)].   (2) 

Geometrically, the 𝐽(𝑥) index is a norm in the measurements 
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vector space ℝ+, induced by the inner product 〈𝑢, 𝑣〉 =
𝑢:𝑅<=𝑣, where R is a positive definite symmetric matrix. Let 
𝑥0 be the solution of this minimization problem, thus, the 
estimated measurements vector is given by 𝑧̂ = ℎ(𝑥0) and the 
residuals vector is defined as the difference between 𝑧 and 𝑧̂, 
i.e., 𝑟 = 𝑧 − 𝑧̂. The linearization of (1), at a certain operating 
point 𝑥∗, implies: 

 ∆𝑧 = 𝐻∆𝑥 + 𝑒,           (3) 
where 𝐻 = 𝜕ℎ/𝜕𝑥 is the Jacobian matrix of ℎ calculated at 𝑥∗, 
∆𝑧 = 𝑧 − ℎ(𝑥∗) = 𝑧 − 𝑧∗ and ∆𝑥 = 𝑥 − 𝑥∗ is the correction of 
the state vector. If the system represented by (3) is observable, 
then, the vector space ℝ+	of the measurements can be 
decomposed in a direct sum of two vector sub-spaces, in the 
following way: 
          ℝ+ = ℜ(𝐻)⨁[ℜ(𝐻)]N,            (4) 
so, the range space of H, given by ℜ(𝐻), is a N-dimensional 
vector sub-space that belongs to ℝ+	and ℜ(𝐻)N is its 
orthogonal complement, i.e., if 𝑢 ∈ ℜ(𝐻),  and 𝑣 ∈ ℜ(𝐻)N, 
then, 〈𝑢, 𝑣〉 = 𝑢:𝑅<=𝑣 = 0. 
The SE as a projection formulation: 

 Let P be the linear operator that projects the vector ∆𝑧 in 
ℜ(𝐻), i.e., ∆𝑧̂ = 𝑃∆𝑧 and let 𝑟 = ∆𝑧 − ∆𝑧̂ be the residual 
vector. The operator P, that minimizes the norm 𝐽(𝑥), is the one 
that projects ∆𝑧 orthogonally in	ℜ(𝐻), i.e., the vector ∆𝑧̂ =
𝐻∆𝑥0 is orthogonal to the residuals vector. More precisely: 

〈∆𝑧̂, 𝑟〉 = (𝐻∆𝑥0):𝑅<=(∆𝑧 − 𝐻∆𝑥0) = 0.          (5) 
Solving this equation for ∆𝑥0, one obtains: 

∆𝑥0 = (𝐻:𝑅<=𝐻)<=𝐻:𝑅<=∆𝑧.            (6) 
Since ∆𝑧̂ = 𝐻∆𝑥0, the projection matrix P will be the 

idempotent matrix: 
  𝑃 = 𝐻(𝐻:𝑅<=𝐻)<=𝐻:𝑅<=.            (7) 

Therefore, geometrically, the classical WLS state estimator 
can be interpreted as a projection matrix P acting on the 
correction of the measurements vector ∆𝑧, but using the 
residual as the correction.  

Another way to visualize the state estimation is seeing the 
geometrical position of the measurement error related to the 
Jacobian range space ℜ(𝐻). Then, decomposing the 
measurements’ vector space into a direct sum of ℜ(𝐻) and 
ℜ(𝐻)N, it is possible to decompose the measurements error 
vector 𝑒 into two components: undetectable (𝑒Q) component 
and detectable (𝑒R) component, in the following way: 

𝑒 = 𝑃𝑒S
TQ
+ (𝐼 − 𝑃)𝑒VWXWY

TR
.           (8) 

where 𝑒Q ∈ ℜ(𝐻) and	𝑒R ∈ ℜ(𝐻)N. Therefore: 
‖𝑒‖456

7 = ‖𝑒Q‖456
7 +‖𝑒R‖456

7 .           (9) 
The  𝑒R component is nothing else than the residual.  
Two main differences between the error component and the 

residual will be enumerated:  
i) The error has m degrees of freedom and the residual m-n;  
ii) The error is a random variable by hypothesis of the SE 

formulation, having m components in a space of dimension m 
and the residual is not a random variable (m residuals in a space 
of dimension m-n). 

One should be aware that 𝑒Q is undetectable, at lights of the 
classical WLS, because it looks only for the error component 

which is orthogonal to the range space of the Jacobian, that is, 
𝑒R. In order to estimate the error one needs also to estimate the 
𝑒Q	error component. With that purpose, the innovation of a 
measurement, related to the other measurements of the 
measurement set, is defined. The innovation of a measurement 
is the information it contains, but not the others measurements 
of the measurement set [16],[17],[19],[25]. This definition 
suggests that the innovation is contained in the portion of the 
measurement that is independent of the other measurements of 
the system, i.e., the portion that cannot be obtained from linear 
combinations of the rows of the Jacobian matrix. 

Therefore, the new information of a measurement is its part 
that is orthogonal to the range space of the Jacobian matrix, i.e., 
belonging to ℜ(𝐻)N. If a measurement has an error, its 
component orthogonal to the range space of the Jacobian matrix 
will show the error through its residual, the other component, 
however, will be completely masked. Thus, the vector of 
masked error, in the state estimation process, is the vector 
belonging to the range space of the Jacobian matrix. 

Since the residual 𝑒R and the other error component 𝑒Q are 
orthogonal to each other, it is possible to compose the   
measurement error vector; that is, for the i-th measurement: 

Z𝑒[Z
7
= Z𝑒R[ Z

7
+ Z𝑒Q[ Z

7
.           (10) 

This error vector is called Composed Measurement Error 
(CME). In order to find the masked error and compose the 
measurement’s total error, it is used the 𝐼𝐼, as proposed by [17]: 

𝐼𝐼[ =
\T]

^ \

ZT_
^ Z
= `=<a^^

`a^^
.              (11) 

A measurement with low Innovation Index (𝐼𝐼) indicates that 
a large component of its error is not reflected in its residual as 
obtained by the classical WLS estimator. Consequently, even 
when those measurements have gross errors, their residuals will 
be relatively small. Using (11), (10) can be rewritten as: 

Z𝑒[Z
7
= b1 + =

dd̂e
f Z𝑒R[ Z

7
.               (12) 

Since 𝑒R  is the residual, (12) becomes: 

Z𝑒[Z
7
= b1 + =

dd^
ef 𝑟[7 ⇒ 𝐶𝑀𝐸[ = 𝑟[k1+

=
dd̂e

,           (13) 

where 𝑟[ is the residual of the i-th measurement and	𝐼𝐼[ is the 
innovation index of this same measurement, both known 
quantities. If instead we work with the normalized residual one 
obtains the Composed Normalized Error (CNE), given by: 

𝐶𝑁𝐸[ = 𝑟[,k1+
=
dd^
e,         (14) 

where 𝑟[, is the normalized residual of the i-th measurement. 
Otherwise, if one normalizes the error one obtains: 

𝐶𝑀𝐸[, =
mno^
p^

= q^
p^
k1 +

=
dd^
e,          (15) 

where 𝜎[ is i-th measurement standard deviation. 
 It has been proved that the measurement having error is the 
one with Largest CMEN and the measurement correction is 
through the corresponding CNE [16]. All the previous 
demonstrations were made only for the case of measurements 
having errors. For the case of parameter error in the ℎ function 
related to the measurement 𝑧, corresponding demonstration is 
required and this is what will be presented in the following. 
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III.   LARGEST NORMALIZED ERROR THEOREM FOR THE CASE 

OF PARAMETER ERROR 

THEOREM: 
 For the situation in which all the measurements are perfect 
(obtained for load flow) except the measurement	𝑧[, that has a 
parameter error in ℎ[, then the largest error will be on this 
measurement equation. 
PROOF:   

Consider a situation in which all the measurements are 
perfect except the measurement 𝑧[, having a parameter error 𝑏[ 
in his measurement equation. This equation can be written as: 

       𝑧[sqtT = 𝐻sqtT𝑥sqtT +		∆𝑧[𝑢[ + 𝑒.         (16) 
Where the term ∆𝑧[𝑢[ models the error in the measurement 

caused by the parameter error 𝑏[. Following, the measurement 
residual vector can be obtained as: 
      𝑟̂ = 𝑧 − 𝑧̂ = (𝐼 − 𝐻𝐺<=𝐻:𝑅<=)𝑧 = 𝑅q̂𝑅<=𝑧.  (17) 
 Where 𝐺 = 𝐻:𝑅<=𝐻,  𝑅q̂ is the residual covariance matrix 
and 𝐻 is the Jacobian matrix having the parameter error. Since 
the other measurements (not having parameter error) are 
assumed to be perfect, this yield: 

     𝑟̂ = 𝑅	q̂	𝑅<=(∆𝑧[𝑢[) = ∆𝑧[𝑅<=𝑅	q̂	𝑢[.    (18) 
 Where 𝑅	q̂	𝑢[ is the ith column of the residual covariance 
matrix, 𝑅	q̂	.	The vector of normalized residuals is then given by: 
𝑟v = (𝑑𝑖𝑎𝑔(𝑅	q̂	))<= 7⁄ 𝑟̂ = ∆𝑧[𝑅<=(𝑑𝑖𝑎𝑔(𝑅q̂))<= 7⁄ 𝑅q̂𝑢[, (19) 

which can be rewritten as: 

        𝑟v = ∆𝑧[𝑅<=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜌=[

7 𝜌==<=
⋮
𝜌[[
⋮

𝜌�[7 𝜌��<=

⋮
𝜌+[7 𝜌++<= ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.        (20) 

 Where 𝜌[[7 are the variances of the residual vector 𝑖. The ratio 
of the magnitude of a normalized residual 𝑟�v, 𝑗 ≠ 𝑖  and the 
magnitude of the normalized residual associated with the 
measurement affected by bad parameter, 𝑟[v, is given by: 
 

        
�q�
��

�q̂��
= 

���^
e �

�^^���	
= 𝛾�[ ≤ 1.        (21) 

 As a consequence, 𝑟[v ≥ 𝑟�v  for all j=1…, m. Another way of 
seeing the previous relation is: �𝑟[

,,vT� − 𝑟[,� ≥ �𝑟�
,,vT� − 𝑟�,�, 

where the new refers to the situation with parameter error and 
before that the residuals will be, for all measurements, equal to 
zero, that is, measurements without parameter error. 
Transforming in error that relation will be: �𝐶𝑀𝐸[

,,vT� −
𝐶𝑀𝐸[,� ≥ �𝐶𝑀𝐸�

,,vT� − 𝐶𝑀𝐸�,�|,  j=1…m, that is the large 
increment of error will be in the measurement to which 
parameter error has been added, since with the measurements 
without parameter error it will be zero. 
q.e.d. 
Generalization for the case of all measurements not being 
perfect measurements: 

A natural consequence of the previous theorem is: assuming 
that all the measurements of a measurement set have limited 
parameter errors, smaller than a predefined value, then if a 

parameter error is added to one of them, one can assure that it 
will exist a minimum error magnitude to be added so that 
measurement will contain the largest error.  
Obs.: (i) With the Largest Normalized Error Theorem as 
previously presented, one can assure, within an uncertainty 
degree, that once an error in the measurement set is detected, 
the measurement with the largest CMEN will have the error; (ii) 
The previous uncertainty degree is caused by the choice in the 
predefined value for which error is accepted as not existing. For 
example, if that predefined value is assumed as zero, then the 
measurement with error will have by sure the largest error for 
any magnitude of error. 

A.  How to Differentiate Between Measurement Error and 
Parameter Error 
 From the Largest Normalized Parameter Error Theorem, it is 
a direct conclusion that for all measurements in which the added 
parameter error appears, that error will be larger than any 
measurement that does not have parameter error. That means 
the parameter error will spread to the measurements where the 
parameter in error appears, what does not happen for the case 
of the other measurements of the measurement set. 

B.  Relaxed Model for Simultaneous Malicious Data Attack 
Processing: An Iterative based Solution 
 Current state of the art solutions for simultaneous multiple 
cyber-attack types processing consider the correction of 
parameters when measurements are free of error [21]. 
However, how may one correct measurements if 
parameters might be simultaneously in error [23], [24], or 
the other way around? For the solution of such problem, we 
present a relaxed model which is solved iteratively. Let’s 
consider simultaneous parameter and measurement malicious 
data attacks. On such, we can consider initially that all 
measurements are free from errors. Then, one can estimate the 
system states, 𝑥v , considering parameters 𝑝v, through the 
iterative solution of 𝑧v = ℎ(𝑥v). Of course, the measurements 
and parameters might be simultaneously in error, so a relaxation 
is proposed to find an estimate of the parameters. One considers 
that 𝑧v is equal to ℎ(𝑥v, 𝑝v) + ��(��,��)

��
∆𝑝. On such model, we 

do not decrease the degrees of freedom and have observability 
problems, since we relax the model by considering that 
measurements are correct. After convergence, a new parameter 
estimate, 𝑝v�=, is obtained. We can now consider these 
parameters as without errors, and estimate new states, 𝑥v�=, and 
then correct the measurements with the estimated CNE, 
obtaining 𝑧v�=. This problem also relaxes the model by 
considering the parameters without error, and does not generate 
any observability problems or decreases the degrees of freedom 
of the original measurement model. These new states and 
corrected measurements are used again to estimate the new set 
of parameters, 𝑝v�7, through the solution of 𝑧v�= =
ℎ(𝑥v�=, 𝑝v�=) + ������6,���6�

��
∆𝑝. This iterative process is 

continued until a convergence criteria is reached.  
Formally, if a correct measurement 𝑧[ has a parameter error 

𝑝[ , that is: 
           𝑧[ = ℎ[(𝑥, 𝑝[) + 𝑒[         (22) 
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where 𝑝[ is the parameter in error. 
Then developing function (22) in Taylor series one will have: 
𝑧[ = ℎ[,� +	

��^
��
(𝑥�, 𝑝�)𝛥𝑝[, then 𝛥𝑝[ =

�^<�^,�
� ,¡

, where all the 

quantities are known, allowing in this way computing the 
parameter error. If we divide 𝛥𝑝[ by the known 𝑝[ and multiply 
the results by one hundred, one will find the correction in 
percentage of the parameter 𝑝[.  
 

IV.  CYBER-ATTACKS MODELS AND PROPOSED 
METHODOLOGY 

In the following, it is present the proposed methodology to 
defend against the cyber-attack: 
1. To detect the malicious attack, a 𝜒7	 Hypothesis Testing 

(HT) is applied to Composed Measurement Error in its 
normalized form (CMEN). Choosing a probability 1-α of 
false alarm and being α the significance level of the test, a 
number C is obtained via Chi-square distribution table for 
𝜒+;=<¤7  such that, in the presence of cyber-attacks, 𝐽(𝑥0) >
𝐶; 

2. To identify the measurement/parameter under cyber-attack 
the Largest Normalized Error Test is used. 

3. To defend from the cyber-attack, the correction of the 
malicious data is made using the measurement CNE and 
the relaxed model. As a reminder, the CMEN is generated 
from the residuals to a space of larger dimension, the 
measurement subspace, generating in this way noises; the 
CNEs, in contrary, were generated from the residuals, 
however they pertain to the residuals space and, as a 
consequence, not generating noises in the computation. 

In this work, smart grid cyber-attack is modeled as a bad data 
(𝑒[) of the i-th equation, which can occur due to two main 
reasons:  
1. A cyber-attack in the i-th measurement; 
2. A cyber-attack in a transmission line (TL) parameter 

(series or shunt), related to the i-th equation. 
The identification of the cyber-attack is by analysis of the 

consequences of the specific attack, as described in the 
following [21]: 
1. A measurement cyber-attack will cause a Hypothesis 

Testing Error Detection with a high local CMEN (from the 
Largest Normalized Composed Error Theorem, LNCE). 
The affected measurement will present a CMEN above a 
chosen threshold value β (this threshold can be chosen 
based on a desired level of detection sensitivity). Usually β 
is equal to three standard deviations of the corresponding 
measurement, i.e., 𝛽 = 3; 

2. A parameter cyber-attack in the line i-j will spread out the 
error in all the equations in which this parameter is present, 
(previous theorem of LNCE, for parameter error case) so, 
the respective active or reactive power flows i-j and j-i will 
present errors with high magnitude values, as well as the 
injections on the limit buses. This attack is identified 
creating a sequence of suspicious measurements having 
parameter error attack and analyzing the firsts larger than 
three CMENs. 

The proposed algorithm is presented in the following: 

1. Read the input data. For a given measurements set and 
network configuration, perform the WLS state estimation 
[22]; 

2. Compute the estimated state vector (𝑥0), the normalized 
residual vector (rN), the projection matrix (P), the 
innovation index vector (II) and the composed 
measurement error (CMEN) vector; 

3. Perform the gross error detection test, not using the rN, but 
the CMEN. Then, build a descending list of measurements, 
according to their corresponding CMEN values; 

4. Based on the list of Step 3, verify if there is an isolated 
measurement with the CMEN above the threshold value in 
the list. If this situation occurs, the error was caused by a 
measurement cyber-attack, then, perform the correction 
routine, by applying the following equation: 

𝑧[m = 𝑧[o − 𝐶𝑁𝐸[𝜎[,           (23) 
where 𝑧[m  is the corrected measurement value and 𝑧[o  is the 
erroneous measurements value, when in case of the 
measurement with error;  

5. Based on the list of Step 3, verify if there are measurements 
i-j and j-i (active or reactive power flows) and 
measurements i and j (active or reactive power injections) 
with CMEN above the threshold value in the list. If this 
situation occurs, then the branch i-j is suspicious of having 
a parameter cyber-attack. Then, perform the parameter and 
measurement correction through the relaxed model 
strategy using the CNEi (related to the measurement with 
the largest CMEN), for measurement correction, and for 
series and shunt parameters, the correction is given by: 

𝑧[ = ℎ[,� +	
𝜕ℎ[
𝜕𝑝 (𝑥�, 𝑝�)𝛥𝑝[ 

 
or, 

𝛥𝑝[ =
�^<�^,�
� ,¡

;        (24)  

Obs.: one should be aware that the correction component 
(24) is obtained making a Taylor series expansion of 𝑧[	 
around the operating point obtained using the erroneous 
and known parameter value. Return to Step 1. If this 
situation does not occur, proceed to Step 6; 

6. End of the cyber-attack processing routine. 
The implemented software reads automatically the database 

in .txt format, inserting a random noise to the measurements 
vector according to the user choice. To add measurement noise, 
a routine was developed so the standard deviation of each 
measurement is multiplied by a constant randomly generated. 
Thus, one can add to the measurements “𝑘 ∗ 𝑛𝑜𝑖𝑠𝑒” standard 
deviations. The “𝑛𝑜𝑖𝑠𝑒” variable has standard normal 
distribution with zero mean and unitary variance and the 
constant 𝑘 is an integer defined by the user, so the 
measurements may vary up to k standard deviations, i.e., ±𝑘𝜎[. 
Thus, the new value of the measurement is given by: 

𝑧[v­[®T = 𝑧[ + 𝑘 ∗ 𝑛𝑜𝑖𝑠𝑒 ∗ 𝜎[.      (25) 
To generate the measurements, it was considered that all 

measurements have standard deviations calculated by: 

𝜎[ =
�q��^

¯°�

±
,          (26) 
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where pr is the meter’s precision (considered 3% in the 
simulations) and 𝑧[

²³ is the value of the i-th measurement 
obtained from a load flow solution. State-of-the-art 
methodologies consider, for each measurement type, a specific 
standard deviation value [18]. 

V.  CASE STUDY 
The validation of the proposed methodology is made using 

the IEEE 14-bus and 57-bus systems. The measurement plan 
used for the 14-bus system consists of 81 measurements, 
leading to a global redundancy level (number of measurements 
divided by the number of state variables) GRL = 3, and for the 
IEEE 57-bus test system the measurement plan consists of 339 
measurements, leading to the same GRL. Systems’ topologies 
and parameters are found in [20]. 

In the following, three representative cyber-attack scenarios 
are analyzed: 

 
 i) Attack Scenario I: Simultaneous Measurement and 
Parameter Cyber-attacks in the IEEE 14-bus test system (𝐶 =
𝜒´=;�.µ¶7 = 103.01) 
1. Cyber-attack of magnitude 5σ added to measurement P:07-

09 = 0.2808 pu (active power flow from bus 7 to bus 9); 
2. Cyber-attack of 7% added to the series and shunt 

parameters of the line 03-04. 
 

The attack processing routine begins with the first attack 
detection at Step 1, where the “cost function” (𝐽(𝑥0) = 153.26) is 
higher than the C value for this measurement scenario (𝜒´=;�.µ¶7 =
103.01), as presented in Table I. Once the attack is detected, the 
CMEN descending list is built. By analyzing the list in Table I, 
one can see that the measurements of the line 03-04 and 
injection on those buses presented CMENs above the threshold 
β. As explained in the Step 5 of the algorithm, this situation 
characterizes a parameter cyber-attack. Then, the parameters of 
this line were corrected using the CNE = 7.1775 (corresponding 
to the measurement with the largest CMEN) and the relaxed 
model strategy. The parameters’ corrections are shown in Table 
II, presenting small approximation errors, demonstrating the 
efficiency of the parameter correction method. After the 
correction of the parameters of the line 03-04, a new state 
estimation was performed. 

After the re-estimation is performed, the 𝜒7  test was applied 
again, and a cyber-attack was detected, since 𝐽(𝑥0) > 𝐶, as 
presented in Table III. Once the attack is detected, the CMEN 
descending list is built and the largest CMEN was identified in 
the measurement P:07-09 (note that this was the only 
measurement with CMEN > β, since the parameters were 
already corrected in the previous step). Since it was not found 
any other adjacent measurement with the CMEN above the 
threshold 𝛽, a measurement cyber-attack is identified (as 
explained at the algorithm’s Step 4). Then, this measurement 
was corrected by its corresponding CNE = 5.4483, obtaining a 
corrected value P:07-09 = 0.2812 (approximation error 
0.1425%). This routine is summarized in Table III. After the re-
estimation, no cyber-attack was detected (𝐽(𝑥0) = 37.82 <

103.01), then, the attack processing routine is finished and the 
state variables can be correctly estimated. 

 
 
 

TABLE I - IEEE-14: Processing Cyber-attacks, First Step 
Processing Measurement Cyber-Attack Step 1 

𝐽(𝑥0) = 153.26 > 𝐶 = 𝜒´=;�.µ¶7 = 103.01 ⇒ Attack Detected! 
CMEN Descending List 

Measurement II CMEN CNE 
Q:04-03 2.8604 6.9641 7.1775 

Q:04 0.4734 -4.1836 -9.7775 
Q:03-04 2.4239 -4.1222 -4.4592 
P:07-09 3.0523 4.1065 4.3212 
P:03-04 1.8432 3.3369 3.7963 
Q:03-02 0.7282 3.1446 4.0602 

 
TABLE II - IEEE-14: Corrected Parameters 

Parameters Correction 

Parameter Database 
Value 

Erroneous 
Value 

Corrected 
Value 

Approximation 
Error 

𝑔�±<�½ 1.9860 2.1250 1.9725 0.6798% 
𝑏�±<�½  -5.0688 -5.4236 -5.0343 0.6806% 
𝑏�±<�½®�tvs  0.0064 0.0068 0.0063 1.5625% 

  
TABLE III - IEEE-14: Processing Cyber-attacks, Second Step 

Processing Measurement Cyber-Attack Step 2 
𝐽(𝑥0) = 137.45 > 𝐶 = 𝜒´=;�.µ¶7 = 103.01 ⇒ Attack Detected! 

CMEN Descending List 
Meas. with |𝑪𝑴𝑬𝑵| ≥ 𝟑 II CMEN CNE 

P:07-09 = 0.2972 3.0516 5.1774 5.4483 
Corrected Measurement: P:07-09 – CNE*𝜎 = 0.2812 

(Approximation Error = 0.1425%) 
 
In the following, a single transmission line parameter cyber-

attack test case is simulated. Considering the IEEE 14-bus test 
system and its set of measurements, a -10% cyber-attack was 
added to the series and shunt parameters of the TL 01-05. When 
applying the residual based method [18], the list of suspicious 
measurements is presented on Table IV. 
 

TABLE IV - IEEE-14: Processing Errors with Normalized Residual Test  
rN Descending List 

Measurement rN 

Q:06 8.0702 
P:05-01 -6.1616 
P:01-05 6.1059 
P:02-05 -5.3493 
P:05-02 5.2887 
Q:05-01 4.9895 

 
Following this residual descending list, the residual test 

would assign the measurement Q:06 as under a cyber-attack, 
which is not the case. When applying the proposed 
methodology, the list of suspicious measurements is presented 
on Table V. One can see that the measurements of line 01-05 
and the injections on those buses present CMENs above the 
threshold β. As explained in the Step 5 of the algorithm, this 
situation characterizes a parameter cyber-attack. Then, the 
parameters on this line are corrected using the CNE = -9.3212 
(corresponding to the measurement with the largest CMEN) and 
the relaxed strategy. Corrections are presented on Table VI. The 
proposed methodology correctly detects, identify and corrects 



 7 

the parameter cyber-attack, as seen on such Tables. After the 
parameters correction, no cyber-attack was detected (𝐽(𝑥0) =
44.23 < 103.01), then, the attack processing routine is finished 
and the state variables can be correctly estimated. 

 
TABLE V - IEEE-14: Processing Errors with the Proposed Method 

Processing Measurement Cyber-Attack Step 1 
𝐽(𝑥0) = 562.99 > 𝐶 = 𝜒´=;�.µ¶7 = 103.01 ⇒ Attack Detected! 

CMEN Descending List 
Measurement II CMEN CNE 

P:05-01 7.2836   -9.2346   -9.3212 
P:01-05 7.2267    9.2052    9.2929 
Q:01-05 1.4835    8.8972   10.7297 
Q:05-01 0.9848    8.6642   12.3483 

P:02 0.2932    8.3714   29.7577 
P:05 0.1708    8.0859   48.0152 

 
TABLE VI - IEEE-14: Corrected Parameters 

Parameters Correction 

Parameter Database 
Value 

Erroneous 
Value 

Corrected 
Value 

Correction 
Error 

𝑔�=<�¶ 1.0259 0.9233 1.0182 0.7506% 
𝑏�=<�¶  -4.2350 -3.8115 -4.2033 0.7485% 
𝑏�=<�¶®�tvs  0.0246 0.0221 0.0244 0.8130% 

 
 ii) Attack Scenario II: Simultaneous Measurement and 
Parameter Cyber-attacks in the IEEE 57-bus test system (𝐶 =
𝜒±±µ;�.µ¶7 = 382.93) 
1. Cyber-attack of magnitude -8σ added to measurement 

P:45-44 = 0.3725 pu (active power flow from bus 45 to 
bus 44); 

2. Cyber-attack of 6% added to the series and shunt 
parameters of the line 12-13. 

 
The first step of the cyber-attack processing routine is the 

attack detection. Following Table VII, at Step 1, one can notice 
that the value for the “cost function” (𝐽(𝑥0) = 696.34) is greater 
than the C value for this measurement scenario (𝜒±±µ;�.µ¶7 =
382.93), therefore, the attack is successfully detected. After the 
detection, the attacked measurement is identified by searching 
the measurement with the largest CMEN above the threshold 
value (𝛽 = 3), which turns out to be the measurement P:45-44. 
Note that no other adjacent measurements presented a CMEN 
above the threshold value β, which characterize a measurement 
cyber-attack, as described in the Step 4 of the algorithm. Then, 
the measurement value is corrected with its CNE, by applying 
the equation (23). Note that the approximation error, i.e., the 
difference between the measurement’s correct database value 
and the measurement’s value corrected by the CNE, is very 
small (0.0268%), which means that the recovery of the original 
value is very efficient. After the correction, another state 
estimation is performed. 

After the re-estimation was performed, another cyber-attack 
was detected (𝐽(𝑥0) > 𝐶). By analyzing the CMEN descending 
list in Table VIII, several measurements of the line 12-13 
presented CMENs above the threshold β, which characterizes a 
parameter cyber-attack, as explained in the Step 5 of the 
algorithm. After the cyber-attack identification, the parameters 
of this line were corrected using the CNE = 5.8447 (related to 
the measurement with the largest CMEN) and the relaxed model 

strategy. The corrected parameters are shown in Table IX and, 
again, presented very small approximation errors, when 
compared to the correct database values. 

After correcting the parameters of the line 12-13 and re-
estimation, no cyber-attack was detected (𝐽(𝑥0) = 87.04 <
382.93), then, the attack processing routine is finished and the 
state variables can be correctly estimated. 

 
TABLE VII - IEEE-57: Processing Cyber-attacks, First Step 

Processing Measurement Cyber-Attack Step 1 
𝐽(𝑥0) = 696.34 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93 ⇒ Attack Detected! 

CMEN Descending List 
Measurement II CMEN CNE 

P:45-44 5.4704 -8.2857 -8.4229 
Q:13-12 8.4988 6.1264 6.1687 
Q:12-13 7.7278 -4.5339 -4.5717 
P:13-12 1.1785 -3.9295 -4.6688 

Q:13 1.1361 -3.0015 -4.8407 
P:45 0.4767 2.9295 6.8768 

Meas. with |𝑪𝑴𝑬𝑵| ≥ 𝟑 II CMEN CNE 
P:45-44 = 0.3437 5.4704 -8.2857 -8.4229 
Corrected Measurement: P:45-44 – CNE*𝜎 = 0.3726 

(Approximation Error = 0.0268%) 
TABLE VIII - IEEE-57: Processing Cyber-attacks, Second Step 

Processing Measurement Cyber-Attack Step 2 
𝐽(𝑥0) = 930.09 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93 ⇒ Attack Detected! 

CMEN Descending List 
Measurement II CMEN CNE 

Q:13-12 8.4977 5.8046 5.8447 
Q:12-13 7.7260 -5.7973 -5.8457 
P:13-12 1.1785 -3.7040 -4.6954 

Q:13 1.1361 -3.5514 -3.8034 
Q:45-15 0.4275 -3.0749 -4.7343 

 
TABLE IX - IEEE-57: Corrected Parameters 

Parameters Correction 

Parameter Database 
Value 

Erroneous 
Value 

Corrected 
Value 

Approximation 
Error 

𝑔=7<=± 4.8359 5.1260 4.8264 0.1964% 
𝑏=7<=± -15.7573 -16.7027 15.7265 0.1955% 
𝑏=7<=±®�tvs 0.0302 0.0321 0.0301 0.3311% 

 
iii) Attack Scenario III: Simultaneous Measurements and 

Parameter Cyber-attacks in the IEEE 57-bus test system (𝐶 =
𝜒±±µ;�.µ¶7 = 382.93) 
1. Cyber-attack of -7% added to the series and shunt 

parameters of the line 38-48; 
2. Cyber-attack of magnitude -8σ added to the measurement 

Q:16-01 = 0.0706 pu (measurement far from the attacked 
line); 

3. Cyber-attack of magnitude 6σ added to the measurement 
P:47 = -0.2948 (measurement adjacent to the attacked 
line); 

4. Cyber-attack of magnitude 5σ added to the measurement 
Q:38-48 = -0.1935 (measurement belonging to the 
attacked line) 

 
This scenario was simulated with measurements chosen 

accordingly to their location, related to the attacked 
transmission line, to verify the robustness of the algorithm.  

In the first step of the attack detection routine, it was obtained 
𝐽(𝑥0) = 571.25 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93, thus an attack was 
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detected. Then, the list of descending CMEN was built, as 
presented in Table X. By analyzing this table, it was identified 
the attack in the measurement Q:16-01, since it is an isolated 
measurement with CMEN above the threshold. After the attack 
identification, the measurement was corrected by its 
corresponding CNE = -7.5732 and a new estimation was 
performed. 
 

TABLE X - IEEE-57: Processing Cyber-attacks, First Step 
Processing Measurement Cyber-Attack Step 1 

𝐽(𝑥0) = 571.25 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93 ⇒ Attack Detected! 
CMEN Descending List 

Measurement II CMEN CNE 
Q:16-01 2.4920 -7.0285 -7.5732 
Q:48-38 3.4559 6.3743 6.6358 

P:47 1.8864 4.7324 5.3562 
P:48-38 2.3756 4.2930 4.6578 
P:38-48 2.3708 -4.2100 -4.5692 

Q:16 0.3575 2.8415 8.4126 
Meas. with |𝑪𝑴𝑬𝑵| ≥ 𝟑 II CMEN CNE 

Q:16-01 = 0.0652 2.4920 -7.0285 -7.5732 
Corrected Measurement: Q:16-01 – CNE*𝜎 = 0.0705 

(Approximation Error = 0.1416%) 
 After the correction of the measurement Q:16-01 and a re-
estimation, in the second step of the routine, it was obtained 
𝐽(𝑥0) = 479.02 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93, thus, another attack 
was detected. By analyzing the CMEN descending list, 
presented in Table XI, one notices the presence of several 
measurements that belong and measurements adjacent to the 
line 38-48 with the CMEN above the threshold, which 
characterizes a parameter attack. Then, the parameters of this 
line are corrected using the relaxed model strategy, with results 
presented in Table XII. 
 

TABLE XI - IEEE-57: Processing Cyber-attacks, Second Step 
Processing Measurement Cyber-Attack Step 2 

𝐽(𝑥0) = 479.02 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93 ⇒ Attack Detected! 
CMEN Descending List 

Measurement II CMEN CNE 
Q:48-38 3.4901 7.2657 7.5581 
P:38-48 2.3919 -4.4770 -4.8525 
P:48-38 2.3967 4.3814 4.7474 

P:48 0.5702 -4.2771 -8.6345 
Q:38 0.5691 3.3398 6.7522 
P:47 1.8847 3.2802 3.7133 

 
TABLE XII - IEEE-57: Corrected Parameters 

Parameters Correction 

Parameter Database 
Value 

Erroneous 
Value 

Corrected 
Value 

Approximation 
Error 

𝑔±´<½´ 9.4641 8.8016 9.4641 0% 
𝑏±´<½´  -14.6208 -13.5973 -14.4754 0.9944% 
𝑏±´<½´®�tvs  0 0 0 0% 

 
In the third step, after the correction of the parameters, it was 

obtained 𝐽(𝑥0) = 458.57 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93, thus, 
another attack was detected. Then, the CMEN descending list 
was built, as presented in Table XIII, and the attack was 
identified in the measurement P:47. After the identification, 
this measurement was corrected by its corresponding CNE = 
5.3265. 

 

TABLE XIII - IEEE-57: Processing Cyber-attacks, Third Step 
Processing Measurement Cyber-Attack Step 3 

𝐽(𝑥0) = 458.57 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93 ⇒ Attack Detected! 
CMEN Descending List 

Measurement II CMEN CNE 
P:47 1.8977 4.7123 5.3265 

Q:38-48 3.2656 3.8757 4.0534 
Q:21 1.5574 2.9321 3.4845 
Q:46 0.6535 2.5156 4.5985 
P:46 0.3581 2.4642 7.3091 
Q:11 2.6327 2.3148 2.4762 

Meas. with |𝑪𝑴𝑬𝑵| ≥ 𝟑 II CMEN CNE 
P:47 = -0.2792 1.8977 4.7123 5.3265 
Corrected Measurement: P:47 – CNE*𝜎 = -0.2949 

(Approximation Error = 0.0339%) 
 

After the correction of the measurement P:47, a new 
estimation was performed and it was obtained 𝐽(𝑥0) =
427.62 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93, thus, another attack was 
detected. By analyzing the CMEN descending list, the attack 
was identified in the measurement Q:38-48, as presented in the 
Table XIV, and its value was corrected by its corresponding 
CNE = 4.8325. 

TABLE XIV - IEEE-57: Processing Cyber-attacks, Fourth Step 
Processing Measurement Cyber-Attack Step 4 

𝐽(𝑥0) = 427.62 > 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93 ⇒ Attack Detected! 
CMEN Descending List 

Measurement II CMEN CNE 
Q:38-48 3.2652 4.6207 4.8325 
P:13-12 0.1846 -2.0146 -8.0987 

Q:07 1.3844 2.0027 2.4706 
Q:22 1.5885 1.8727 2.2129 
Q:45 3.8018 1.8457 1.9085 
Q:11 2.6327 1.8051 1.9309 

Meas. with |𝑪𝑴𝑬𝑵| ≥ 𝟑 II CMEN CNE 
Q:38-48 = -0.1842 3.2652 4.6207 4.8325 
Corrected Measurement: Q:38-48 – CNE*𝜎 = -0.1937 

(Approximation Error = 0.1033%) 
 

After the correction of the measurement Q:38-48, a new 
estimation was performed and it was obtained 𝐽(𝑥0) =
198.06 < 𝐶 = 𝜒±±µ;�.µ¶7 = 382.93, thus, no attack was 
detected. As a conclusion, in this attack scenario, one could 
verify that the proposed methodology obtained good results, 
even in a case with simultaneous measurement and parameter 
attack. An observation can be made regarding the initial 
approximation error (0.9944%) between the estimated value 
and the true value for the parameter 𝑏±´<½´. One may notice an 
approximation error larger than the ones obtained in other 
scenarios, which is justified by the presence of two attacked 
measurements in the neighborhood of the affected line. Still, the 
correction of the attacked measurements, a final parameter 
estimation was performed, as proposed on the relaxed model 
strategy, with results presented in Table XV. 

 
TABLE XV - IEEE-57: Corrected Parameters 

Parameters Correction 

Parameter Database 
Value 

Erroneous 
Value 

Corrected 
Value 

Approximation 
Error 

𝑔±´<½´ 9.4641 8.8016 9.4641 0% 
𝑏±´<½´  -14.6208 -13.5973 -14.6106 0.0698% 
𝑏±´<½´®�tvs  0 0 0 0% 
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The approximation error was greatly reduced (smaller than 
0.1%), which demonstrates the accuracy of the proposed 
solution.  

 
VI.  CONCLUSION 

This paper has presented a formal proof of how parameter 
errors spread out to the measurements functions containing the 
parameter in error. After, an analytical methodology for smart 
grid cyber-physical security as a malicious data attack was 
introduced. The proposed method uses an innovation approach 
for cyber-attacks detection, identification and correction. 
Cyber-attacks are modeled as bad data. The methodology 
considers, during equation derivation, potential cyber-attacks 
on measurements and parameters. The detection test is based on 
a composed measurement error analysis. Cyber-attacks 
identification is based on the Generalized Largest Normalized 
Error test, in this paper developed. Correction of cyber-attacks 
is made using the composed normalized error and a relaxed 
model strategy. Simultaneous cyber-attacks are considered, 
even when the measurements belong to the image of the 
Jacobian, presenting clear contributions to the malicious data 
injection attack state-of-the-art. A big advantage of the 
proposition is it does not require a previous knowledge of how 
the attack was performed, as far as it is restricted to a change of 
measurements or parameters, since the error is estimated and 
then the altered quantity is corrected. Still, the SE software does 
not require major changes for the implementation of the paper 
ideas. 
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