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Abstract— This paper presents further contributions to smart
grids cyber-physical security as a malicious data attack. The
contributions are twofold. First, a formal proof of how parameter
errors spread out on the measurement function having a
parameter with error. The largest composed measurement error
property, in its normalized form, is then demonstrated for this case
of error. Second, a methodology for smart grid cyber-physical
malicious data injection correction is presented. Current state of
the art solutions corrects simultaneous attacks assuming
measurements or parameters without error. However, how may
one correct a measurement if the parameter might be
simultaneously in error or the other way around? In this paper, a
relaxed model strategy for such is presented. Attacks are
processed simultaneously and analyzed using only the framework
of measurement gross error analysis. Cyber-attack detection is
made through a Chi-square (x*) Hypothesis Testing (H7) applied
to the normalized composed measurement error (CMEY).
Composed errors are estimated with measurements’ innovation
index (ZI). Cyber-attack identification is made through the largest
normalized error test property. Cyber-attack correction is made
considering cyber-attack type and using the composed normalized
error (CNE) in a relaxed model strategy. The proposed solution
works for malicious measurement and parameter data attacks.
Still, the state estimation software does not need major changes.
Validation is made on the IEEE 14-bus and 57-bus systems.

Index Terms—Smart grid, cyber-physical security, malicious
data injection, weighted least squares, innovation

I. INTRODUCTION

OWER system state estimation (PSSE) is the process of

estimating unknown state variables in a power grid based
on the network’s data (system topology and transmission lines
parameters) and meter’s remote measurements. Both network
data and measurements are subject to noises and/or
interferences. The output of state estimation, the state variables
(buses complex voltages), is used in the contingency analysis,
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which will then be used to control the power grid components
to maintain the reliable operation of the grid, even if some faults
may occur.

However, due to the constant modernization of the power
system with the installation of new electrical devices and
structures, the research on power system vulnerabilities to
cyber-attacks is crucial to keep the grid operation secure.
Considering smart grids cyber-physical security, the paper by
Liu et al. [1] is one of the first papers that modeled stealthy
attack vectors in state estimation and showed that it is possible
for an attacker to introduce malicious measurements in the state
estimation process, as illustrated in Figure 1. The relevant
literature, as presented in [2], [3] and [4], can be classified in
three main topics: vulnerability analysis (weaknesses of the
traditional state estimation bad data detection methods), impact
analysis (consequences of an undetected malicious attack) and
development of countermeasures (improvement of bad data
detection methods and communication systems).
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Figure 1. State estimator under a cyber-attack (adapted from [21]).

This work is intended as a contribution to the third category
(development of countermeasures). The objective of this work
is to implement methodologies to detect malicious data attacks
and protect the power grid, by improving bad data detection
schemes. In the following, a brief literature review on this
subject will be presented.

In [5], it is demonstrated that it is possible to defend against



malicious data injection if a small subset of measurements can
be made immune to the attacks. It is also proposed an algorithm
to strategically allocate secure phasor measurement units
(PMUs) at key buses in the network to defend against those
attacks. This optimal PMU placement is also studied in [6]. In
[7], the authors propose a mechanism for detection of PMU data
manipulation attacks. The proposed mechanism is based on
continuously monitoring the equivalent impedances of
transmission lines and classifying observed anomalies for
detecting the presence and location of attacks. In [8] and [9],
the authors propose multiple robust state estimators, such as the
least trimmed squares estimator, to improve the overall cyber-
security of power systems considering attacks on both the
measurement vector and measurement function. In [10], the
authors study the cyber-security of power systems from the
perspective of the attacker, where different kind of attacks are
considered, and the control center, where a generalized
likelihood ratio (GLR) detector that incorporates historical data
is proposed. In [11], the authors propose data attack scenarios
that combine data integrity and availability attacks on state
estimation, also using cyber-physical models to propose
security metrics and mitigation schemes. In [12], the authors
developed methods to estimate the state of the power grid
following a joint cyber and physical attack, and study the
resilience of different topologies as well as the resilience to
different kinds of attacks. The authors also present conditions
on the structure of a grid, so the presented method is guaranteed
to recover the state of the grid inside an attacked zone. Finally,
n [13], the authors provide an overview of graphical methods
for performing cyber-security analysis in power system state
estimation. First, the method to model power networks in a
graph is described. Then, the authors establish a graph-based
characterization of state estimation security, and introduce
representative graphical algorithms to solve security problems
in state estimation.

The main question of all previous solutions is that they detect
the malicious data attacks based on the measurement residual,
which is just one component of the measurement error
[16],[17], [25]. With this approach, any measurement having
error and being close to the Jacobian range space will be hidden
from the malicious data attack detection test. In our previous
work [21], we have introduced the concept of Innovation for
smart grids cyber-physical security. On such work, we have
presented a new hypothesis testing for cyber-attack as a
malicious data injection detection. The significance of the
method is most important, since it considers the error
component contained in the Jacobian range space, which is
hidden from the classical SE methodology. Another novelty
presented in [21] was the processing of simultaneous malicious
cyber-attacks in measurements and parameters. Multiple cyber-
attacks types, including cyber-attacks on system parameters,
were investigated. Once cyber-attacks were detected,
identification proposed in [21] was based on the error pattern
analysis. Observations suggested pattern behavior and were
used on [21] to design an identification solution. However, with
respect to the later, no specific proofs of such observations were
provided.

This work presents further contributions to the smart grid
cyber-security as a malicious data attack problem. First, a
formal proof of how parameter errors spread out on the
measurement function having a parameter with error is
presented. The largest composed measurement error property,
in its normalized form, is then demonstrated for this case of
error. Second, simultaneous data attack types are considered in
[21], assumptions are that the parameters attacks are to be
corrected when measurements are without error. However, how
may one correct measurements if parameters might be
simultaneously in error [23], [24], or the other way around?
This work presents a relaxed model strategy for simultaneous
malicious data injection attacks. Attacks are processed
simultaneously and analyzed using only the framework of
measurement gross error analysis. Method validation is made
on the IEEE 14-bus and 57-bus systems. Case study shows
methodology reliability and robustness. Comparative test
results highlight the precision, even when the cyber-attack
vector belongs to the subspace spanned by the columns of the
Jacobian matrix of the electrical network, presenting a clear
contribution to the state-of-the-art of cyber-physical security.
Still, test results show that the presented methodology is
accurate even when of low magnitude cyber-attack vectors.
Multiple and simultaneous cyber-attacks on measurements and
parameters are detected and identified correctly in all of the
simulated cases. Corrections of identified attacks are precise,
independently of the intrusion type.

The remaining of this paper is organized as follows. Section
Il presents a summary of Innovation concept on the State
Estimation Theory. Section III presents the theorem and proof
of error spreading out on the measurements functions having
the parameter in error. Section IV presents the methodology to
defend from the malicious cyber-attack. Section V presents a
case study and test results discussion. The conclusions of this
work are presented on Section VL

II. INNOVATION CONCEPT IN STATE ESTIMATION THEORY

The power system is modelled as a set of non-linear

equations as described in the following:

z=hx) +e, €))
with z € R™ is the measurement vector, x € RV is the state
variables vector. Also, h: RY - R™, (m>N) is a continuously
nonlinear differentiable function, e € R™ is the measurement
error vector assumed having zero mean, standard deviation o
and Gaussian probability distribution and N = 2n — [ is the
number of unknown state variables to be estimated (n is the
number of buses of the power system).
OBS.: one should be aware that in fact the previous e is not the
error but the residual, however not the optimal one. Wrongly,
researchers from SE field call it as the measurement error
vector. The error vector is in fact in the measurement z direction
[22].

As it is very well known, the objective of the classical
weighted least squares (WLS) state estimator is to find the best
estimative for the N-dimensional state vector X, which
minimizes the cost function J(x):

J) = llz = h(O)l%-1 = [z = R(x)]"R7 [z — h(x)]. (2)

Geometrically, the J(x) index is a norm in the measurements



vector space R™, induced by the inner product (u,v) =
uTR™1v, where R is a positive definite symmetric matrix. Let
X be the solution of this minimization problem, thus, the
estimated measurements vector is given by Z = h(X) and the
residuals vector is defined as the difference between z and Z,
i.e., r = z — Z. The linearization of (1), at a certain operating
point x*, implies:

Az = HAx + e, 3)
where H = dh/0x is the Jacobian matrix of h calculated at x*,
Az =z —h(x*) =z —z* and Ax = x — x* is the correction of
the state vector. If the system represented by (3) is observable,
then, the vector space R™ of the measurements can be
decomposed in a direct sum of two vector sub-spaces, in the
following way:

R™ = RH)S[R(H]*, “
so, the range space of H, given by R(H), is a N-dimensional
vector sub-space that belongs to R™and R(H)' is its
orthogonal complement, i.e., if u € R(H), and v € R(H)*,
then, (u, v) = uTR v = 0.

The SE as a projection formulation:

Let P be the linear operator that projects the vector Az in
R(H), i.e., AZ = PAz and let r = Az — AZ be the residual
vector. The operator P, that minimizes the norm J(x), is the one
that projects Az orthogonally in R(H), i.e., the vector AZ =
HAX is orthogonal to the residuals vector. More precisely:

(A2,7) = (HAR)TR™1(Az — HAR) = 0. %)
Solving this equation for AX, one obtains:
A% = (HTR™*H)"*HTR 1Az (6)

Since AZ = HAX, the projection matrix P will be the
idempotent matrix:

P=HHTR*H)"*HTR™1. @)

Therefore, geometrically, the classical WLS state estimator
can be interpreted as a projection matrix P acting on the
correction of the measurements vector Az, but using the
residual as the correction.

Another way to visualize the state estimation is seeing the
geometrical position of the measurement error related to the
Jacobian range space R(H). Then, decomposing the
measurements’ vector space into a direct sum of R(H) and
R(H)*L, it is possible to decompose the measurements error
vector e into two components: undetectable (e;) component
and detectable (e;,) component, in the following way:

e =Pe+ (I - P)e. ®
—— N
eu eD
where e; € R(H) and e;, € R(H)* . Therefore:
lellZ-1 = lleyll5-1+llep 13- )

The ep component is nothing else than the residual.

Two main differences between the error component and the
residual will be enumerated:

i) The error has m degrees of freedom and the residual m-n;

ii) The error is a random variable by hypothesis of the SE
formulation, having m components in a space of dimension m
and the residual is not a random variable (m residuals in a space
of dimension m-n).

One should be aware that e is undetectable, at lights of the
classical WLS, because it looks only for the error component

which is orthogonal to the range space of the Jacobian, that is,
ep- In order to estimate the error one needs also to estimate the
ey error component. With that purpose, the innovation of a
measurement, related to the other measurements of the
measurement set, is defined. The innovation of a measurement
is the information it contains, but not the others measurements
of the measurement set [16],[17],[19],[25]. This definition
suggests that the innovation is contained in the portion of the
measurement that is independent of the other measurements of
the system, i.e., the portion that cannot be obtained from linear
combinations of the rows of the Jacobian matrix.

Therefore, the new information of a measurement is its part
that is orthogonal to the range space of the Jacobian matrix, i.e.,
belonging to R(H)'. If a measurement has an error, its
component orthogonal to the range space of the Jacobian matrix
will show the error through its residual, the other component,
however, will be completely masked. Thus, the vector of
masked error, in the state estimation process, is the vector
belonging to the range space of the Jacobian matrix.

Since the residual e, and the other error component e, are
orthogonal to each other, it is possible to compose the
measurement error vector; that is, for the i-th measurement:

el = lles II” + lles " (10)

This error vector is called Composed Measurement Error
(CME). In order to find the masked error and compose the
measurement’s total error, it is used the /1, as proposed by [17]:

_ |eli)|| _ J1-Py
E7 el T VP (i

A measurement with low Innovation Index (11) indicates that
a large component of its error is not reflected in its residual as
obtained by the classical WLS estimator. Consequently, even
when those measurements have gross errors, their residuals will
be relatively small. Using (11), (10) can be rewritten as:

letl” = (1 +55) les I (12)
Since ey, is the residual, (12) becomes:
lef||” = (1 +%>rf = CME; =; /1+%, (13)

where 7; is the residual of the i-th measurement and [I; is the
innovation index of this same measurement, both known
quantities. If instead we work with the normalized residual one
obtains the Composed Normalized Error (CNE), given by:

1

CNE; =1V /1 + (14)

Tz
g’
where 1V is the normalized residual of the i-th measurement.
Otherwise, if one normalizes the error one obtains:

CME; Ti 1
CMEN =BT |y 4 L
g g I1;

where o; is i-th measurement standard deviation.

It has been proved that the measurement having error is the
one with Largest CME™ and the measurement correction is
through the corresponding CNE [16]. All the previous
demonstrations were made only for the case of measurements
having errors. For the case of parameter error in the h function
related to the measurement z, corresponding demonstration is
required and this is what will be presented in the following.

(15)



III. LARGEST NORMALIZED ERROR THEOREM FOR THE CASE
OF PARAMETER ERROR

THEOREM:

For the situation in which all the measurements are perfect
(obtained for load flow) except the measurement z;, that has a
parameter error in h;, then the largest error will be on this
measurement equation.

PROOF:

Consider a situation in which all the measurements are
perfect except the measurement z;, having a parameter error b;
in his measurement equation. This equation can be written as:

zfTe = Hiruextrue 4 Az, + e. (16)

Where the term Az;u; models the error in the measurement
caused by the parameter error b;. Following, the measurement
residual vector can be obtained as:

f=z—2=U—HG*H"TR™Y)z=R:R'z. (17)

Where G = HTR™YH, R; is the residual covariance matrix
and H is the Jacobian matrix having the parameter error. Since
the other measurements (not having parameter error) are
assumed to be perfect, this yield:

#=R;RY(Az;u;) = Az;R™'R; u;. (18)

Where R, u; is the ith column of the residual covariance
matrix, R ;. The vector of normalized residuals is then given by:
" = (diag(R;))""*# = Az,R™* (diag(Rp))™*Rpu, (19)

which can be rewritten as:

[ piipit ]

p.ii
r® = Az;R™! : (20)

2 -1
PjiPjj

Lprmi P}
Where p;;? are the variances of the residual vector i. The ratio
of the magnitude of a normalized residual 7}, j # i and the
magnitude of the normalized residual associated with the
measurement affected by bad parameter, 1", is given by:

7L Lo
[ puiej; D

As aconsequence, 1" = 1" forallj=1..., m. Another way of
N,new N N,new N
i e Ut

=VYji <1

seeing the previous relation is: |r;

where the new refers to the situation with parameter error and
before that the residuals will be, for all measurements, equal to
zero, that is, measurements without parameter error.
Transforming in error that relation will be: |CME™®" —
CME}| = |CME}"™" — CME/'||, j=1...m, that is the large
increment of error will be in the measurement to which
parameter error has been added, since with the measurements
without parameter error it will be zero.
q.e.d.
Generalization for the case of all measurements not being
perfect measurements:

A natural consequence of the previous theorem is: assuming
that all the measurements of a measurement set have limited
parameter errors, smaller than a predefined value, then if a

parameter error is added to one of them, one can assure that it
will exist a minimum error magnitude to be added so that
measurement will contain the largest error.

Obs.: (1) With the Largest Normalized Error Theorem as
previously presented, one can assure, within an uncertainty
degree, that once an error in the measurement set is detected,
the measurement with the largest CME™ will have the error; (ii)
The previous uncertainty degree is caused by the choice in the
predefined value for which error is accepted as not existing. For
example, if that predefined value is assumed as zero, then the
measurement with error will have by sure the largest error for
any magnitude of error.

A. How to Differentiate Between Measurement Error and
Parameter Error

From the Largest Normalized Parameter Error Theorem, it is
a direct conclusion that for all measurements in which the added
parameter error appears, that error will be larger than any
measurement that does not have parameter error. That means
the parameter error will spread to the measurements where the
parameter in error appears, what does not happen for the case
of the other measurements of the measurement set.

B. Relaxed Model for Simultaneous Malicious Data Attack
Processing: An Iterative based Solution

Current state of the art solutions for simultaneous multiple
cyber-attack types processing consider the correction of
parameters when measurements are free of error [21].
However, how may one correct measurements if
parameters might be simultaneously in error [23], [24], or
the other way around? For the solution of such problem, we
present a relaxed model which is solved iteratively. Let’s
consider simultaneous parameter and measurement malicious
data attacks. On such, we can consider initially that all
measurements are free from errors. Then, one can estimate the
system states, x™, considering parameters p", through the
iterative solution of z™ = h(x™). Of course, the measurements
and parameters might be simultaneously in error, so a relaxation
is proposed to find an estimate of the parameters. One considers

n.n
that z" is equal to h(x™, p™) + %p’p)

do not decrease the degrees of freedom and have observability
problems, since we relax the model by considering that
measurements are correct. After convergence, a new parameter
estimate, p"*!, is obtained. We can now consider these
parameters as without errors, and estimate new states, x™**, and
then correct the measurements with the estimated CNE,
obtaining z™*1. This problem also relaxes the model by
considering the parameters without error, and does not generate
any observability problems or decreases the degrees of freedom
of the original measurement model. These new states and
corrected measurements are used again to estimate the new set
of parameters, p™*2, through the solution of z"*!=

dh n+1‘
h(x"+1,p"+1)+ (x -

continued until a convergence criteria is reached.
Formally, if a correct measurement z; has a parameter error
p;. that is:

Ap. On such model, we

P o .
p. This iterative process is

z; = h;(x,p;) + e (22)



where p; is the parameter in error.
Then developing function (22) in Taylor series one will have:

Zi— hl
= th + (xo, pg)Apl, then Ap; = 0

, where all the
quantities are known, allowing in thls way computing the
parameter error. If we divide Ap; by the known p; and multiply
the results by one hundred, one will find the correction in
percentage of the parameter p;.

V. CYBER-ATTACKS MODELS AND PROPOSED
METHODOLOGY

In the following, it is present the proposed methodology to
defend against the cyber-attack:

1. To detect the malicious attack, a y> Hypothesis Testing
(HT) is applied to Composed Measurement Error in its
normalized form (CMEY™). Choosing a probability /-a of
false alarm and being a the significance level of the test, a
number C is obtained via Chi-square distribution table for
XZ.1-q such that, in the presence of cyber-attacks, J (%) >
C;

2. To identify the measurement/parameter under cyber-attack
the Largest Normalized Error Test is used.

3. To defend from the cyber-attack, the correction of the
malicious data is made using the measurement CNE and
the relaxed model. As a reminder, the CME" is generated
from the residuals to a space of larger dimension, the
measurement subspace, generating in this way noises; the
CNEs, in contrary, were generated from the residuals,
however they pertain to the residuals space and, as a
consequence, not generating noises in the computation.

In this work, smart grid cyber-attack is modeled as a bad data
(e;) of the i-th equation, which can occur due to two main
reasons:

1. A cyber-attack in the i-th measurement;

2. A cyber-attack in a transmission line (TL) parameter
(series or shunt), related to the i-th equation.

The identification of the cyber-attack is by analysis of the
consequences of the specific attack, as described in the
following [21]:

1. A measurement cyber-attack will cause a Hypothesis
Testing Error Detection with a high local CME"™ (from the
Largest Normalized Composed Error Theorem, LNCE).
The affected measurement will present a CMEY above a
chosen threshold value f (this threshold can be chosen
based on a desired level of detection sensitivity). Usually S
is equal to three standard deviations of the corresponding
measurement, i.e., § = 3;

2. A parameter cyber-attack in the line i-j will spread out the
error in all the equations in which this parameter is present,
(previous theorem of LNCE, for parameter error case) so,
the respective active or reactive power flows i-j and j-i will
present errors with high magnitude values, as well as the
injections on the limit buses. This attack is identified
creating a sequence of suspicious measurements having
parameter error attack and analyzing the firsts larger than
three CME"s.

The proposed algorithm is presented in the following:

1. Read the input data. For a given measurements set and
network configuration, perform the WLS state estimation
[22];

2. Compute the estimated state vector (X), the normalized
residual vector (#), the projection matrix (P),
innovation index vector (//) and the composed
measurement error (CMEV) vector;

3. Perform the gross error detection test, not using the 7, but
the CME". Then, build a descending list of measurements,
according to their corresponding CME" values;

4. Based on the list of Step 3, verify if there is an isolated
measurement with the CME™ above the threshold value in
the list. If this situation occurs, the error was caused by a
measurement cyber-attack, then, perform the correction
routine, by applying the following equation:

zf = zF — CNE;a;, (23)
where zf is the corrected measurement value and zF is the
erroneous measurements value, when in case of the
measurement with error;

5. Based on the list of Step 3, verify if there are measurements
if and j-i (active or reactive power flows) and
measurements 7 and j (active or reactive power injections)
with CME" above the threshold value in the list. If this
situation occurs, then the branch i-j is suspicious of having
a parameter cyber-attack. Then, perform the parameter and
measurement correction through the relaxed model
strategy using the CNE; (related to the measurement with
the largest CMEY), for measurement correction, and for
series and shunt parameters, the correction is given by:

oh;
zi =hio + %(xo’Po)APi
or,
4_h4
Ap, = 2L . 24
Pi= 24

Obs.: one should be aware that the correction component
(24) is obtained making a Taylor series expansion of z;
around the operating point obtained using the erroneous
and known parameter value. Return to Step I. If this
situation does not occur, proceed to Step 6;

6. End of the cyber-attack processing routine.

The implemented software reads automatically the database
in .zxt format, inserting a random noise to the measurements
vector according to the user choice. To add measurement noise,
a routine was developed so the standard deviation of each
measurement is multiplied by a constant randomly generated.
Thus, one can add to the measurements “k * noise” standard
deviations. The ‘noise” wvariable has standard normal
distribution with zero mean and unitary variance and the
constant k is an integer defined by the user, so the
measurements may vary up to & standard deviations, i.e., t+ko;.
Thus, the new value of the measurement is given by:

z[Wise = 7z, + k * noise * o;. (25)

To generate the measurements, it was considered that all

measurements have standard deviations calculated by:
rrla|
(26)

i— 3



where pr is the meter’s precision (considered 3% in the
simulations) and Zl.lf is the value of the i-th measurement
obtained from a load flow solution. State-of-the-art
methodologies consider, for each measurement type, a specific
standard deviation value [18].

V. CASE STUDY

The validation of the proposed methodology is made using
the IEEE 14-bus and 57-bus systems. The measurement plan
used for the 14-bus system consists of 81 measurements,
leading to a global redundancy level (number of measurements
divided by the number of state variables) GRL = 3, and for the
IEEE 57-bus test system the measurement plan consists of 339
measurements, leading to the same GRL. Systems’ topologies
and parameters are found in [20].

In the following, three representative cyber-attack scenarios
are analyzed:

i) Attack Scenario I: Simultaneous Measurement and
Parameter Cyber-attacks in the IEEE 14-bus test system (C =
X£2;1;0.95 =103.01)

1. Cyber-attack of magnitude 50 added to measurement P:07-
09 = 0.2808 pu (active power flow from bus 7 to bus 9);

2. Cyber-attack of 7% added to the series and shunt
parameters of the line 03-04.

The attack processing routine begins with the first attack
detection at Step 1, where the “cost function” (J(£) = 153.26) is
higher than the C value for this measurement scenario (xZ,,90s =
103.01), as presented in Table 1. Once the attack is detected, the
CME" descending list is built. By analyzing the list in Table I,
one can see that the measurements of the line 03-04 and
injection on those buses presented CME™s above the threshold
p. As explained in the Step 5 of the algorithm, this situation
characterizes a parameter cyber-attack. Then, the parameters of
this line were corrected using the CNE = 7.1775 (corresponding
to the measurement with the largest CME") and the relaxed
model strategy. The parameters’ corrections are shown in Table
II, presenting small approximation errors, demonstrating the
efficiency of the parameter correction method. After the
correction of the parameters of the line 03-04, a new state
estimation was performed.

After the re-estimation is performed, the y? test was applied
again, and a cyber-attack was detected, since J(X) > C, as
presented in Table III. Once the attack is detected, the CME™
descending list is built and the largest CME" was identified in
the measurement P:07-09 (note that this was the only
measurement with CMEY > B, since the parameters were
already corrected in the previous step). Since it was not found
any other adjacent measurement with the CME™ above the
threshold f, a measurement cyber-attack is identified (as
explained at the algorithm’s Step 4). Then, this measurement
was corrected by its corresponding CNE = 5.4483, obtaining a
corrected value P:07-09 = 0.2812 (approximation error
0.1425%). This routine is summarized in Table I1I. After the re-
estimation, no cyber-attack was detected (J() =37.82<

103.01), then, the attack processing routine is finished and the
state variables can be correctly estimated.

TABLE I - IEEE-14: Processing Cyber-attacks, First Step

Processing Measurement Cyber-Attack Step 1
J(®) = 153.26 > C = x2,,005 = 103.01 = Attack Detected!
CME" Descending List
Measurement Jii CMEY CNE
Q:04-03 2.8604 6.9641 7.1775
Q:04 0.4734 -4.1836 -9.7775
Q:03-04 2.4239 -4.1222 -4.4592
P:07-09 3.0523 4.1065 43212
P:03-04 1.8432 3.3369 3.7963
Q:03-02 0.7282 3.1446 4.0602
TABLE II - IEEE-14: Corrected Parameters
Parameters Correction
Parameter Database | Erroneous | Corrected | Approximation
Value Value Value Error
Jo3—04 1.9860 2.1250 1.9725 0.6798%
bo3_o4 -5.0688 -5.4236 -5.0343 0.6806%
bghupt 0.0064 0.0068 0.0063 1.5625%

TABLE III - IEEE-14: Processing Cyber-attacks, Second Step
Processing Measurement Cyber-Attack Step 2
J(®) = 13745 > C = x2 005 = 103.01 = Attack Detected!
CME" Descending List
Meas. with [CMEN| > 3 u CME" CNE
P:07-09 = 0.2972 3.0516 | 5.1774 | 5.4483
Corrected Measurement: P:07-09 — CNE*o = 0.2812
(Approximation Error = 0.1425%)

In the following, a single transmission line parameter cyber-
attack test case is simulated. Considering the IEEE 14-bus test
system and its set of measurements, a -10% cyber-attack was
added to the series and shunt parameters of the TL 0/-05. When
applying the residual based method [18], the list of suspicious
measurements is presented on Table I'V.

TABLE 1V - IEEE-14: Processing Errors with Normalized Residual Test

" Descending List

Measurement v
Q:06 8.0702
P:05-01 -6.1616
P:01-05 6.1059
P:02-05 -5.3493
P:05-02 5.2887
Q:05-01 4.9895

Following this residual descending list, the residual test
would assign the measurement Q:06 as under a cyber-attack,
which is not the case. When applying the proposed
methodology, the list of suspicious measurements is presented
on Table V. One can see that the measurements of line 0/-05
and the injections on those buses present CME™s above the
threshold . As explained in the Step 5 of the algorithm, this
situation characterizes a parameter cyber-attack. Then, the
parameters on this line are corrected using the CNE = -9.3212
(corresponding to the measurement with the largest CME") and
the relaxed strategy. Corrections are presented on Table VI. The
proposed methodology correctly detects, identify and corrects



the parameter cyber-attack, as seen on such Tables. After the
parameters correction, no cyber-attack was detected (J(%) =
44.23 < 103.01), then, the attack processing routine is finished
and the state variables can be correctly estimated.

TABLE V - IEEE-14: Processing Errors with the Proposed Method

Processing Measurement Cyber-Attack Step 1
J(®) = 562.99 > C = x2,.,405 = 103.01 = Attack Detected!
CME" Descending List
Measurement 11 CME" CNE
P:05-01 7.2836 -9.2346 -9.3212
P:01-05 7.2267 9.2052 9.2929
Q:01-05 1.4835 8.8972 10.7297
Q:05-01 0.9848 8.6642 12.3483
P:02 0.2932 8.3714 29.7577
P:05 0.1708 8.0859 48.0152
TABLE VI - IEEE-14: Corrected Parameters
Parameters Correction
Parameter Database | Erroneous | Corrected | Correction
Value Value Value Error
Jo1—os 1.0259 0.9233 1.0182 0.7506%
bo1_os -4.2350 -3.8115 -4.2033 0.7485%
p§mnt 0.0246 0.0221 0.0244 0.8130%

ii) Attack Scenario II: Simultaneous Measurement and
Parameter Cyber-attacks in the IEEE 57-bus test system (C =
X§39;0.95 = 382.93)

1. Cyber-attack of magnitude -8¢ added to measurement
P:45-44 = 0.3725 pu (active power flow from bus 45 to
bus 44),

2. Cyber-attack of 6% added to the series and shunt
parameters of the line 72-13.

The first step of the cyber-attack processing routine is the
attack detection. Following Table VII, at Step 1, one can notice
that the value for the “cost function” (J(X) = 696.34) is greater
than the C value for this measurement scenario (¥33o,005 =
382.93), therefore, the attack is successfully detected. After the
detection, the attacked measurement is identified by searching
the measurement with the largest CME™ above the threshold
value (f = 3), which turns out to be the measurement P.45-44.
Note that no other adjacent measurements presented a CMEY
above the threshold value f, which characterize a measurement
cyber-attack, as described in the Step 4 of the algorithm. Then,
the measurement value is corrected with its CNE, by applying
the equation (23). Note that the approximation error, i.e., the
difference between the measurement’s correct database value
and the measurement’s value corrected by the CNE, is very
small (0.0268%), which means that the recovery of the original
value is very efficient. After the correction, another state
estimation is performed.

After the re-estimation was performed, another cyber-attack
was detected (J(£) > C). By analyzing the CME"™ descending
list in Table VIII, several measurements of the line /2-13
presented CME™s above the threshold S, which characterizes a
parameter cyber-attack, as explained in the Step 5 of the
algorithm. After the cyber-attack identification, the parameters
of this line were corrected using the CNE = 5.8447 (related to
the measurement with the largest CMEY) and the relaxed model

strategy. The corrected parameters are shown in Table IX and,
again, presented very small approximation errors, when
compared to the correct database values.

After correcting the parameters of the line /2-13 and re-
estimation, no cyber-attack was detected (J(X) = 87.04 <
382.93), then, the attack processing routine is finished and the
state variables can be correctly estimated.

TABLE VII - IEEE-57: Processing Cyber-attacks, First Step
Processing Measurement Cyber-Attack Step 1
J(®) = 696.34 > C = y234.905 = 382.93 = Attack Detected!

CME" Descending List

Measurement 11 CME" CNE
P:45-44 5.4704 -8.2857 -8.4229
Q:13-12 8.4988 6.1264 6.1687
Q:12-13 7.7278 -4.5339 -4.5717
P:13-12 1.1785 -3.9295 -4.6688
Q:13 1.1361 -3.0015 -4.8407

P:45 0.4767 2.9295 6.8768

Meas. with |[CMEY| > 3 1 CME" CNE
P:45-44 =0.3437 5.4704 -8.2857 -8.4229

Corrected Measurement: P:45-44 — CNE*o = 0.3726
(Approximation Error = 0.0268%)
TABLE VIII - IEEE-57: Processing Cyber-attacks, Second Step
Processing Measurement Cyber-Attack Step 2
J(®) =930.09 > C = x234.905 = 382.93 = Attack Detected!

CME" Descending List
Measurement 11 CME" CNE
Q:13-12 8.4977 5.8046 5.8447
Q:12-13 7.7260 -5.7973 -5.8457
P:13-12 1.1785 -3.7040 -4.6954
Q:13 1.1361 -3.5514 -3.8034
Q:45-15 0.4275 -3.0749 -4.7343
TABLE IX - IEEE-57: Corrected Parameters
Parameters Correction
Parameter Database | Erroneous | Corrected | Approximation
Value Value Value Error
J12-13 4.8359 5.1260 4.8264 0.1964%
bys_13 -15.7573 -16.7027 15.7265 0.1955%
byhunt 0.0302 0.0321 0.0301 0.3311%

iii) Attack Scenario IlI: Simultaneous Measurements and
Parameter Cyber-attacks in the IEEE 57-bus test system (C =
X§39;0.95 = 382.93)

1. Cyber-attack of -7% added to the series and shunt
parameters of the line 38-48;

2. Cyber-attack of magnitude -8¢ added to the measurement
0:16-01 = 0.0706 pu (measurement far from the attacked
line);

3. Cyber-attack of magnitude 60 added to the measurement
P:47 = -0.2948 (measurement adjacent to the attacked
line);

4. Cyber-attack of magnitude 50 added to the measurement
0:38-48 = -0.1935 (measurement belonging to the
attacked line)

This scenario was simulated with measurements chosen
accordingly to their location, related to the attacked
transmission line, to verify the robustness of the algorithm.

In the first step of the attack detection routine, it was obtained
J(®) = 571.25 > C = x330.905 = 382.93, thus an attack was



detected. Then, the list of descending CME" was built, as
presented in Table X. By analyzing this table, it was identified
the attack in the measurement Q:16-01, since it is an isolated
measurement with CME™ above the threshold. After the attack

identification, the measurement was corrected by its
corresponding CNE = -7.5732 and a new estimation was
performed.

TABLE X - IEEE-57: Processing Cyber-attacks, First Step

Processing Measurement Cyber-Attack Step 1
J(®) = 571.25 > C = x234.905 = 382.93 = Attack Detected!
CME" Descending List
Measurement Jii CMEY CNE
Q:16-01 2.4920 | -7.0285 | -7.5732
Q:48-38 3.4559 6.3743 6.6358
P:47 1.8864 4.7324 5.3562
P:48-38 2.3756 4.2930 4.6578
P:38-48 2.3708 | -4.2100 | -4.5692
Q:16 0.3575 2.8415 8.4126
Meas. with [CMEY| > 3 u CME" CNE
Q:16-01 = 0.0652 2.4920 | -7.0285 | -7.5732
Corrected Measurement: Q:16-01 — CNE*a = 0.0705
(Approximation Error = 0.1416%)

After the correction of the measurement Q.:/6-01 and a re-
estimation, in the second step of the routine, it was obtained
J(®) = 479.02 > C = x330,005 = 382.93, thus, another attack
was detected. By analyzing the CME" descending list,
presented in Table XI, one notices the presence of several
measurements that belong and measurements adjacent to the
line 38-48 with the CME" above the threshold, which
characterizes a parameter attack. Then, the parameters of this
line are corrected using the relaxed model strategy, with results
presented in Table XIL

TABLE XI - IEEE-57: Processing Cyber-attacks, Second Step

Processing Measurement Cyber-Attack Step 2
J(®) = 479.02 > C = x234.905 = 382.93 = Attack Detected!
CME" Descending List
Measurement 1 CME" CNE

Q:48-38 3.4901 7.2657 7.5581

P:38-48 2.3919 -4.4770 -4.8525

P:48-38 2.3967 43814 4.7474
P:48 0.5702 -4.2771 -8.6345
Q:38 0.5691 3.3398 6.7522
P:47 1.8847 3.2802 3.7133

TABLE XII - IEEE-57: Corrected Parameters

Parameters Correction
Parameter Database | Erroneous | Corrected | Approximation
Value Value Value Error
J38-48 9.4641 8.8016 9.4641 0%
b3g_4g -14.6208 -13.5973 -14.4754 0.9944%
b3 0 0 0 0%

In the third step, after the correction of the parameters, it was
obtained J(X) = 458.57 > C = x339.005 = 382.93, thus,
another attack was detected. Then, the CME" descending list
was built, as presented in Table XIII, and the attack was
identified in the measurement P:47. After the identification,
this measurement was corrected by its corresponding CNE =
5.3265.

TABLE XIII - IEEE-57: Processing Cyber-attacks, Third Step

Processing Measurement Cyber-Attack Step 3
J(®) = 458.57 > C = x234.905 = 382.93 = Attack Detected!
CME" Descending List
Measurement Ji4 CMEY CNE
P:47 1.8977 | 4.7123 5.3265
Q:38-48 3.2656 3.8757 4.0534
Q:21 1.5574 2.9321 3.4845
Q:46 0.6535 2.5156 4.5985
P:46 0.3581 2.4642 7.3091
Q:11 2.6327 2.3148 2.4762
Meas. with [CMEY| > 3 u CME" CNE
P:47=-0.2792 1.8977 | 4.7123 5.3265
Corrected Measurement: P:47 — CNE*o = -0.2949
(Approximation Error = 0.0339%)

After the correction of the measurement P:47, a new
estimation was performed and it was obtained J(X) =
427.62 > C = Y339.005 = 382.93, thus, another attack was
detected. By analyzing the CME™ descending list, the attack
was identified in the measurement Q:38-48, as presented in the
Table XIV, and its value was corrected by its corresponding

CNE = 4.8325.
TABLE XIV - IEEE-57: Processing Cyber-attacks, Fourth Step

Processing Measurement Cyber-Attack Step 4
J(®) = 427.62 > C = x234.905 = 382.93 = Attack Detected!
CME" Descending List
Measurement Jii CMEY CNE
Q:38-48 3.2652 4.6207 4.8325
P:13-12 0.1846 | -2.0146 | -8.0987
Q:07 1.3844 2.0027 2.4706
Q:22 1.5885 1.8727 2.2129
Q:45 3.8018 1.8457 1.9085
Q:11 2.6327 1.8051 1.9309
Meas. with [CMEY| > 3 u CME" CNE
Q:38-48 =-0.1842 3.2652 4.6207 4.8325
Corrected Measurement: Q:38-48 — CNE*g =-0.1937
(Approximation Error = 0.1033%)

After the correction of the measurement Q.38-48, a new
estimation was performed and it was obtained J(X) =
198.06 < C = x330.005 = 382,93, thus, no attack was
detected. As a conclusion, in this attack scenario, one could
verify that the proposed methodology obtained good results,
even in a case with simultaneous measurement and parameter
attack. An observation can be made regarding the initial
approximation error (0.9944%) between the estimated value
and the true value for the parameter b;g4_,5. One may notice an
approximation error larger than the ones obtained in other
scenarios, which is justified by the presence of two attacked
measurements in the neighborhood of the affected line. Still, the
correction of the attacked measurements, a final parameter
estimation was performed, as proposed on the relaxed model
strategy, with results presented in Table XV.

TABLE XV - IEEE-57: Corrected Parameters
Parameters Correction

Parameter Database | Erroneous | Corrected | Approximation
Value Value Value Error
J38-48 9.4641 8.8016 9.4641 0%
b3g_4g -14.6208 -13.5973 -14.6106 0.0698%
b3 0 0 0 0%




The approximation error was greatly reduced (smaller than
0.1%), which demonstrates the accuracy of the proposed
solution.

VI. CONCLUSION

This paper has presented a formal proof of how parameter
errors spread out to the measurements functions containing the
parameter in error. After, an analytical methodology for smart
grid cyber-physical security as a malicious data attack was
introduced. The proposed method uses an innovation approach
for cyber-attacks detection, identification and correction.
Cyber-attacks are modeled as bad data. The methodology
considers, during equation derivation, potential cyber-attacks
on measurements and parameters. The detection test is based on
a composed measurement error analysis. Cyber-attacks
identification is based on the Generalized Largest Normalized
Error test, in this paper developed. Correction of cyber-attacks
is made using the composed normalized error and a relaxed
model strategy. Simultaneous cyber-attacks are considered,
even when the measurements belong to the image of the
Jacobian, presenting clear contributions to the malicious data
injection attack state-of-the-art. A big advantage of the
proposition is it does not require a previous knowledge of how
the attack was performed, as far as it is restricted to a change of
measurements or parameters, since the error is estimated and
then the altered quantity is corrected. Still, the SE software does
not require major changes for the implementation of the paper
ideas.
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