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Abstract13

We present a case study of the Magnetospheric-Multi-Scale (MMS) observations of14

the southern hemispheric dayside magnetospheric boundaries under southward IMF15

direction with strong By component. During this event MMS encountered several16

magnetic field depressions characterized by enhanced plasma beta and high fluxes of17

high-energy electrons and ions at the dusk sector of the southern cusp region that18

resemble previous Cluster and Polar observations of cusp diamagnetic cavities. Based19

on the expected maximum magnetic shear model and MHD simulations we show that20

for the present event the diamagnetic cavity-like structures were formed in an un-21

usual location. Analysis of the composition measurements of ion velocity distribution22

functions and MHD simulations show clear evidence of the creation of a new kind of23

magnetic bottle structures by component reconnection occurring at lower latitudes.24

We propose that the high-energy particles trapped in these cavities can sometimes end25

up in the loss-cone and leak out, providing a likely explanation for recent high energy26

particle leakage events observed in the magnetosheath.27

1 Introduction28

Recent Magnetosphere Multi-Scale (MMS) observations have revealed energetic29

(≥ 40 keV) electrons leaking into the magnetosheath [Cohen et al., 2017]. The de-30

tailed physical mechanisms explaining the origin of these particles is not understood.31

Although the MMS mission is designed to investigate the small scale low-latitude phys-32

ical processes (e.g., dayside reconnection and tail reconnection), its orbits can reach33

to the exterior cusp boundaries close to the equinoxes in 2015 and 2016 and during34

high dipole tilt. Close to equinoxes MMS orbit had a significant y-component and35

therefore the zGSM coordinate could be substantial (up to ≈ 5-7 RE) meaning that36

the MMS orbit was actually closer to southern exterior cusp boundaries rather than37

the vicinity of the sub-solar magnetopause at the equatorial plane. Figure 1 shows38

examples of MMS1 orbital plots together with Tsyganenko 96 [Tsyganenko, 1996]39

model in x, z-plane in GSM coordinates. We show one example for each month of the40

MMS orbits with a circle highlighting the electron leakage event listed in Cohen et al.41

[2017]. The IMF vector in GSM coordinates during each leakage event is marked in42

each panel and distance between MMS to the y = 0-plane is shown in bottom corner43

of each panel. Cluster trajectory during encounters of the “traditional” DiaMagnetic44

Cavities (DMCs) at northern [Nykyri et al., 2011a] and southern [Cargill et al., 2004]45

hemispheres are shown for comparison. This shows that the MMS orbit can frequently46

encounter southern high-latitude magnetospheric boundaries, which is not always ob-47

vious if viewing data in GSE coordinate system or not considering the diurnal wobble48

of the geo-dipole. It therefore is possible that some of the MMS high-energy electron49

events observed in the magnetosheath originate from the “traditional” DMCs or from50

new kind of magnetic bottles created by component reconnection such as discussed in51

the present paper.52

The DMCs, characterized by extended regions of decreased magnetic field and60

high plasma beta surrounding the high-altitude cusp funnel, are mainly formed by61

magnetic reconnection between the IMF and Earth’s magnetic field surrounding the62

magnetospheric cusps [Nykyri et al., 2011a,b; Adamson et al., 2011, 2012; Zhang et al.,63

2013]. Cusps are a funnel-like, basic topological features of the magnetosphere, and64

were first predicted by Chapman and Ferraro [1931] using the image dipole model. Ob-65

servationally cusps are typically identified as narrow regions of recently reconnected66

field lines which map into the ionosphere at high-latitudes mostly consisting of cold,67

magnetosheath-like plasma and of particles propagating earthward [Wing et al., 2001].68

DMCs, on the other hand, are large, extended regions formed on the field lines that69

have reconnected sometime in the past and consist of both earthward propagating and70

reflected particle populations and are frequently associated with high energy (> 3071
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Figure 1. Example of Cluster spacecraft trajectory during northern (a) and southern (d)

cusp DMC crossings, respectively. MMS locations close to southern hemisphere magnetospheric

boundaries calculated from T96 model in x, zGSM -plane during electron leakage events observed

by Cohen et al., 2017 (panels b,c,e,f,g,h,i). The IMF vector in GSM coordinates during each leak-

age event is marked in each panel and distance between MMS distance to y = 0-plane is shown

in bottom corner of each panel. The present event analyzed in this paper is shown in panel c in

same format for comparison.
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keV) electrons, protons, and O+ ions [Nykyri et al., 2011a]. The O+ outflow from the72

ionosphere, through the cusps has important consequences for the global magneto-73

spheric dynamics [Brambles et al., 2010].74

While there has been considerable debate on the origin of the high-energy par-75

ticles in the DMCs [Sibeck et al., 1987; Fuselier et al., 1991; Chen and Fritz , 1998;76

Chang et al., 1998; Trattner et al., 2001; Asikainen and Mursula, 2005; Nykyri et al.,77

2011a], test particle simulations [Nykyri et al., 2012], and the presence of the high78

fluxes of energetic 90- degree pitch angle electrons and O+ ions in strongly depressed79

magnetic field regions [Walsh et al., 2010; Nykyri et al., 2011a, 2012] are consistent80

with local acceleration mechanisms in the cavity. Simulations in a high-resolution81

3-D cusp model uncovered that trapped particles in the diamagnetic cavities can be82

accelerated by 40 keV when their drift paths go through regions of “reconnection quasi-83

potential” [Nykyri et al., 2012], resulting in perpendicular acceleration and pitch angles84

of 90 degrees. The test particle simulations showed that the efficiency of the accel-85

eration mechanism depends on the magnitude of the draped magnetic field and how86

long the particles remain trapped before the IMF changes orientation. The 40 keV87

acceleration was achieved for the draped field of 10 nT in six minutes, but energies up88
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to 200 keV are possible for higher draped field magnitudes [Nykyri et al., 2012] and89

longer trapping times. It also has been shown that the contribution of plasma waves90

is small on the particle acceleration in the DMCs [Nykyri et al., 2011b].91

Recently, Luo et al. [2017] performed a statistical study using 11 years of high92

energy (> 274 keV) proton and oxygen data from the Cluster spacecraft. Their results93

indicate that the energetic ion distributions are influenced by the dawn-dusk IMF-94

direction. Under northward IMF, their statistics for high latitudes between 4 RE95

< |ZGSM | < 8 RE showed a higher flux (F ) asymmetry index (F = Fdusk−Fdawn

Fdusk+Fdawn
) for96

quadrants where the location of a diamagnetic cavity is predicted. During southward97

IMF with positive By, it was found that the flux intensity of H+ is much higher at the98

dusk-side than it is at the dawn-side for both the dayside magnetosphere and nightside99

plasma sheet in the northern hemisphere. In southern hemisphere under southward100

IMF and under positive IMF By, the asymmetry at the dayside was dawnward for101

both H+ and O+ ions in agreement with the expected DMC formation location for the102

most-antiparallel magnetic fields.103

Observational signatures of the high-altitude cusp crossings are sensitive to the104

orbit altitude and prevailing solar wind conditions. The northern hemisphere cusp105

crossings from Cluster revealed that reconnection tailward of the cusp during north-106

ward IMF leads to strong field aligned flows which are observed when spacecraft enter107

the reconnected cusp fields lines from the tail lobe [Vontrat-Reberac et al., 2003; Nykyri108

et al., 2003, 2004, 2006]. The magnetic field strength during these type of cusp cross-109

ings is still large, ≈ 100 - 60 nT, and gradually decreases to ≈ 40 nT. When moving110

into the region of accumulated old reconnected flux, the spacecraft observe stagnant111

plasma. Lavraud et al. [2002] coined the “Stagnant Exterior Cusp (SEC)”; this re-112

gion is characterized by stagnant plasma, more isotropic ion velocity distributions and113

gradual field decrease from 40 nT to 10 nT. Zhang et al. [2005] showed that energetic114

(> 28 keV) protons and energetic electrons were present during 80 and 23 percent115

of the SEC crossings, respectively. The encounters of the DMCs; however, have re-116

vealed very abrupt and strongly depressed magnetic field magnitudes with respect to117

surrounding boundaries. For example, the four Cluster spacecraft separation of 5000118

km allowed a determination of DMC structure and dynamics under northward and119

southward IMF [Nykyri et al., 2011a,b]. During the cavity encounter the magnetic120

field rapidly dropped from 80 nT (in lobe magnetosphere) to 4 nT (in cavity). When121

the IMF turned southward, a new cavity formed sunward of the old cavity. Cargill122

et al. [2004] discussed a southern cusp crossing with a rapid depression of about 60123

nT in the magnetic field strength that lasted only about 5 minutes and coincided with124

higher ion temperatures and reduced densities with respect to surrounding regions.125

This article presents a case study of MMS observations on October 2nd 2015126

of the formation of a new kind of magnetic bottle which resembles the prior Clus-127

ter observations of the DMCs. Although the DMC was formed in unusual location,128

we demonstrate that the underlying generation mechanism (reconnection) is the same.129

The “traditional” DMCs have been observed at high-latitudes during local anti-parallel130

reconnection in the vicinity of the cusps, while here we show that DMC is formed at131

high-latitudes by remote component reconnection at low latitudes. MMS traversed132

dusk-ward from the dayside magnetosphere through the high-latitude dayside bound-133

ary layer (see Figure 2). The IMF was steady southward (Bz ≈ -6 to -7 nT) with a134

strong dusk-ward component (By ≈ +6 to 8 nT) and Bx was small and varied between135

-1 to +1 nT. The solar wind velocity varied between 360-400 km/s, and the density136

varied between 3.9-5.5/cc inducing a dynamic pressure of the order between 1.1-1.5137

nPa during the interval. The duration of quasi-periodic encounters with the depressed138

field regions and high energy particles lasted a couple of hours. In this article we show139

the detailed analysis of sub-interval from 9:18-9:30 UT, and describe the main proper-140

ties of the other DMCs during the same event. The MMS trajectory between 8:00-11141
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UT is identified by the red trace in Figures 2a and b. The MMS separation is only142

about 20-30 km, so all spacecraft observe the same large scale plasma and magnetic143

field features.144
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Figure 2. 3-D visualization of the Earth’s magnetic field topology in GSM-coordinates com-

puted using T96 model [Tsyganenko, 1996] at 9:24 UT in the x-z- (a) and in the y-z-plane (b),

respectively. The MMS orbit between 8-11:00 and location between 09:24 are shown in red line

and by a (magnified) black circle, respectively. The cartoon of field-line topology resulting from

component reconnection for Bz < 0, and By > 0 similar to Gosling et al. [1990] is visualized in

top of the T96 field-lines. The IMF field lines and recently (later) reconnected field lines are visu-

alized in magenta (light blue). The dashed light blue line shows the field line mapped using T96

model from MMS location to the ionosphere and toward the equator at t = 09:24. The direction

of the Earth’s magnetic field, IMF and HT frame velocity are depicted with green, magenta,

and purple arrows, respectively. The numbers mark the expected locations relative to reconnec-

tion topology consistent with the velocity distribution functions shown in Figure 4. M1 and M2

mark the magnetic mirror points. The expected locations of traditional cavity formation (see

Figure 6) via anti-parallel reconnection are identified by large ovals in the northern and southern

hemisphere, respectively.
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2 Methods159

2.1 Instrumentation and data used160

All magnetospheric data shown in Figure 3, 4 and 5 is the level 2 data from one161

of the NASA’s MMS satellites (MMS1) [Burch et al., 2016]. We use Hot Plasma Com-162

position Analyzer (HPCA) for the H+, He++, and O+ ion phase space-energy spec-163

trograms and velocity distribution functions [Young et al., 2016]; Fast Plasma Investi-164

gation (FPI) [Pollock et al., 2016] for the ion energy spectra and moments; Flux Gate165

Magnetometers (FGM) [Russell et al., 2016; Torbert et al., 2016] for the DC magnetic166

field. Energetic electron distribution and pitch angle (PA) data comes from the Fly’s167

Eye Energetic Particle Spectrometer (FEEPS) [Blake et al., 2016] instrument. Ener-168

getic (49-209 keV) proton PA data is available from the Energetic Ion Spectrometer169

(EIS) [Mauk et al., 2016]. The versions of the data files used are v4.18.0.cdf, v3.1.0.cdf,170

v3.2.0.cdf, v6.0.1.cdf, v3.0.0.cdf, v2.1.0.cdf for FGM, FPI, HPCA, FEEPS and EIS, re-171
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spectively. Solar wind conditions are taken from the OMNI (http://omniweb.gsfc.nasa.gov/)172

database [King and Papitashvili , 2005].173

2.2 Loss cone pitch angle (PA) calculation174

The loss cone PA, α, shown in Figure 4l and 4m with black curves,175

α = arctan(
1√

BM/B − 1
), (1)

uses a constant magnetic field value at the mirror point, BM = 45 nT and B is176

the magnetic field magnitude observed between 9:18-9:30 UT (including the cavity177

interval). Figure 4l and 4m shows that a 45 nT field at the mirror point is able to178

trap most of the particles in the cavity region where the field is about 25 nT. The179

magnetic bottle structure between mirror points M1 and M2 is illustrated in Figure180

2 and later in Figure 6f. The mirror point, M2, is formed at the magnetospheric side181

of the cumulated reconnected field lines which increases the magnetic field strength in182

this region.183

2.3 Global MHD modeling184

In order to put the MMS observations in the context of the magnetospheric185

boundaries and to estimate the distance to the mirror point M1, where field strength186

becomes 45 nT, we have simulated the event from 08:00 to 11:00 UT using Space187

Weather Modeling Framework (SWMF/BATSRUS [Wolf et al., 1982; Powell et al.,188

1999; Ridley and Liemohn, 2002; De Zeeuw et al., 2004; Tóth et al., 2005; Tóth et al.,189

2012]) using 34.7 M cells and 1/16 RE numerical resolution at the inner bound-190

ary. However, the detailed physical process of the particle dynamics in the DMCs191

requires a more sophisticated comparison between global simulations with test parti-192

cles and in-situ observations, which will be addressed in our future study. The run193

results and model settings can be found at NASA community coordinated model-194

ing center (CCMC) (https://ccmc.gsfc.nasa.gov/results) with the following run ID:195

Katariina Nykyri 020918 2.196

3 Results197

3.1 MMS Observations198

Figure 3 and 4 present MMS1 observations of plasma and magnetic field prop-199

erties on October 2nd 2015 between 08:40-9:30 and 09:18-09:30 UT, respectively, at200

the high-latitude dayside magnetospheric boundary. During 8:40-9:30 MMS moved201

duskward (from y = 5.9 RE to y = 6.3 RE) and southward (from z = -3.9 RE to z =202

-4.3 RE) and had multiple encounters of high-energy particles in the depressed field203

regions.204

We next focus on detailed analysis of the sub-interval between 09:18-09:30 (4th218

cavity in Figure 3) when MMS was located at the (R ≈[7.9, 6.4, -4.3])) (see Figure 4).219

Between 9:18-9:18:40 UT MMS was at the open magnetosheath (msh) field lines close220

to the magnetopause that map to the quasi-parallel shock at the northern hemisphere221

(msh, yellow highlighted column). This msh-interval is characterized by high fluxes222

of He++, which is a typical signature of solar wind source (a), lower fluxes of 48-209223

keV ions (c), high fluxes of low energy ions (e) with lower temperatures and higher224

ion densities (f) than the subsequent cavity interval. Between ≈ 9:19-9:21:15 MMS225

encounters gradually increasing strong tail-ward plasma flows (g) and a magnetic field226

rotation (j). The plasma density decreases from the magnetosheath values to about227

6-11/cc and temperature increases slightly (f). The magnetic field strength (n) shows228

about 30 s oscillations with about 10 nT amplitude, creating a wavy signature in ion-229
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beta (h). The combination of the magnetic field and plasma flow changes, as well as230

the magnetic field topology in Figure 2a and b are consistent with the MMS trajectory231

from the magnetosheath (ion distribution 1) through the rotational discontinuity where232

Bx and Bz first become more negative (ion distribution 2) when MMS enters the233

magnetosheath side of the reconnected field line, and then gradually turn positive when234

MMS moves to the magnetospheric side of the reconnected field line (ion distribution235

3). The By is positive (j) both on draped IMF field lines and on Earth’s magnetic field236

lines in this location as can be expected based on T96 model and MMS position (see237

Figure 2b) and from the global MHD model (see Figure 6a).238

By 9:24 the magnetic field strength (n) has decreased by 22 nT from the values239

observed during the encounter of the msh-side of the reconnected field line at 9:18:53.240

Meanwhile, the thermal pressure increases in the magnetic cavity. However the total241

pressure is still lower than outside of the cavity (i). Reduced magnetic pressure, bal-242

anced by the increased thermal pressure is a typical signature of the diamagnetic cusp243

cavities created by reconnection in MHD [Adamson et al., 2012]. Here the plasma pres-244

sure calculation does not include the high energy particles, which is why the plasma245

pressure does not balance the magnetic pressure. Similar to southern cusp event ob-246

served by Cargill et al. [2004], the density has reduced, and temperature has increased247

from the values in the surrounding regions. Inside the main cavity, the lower energy248

part of the He++ population has increased in energy from the typical magnetosheath249

values of ≈ 100 eV - 2 keV to 900 eV - 2 keV, and there also appears a higher energy250

population between 10-30 keV with ∼ ten times lower phase space densities than the251

800 eV - 30 keV population in the cavity (a). The depressed field region correlates252

also with enhanced fluxes of high energy 1-30 keV O+ ions (b), 80-209 keV protons253

(c), and 70-300 keV electrons (d). The PA plots (panels l and m) are shown in the254

spacecraft frame. In these PA plots, the black lines represent the boundary of the255

loss cone for the particles inside the cavity: assuming adiabatic particle motion the256

particles that have PAs between the black lines are trapped and cannot originate from257

the higher magnetic field region directly without some reprocessing. In particular, the258

70-1000 keV electrons appear to be well trapped in the depressed field regions. In259

the magnetosheath (yellow box) there exists parallel high energy proton fluxes. These260

parallel protons close to the magnetopause boundary could originate from the quasi-261

parallel bow shock [Trattner et al., 2011] at the northern hemisphere or result from262

leakage out of the cavity through weaker mirror point M2 (see Figure 2 and Figure263

6). For a Gaussian distribution, if bulk velocity is perpendicular to the magnetic field,264

one would expect a strong 90 degree PA distribution. In contrast, the observation265

only shows a weak flux at the 90 degree PA during the good Walén relation region266

(characterized by strong, mostly perpendicular flow), indicating that in bulk-velocity267

frame most particles move along the field line. In the magnetosheath the low bulk ve-268

locity is mostly along the magnetic field direction. However, the distribution 1 is still269

asymmetric, therefore a field aligned anisotropy is evident in the HPCA distribution.270

This anisotropy likely extends into the energetic particle data, which is consistent with271

the ion spectra in panel l.272

The right-hand side of the Figure 4 shows HPCA ion velocity distribution func-273

tions for H+, He++, and O+ at four different times (marked with the numbered boxes274

in Figure 2a and b and left side of the Figure 4). These distributions are shown in275

the frame where the velocity of the H+ distribution perpendicular to the magnetic276

field is zero. The H+ and He++ velocity distribution functions in the magnetosheath277

between t = 9:18:04 -9:18:14 (row 1) show a typical parallel streaming low energy core278

distribution. Unlike He++, the H+ distribution shows also a higher energy population279

extending to about 1200 km/s. Between t = 9:18:44-9:18:54 (row 2) MMS has moved280

onto the newly reconnected field line (on the magnetosheath side) and the high-energy281

H+ population becomes prominent covering a wide range of PAs in the parallel direc-282

tion. Meanwhile the low velocity core of the H+ and He++ distributions are shifted283
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along the magnetic field direction. The He++ distribution also shows a high energy284

population in the parallel direction, indicating that at least part of this population is285

reflected off the open magnetopause. The O+ distribution is also streaming parallel286

to the magnetic field and indicates that there is escape of magnetospheric ions along287

open field lines into the magnetosheath.288

By t = 9:22:24-09:22:34 (row 3) MMS has moved to the magnetospheric-side of289

the recently reconnected field line and observes an anti-parallel lower energy popula-290

tion of solar wind origin, while the high energy H+ population becomes more isotropic.291

He++ shows the low energy, anti-parallel propagating population as well. The direc-292

tion of propagation is consistent with a reconnection site northward of the spacecraft293

location. O+ distribution is propagating mostly in parallel direction, due to outflow294

from the ionosphere. At t = 9:23:44-09:23:54 (row 4) MMS encounters a field line that295

has been opened by reconnection for a longer period of time and observes both the296

incoming lower and higher energy solar wind H+ population (anti-parallel to magnetic297

field), as well as the enhanced and reflected (parallel to magnetic field) low-energy298

population from the southern hemisphere ionosphere. The symmetric high-energy H+
299

population at 9:22:29 and 9:23:49 are very similar as the high energy particles travel300

faster to the mirror points M1 and M2 (shown in Figure 2). Both the He++ and O+
301

show the incoming and reflected low energy populations. The parallel (with respect302

to magnetic field) cut of the phase space density during the cavity interval at 09:23:49303

clearly demonstrate the incoming and reflected low energy populations for H+ and304

He++, as well as the fresh ionospheric outflow (parcel 2) of O+ parallel to magnetic305

field which gets reflected at the M2 mirror point in the spine region of the cumulated306

reconnected flux. This reflected low energy O+ population (parcel 1) is likely visible307

because it left the ionosphere slightly earlier (this is the parallel population in the 3rd308

O+ distribution seen 80 s earlier) than parcel 2 and due to large gyro-radius of O+.309

The color code in Figure 5a shows the angle between draped IMF and Earth’s310

magnetic field at the magnetopause illustrating that regions with the most anti-parallel311

fields exists at the dusk sector of the northern cusp and at the dawn sector of the south-312

ern cusp (expected location of traditional DMCs). The shear angles were calculated313

using the maximum shear model developed by Trattner et al. [2007] where the geomag-314

netic field direction is given by the T96 model and the draped IMF conditions at the315

magnetopause are calculated using the model by Cooling et al. [2000]. It can be seen316

that magnetic shear is significant (100-120◦) in the extended region above MMS which317

can result in component reconnection. Figure 5b shows that during 9:18:30-9:21:15318

UT there exists an excellent de HoffmanTeller (HT) frame (slope = 1 and correlation319

coefficient = 0.94), and a good Walén relation (slope = -0.822 and cc. = -0.94). The320

HT velocity is [-220,326,-58] km/s and is consistent with the direction of purple arrows321

in Figure 2a and b. These HT frame velocities and good Walén relations are further322

evidence for the component reconnection for the prevailing ≈ 130 degree IMF clock323

angle [Gosling et al., 1990; Fuselier et al., 2011] occurring northward and dawnward324

of the MMS location. This field line topology highlighted in Figure 2 agrees with our325

interpretation of the H+, He++, and O+ velocity distribution functions when MMS326

crosses from the magnetosheath onto reconnect field lines. The Walén relations during327

the transitions into the cavity between 9:21:15-9:23:15, and out of the cavity between328

09:23:15-09:25:30 were not satisfied (-0.25 and -0.01, respectively) apparently because329

of the reflected populations. Also, the latter interval with the flow enhancement be-330

tween 09:26:00-09:30:00 did not satisfy the Walén relation. The Wálen relation was331

not satisfied for the plasma flows before the observation of the other three main cavity332

intervals shown in Figure 3.333

Table 1 summarizes the properties of the ion velocity distributions observed in334

the four cavities. Cavities 1 and 3 have similarities with cavity 4. They all have335

intervals when there is counterstreaming O+, He++ and H+. For He++, this coun-336
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Table 1. Properties of ion velocity distribution functions during cavity observations shown in

Figure 3. Counter streaming (CS) low energy or high-energy population are indicated. The low

energy He++ and H+ originate from the magnetosheath while the low energy O+ originates from

the ionosphere. The high energy populations are either ring current or locally accelerated.

356

357

358

359

Cavity O+ H+ He ++

1. CS low and high-energy CS low and high-energy CS low and high-energy
2. CS low and high-energy high energy high energy
3. CS low and high-energy CS low and high-energy CS low (at exit) and high-energy
4. CS low and high-energy CS low and high-energy CS low and high-energy

terstreaming population is at approximately 1-5 keV/e in Figure 3. The presence of337

counterstreaming O+ is indicative of a source from the southern ionosphere and reflec-338

tion at M2. The presence of counterstreaming He++ is indicative of a magnetosheath339

source and reflection in the M1. H+ is a mixture of both the magnetosheath and340

magnetospheric sources. The difference between cavity 1 and 3 and cavity 4 is that341

the counterstreaming populations are observed throughout cavity 4 and only intermit-342

tently, in particular at the entrance and exit, of cavities 1 and 3. The distributions in343

the center of cavities 1 and 2 are similar to the distributions in cavity 3. Cavity 3 is344

different from cavity 1 and 4 in that there is no counterstreaming He++ except possi-345

bly at the exit of the cavity at 0910 UT. Otherwise, the centers of cavity 1 and 2 and346

most of cavity 3 appear to be consistent with ring current-like energies above 10 keV347

for He++. The transition from a mixture of magnetospheric and magnetosheath ions348

into a region where there are only magnetospheric ions is consistent with a transition349

from the cavity to the outer magnetosphere.350

3.2 MHD simulations360

Figure 6 shows the plasma and field properties of the dayside magnetosphere at361

09:24 UT from high-resolution MHD global simulation results, with the MMS1 location362

projected in each plane as well as the cartoon of the expected DMC locations based363

on the maximum shear of the draped IMF field around the geomagnetic field in the364

vicinity of the cusps. The DMCs are directly generated by reconnection in maximum365

magnetic shear regions in a similar manner described by Nykyri et al. [2011a] and366

Adamson et al. [2011, 2012]. These cavities are indicated by a strongly enhanced367

plasma beta (color scale is saturated at beta = 38 in order to better see the northern368

hemisphere DMC in the same plane) tail-ward of the MMS at x = 5 RE (panel a) in369

the expected regions in southern (region iv in panel b and g) and northern hemisphere370

(region iv in panel c and h). For the dipole tilt and solar wind conditions, the southern371

DMC at the dawn sector is more pronounced (maximum beta is 78 for cut at y = -5.5372

RE) than the DMC in the northern hemisphere dusk sector (maximum beta is 38373

for y = 4 RE). The y-component of the current density (Jy) in the x, z-plane with374

a cut at the y = 0 (d) and y = 3.2 (e) shows that Jy is enhanced in the extended375

region around dayside magnetopause. This enhancement can lead to reconnection.376

The magnetic field strength in the x, z-plane (panel f) with a cut at the MMS location377

(y = 6.4 RE) shows that there exists a flow channel (black vectors whose direction is378

consistent with the observed de HT frame velocity vectors in Figure 5b) originating379

from an equatorial reconnection region resulting in an extended region of depressed380

magnetic field which is surrounded by higher magnetic field. The dashed blue line381

is sketched over the simulation and illustrates the topology of the magnetic bottle382

(projected in the x, z-plane similar to Figure 2a) with the mirror points M1 and M2 at383

the ionospheric side and in the spine region of the reconnected flux tube, respectively.384
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Note that the color scale is saturated here at 45 nT as this value at mirror point was385

sufficient in trapping most of the high energy particles (as illustrated by narrow loss386

cone in Figure 4l and m). On the magnetospheric side of the reconnected field line,387

the particles move anti-parallel to the field toward the ionosphere and get reflected388

at M1 (about 2-2.5 RE from MMS) when the mirror force becomes sufficient. Then389

they travel back over the kink region of the reconnected field line parallel to magnetic390

field into the spine region characterized by strongly compressed magnetic field. In the391

simulation, the field strength in this region is around 37 nT while in MMS observations392

(see Figure 4o) the field strength on the magnetosheath side of the reconnected field393

line is around 48 nT at 9:19 and around 42 nT at 9:25. This is likely the leaky side of394

the magnetic bottle as can be seen by the energetic protons in the loss cone at 9:23:30-395

9:25:30 in Figure 4l when the field strength is 37-42 nT. We also produced the cuts396

along the simulated MMS orbit of the magnetic field, plasma flow velocity, density,397

and temperature (not shown). The range of density (n), temperature (T ), velocity (vx,398

vy, vz), and magnetic field (bx, by, bz and bt) variation between 9:18-9:30 UT are as399

follows: n = [4.3,9.4]/cc, T =[3.5,6.5] MK, vx =[-130,-100] km/s, vy =[80, 105] km/s,400

vz =[-150, -110] km/s, bx =[-9,-4] nT, by =[27, 38] nT, bz =[4, 14] nT, and bT =[29, 36]401

nT. This indicates that the virtual spacecraft, unlike MMS, does not observe such fast402

flows or magnetic field rotations. The reconnection in the present MHD simulation403

operates due to numerical resistivity which results in smoothed magnetic field and flow404

profiles in comparison to the real system.405

4 Estimation of the MMS distance to the reconnection site and M2419

Because H+ can have multiple sources we use the parallel cuts of the O+ (of420

ionospheric origin) phase space density and He++ (of solar wind origin) to evaluate421

distance to the reconnection site (LR) using method similar to [Fuselier et al., 2000;422

Trattner et al., 2007]. Using the estimated distance from MMS to the M1, LM1 =423

2-2.5 RE shown in MHD simulation (Figure 6f), the distance to LR can be roughly424

estimated as:425

VHe++
f
t1 = LR + LM1 + LM1426

VHe++
s
t1 = LR427

where t1 is the travel time of slow (s) and fast (f) He++ ions from reconnection428

site to satellite location and from reconnection site to M1 and back to satellite location,429

respectively. The ion out flow using O+ is subtracted from the He++ giving VHe++
f

=430

295 km/s and VHe++
s

= 195 km/s which gives:431

LR =
2V

He
++
s

LM1

V
He

++
f

−V
He

++
s

= 7.8− 9.8 RE432

This estimated distance of 8-10 RE from MMS to the reconnection site is in good433

agreement with the distance between MMS and the region of maximum magnetic shear434

shown in Figure 5a northward and dawn-ward of the MMS.435

To estimate the distance to M2 we use the fast (VO+
f

= 260 km/s), reflected O+
436

from M2 and the slow (VO+
s

= 140 km/s) O+ originating from ionosphere through M1:437

VO+
f
t1 = LM1 + LM2 + LM2 = LM1 + 2LM2438

VO+
s
t1 = LM1439

LM2 =
V
O

+
f

−V
O

+
s

2V
O

+
s

LM1 = 0.9-1.1 RE440
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This indicates that the length of the magnetic bottle (LM1 + LM2) is about 3-4441

RE . The gradient of B of about 20 nT from the center of the bottle toward the both442

mirror points is efficient in trapping most of the particle flux as can be estimated443

from mirror force calculation at M1 for 1 keV He++ (see Figure 4a) in the cavity and444

comparing it with the force required to make He++ parallel velocity (v‖ = 295 km/s)445

at distance LM1 zero:446

µ∇‖B = 1keV
25nT

(45nT−25nT )

(2 to 2.5RE)
= 8-10e−24 N447

mHe++
dv‖
dt = 2∗1.67e−27kg∗295km/s

(86 to 108s)
= 9-11e−27 N, where the time difference of 86-448

108 s is estimated from ∆t = LM1
1
2 v‖

. This estimation shows that the mirror force is over449

two orders of magnitude greater than the force required to make the He++ parallel450

velocity to zero at M1.451

5 Conclusions and Discussion452

We have shown that MMS orbit can reach high-latitude dayside magnetopause453

and associated boundaries. The main conclusions can be summarized as follows:454

1. Ion velocity distribution functions and good Walén relation and HT frame455

velocity suggest reconnection occurring dawn-ward and above MMS, about 8-10 RE456

from MMS, which is consistent with MHD simulation.457

2. MMS observed high fluxes of trapped high-energy electrons and ions in the458

magnetic bottle-like structure. Formation of the magnetic bottle via reconnection was459

also observed in the MHD simulation.460

3. He++ (of solar wind origin) and O+ (of ionospheric origin) phase space den-461

sities suggest that the magnetic bottle between mirror points M1 and M2 was formed462

by cumulation of magnetic flux in the magnetosheath originating from reconnection463

about 8-10 RE from the MMS location.464

We propose that the local anti-parallel reconnection in the vicinity of the cusps,465

such as observed by Nykyri et al. [2011a], results into the formation of stronger mag-466

netic field depressions (∼50-80 nT) than the component reconnection that was operat-467

ing and created the elongated cavity for the present event. Our future work is to better468

understand the relative contributions of local physical mechanisms (e.g, acceleration469

via gradients in reconnection quasi-potential [Nykyri et al., 2012], wave acceleration470

[Nykyri et al., 2004], and Kelvin-Helmholtz Instability driven processes [Moore et al.,471

2016; Sorathia et al., 2017]), remote sources (ring current [Pulkkinen et al., 2001] and472

fore-shock energetic particles [Trattner et al., 2011]) contributing to these enhanced473

fluxes of energetic electrons and ions in these cavities. It is noteworthy that for the474

present event the IMF orientation and plasma conditions remained quite steady for475

hours, allowing reconnection site to remain relatively stable, and lead to formation of476

cavities along MMS trajectory. This stable IMF can lead to longer trapping times and477

therefore more efficient acceleration by the electric field in the cavity [Nykyri et al.,478

2012]. However, Figure 4l shows that during present event some of the high-energy479

protons at ≈ 9:25 get into a loss cone leaking into the ionosphere or into the mag-480

netosheath from the cavity, while the IMF remains steady. It is possible that when481

the IMF changes orientation, the electrons, which are more easily to be adiabatic and482

trapped, could leak out, contributing to the > 40 keV electron leakage events observed483

by Cohen et al. [2017].484
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Figure 4. MMS1 observations between 9:18-9:30 of the plasma and field properties (panels

a-n) and OMNI magnetic field (panel o). The loss cone PA is highlighted by black lines for ener-

getic protons (l) and electrons (m). On the right are the H+, He++ and O+ velocity distribution

functions at four different times: at the msh-side (1), at the reconnected field line on the msh-(2)

and magnetospheric- side (3), and at the ”older” reconnected field-line (cavity) (4). The observa-

tion times of these distributions relative to magnetic field are marked with red arrows (k). The

parallel cut of the phase space density for distribution 4 is shown for H+, He++, and O+.
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b	

Figure 5. Maximum magnetic shear model illustrating the angle between the draped IMF

(from lagged Wind data) and Earth’s magnetic field at the magnetopause (a). MMS location is

marked with blue square and IMF direction with black line. The -v × B-electric field comparison

with the HT frame velocity and the Walén relation calculated from the FPI instrument using the

pressure anisotropy correction (b).
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plane at x = 5 RE (a), in x, z-plane at y = -5.5 RE (b) and at y = 4 RE (c). The y component

of the current density, Jy, (color) and magnetic field vectors in x, z-plane at y = 0 (d) and at

y = 3.2 RE (e). The magnetic field strength and velocity vectors in x, z-plane at the MMS1

y-coordinate, y = 6.4 RE (f). The last closed and the first polar cap field line tailward of the

cusp are over-plotted with thick, red and yellow lines, respectively (instead of yellow, blue color

is used in panel f to distinguish the line from background). Diagram of the expected locations

(grey ovals) of the DMCs for different IMF orientations at the northern (g) and southern (h)

cusp. Grey arrows present the direction of Earth’s magnetic field and colored arrows present the

direction of the draped IMF for the following main IMF By and Bz conditions: i) By < 0, Bz >

0, ii) By > 0, Bz > 0, iii) By < 0, Bz < 0, iv) By > 0, Bz < 0, v) By � |Bz|, vi) By � −|Bz|,
vii) Bz � |By|, viii) Bz � -|By|. The blue thick arrows present regions where B-field is perpen-

dicular to the magnetosheath flow.
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