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ABSTRACT. By using bifurcation theory, we investigate the local asymptotical
stability of non-negative steady states for a coupled dynamic system of ordinary
differential equations and partial differential equations. The system models
the interaction of pelagic algae, benthic algae and one essential nutrient in
an oligotrophic shallow aquatic ecosystem with ample supply of light. The
asymptotic profile of positive steady states when the diffusion coefficients are
sufficiently small or large are also obtained.

1. Introduction. In this paper, we consider the following coupled system of two
ordinary differential equations and two parabolic partial differential equations:

ou 02U oUu  r,RU

F uﬁ—saer—muU, 0<z< Iy, t>0,
WV, i>0,
%]::Dr?;z?'i_cuﬂumu[]_m; 0<z<Ly, t>0,
(g}tva: I%(Wsed -W) - LaQ(Wa—UR(Ll,t)) + cufomyV — %, t>0,
Du—(0,1) = sU(0,) = 0, Dy——(L1,t) = sU(L1,t) =0, t>0,
aa—f(o,t) = O,DT%(Ll,t) =a(W(t) — R(Ly,t)), t > 0,(1)
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which was proposed and analyzed in [33]. Here all the variables and parameters of
the model (1) and their biological significance are listed in Table 1, and we assume
that s € R, By, By € [0,1] and the remaining parameters are all positive constants.
Model (1) characterizes the interactions of pelagic algae, benthic algae and one
essential nutrient in an oligotrophic shallow aquatic ecosystem with ample supply
of light (see Fig.1 of [33]). In view of practical biological facts in model (1), we
have three basic assumptions: (i) Lo < Ly; (ii) the benthic habitat closely contacts
with the sediment and dissolved nutrients in the benthic habitat are well mixed and
homogeneous in space; (iii) benthic algae move very slowly or are motionless, so
they are spatially uniformly distributed.

TABLE 1. Variables and parameters of model (1) with biological meanings.

Symbol Meaning Symbol Meaning

t Time z Depth

U Biomass density of pelagic algae 14 Biomass density of benthic algae

R Concentration of dissolved nutrients W Concentration of dissolved nutrients
in the pelagic habitat in the benthic habitat

D, Vertical turbulent diffusivity of D, Vertical turbulent diffusivity of dis-
pelagic algae solved nutrients in the pelagic habitat

s Sinking or buoyant velocity of pelagic 7,7, Maximum specific production rate of
algae pelagic algae and benthic algae, re-

spectively

My, My Loss rate of pelagic and benthic algae, v, Yo Half saturation constant for nutrient-

respectively limited production of pelagic algae
and benthic algae, respectively

Cus Co Phosphorus to carbon quota of pelagic =~ Wseq Concentration of dissolved nutrients
algae and benthic algae, respectively in the sediment

Ly Depth of the pelagic habitat (below Lo Vertical extent of the benthic habitat
water surface)

a Nutrient exchange rate between b Nutrient exchange rate between sedi-
pelagic and benthic habitat ment and benthic habitat

Bu Nutrient recycling proportion from g, Nutrient recycling proportion from
loss of pelagic algal biomass loss of benthic algal biomass

There is accumulating evidence suggesting that the distributions of pelagic algae
in aquatic ecosystems exhibit strong spatial heterogeneity [3, 4, 12, 13, 15, 30].
In [33], the model (1) is established to consider the effect of spatial heterogeneity
on the interactions of pelagic algae, benthic algae and one essential nutrient. The
existence, uniqueness and classification of non-negative steady states are obtained in
[33] to characterize sharp threshold conditions for the regime shift from extinction
to coexistence of pelagic and benthic algaes.

The present paper is a continuation of studies in [33], and here we provide the
answer to the following two questions:

1. the local asymptotic stability of non-negative steady states in model (1) by

applying bifurcation theory and associated linear stability theory;

2. the asymptotic profile of positive steady states when the diffusion coefficients

Dy, D, are sufficiently small or large in model (1).

It has long been recognized that pelagic algae and benthic algae are both poten-
tially important primary producers in the aquatic ecosystem. As a good indicator of
water quality and climate change, pelagic algae generally drift in the water column
of lakes and oceans ecosystem, and compete with each other for essential resources
such as nutrition and light [3, 4, 12, 30, 31, 32]. It should be noted that the types
of pelagic algae competing major resources are not the same in different aquatic
environments. In an eutrophic aquatic environment, pelagic algae tend to compete
only for light [5, 6, 7, 9, 11, 16, 18, 21], while in a shallow or oligotrophic aquatic
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environments, pelagic algae tend to compete only for nutrients [10, 19, 20, 26]. In
the streams, rivers or shallow lakes, benthic algae provide the main energy base in
driving production for higher trophic levels. Accordingly, benthic algae are often
more important than pelagic algae in these situations. Especially, in some shallow
and clear-water aquatic environments, both planktonic algae and benthic algae ex-
ist simultaneously and compete fiercely for nutrition and light [8, 14, 22, 24, 25].
This competitive relationship as one of the challenges associated with understanding
benthic-pelagic coupling has been described by using ordinary differential equations
[14, 22, 24, 25].

The rest of the paper is organized as follows. In Section 2, we introduce some
basic preliminary results on bifurcation analysis in order to establish the local as-
ymptotic stability of non-negative steady states in model (1). Section 3 is devoted to
establishing the locally asymptotically stable results of non-negative steady states
in model (1) by applying the bifurcation theorems. In Section 4, we investigate
the asymptotic profile of positive steady states when the diffusion coefficients are
sufficiently small or large in model (1).

2. Preliminaries. In this section, we give a short overview on some notations,
definitions and well-known results for bifurcation theory that are important for the
present study.

Let (X, ]| -|),(Y,]| - |l) be Banach spaces and X is continuously embedding in
Y. For a linear operator L, we denote N (L) as the null space of L and R(L) as
the range space of L. Also L[w] denotes the image of w under L, and if L is a
multilinear operator, L[wi,ws, - - ,wy| denote the image of (wy,ws, - - ,wy) under
L.

Consider a steady state equation

F()\7 u) = 07

where F': R x X — Y is a nonlinear mapping and sufficiently smooth. For a given
(Mo,up) € R x X, let U be a neighborhood of (Mg, up) in R x X. The following
bifurcation theorems are well-known, and we recall them for the convenience of
readers. The first result is the local bifurcation theory known as “bifurcation from
simple eigenvalue”, and the second result shows the stability of bifurcating solutions
obtained in the first one.

Theorem 2.1 (Theorem 1.7 in [1]). Assume that

(a1) F(Auo) =0 for all (\,ug) € U;

(ag) dim N (Fy, (Ao, up))=codimR(F, (Ao, up))=1 and N (F, (Ao, uo))=span{wq};

(a3) Fiu(Aosuo)[wo] & R(Fu(Ao,uo))-

Then the solution set of F(A\ u) = 0 near (Ao, ug) consists precisely of the curves
u=uwg and T : {(A(s),u(s)) : s € I :== (—e,e)}. Here \: I - R,z : 1 — Z are
both continuously differentiable functions such that u(s) = ug + swg + sz(s), A(0) =
X0, 2(0) =0, and

(1, Fuu(Xo, o) [wo, wo))

2(1, Fxu(Ao, uo) [wo])

where | € Y* (dual space of Y') satisfies R(EFy (Mo, u0)) = {p €Y : (I,¢) = 0} and
Z is the complement of span{wy} in X.

N(0) = —
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Theorem 2.2 (Corollary 1.13 and Theorem 1.16 in [2]). If (a1)-(a3) hold and
{(A(t),u(t))} is the corresponding solution curve I' in Theorem 2.1, then there exist
C? functions

v:(Ao—e ote) 2Rz (Ao—eg, ote) = X, u:(=6,0) >R w:(—6,0) > X
such that

F,(A\ uo)z(A) =v(N)z(A) for A€ (Ao — &, X0 + €),
Fu(A(7), u(m))w(T) = p(r)w(r) for 7 € (=06,0),

where y(Ag) = 1(0) =0, z(Ag) = w(0) = wy. Moreover, near 7 = 0 the functions
w(7) and —7 N (7)7'(Ao) have the same zeros and, when u(t) # 0, the same sign,
or more precisely,

o~ O0)

=1.
T—0 /_},(7’)

Next we recall the following global bifurcation results under essentially same
conditions as the above local bifurcation theorem, and more results of its application
can be found in [28, 29].

Theorem 2.3 (Theorem 4.3 in [23]). If (a1 )-(a3) hold and F, (A, u) is a Fredholm
operator for all (\,u) € U, then the curve ' is contained in C, which is a connected
component of S where S = {(A\,u) € U : F(\u) = 0,u # ug}; and either C is not
compact in U, or C contains a point (A, ug) with Ax # Ag.

Let I' be defined as in Theorem 2.1 and C be defined as in Theorem 2.3. We
define Ty = {(A(s),u(s)) : s € (0,e)}, T— = {(A(s),u(s)) : s € (—&,0)} and CT
(resp. C7) as the connected component of C \ I'_ which contains I'; (resp. the
connected component of C \ 'y which contains I'_).

Theorem 2.4 (Theorem 4.4 in [23]). Assume that all conditions in Theorem 2.3
hold. If

(b1) Fu(X ug) is continuously differentiable in X for (A ug) € U;

(ba) the norm function u— ||ul| in X is continuously differentiable for any u # 0;

(bs) for k € (0,1), (1 — k)Fu(X uo) + kFu(A,u) is a Fredholm operator if (X, up)
and (A, u) are both in U.

Then each of the sets CT and C~ satisfies one of the following: (i) it is not compact;
(ii) it contains a point (A, ug) with A # Ao; or (iil) it contains a point (A, ug + z),
where z # 0 and z € Z.

3. Bifurcation analysis for the algae growth model. In this section, we in-
vestigate the local asymptotical stability of the non-negative steady state solutions
of model (1) by using bifurcation method.

We first recall the following possible non-negative steady state solutions of model
(1). Let Ey = (0,0, Ry, W7) be the nutrient-only semi-trivial steady state, where
(Ry,W1) solves

R'=0,0<z<Ly,
b(Wsed - W) - a(W - R(Ll)) =0, (2)
R(0)=0,D,.R(L1) = a(W — R(Ly)).
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In fact, by (2), we have E; = (0,0, Wyeq, Weeq). Let Eo = (0, Va2, Ro, W3) be the
benthic algae-nutrient semi-trivial steady state, where (Va, Ro, W5) satisfies

roW =0

W—|—’y,u v T Y

R'=0,0<z< Ly,

bWy — W W — R(L L Wy ¥
sed — - - + ¢y vy — Y0 =Y,

(Wi = W) = alW = RL) + ol (o, — 73 )

R'(0) =0,D,R'(Ly) = a(W — R(L1)).

By solving (3), we find Vo = b(Wseq—Wa)/[comyLa(1—5,)], Re = Wa = yymy /(14—
my). Let B3 = (Us, 0, R3, W3) be the pelagic algae-nutrient semi-trivial steady state,
where (Us, R3, W3) solves

R
DuU"—sU’+<R’"jw —mu)U:O, 0<z<Ly,
Wy RU
D.R" + c,BumyU — Cul” =0, 0<z< L,
R+, (4)

b(Waea — W) — a(W — R(Ly)) = 0,
D,U'(0) — sU(0) = DU (Ly) — sU(Ly) =0,
R'(0) = 0,D,R'(Ly) = a(W — R(Ly)).

From (4), we obtain W3 = (aR3(L1) + bWseq)/(a +b). Let Ey = (Uy, Vi, Ry, Wy)
be a coexistence steady state, where (Uy, Vi, Ry, Wy) satisfies

DuU”—sU’+(%—mu>U:o, 0<z< L,
R+
roW
— My = 07
Wty
1 cury RU
D.R" + ¢, B,m,U — R+, =0, 0<z< Ly, (5)
b(Wsea — W) —a(W — R(L1)) + ¢, L (ﬁ my — W )V—O
sed 1 v4i2 vty W""Y'U — Y
D, U'(0) — sU(0) = DU (L1) — sU(Ly) = 0,
R'(0)=0,D,R (L) = a(W — R(Ly)).

Proposition 3.1 in [33] shows that a coexistence steady state can only exist when
0<my <ry, and 0 < m, <r,. By solving (5), we have

bWaea = Wa) = a(Wa = Ra(ln)) -y

CvvaQ(l - Bv) Ty — My .

Vi= (6)
From Lemma 3.10 in [33], we have 0 < R4(L1) < vyMy /(75 —my). This means that
if

rvbWsed

0<B, <1, 0<my< ,
<8 m Yola +b) + bWseq

then V4, Wy > 0.

The local asymptotically stability results of F; and E5 have been established in
[33] (see Theorems 3.2 and 3.4). The existence of E3 and Ej; were proved in [33]
by using a priori estimates and degree theory, and it is also known that each of
E5 and Ej is unique and non-degenerate (see Theorems 3.8 and 3.11 in [33]). We
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now are concerned with the local asymptotical stability of F3 and E4 with the help
of bifurcation analysis. In the following discussion, taking m, as the bifurcation
parameter, we explore the following two cases:
e [3 bifurcates from E; at m, = m}, where m} = r,Wsea/ Wsed + Yu);
e F, bifurcates from Es at m, = mr*, where m** = ry,y,my /[y + Yu(ry —
my)].

3.1. Es bifurcating from E; at m, = m]. In this subsection, we consider the
bifurcation of pelagic algae-nutrient semi-trivial steady state F3 from nutrient-only
semi-trivial steady state E; at m, = m},. We first investigate the local bifurcation
theorem and local asymptotical stability of E3. For the convenience of the following
discussion, we denote

h=(Bu—1ecym), c1 =

u?

Dih | Duh(a+b)] s [DuhLy  Duha+b)
52D, abs : sD, abs ’
(7)

2
Duh Dyl (3D,

D(z) = /PWZ W(z) = +c¢ for 0<z< Ly, (8)

sD, s2D,
and a
0= W(Ly). 9
a+b (L) (9)
Theorem 3.1. If
0<Bu<1, 0<my, <m), my, >0, (10)

then there is a smooth curve I'g, of positive solutions of (4) bifurcating from the line
of trivial solutions fEl = {(muy,0, Wsed, Wsed) : my, > 0} at m,, = mJ. Moreover,
1. near {(mk,0, Wseq, Wsea) }, there exists a positive constant & > 0 such that all
the positive solutions of (4) lie on a smooth curve

fES = {(mu(7)7U(T7 Z)aR(T; Z),W(T)) 0<T< 6},

where U(T,z) = 7®(2) +791(7, 2), R(T, 2) = Weea+7Y(2) +792(7, 2), W(T) =
Wsea + 70 + 7g5(7), and my(7), gi(7,-)(i = 1,2), g3(7) are smooth functions
defined for T € (0,8) such that m,(0) = m%, m,(0) <0, g;(0,-) =0( = 1,2)
and g3(0) = 0;

2. for T € (0,9), the bifurcating solution (m,(7),U(t,z), R(r, z), W (7)) is locally
asymptotically stable with respect to the following reduced equation without
benthic algae:

%]: “(Z;_Sgng;ufi_m“U’ 0<z<ILq, t>0,
8@—?: T?;z+c“ﬁum“U_M’ 0<z< Ly, t>0,
= - (Wawa = W) = (W — R(L4.0) >0, (1)
Du%(w) — sU(0,t) =0, Dug—Z(Ll,t) —sU(Ly1,t) =0, t>0,
g—]:(o,t) =0, Drg—f(Ll,t) =a(W(t) — R(L1,t)), t > 0.

3. If in addition my, > 1,Wsea/(Wsed + Vo), then the bifurcating steady state
solution E3(1) = (my(7),U(T,2),0,R(7,2),W(T)) is locally asymptotically
stable with respect to the full system (1) for T € (0,9).
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The result in part 2 here shows that the bifurcating pelagic-algae-only steady
state solution Fj is locally asymptotically stable in the absence of initial benthic
algae (in such case, the system (1) is effectively reduced to (11). On the other hand,
if initially there is benthic algae but the death rate of the benthic algae m,, is large,
then part 3 shows that the bifurcating pelagic-algae-only steady state solution F3
is locally asymptotically stable with respect to the full system. We prove part 1
and 2 of Theorem 3.1 here, and postpone the proof of part 3 to subsection 3.2.

Proof of Theorem 3.1 part 1 and 2. Let
X, :={U € C?0, L] : DU'(0) — sU(0) = DU'(L1) — sU(Ly) = 0},
Xy :={Re€C?0,Ly]: R(0) =0}, Y :=0C[0,L,].

Denote X := X; x X3 xR, and define a nonlinear mapping F : RT x X — Y xY xR
x R by
roR(2)U(2)
D, U"(2) = sU' (2) + —————"—""2 —m,U(z
(2) = sU"(2) + T %)

"(2) + cuyBumuU(z) — ¢ 77““]%(2')
F(my,U(z2), R(2), W) = o (b)+ i "R(2) +
7, Wee = W) = (W = R(Ly))

DTR/(Ll) — CL(W — R(Ll))

U(z)

(12)
It is clear that F'(mu, 0, Wsed, Wseq) = 0 which implies that the assumption (a;)
holds in Theorem 2.1.

We now prove that (ag) holds in Theorem 2.1. It follows from Theorem 3.8 in [33]
that (4) has a semi-trivial steady state E5 under the assumption (10). We linearize

the system (12) about a steady state (U(z), R(z), W) and obtain

Fu,rw)(ma, U(2), R(2), W)[p(2), ¢(2), (]

1 / ruR(z) ruyuU (2)
Dup(2) = 5¢'(2) + g = ma ) () + g
B curu R(2) ; "y Cgru’YuU(Z) -
| (et 2 Y o) 4 Do) - S|y
a a+b
oLy = ¢

Dy ¢'(L1) — a(C — ¢(L1))

and then, at (my,U(2), R(2), W) = (m%,0, Wyea, Wsea), by simple calculations we
get

F(U,R,W) (m:lv 0, WSEd7 Wsed) [QD(Z), ¢(Z)7 C]
Dy (2) — s¢'(2)
cumiy (Bu — 1)¢(2) + Dr¢" (2)
a a+b
o) — ¢
Dy ¢'(L1) — a(C — ¢(L1))

(14)
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Denote L := Fy gw) (m},0, Weeq, Weea) . If [®(2),¥(2),0] € N(L), then we

u?
have

D,®"(z) — s®'(2) =0, D,®(z) — sP(2)|,=0,1, =0, (15)
cyml (By — 1)®(2) + D, 9" (2) =0, (16)
a a+b
E@(Ll) = 0 =0, (17)
D, V(L) — a(® — U(L,)) = 0. (18)

By (15), we get easily that ®(z) = e(*/P«)*_ Substituting ®(z) into (16), we obtain
the expression of ¥(z) in (8). Combining the boundary condition D, ¥’'(L;) +
ab/(a + b)¥(Ly) = 0, which follows from (17) and (18), we can uniquely identify
the constant ¢; as (7). Substituting ¥(z) into (17), we have © = W(Ly). This
shows that dim N (L) =1 and N (L) = span{(®(2), ¥(z),0)}.

We next consider the codimension of R(L). Suppose that (f1(2), f2(2), fs, f4)* €
R(L), then there exists [¢(z), #(2),¢] € C?[0, L1] x C?[0, L1] x R such that L{p(2),

#(2),¢] = (f1(2), fQ(Z),fg,f4)T, that is

_a
a+b

D" (z) = 5¢'(2) = f1(2), Du¢'(z) = s0(2)|.=0,, =0, (19)
(cuBumy — cumy,) ©(2) + Dr¢"(2) = fa(2), (20)
L%¢<L1> - aLtbc = fs, (21)

D, ¢'(L1) — a(¢ — ¢(L1)) = fa- (22)

Multiplying both sides of (15) and (19) by ¢(z) and ®(z), respectively, subtracting
and integrating on [0, L], also combining the boundary conditions in (15) and (19),
we have

o [ o= [ o) (e ) - oo (w5 ) ]

0

This shows that
Ly

R(L) = {(fl(z), fo(2), fa, f)T €Y x Y xR x R: fi(2)dz = o} ,

0

and codimR(L) = 1.
From (13), we have

qu,(U,R,W) (m;ku 0, Wsed7 Wsed) [q)(z), \I/(Z), @] = (_(I)(Z) cuﬁuq)(z) 0 O)T y

which yields that F, «,rw) (M5, 0, Wsea, Weea) [2(2), ¥(2),0] ¢ R(L). This im-
plies that the assumption (ag) holds in Theorem 2.1.

By applying Theorem 2.1, we conclude that there exists an open interval I =
(0,6) with 6 > 0 and C! functions m,, : I — R, gi(-,2) : [ — Z(i = 1,2), and
g3 : I — Z, where Z is any complement of span{(®(z), ¥(z),0)}, such that the
solution set of (4) near (mZ,0, Wsed, Wseq) consists precisely of the curves

fEH = {(mua 07 Wsed7 Wsed) DMy > 0}7



A REACTION-DIFFUSION PELAGIC-BENTHIC ALGAE GROWTH MODEL 2333

and

f‘E = {(mu( )7 ( )7R(T7 Z)7 W(T)) 1T E ]},
where U(T, 2) = 7®(2) + 91(7, 2), R(7, 2) = Wsea + TV(2) + g2(7, 2), W(T) = Wsea +
7O + g3(7), my (0) = m%, ¢;(0,-) = (z =1,2), g3(0) = 0 and

(I, Furwyw,rw) (M, 0, Weeq, Weea) [2(2), ¥(2), 0]%)

mU(O) - 2<l, qu(U,R,W) (muaO?WsedaWSEd) [(D<Z)"II(Z)’@]>
f 2“‘7% z z)dz 23
/0 (Wsed+7u)2®( . ()

)

Ly
Sz
—2/ eDudz
0

where [ is a linear functional on ¥ x Y x R x R defined as (I, (f1(2), f2(2), fs, fa)) =
fOLl f1(2)dz. From (10) and (7), we have h < 0, and from the fact that ¥(z) is

nondecreasing in z (since ¥'(z) = fﬁf(l — eDPu)), we have U(z) < U(L;) =
W( —1) < 0 on [0,L1]. According to (23), we get m,,(0) < 0. This

completes the proof of part 1.
Now we consider the stability of bifurcating solutions. In view of Theorem 2.2,
there exist continuously differentiable functions

v:(mi —e,m; +e) >R, [@,q@,é] c(mi—e,mi4e) = X, p:(—0,0) >R
and [p*, ¢*,(*] : (—4,6) — X such that

Fu,rw) (M, 0, Wea, Wiea) [@(mu), dg(mu)v é(mu)] (24)
=y(mu)[p(mu), é(mu), (M), O]Ta
Fu,rw) (mu(7),U(7), R(7), W(7)) [¢"(7), ¢"(7), " (7)] (25)

=u(7)[p* (1), " (1), ¢* (1), 0]
From (13), we have y(m,) = m} — my, and v'(m,) = —1. Moreover y(m}) = 0
is the principal eigenvalue of F(y g, w) (M, 0, Wsed, Wea). Hence the perturbed ei-
genvalue 4(7) is also the principal eigenvalue of Fiy, g,wy (M. (1), U(T), R(T), W(T)).
Now from Theorem 2.2 and m/,(0) < 0, we find p(7) < 0 for 7 > 0 small. Hence
(my(7),U(7,2), R(7,2), W(7)) is locally asymptotically stable with respect to the
system (11). This completes the proof of part 2. O

Remark 3.1. In Theorem 3.1, we assume that 0 < 3, < 1. This is because that if
Bu = 1, then (4) reduces to

R
DuUN_SU/“F( 4 _mu>U:07 0<Z<L1’
R-F’YuRU
Dy R + camaU — S5, 0<z< Ly,

D, U'(0) —sU(0) = DU (L) —sU(L1) =0,
R'(0) = R'(Ly) = 0.
This means that pelagic algae and dissolved nutrients in the pelagic habitat consti-
tute a closed system with internal continuous cycle in ecology. In this case, authors
in [33] showed that tli}m ﬁ JoU(z,t)dz = oo if 3, = 1 by numerical method.
o9}

Considering practical biological significance, here we assume that 0 < 3, < 1.
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Next we prove the global bifurcation property of the branch r B, First we have
the following a priori estimates for positive solutions (Us, R3, W3) of (4).

Lemma 3.2. Assume that (Us, R3, Ws) € C([0, L1]) x C([0, L1]) x R4 is a positive
solution of (4) and B, € [0,1). Then

(i) % < R3(2) < Wseq  for all z €0, Lq];
(i) 0 < W3 < Wieas
(iii) for any € > 0, there exists a positive constant A(e) such that ||Uslle < A(e)

if my, € [e,m}), and ||U3"|cc = 00 as m, — 0.

Proof. The results have been proved in Lemma 3.6 of [33] except the statement that
US| — o0 as m,, — 0. Suppose this is not true, then there exists a sequence
of m,, denoted by m,, := m!, and corresponding positive solutions (U3, R}, Wi)
of (4) such that m,, — 0 and ||U}|jcc — C < 00 as n — oco. By using LP theory
for elliptic operators and the Sobolev embedding theorem, after passing to a sub-
sequence if necessary, we may assume that Uy — U* in C'[0, L;] as n — oo since
{U3} is bounded in L*°(0, Ly ). Integrating the first equation of (4) on [0, L;], we
have .
vor,RE(2)

o RE(2) 4+

From part (i) and (26), we obtain that

Ui(z)dz — 0, as m, — 0. (26)

Ly
/ U3 (z)dz — 0, as m, — 0. (27)
0

On the other hand, integrating the second equation of (4) on [0, L], we get
Ly

Ly n
curu RE (2)
0= D, (R} (L1) + cuBumn Uf”zdz—/ e BN U (2)dz,
(R5)' (L) M- [ B
which contradicts with (26)—(27) and R} is strictly increasing on [0, L] showed in
Lemma 3.6 of [33]. Therefore |U3" ||cc — 00 as m, — 0. O

Now we state the global bifurcation theorem of the steady state solution Ejs.

Theorem 3.3. Let St be the set of positive solutions to (4). Then ST is a smooth
curve in RT x X in form

ST = {(mu, Us(muy, 2), R3(my, 2), Wa(my,)) : 0 < m, < mi:} (28)
satisfying lim  (Us(mu, ), R3(may, ), Wa(my)) = (0, Weed, Wsed), and  lim
my—(m})~ Moy —0t

|Us (m; ) ]oo = o0

Proof. From ‘Theorem 3.3 and Remark 3.4 of [23], it is easy to check that for any

fixed (U(2),R(z),W) € X,
Furw)(ma,U(z),R(z), W) : X Y xY xRxR

is a Fredholm operator with index zero. By applying Theorem 2.3, we obtain
a connected component C of the set S of all solutions to (4) emanating from
(my,U(z), R(2), W) = (m%,0, Wsed, Wsea). Let

P= {(U(z),R(z),W) €X:U(2)>0,R(z)>0,W >0 for 2 € [O,Ll]}.

Then C* := CN (R x P) # ¢.
Let C* be the component of C \ {(my(7),U(r,2), R(T,2),W (1)) : =6 < 7 < 0}
containing {(m(7),U(7,2), R(7,2z),W(7)) : 0 < 7 < §} and C~ be the component
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of C\{(m(7),U(7, 2), R(7,2), W (1)) : 0 < 7 < §} containing {(m., (1), U(T, 2), R(T,
2),W(r)) : =6 < 7 < 0}. It follows from Theorem 2.4 that each of C* and C~
satisfies one of the following three cases:

(1) It is not compact in X;
(2) It contains a point (M, 0, Wsed, Weeq) with m,, # m;
(3) Tt contains a point (my, U(2), Weeq+R(2), Wea+W), where 0 # (U(z), R(2),
W) € Z, Z is a closed complement of V(L) = span{®(z), ¥(z), 0} in X.
Without loss of generality, we take

Z = {(ﬁ(z),R(z),W) ceXx: /0 1[U(z)<1>(z) + R(2)¥(2) + WO]dz = 0} . (29)

where ®(z), U(z), © are given in Theorem 3.1.

We only consider CT. From the strong maximum principle and connectedness of
C™, all solutions (U(z), R(2), W) of (4) on CT satisfies U(z) > 0, R(z) < Wieq and
W < Wieq from Lemma 3.2.

If case (2) holds, then N(E) # {0}, where L= Fu,r,w) (M, 0, Weeq, Wsea) for
my, # mi. Indeed from Lemma 3.6 in [33], we must have 0 < m, < m}. Then
similar to (14)-(18), if [®(z), ¥(z), 0] € N'(L), then we have

D,®"(z) — s®'(2) + (m), — My, )®(2) =0, D,®'(2) — sP(2)|,=0,1, =0,

and (16)-(18) still hold. Thus we must have ®(z) = e?bu cos (kgf) for k € N.

Hence follow the same argument as in the proof of Theorem 3.1, we have the solu-
tions of F(m,,U, R,W) near (m,U, R,W) = (M, 0, Wseq, Wseq) are in form

{(mu(’r)’ U(T’ Z)a R(Ta Z)v W(T)) ‘T E (*57 5)} )

where m,, (0) = 1y, U(T,2) = 7®(2) + 791 (7, 2), R(7, 2) = Wsea+7Y(2) +7g5(T, 2),
W(T) = Wseq + 70 + 795(7), and ¢j(7,-)(i = 1,2), g4(7) are given as in Theorem
3.1. But U(r, 2) is always sign-changing as ®(z) is sign-changing. This contradicts
with the assumption that any solution in C* is positive. Hence case (2) cannot
happen.

If case (3) holds, then there exists m, € (0,m*), such that (U(z), Weeq +
ﬁf(z), Wsed+W) is positive and it satisfies F'(m,,, f](z)7 Wsed+R(z), Wsed+W) =0.
From Lemma 3.2, we have W.q + R(z) < Weeds Weed + W < Wyeq and 0(2) > 0.
Thus U(z) > 0, R(z) < 0 and W < 0 and it implies that

/ "0 (2)0() + RE)W() 1 WOlds > 0 (30)
0

since ®(z) > 0, ¥(z) < 0 and © < 0 from the proof of Theorem 3.1. But (30)
contradicts with (29), which implies that case (3) cannot happen either. Hence case
(1) must occur for C*.

According to case (1), CT is not compact in X', which implies that it is unbounded
in X by the elliptic regularity theory. By Lemma 3.2, if m,, € [¢,m*) for any € > 0,
then (U(z), R(z),W) is bounded. And also when m, = 0, (4) has no positive
solution. Thus, the projection of C* on the m,-axis must be the interval (0, m}),
and as shown in Lemma 3.2, ||U||cc — 00 as m,, — 0%. Now from Theorem 3.8
of [33], the positive solution of (4) is indeed unique and non-degenerate. Therefore

CT must be a smooth curve in form of (28) from the implicit function theorem, and
St =Ct. O
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Theorem 3.3 shows the continuous increase of the pelagic algae from 0 at m, =
m;, to oo as m,, = 0, and the stability proved in Theorem 3.1 shows that this steady
state Ej3 is locally asymptotically stable near m, = m? for the dynamics of (11)
and the dynamics of (1) if m, is large. The stability of E3 for m, not near the
bifurcation point is still not known.

3.2. E, bifurcating from Es at m, = m.*. In this subsection, we still use m,, as
a bifurcation parameter, and consider the bifurcation of positive solution F, from
the branch of semi-trivial solutions

b(Wsed - WQ) Yoy Yoy
I'g, = w0, Vo=——"7-"—"—"""— Ro=—— Wo=—"——] :my >0
2 { (m 2 comyLa(1 — 3,) 2 —my 2, —my My >

at m,, = m}*. Let

D2l Dyh| i DyhL;  Dyh

— *k _ 1 — u u Do — u u 1
h=cumy(Bu=1), 2 [SQDT as 16D l sD, T | (31)

- Dyh D2h - - . a®(Ly)
U _ u _ u (s/Dy)z ) _ (s/Duy)z ©0=07T= )
@) =3p.*te~ap.© () =€ ’ T comeLa(1— By)
(32)

Theorem 3.4. Assume that
’UbWSC

0< Busfo <1, 0<my<m:, 0<m,< ——-2 s (33)

Yola +b) +bWieq
Then there is a smooth curve I'g, of positive solutions of (5) bifurcating from the
line of trivial solutions {(my, 0, Va, Re, Wa)} at m,, = m2* such that
1. near (m2*,0,Va, Ra, W3), there exists § > 0 such that all the positive solutions
of (5) lie on a smooth curve

sz; = {(mu(T)vU(Tv Z),V(T),R(T z), W( )) 0<T< (5}

where U(t,z) = 7®(2) 4+ 7hi(1,2), V(1) = Vo + 71 + The(r, 2), R(1,2) =
Ro(2) +79(2) + Tha(1, 2), W (1) = Wa 4+ 70 + Thy(7), and my (1), hi(r,)(i =
1,2,3), ha(7) are smooth functions defined for 7 € (0,0) such that m,(0) =
mi*, m.(0) <0, h;(0,:) =0(i = 1,2,3) and hs(0) = 0;

2. for T € (0,0), the bifurcating solution (m.,(7),U(T,2),V(T), R(T,2), W(T)) is
locally asymptotically stable with respect to (1).

Proof. Define a nonlinear mapping G : RT x X x Rx Xo xR - Y xRxY xR xR
by
G(my, U(2),V, R(2), W)

DU (2) — sU'(2) + <m — mu> U(z)
" —m,V
B W + Yv . R(Z) (34)

— 7 . R S —
D,.R"(2) 4+ cufumyU(z) — ¢y R+

b(Wsea — W) —a(W — R(L1)) + ¢y L2 <5vmv - V;f;) 4
D,R' (L) — a(W — R(L1))

By virtue of Theorem 3.11 in [33], (5) has a positive coexistence steady state Ey
under the condition (33). And it is easy to verify that (Va, Ra(2), W) is positive if
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and only if 0 < 8, < 1,m, >0 and 0 <m, <7y Wsed/ Wsed + 7»)- By linearizing
the system (34) about a steady state (U(2),V, R(z), W), we get
[ ¢

Gwv,rw)(ma, U(2),V,R(z), W)[p(2),& ( ),¢]

7 / (2) ruYuU(2)
.mw@>sw@+<m)+%meww(m@+%Pw@
TUW TU’Y’UV
(W+% _mv> Wt

= _ CuTuR(Z) 5 "y — curu"/uU(Z) >
(copum. — G ) o0+ Do) - Gt

CoTo CoTo YoV a a+b
WBums — - + (L) -
(c pom W+%>§ W+ 72 A P

Dy ¢/(L1) — a(¢ — ¢(L1))
and by calculations, at (my, U(2),V, R(2), W) = (m2*,0,Va, Ra(2), W2), we have
Gw,v,rw) (my",0,Va, Ry(2), Wa) [p(2), &, #(2),(]

Duy"(2) — s¢'(2)

Ty Yo Vo
(W2 + '71))2 36
= Cumz* (/Bu - 1)90(2) + DT¢,/(Z) ( )
v 'UV b
com (B = )€ = IR o) - X
D, ¢'(L1) — a(¢ — ¢(L1))

We now prove that the conditions of Theorem 2.1 hold. First we have G(m,,, 0, Va,
Ro(z), Ws) = 0. Define

L = G,v,rw) (my",0,Va, Ra(2), Wa) .
Suppose that [®(z), T, ¥(z), 0] € N(L), then by (36), we get

D,®"(2) — s9'(2) =0, D,®'(2) — s®(2)|.=0.., =0, (37)
TU’VU‘/Q A\

————0 = 38
UPEEPE )
cumy (B = 1)®(2) + D, 0" (2) = 0, (39)

v Cvrv’yv‘/? A a = G, b~
vty \Mv — DY — ————5 —WU(Ly) — 0= 40
coma(, = 1T - el +L (1) - (40)
U'(0)=0, DV(L)—a(®©— V(L)) =0. (41)
Using the similar methods in Theorem 3.1, we have ®(z) = e(*/P«)* From (38)

and (41), we obtain © = 0 and D, W' (L;) + a¥(L;) = 0. Combining the equation
(39), ¥ can be uniquely solved as (32) and (31). And thus, it follows from (40)
and (32) that T = a\If(L1)/[cvaL2(1 — B,)]. Hence dimN(L) = 1 and N(L) =
span{(®(z), T, ¥(z),O)}. Carrying out our similar arguments as those in Theorem
3.1, we have

Ly
R(i) = {(f1,f2,f3,f4,f5)T CEYXxRxY xRxR: fi(z)dz = O} ,

0
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and codimR(L) = 1. From (35), we have
e Y T & wBu®
Gy wvaraw) (7,0, Va, Ra(2). Wa) [(2), T, 0(2),0] = | M ®) | )

which yields that Gy, v.rw) (m5*,0,Va, Ra(2), Wa) [@(2), T, ¥(2),0] ¢ R(L).
Therefore all the conditions of Theorem 2.1 hold.

From Theorem 2.1, we conclude that the solution set of (5) near (m2*,0, Va, Ra(2),
Ws) consists precisely of the curves

Ey — {(my, 0, Va, Ra(2), W2) : my, > 0}
and
T, = {(mu(7),U(7,2), V(1), R(1,2),W(r)) : 0 < T < §}.
Here U(T,2) = 7® +7hi(7,2), V() = V2 + 7Y 4+ 7ho(7,2), R(T, 2) = Ry(2) + 70 +

Ths(7,2), W(1) = Wa + 70 + Thy(7) such that m,(0) = m:*, h;(0,:) = 0(i =
1,2,3),hs(0) =0 and

(L, G mwywv.mw) (mi,0,Va, Ba(2), W) [8(2), T, ¥ (2), O] )
9 <i’7 Gmu(U,V,R’W) (mz*, 07 ‘/27 R2(2)7 WQ) [‘i(Z), T7 ij(z)’ é]
JRRREEENCE I YE YRR

— 0 [’vai)""’)/u (T‘U_mv)]z (43)
-2 le ePudz ’

~—

where [ is a linear functional on ¥ x R x ¥ x R x R satisfying N (I [) = R(I). Tt
follows from (33) and (31) that A < 0, which implies ¥(z) is nondecreasing in z,
and so W(z) < 0 on [0, L1]. Furthermore, by (43), we derive that m/,(0) < 0. This
completes the proof of part 1.

By Theorem 2.2, we see that there exist continuously differentiable functions
v (mE—e,mi+e) = R, (3,66, (mEr —e,mi ) - X x Rx Xy xR,
i (—0,8) = R and [p*, &, 0%, (*]: (—=6,0) = X1 x R x X2 x R such that

G, mw) (M, 0, Va, Ro(2), Wa) [B(mu), £(ma), d(ma), C(m.)]
=y(ma)[(mu), E(ma), d(m.,), {(my), 0],
Gwv.rw) (mu(7),U(7), V(7), B(r), W (7)) [¢"(7),£"(7), ¢"(7), " (7)]
=u(r)[e* (1), (1), ¢ (), ¢*(7), 01"

It follows from (35) that y(m,,) = m:* —m, and it is easy to see that v/ (m,,) = —1.
Moreover y(m};*) = 0is the principal eigenvalue of Gy, v,r,w (M, 0, Va2, R2(2), W),
hence the perturbed eigenvalue x(7) is also the eigenvalue of G v, v, g,w (M (7), U(T),
V(7), R(1), W(r)). Together with m! (0) < 0, we have u(7) < 0 for sufficiently small
7 > 0, and so the bifurcating solution (m,(7),U(t, ), V(7), R(T, 2), W (7)) is locally
asymptotically stable with respect to (1). This completes the proof of part 2. O

(44)

(45)

It follows from Lemma 3.10 in [33] and similar arguments in Lemma 3.2, we
obtain the following a priori estimates for positive solutions (Uy, V4, Ry, Wy) of (5).

Lemma 3.5. Assume that (Uy, Va, Ry, Wy) € C([0, L1]) x Ry x C([0, L1]) x Ry is
a positive solution of (5) and B, € [0,1). Then
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(i) % < Ry(z) < % for all z €0, Ly];
(i) for any e > 0, there exists a positive constant B(g) such that || Ul < B(e)

if my € [e,m2*), and ||[U;"]|oc — 00 as my — 0.

By applying Lemma 3.5 and similar arguments as in Theorem 3.3, we have the
following conclusion.

Theorem 3.6. Let ST be the set of positive solutions to (5). Then S+ is a smooth
curve in RT x X in form

St = {(mu, Us(muy, 2), Va(muy, 2), Ra(may, 2), Wa(my)) : 0 <m, <m.*}  (46)
SQtZSfyan 1im**)7(U4(mua ')7 V4(mu)7 R4(mU7 ')7 W4(mu)) = (07 ‘/Qa RQ(Z)a WQ)?

My — (M

and lm  [|[Us(may, )|lc = o0.
My —0T

We now prove the part 3 of Theorem 3.1 by using the setting in the proof of
Theorem 3.4.

Proof of Theorem 3.1 part 3. We assume that m, > 7,Wsea/(Wsed + Vo). Now
similar to the proof of Theorem 3.4 part 2, the stability of the bifurcating solution
E5(1) = (my(7),Us(7,2), 0, R3(T, 2), W5(7)) can be determined by the linearized
eigenvalue problems:

Gw.v,rw) (Mu, 0,0, Wieq, Weea) [P(ma), (ma), p(ma), C(may)]
=5(mu)[@(ma), E(ma), d(ma), (ma), 0],
Gw,v,rw) (mu(7),Us(7),0, R3(7), Ws(7)) [¢"*(7), (1), ™" (7), (" (7)]
=A(7) [ (1), £ (1), ™ (1), ¢ (7), 0],

where 7 : (m* —e,m* +¢) > R, [@,€,6,(]: (m* —e,m* +¢) = X1 x Rx X3 xR,
i (—0,8) = Rand [p**, &, ¢**,**] : (—=6,0) = X1 xR X X5 xR are continuously
differentiable functions. Then the second equation in (48) at m, = m} becomes

TUWSG ~

<m - mv) §=3(my)¢. (49)
Since my, > 1y Wsea/(Wsed+7v), we must have & = 0 when m,, = mJ. Then the prin-
cipal eigenvalue of G, v,r,w) (M3, 0,0, Wieq, Wisea) is 7(my,) = 0 with eigenfunction
[®(2),0,¥(z), O], where [®(z),¥(z), 0] is defined by (15)-(18). Now following the
same argument as in proof of the Theorem 3.1 part 2, we conclude that i(7) < 0
which implies the local asymptotic stability of E5(7). O

47
0, (47)
! (48)

Remark 3.2. If 5, = 8, = 1, then from (1), we have
Ly
- [ (cU+R)dz = D, R.|t" = a(W — R(Ly)) (50)
d/Ll(c Vo Wdz = (Wi — W) — (W — R(L1)) (51)
dt v - L2 sed L2 1))

0
Adding (50) and (51) together, we get

and

% /OLl [(culU + R) + La(cyV + W) dz = b(Waea — W). (52)
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When considering the steady state solutions, (52) implies that W = W4, and thus
by (50), we know R(L;) = W.
By adding the equations and the boundary conditions of U and R in (5), we have

cuDWU,, —cysU, + D, R,, =0, 0<z<Ly,
co(DuU. — sU)+ DyR, =0,  2=0, L1, (53)
and so
cu(DU, —sU)+ D.R, =0, z€]|0,L]. (54)

It follows from Lemma 3.6 in [33] that D, U, — sU > 0 and R, > 0 for z € [0, L4].
This and (54) imply that DU, —sU =0, V z € [0,L;] and R, =0,V z € [0, L4].
Hence R(z) = Wyeq.

In addition, integrating the first equation in (5), we have

I roRU
U — 2 ) g — o,
/O <mU RM“) 2= 0 (55)

By 0 <m, < MT%; and (55), we have U(z) = 0, and then we see V = 0 from (5).
We show that when 8, = 8, = 1, then the only equilibrium is (0,0, Wyed, Wieq)

which is Ej.

4. Asymptotic behavior of positive steady states. This section focuses on
the limiting profiles of positive solutions of (5) when the diffusion coefficients are
sufficiently small and large, respectively.

Let D, = MD,, M € RY, D = D,, ¢, = ¢,/M and @ = a/M. Tt follows from
Theorem 3.11 in [33] that if (33) holds, then (5) has a unique positive coexistence
steady state

(UD(Z),VD _ b(Wsed — WD) + a(WD - RD(Ll)),RD(Z),WD _ Yoy ) ’

Cvva2(1 _ﬁ'u) Ty — My

which satisfies the following system

- U)o ) = (S ), 0<s<n
T, W —0
W + ’YU — My = )
DR = -6 (g pm U, v<s<h g

b(Weea = W) — a(W = R(L1)) + . Lo (@,mv _ W ) v_o,

DU’(0) — sU(0) = DU’ (L) — sU(Ly) = 0,
R'(0) =0, DR'(Ly)=a(W — R(L1)).

In the rest of this section, we always assume that the conditions (33) holds.

4.1. Small diffusion case when s > 0. In this subsection, we always assume that
s> 0. We choose zp € [0, L] such that Up(zp) = n[loaic | Up(z) = ||Up|lso- Set
z€|0,L,

Up(z) :=Up(z)exp[—s(z — zp)/(2D)].
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Then (Up, Rp) satisfies the system

- D0+ 350 = (el —m) U, 0<s <Ly
B M)~ ruR(2) am (s eS(Z;D) ;
DR(z) “ (R(z)Jr% B u) V) y O<z<t, (57)
U'(0) = 55000, U'(L1) = 550(La),
R(0) =0, H@n:g(éﬁﬁm—mmﬁ.

z=zp + Dy, Up(y) = Up(zp + Dy) and Rp(y) = Rp(zp + Dy).
Then (57) can be reformulated as

T 5% o TUR(:U) . g _ZD Li—zp
—U(?J)+4U(y)—D(W mu>U(y)7 D<y<7D ;
o1/ — _Dé TuR(y) _B.m - 6% _ %D Ly —2p
_R(y)_ Du(R(y)—F% /Bu u>U(y) ) D<y< D 3
U'(y) = 50(). y=—20/D, (L1~ zp)/D,
R'(-2p/D) =0, R((L\-z2p)/D)=a V"jn — R((Ly — zp)/D)| .
(58)

It follows from Lemma 3.10 in [33] that Up(z) is strictly increasing on z € (0, L)
if s > 0. Note that the function r, R(y)/(R(y) +Yu) — my, is uniformly bounded for
all y € [-2p/D, (L1 — zp)/D] and 0 < m,, < m}*.

We now explore the asymptotic behavior of Up(z) and Rp(z) in the case of small
diffusion coefficient D. From the equation and boundary conditions of Up in (58)

and similar arguments as Lemma 3.1 in [17], we have

Lemma 4.1. There exists Do > 0 such that for any 0 < D < Dy, Up(z) is strictly
increasing on [0, L1] and zp = L.

In the remaining part of this subsection, we always assume that 0 < D < Djy.
Let

~ Up(y)

Up(y) = ——— y€I[-L1/D,0].
1Ublleo
Then we have ||Up |l = Up(L;) =1 and define
1 Up(2) -1 Un(?)

UD(Z) =D

S
= exp |—(z—L =D = . 59
Mbm>pr( ) 1Tn ]l (59)

By means of the similar methods of proof as Lemmas 3.2-3.4 in [17], we obtain

Theorem 4.2. The following conclusions hold:
(i) Up(y) = exp (sy/2) on CL,.((=00,0]) as D — 0;
(i) || Ob(:)/10plloe = expls(z = L1)/@D)] | =0 as D —0;
(iii) for any ¢ € (0,L1) and z € [0,0], we have
0<Up(z) <D texpls(6 —1)/(2D)] = 0 as D — 0,
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and
Ly 1

lim Up(z)dz = —.
D—0 Jq S
Let 7p := D||Up||s- Then we have

Lemma 4.3. If m, € [e,m}*) for any € > 0, then limsup 7p < co.
D—0

Proof. Assume that there exists a sequence of D, denoted by D,,, such that D,, — 0
and 7, := 7p, — oo. Let U, := Up,, R, := Rp,. From (59), we get U,(z) =
Un(2)/7 and

roRn(2)
Rp(2) +vu B
Dnﬁé(o) - SUH(O) = Dnlez(Ll) - SUn(Ll) =0.
Integrating (60) on [0, L1] gives

Ly R
/ (TuRn(Z) - mu) Un(2)dz = 0.
0 Rn(z) + Yu
It follows from Lemma 3.5 that ||Up|lc < B(e) if my, € [g,m)*), thus we have

L L
b ! TuRn(z) >
/0 ) o Ba(2) 7 (=)

— D U"(2) + sU.(z) = ( mu) Un(z), 0<z< L,

(60)

L | 1 1
S/ 71u7U'n(Z)dZ S TuiHUn”oo S Ty —
0 Tn Tn T

n

(€)-
By Theorem 4.2, we have ILm fOLl Un(2)dz = 1/s. This leads to

, sr
limsup 7, < —B(e),
n—»00 My

which contradicts with our assumption 7,, — oo. The contradiction finishes the
proof. O

Now we obtain the asymptotic limit of Rp(z) as the diffusion parameter D — 0.

Theorem 4.4. Suppose that s > 0 and m, € [g,m’*) for some small € > 0, then

lim Rp(z) = LS uniformly on [0, L1].
D—0

v v

Proof. From Lemmas 4.2 and 4.3, we have
D7 Up(z) = D7 Up(2)rp < D™ 2exp[s(d —1)/(2D)] 7p — 0

uniformly on any compact subset of [0, L1) as D — 0. It follows from (56) that Rp
satisfies
- RL(2) = —¢, (

roRp(z

) > -1
—— — Bum, | DU , 0<z<Lyq,
Ro(2) + 7 Bum p(2) z 1

(61)
Rp(0) =0, DRj(L)=a (”m - RD<L1>> :

Ty = My
By Lemma 3.10 in [33], we note that Rp(z) is strictly increasing on [0, L1] and
Buyuma [/ (ry, — Bumy) < Rp(2) < vumy/(ry — my) for all z € [0, L], thus 0 <
ruRp(2)/(Rp(2) + Yu) — Bumy < m2* for all z € [0, L;] and R} (2) > 0 on (0, Lq).
Note that the right hand side of the first equation in (61) tends to 0 uniformly in
any compact subset of [0, L1) as D — 0. It follows from the elliptic theory and the
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diagonal argument that there exists a C! convergent subsequence of Rp(z), denoted
by R,(z) = Rp, (), such that R, (2) — Ro(z) in C*([0,6]) for any § € (0,L;) as
n — oo. From (61), Ry(z) satisfies

R{(z) =0 for z € (0,L1), R((0)=0.

Thus Ry(z) = C (a constant) for any 2 € [0, L;]. An elementary argument shows
that R, (z) — Ro(z) uniformly in any compact subset of [0, L1). Moreover integrat-
ing the first equation in (61) on [0, L;], and observing that the right hand side of the
first equation in (61) tends to 0, we obtain that R/ (z) is small for z € [0, L1) which
implies that R, (L1) — R,(0) is small as n — co. Hence R, (z) — Ry(z) uniformly
in [0, L;] as n — oo. Thus we have

. D
C'=Ro(L1) = lim Ry(Ly) = lim [%m” - &”R;(Ll)]

1

= M 2 Y DR (L))

Ty — My a n—oo

Ly
Yoy 1 . . ~ TuRn(Z) 1

= . 7w Dol e DU, (2)d

Ty — My a nl—>Holo nnl—{I;o 0 Cu (Rn(z) + Yu Bumu n n(z> z
_ e

Ty — My ’

where the last equality follows from the Lebesgue dominated convergence theorem.
This completes the proof. O

4.2. Small diffusion case when s < 0. In this subsection we always assume that
s < 0, and we still consider the system (56) with the positive coexistence steady
state (Up(z), Vp, Rp(2), Wp). Here Up(2),Up(y), Rp(y) are defined in the same
way as in the subsection 3.1, and (Up, Rp) and (Up, Rp) satisfy the systems (57)
and (58), respectively.

By means of the similar method as Lemma 3.10 in [17], we have

Lemma 4.5. There exists Dy > 0 such that for any 0 < D < Dy, Up(z) is strictly
decreasing in [0, L1] and zp = 0.

In the following, we always assume that 0 < D < Dg. Let

- U _

Uny) = 22W 0, 1,/D], 7 = D|[Up|uc.
105 oc

2 1 Unl(2) o ~1 Un(2)

Up(z) =Dt e?p? = D1 :

o(?) 1ol 1ol

Then ||Upllee = Up(0) = 1. Carrying out similar arguments as Lemma 3.11-3.13
in [17], we obtain
Theorem 4.6. The following conclusions hold:
(i) Up(y) — exp (sy/2) in CL _(([0,00)) as D — 0;
(i) |O(@)/ 100 1o = exp (s2/(2D)) | =0 as D - 0;
(iii) for any § € (0,L1) and z € [§, 1], we have
0 < Up(z) < D texp[—s|d|/(2D)] = 0 as D — 0,

and
Ly R 1
lim Up(z)dz = +—;
D=0 Jo |s]
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(iv) if my € [, ruyomy /(YoMy+YuTo—Yumy)) for any e > 0, then limsup 7p < oo.
D—0
Now we have the following result on the asymptomatic behavior of the coexistence

state as D — 0 when s < 0.

Theorem 4.7. Suppose that s < 0. If my, € [g, YoMy /(Yo My + YuTv — YuMa)) for
any € > 0, then

lim Rp(z) = — ( VoMo Yul )(z—L1)+r%m“

D—0 L1 — My Ty — My v — My

uniformly in [0, L].

Proof. By Theorem 4.6, we have D~'Up(z) — 0 uniformly on any compact subset
of (0,L1] as D — 0. Note that Rp satisfies equation (61) and the right side of
the first equation in (61) tends to 0 uniformly in any compact subset of (0, L] as
D — 0. It follows from the elliptic equation theory and the diagonal argument that
there exists a sequence of D, denoted by D,,, such that R,(z) := Rp, () = Ro(2)
in C([e, Ly]) for any € € (0, L) as D,, — 0. From (61), we have

Eg(z) — O fOr z € (O, 1/1), RO(Z 1) = T”ﬂ?
which lmphes that
— A YoMy
Ro(z) = _ RO
O( ) C(Z I 1) + - o~

for some constant é. An elementary argument shows that R, (z) — Ro(z) uniformly
in any compact subset of (0, L;], which implies R,,(z) — Ro(z) uniformly in [0, L4].
Integrating (60) on [0, L1] gives

ALl<é&§ﬁfil_nw>UM2Mzzo.

By Theorem 4.6, as n — oo, we have

[ otz 1l [0z o,

Ly r
ult n U d
’/ + 7, Un(2)dz

for small € € (0,1). Hence we deduce

mu/o U, (2)dz = | Rn(Z)-i-WuUn( )dz + on(1)

Tu (T'yin:‘: - CLl)
(e —eLy) +

Letting n — oo and then letting € — 0, we have

Ly R
S/ ryUn(2)dz — 0

=[1 4 0.(1)]

/E Un(2)dz + 0,(1).

@ o Ty ['YUmv - éLl (T’U — mv)] i
|s] (Yoo + (yu — €L1)(ry —my)] 8]’

from which, we obtain
P N e LS UL
Ll Ty — My Ty — My, .

This completes the proof. O
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4.3. The large diffusion case. In this subsection, we consider the limiting profile
of the coexistence steady state as the diffusion coefficient D — oo. Let Up(z) =
Up(z)e™/P) for » € [0, L,]. In the case of large diffusion, we have the following
conclusion.

Theorem 4.8. Up/||Up|lec — 1 and Rp(2) = myyu/(ru—my) uniformly in [0, L]
when D — oo.

Proof. Note that (Up(z), Rp(z)) satisfies

~ 2 1 ryRp -
U S Up = — | 2  _ U 0 L
> p2P D(RD+% m“) oo TEEEm
Cu roRp D)7
— R =->2 ( - ﬁumu> /D), 0< 2 < Ly,
) $D~ Rp +:Yu - (62)
Up(0) = 55Un(0) = Up(L1) = 55Un(L1) =0,
a My
Rp(0) =0, Rp(L) =5 (Tvm B RD(Ll)) '
v v
Let Up = ﬁD/HUDHOO. Then, from (62) we get
2
2 S ~ 1 TuRD 2
_ —_Up=— | — U 0 L
Dt ypatp D(RD+% m“) " ses
Cu [ TuRpD D)7
— R =-2 ( - 5umu> e*/CPUL, 0<z< Ly,
) SDN Rp Jr:)’u - (63)
U}(0) — 55 Un(0) = Up(Ly) — spUpL1) =0,
a v My
Rp(0) =0, Rp(L) =5 <T7_m - RD(Ll)) '
v v

It is clear that Up and U}, are both uniformly bounded on [0, L;] for all large D.

Then we choose a sequence, say D,,, such that D,, — oo, and Tjn := Up,, converges
to a function U, in C*([0, L1]), and U, satisfies (in the weak then the classical sense)

U/=0 in (0,L1), UL(0)=Ui(L1) =0, [Uilloc=1,

which implies U, = 1. Hence Up — 1 in ([0, L,]) as D — oco.

It is clear that ||Up||s is bounded away from oo for large D. It follows from the
second and fourth equation of (63) that there exists a subsequence, say D,,, such
that D,, — oo, and R,, := Rp, converges to a function R, in C1([0,L]), and R.
satisfies (in the weak then classical sense)

R/'=0 in (0,Ly), R.(0)=0, R.(L)=0,
which implies R, = constant. Multiplying the first equation in (63) by e**/(?P) and

then integrating on [0, L1], we have

L ’I"uRD(Z) . > —
/O [RD(Z)—F’yu m.y, | Up(2) exp[sz/(2D)]dz = 0. (64)

Letting D = D,, and n — oo in (64), we get Ry = my7Yy,/(ry —my,) since Up —1
as D — oo. This completes the proof. O
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