
Automatic Generation of Interactive NPC Scripts for a
Mixed-Reality Integrated Learning Environment

Andrew M. Yuan
Lawton Chiles High School
7200 Lawton Chiles lane
Tallahassee , FL32306

andrewyuan6@gmail.com

Fengfeng Ke
College of Education

Florida State University
3205C Stone Building
Tallahassee, FL32306
fke@admin.fsu.edu

Raymond Naglieri
College of Education

Florida State University
3205C Stone Building
Tallahassee, FL32306
rjn15b@my.fsu.edu

Zhaihuan Dai
College of Education

Florida State University
3205C Stone Building
Tallahassee, FL32306
zd12@my.fsu.edu

Mariya Pachman
College of Education

Florida State University
3205C Stone Building
Tallahassee, FL32306

mpachman@fsu.edu

ABSTRACT
The Mixed-Reality Integrated Learning Environment (MILE)
developed at Florida State University is a virtual reality based,
inclusive and immersive e-learning environment that promotes
engaging and effective learning interactions for a diversified
learner population. MILE uses a large number of interactive Non-
Player Characters (NPCs) to represent diverse research-based
learner archetypes and groups, and to prompt and provide
feedback for in situ teaching practice. The NPC scripts in MILE
are written in Linden Scripting Language (LSL), and can be quite
complex, creating a significant challenge in the development and
maintenance of the system. To address this challenge, we develop
NPC_GEN, an automatic NPC script generation tool that takes
high-level NPC descriptions as input and automatically produces
LSL scripts for NPCs. In this work, we introduce NPCDL, a
language that we design for NPC_GEN to give high-level
descriptions of NPCs, describe how NPC_GEN translates an
NPCDL description into an LSL script, and report a user study of
NPC_GEN. The results of our user study indicate that with
minimal training, non-technical people are able to write and
modify NPCDL descriptions, which can then be used to generate
LSL scripts for the NPCs: the development and maintenance of
NPCs is greatly simplified with NPC_GEN.

CCS Concepts
• Human-centered computing ➝Human computer interaction
(HCI) ➝Interactive systems and tools • Software and its
engineering ➝Software notations and tools ➝Context specific
languages ➝Domain specific languages.

Keywords
Mixed reality; virtual reality; OpenSimulator; Linden scripting
language; interactive scripts; automatic script generation.

1. INTRODUCTION
Virtual Reality (VR) is a computer-generated 3D representation of
a real-life environment. A user can autonomously navigate a VR
in the form of a graphical representation, known as an avatar, and
interact with simulated objects and other avatars via both verbal
and nonverbal communications in real time and at the same pace
the user would experience events in the real world [1]. VR has
been implemented as a promising learning platform to support a
variety of education activities [2]. The Mixed-reality Integrated
Learning Environment (MILE) developed at Florida State
University is a VR-based, body sensory technology integrated
learning system that supports simulated and immersive teaching
and mentoring practice [3].
Non-Player Characters (NPCs) play an important role in MILE,
which is based on OpenSimlator (OpenSim), an open source, VR
server software [4]. NPC scripts are written in Linden Scripting
Language (LSL) [5]. To support a realistic learning environment,
the functionalities of NPCs can be quite complex. Many NPCs in
MILE are implemented with more than 1000 lines of LSL code.
This posts a significant challenge for the MILE project since (1)
the number of NPCs in MILE is large, and (2) the NPC
functionality often changes due to design changes, user-test
feedbacks, expert feedbacks, and scenario customization. As
MILE modules are often customized after deployment, this also
results in maintenance issues. These problems motivate the
development of NPC_GEN, an automatic NPC script generation
tool that takes high-level NPC descriptions as input and
automatically produces LSL scripts for NPCs.
NPC_GEN uses NPCDL, a high-level NPC description language
that we designed to describe NPCs. NPCDL specifies high-level
NPC functionalities and omits implementation details.
NPC_GEN takes an NPCDL description and automatically
generates the LSL script that supports the specified functionality.
NPC_GEN is publicly available 1; and the NPC scripts that it

1 http://hydra.cs.fsu.edu:9012/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICETC 2018, October 26–28, 2018, Tokyo, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6517-8/18/10…$15.00
https://doi.org/10.1145/3290511.3290554

74

generated have been deployed in MILE. In this paper, we present
NPCDL, describe key techniques used in NPC_GEN to translate
an NPCDL description into an LSL script, and report a user study
for using NPC_GEN. The results of the user study indicate that
with minimal training, non-technical people are able to write and
modify NPCDL programs, which can then be used to generate
LSL scripts for the NPCs: the development and maintenance of
NPCs is greatly simplified.
The rest of the paper is organized as follows. Section 2 discusses
the background and related work. Section 3 presents NPCDL.
Section 4 describes key techniques in NPC_GEN to translate an
NPCDL description to an LSL script. Section 5 reports our user
study. Finally, Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
2.1 MILE and a MILE Scenario
With a 3D VR environment and the body sensory technology,
MILE promotes sensory and action immersion that enhances
education by allowing multiple perspectives, situated learning,
and transfer [6]. Another salient feature of MILE is open-
endedness. MILE allows for adaptive construction and
customization of simulated universes by both designers and end
users, enabling a swift and adaptive design based on specific
teaching needs. MILE also induces symbolic immersion by
invoking situated, archetypical experiences of teaching: coaching,
facilitating, and managing learners of diverse archetypes [6].
MILE supports both one-on-one and group training. A typical
MILE training session has a human facilitator who leads the
training session, and one or more trainees. The facilitator, trainees,
and other human players navigate MILE as avatars. Both NPCs
and avatars (played by other human players such as peers) can be
agents to prompt and provide meaningful feedback for in situ
teaching practice. They can personify or represent diverse
research-based learner archetypes and groups. Human-controlled
avatars will be able to perform reciprocal, authentic interactions
with trainee during domain-specific instruction or coaching tasks
(e.g., facilitate inquiry and problem solving without giving away
answers). Interactive NPCs, on the other hand, may exemplify
pre-timed or pre-conditioned behaviors to prompt the practice of
targeted skills. NPCs participate in learning activities and play
critical roles in emulating a realistic learning environment.
Figure 1 shows a screen capture of a MILE session for training
classroom management skills. In the figure, the trainee is in the
front of the class, giving the lecture; and the facilitator is in the
background (not shown in the figure). The students in the class are
NPCs. To emulate a realistic classroom setting, this session must
have different types of NPC students such as disrespectful
students, inattentive students, quiet students, and eager students.
These NPC students give the trainee visual feedbacks to prompt
the trainee to practice techniques to deal with different classroom
situations and different types of students. For example,
disrespectful NPC students may constantly chat in the classroom
until the trainee intervenes with some classroom management
technique such as calling the student to answer a question.
Besides having different types of NPCs to simulate the realistic
classroom dynamic, the training activities are also embedded in
the interactions between NPCs and the trainee: the trainee learns
and practices the necessary skills by interacting with the NPCs.
For example, when an eager NPC raises hands, the trainee may
call the NPC name; after that the eager NPC may ask a question
and expect an answer; and depending on the answer from the
trainee, the NPC may satisfy with the answer, ask more questions,

or repeat the question again. By interacting with the NPCs, the
trainee will learn the proper teacher behavior during lecture as
well as classroom management skills. Such interactions are a part
of the scenario design and must be supported by NPC scripts.
Note that the session may be fully automatic with pre-timed and
pre-scripted NPC students. The session may also be guided by a
human facilitator who decides the proper training activities by
issuing commands to the NPCs to start the activities.

Figure 1. Screen capture of a MILE training session.

2.2 Linden Scripting Language
Linden Scripting Language (LSL) is the language that all scripts
in Second Life and OpenSim are written [5]. Unique features of
LSL that are used in NPC scripts include the concepts of state and
event. An event can be thought of as a trigger that leads the script
to perform certain operations. LSL has a set of pre-defined events.
Examples include a touch event that is triggered when an avatar
touches an NPC, and a listen event when a message is received.
Through these events, an NPC can react and interact with human
avatars as well as other objects. Different states allow an NPC to
react to an event in different ways.

Figure 2 shows an example LSL script. This script has two global
variables (npc and lis) and two states, default and S1. In the
default state (Lines (3) to (10)), when the object is touched, the
touch_start function in Lines (5) to (9) is executed, which creates
an NPC, makes the NPC sit on the object, and changes the state to
S1. In state S1, when the NPC is touched, the touch_start function
in Lines (13) to (15) is executed, which removes the NPC and
changes the state to default. In state S1, the NPC also listens to the
public channel (channel 0) (Line (12)). When it receives a "sound"
message, the listen routine (Lines (16) to (19)) is triggered; and
the NPC plays the sound file named "hello_sound". Here, the
"sound" message can be viewed as a command to the NPC.

As illustrated in the example in Figure 2, an NPC script must
specify many details in addition to the actions that the NPC
performs. The details include giving NPC a name, creating
channels to listen, maintaining the variables, controlling sound
volume, etc. As a result, a complex interaction can take a
significant amount of logic to implement in LSL. To support the
designed learning activities in MILE modules, many of our hand-
coded NPC scripts are more than 1000 lines of code, causing
significant problems in the design, development, and maintenance
of MILE modules. NPC_GEN and NPCDL are developed to
address this challenge.

75

Figure 2. An example NPC LSL script.

2.3 Related Work
It is well known that LSL scripts are tedious to develop. The LSL
community has used multiple approaches to ease the LSL script
development. One approach is to collect existing LSL scripts into
libraries that are made publicly available. An example of such
libraries is in Outworldz2. Another approach is to develop LSL
script generators like what we do in this work. Existing LSL script
generators mainly fall in two types. The first type contains LSL
script generators to help novice LSL programmers start scripting.
This type of generators in general has an easy-to-access interface
and can generate simple LSL scripts. Examples include Script
Me! 3, Con Wylie’s Script Generator 4, and Scratch for Second
Life5. More advanced LSL script generators are domain specific.
An example is the Particles LSL Generator 6 that generates a
specific type of LSL scripts. Our NPC_GEN belongs to the last
category, generating domain specific scripts, that is, interactive
NPC scripts for MILE. There exist NPC scripts and NPC script
generators such as those in Outworldz7. However, these existing
NPC scripts and generators are not suitable for MILE. To the best
of our knowledge, there is no existing LSL script generator that
can support the flexible NPC interactions required by NPCs in
MILE and supported by NPC_GEN.

3. NPCDL, A HIGH-LEVEL NPC
DESCRIPTION LANGUAGE
As discussed in Section 2, from the perspective of the MILE
design and development, only the high-level functionality of
NPCs is important. The high-level functionality of an NPC
includes what actions it can perform, what responses it can

2 https://www.outworldz.com/cgi/freescripts.plx
3 http://www.3greeneggs.com/autoscript/
4 http://wiki.secondlife.com/wiki/Con-Wylies-Script-Generator
5 http://web.mit.edu/~eric_r/Public/S4SL/
6 http://particles-lsl-generator.bashora.com/
7 https://www.outworldz.com/opensim/posts/npc/

recognize and react to, what will trigger the NPC to perform an
interaction (an interaction consists of a sequence of actions and
responses), and what commands the NPC supports. On the other
hand, the LSL script for an NPC must deal with many
implementation details that are mostly of no concern to MILE
designers. NPCDL, a high-level description language for MILE
NPCs, bridges this gap. NPCDL omits implementation details and
focuses on the high-level functionality of NPCs. The
implementation details are automatically generated when an
NPCDL description is translated into an LSL script. NPCDL
specifies the following:

• NPC states: NPC states decide how the NPC reacts to
triggers. NPC states in NPCDL are different from LSL states.
NPC_GEN realizes each NPC state (described in NPCDL)
using four LSL states as will be discussed in Section 4.2.

• Interactions: Interactions that an NPC can perform
determine its functionality. An interaction consists of a
sequence of actions and expected responses. NPCDL
supports flexible actions that can be performed by the NPCs.

• Triggers: Each NPC interaction has a trigger, which is
essentially a command in a communication channel that
prompts the NPC to perform an action or to start an
interaction. Each NPC in MILE has three pre-defined
communication channels that can be used to receive
commands (triggers), the state_control channel, the
action_control channel, and the parameter_control channel.
An NPC may also use a custom channel and the public
channel (channel 0 in Opensim) to receive commands.

An NPC described by NPCDL may have one or more NPC states.
Each NPC state may have one or more interactions with triggers.
Figure 3 shows an example NPCDL program that will be used
throughout this section as examples.

Figure 3. An example NPCDL program.

The overall structure of an NPCDL description is as follows.
Enclosed in the begin and end block are a list of NPC states. The
bolded words in the description are reserved words in NPCDL. In
the example in Figure 3, the npc_name is twomoods; and there are
two NPC states.

(1) NPC twomoods begin
(2) state default begin
(3) channel -1 "-a1": action (random say ["Bor", "Yawn"]);
(4) randomtime 20 30 : action (animation bored_ani);
(5) end
(6) state goodmood begin
(7) channel -1 "-a1": askaction (say "Can you check it?");
(8) rbegin channel 0 1 ["yes"] :
(9) action (say "Is it correct?", sound is_it_correct);
(10) rbegin channel 0 1 ["Yes”]:
(11) action (say “Thank you.”, sound thank_you);
(12) rend
(13) rbegin allothers:
(14) action (say “Ok, we will work on this.”);
(15) rend
(16) rend
(17) rbeginallothers:
(18) action (say “We have a problem.”)
(19) rend
(20) time 30 : action (random animation ["ani1", "ani2"]);
(21) end
(22) end

(1) key npc;
(2) integer lis;
(3) default {
(4) state_entry() { }
(5) touch_start(integer num) {
(6) npc=osNpcCreate("Zac", "Brown",
 llGetPos(), "app");
(7) osNpcSit(npc, llGetKey(), ...);
(8) state S1;
(9) }
(10) }
(11) S1 {
(12) state_entry () {lis = llListen(0, "", "", "");}
(13) touch_start(integer num) {
(14) osNpcRemove(npc); state default;
(15) }
(16) listen (integer c, string n, key ID, string msg) {
(17) if (msg == "sound")
(18) llTriggerSound("hello_sound", 1.0);
(19) }
(20) }

76

NPC npc_name begin
 NPC state 1
 ……
 NPC state m
end

3.1 NPC States
NPCDL describes an NPC state in the following form. The block
enclosed by begin and end contains a list of triggers and
interactions supported in this NPC state; and each trigger and
interaction are separated by a colon (‘:’).

state npc_state_name begin
 Trigger 1 : interaction 1
 ……
 Trigger m : interaction m
end

There are two NPC states in Figure 3, Lines (2) to (5) for the NPC
state named default, and Lines (6) to (21) for the NPC state named
S1. In OpenSim, the NPC changes states by receiving commands
in the form of ‘-gotostate:state_name’ in its pre-defined
state_control channel. For example, when the NPC described in
Figure 3 receives a command ‘-gotostate:default’, it changes its
state to default.

3.2 Action
Each NPC state supports a list of interactions with triggers. An
interaction consists of a sequence of actions and responses.
NPCDL can specify flexible NPC actions. NPCDL allows a
variety of basic actions that the NPC can perform, which include
animation, sound, text message to different channels (including
issuing commands to other NPCs), random animation (perform
one random animation selected from a set of choices), random
sound, and random text message, and the most generic user
defined basic actions that is represented by a user-defined LSL
routine. In addition, an action consists of a list of basic actions.
For example, animation bored_ani (Line (4) in Figure 3) is a basic
action that performs animation file named “bored_ani”; sound
is_it_correct is a basic action that plays the sound file named
“is_it_correct”; random say ["Bor", "Yawn"]) is a basic action
that would say randomly either “Bor” or “Yawn”. These basic
actions can be combined to form an action with multiple
operations. For example, Line (11) in Figure 3,

action (say “Thank you.”, sound thank_you);
has two operations, saying a text message “Thank you” and
playing a sound file named “thank_you”.
One common student action in the classroom or lab setting is that
a student would raise a hand and wait to be called by the teacher.
If the teacher does not call the student, the student may say
“Excuse me” and continue raising the hand. If the teacher calls the
student, the student will then ask a question (or perform an action).
Since this is very common for MILE NPCs, NPCDL uses a
special action called askaction to specify such an interaction. For
example, in Line (7) of Figure 3, we have

askaction (say "Can you check it?");
This action starts by the NPC raising a hand and waiting to be
called. After the NPC is called, it will perform the say operation to
ask the question.

3.3 Response
In order for an NPC to carry on an interaction, it must be able to
detect the responses to its actions. MILE is built over OpenSim,
whose NPCs can only detect a small number of events such as

receiving a text message, sensing an avatar touching, etc. Hence,
the type of potential responses that NPCDL can use is restricted.
To design the response in NPCDL, we considered all events that
an NPC can detect in OpenSim, and decided to only support
responses with text messages, mainly for the following reasons.
First, most MILE modules require a facilitator. With a facilitator,
all of the NPC detectable events other than text message can be
emulated by a text message from the facilitator. For example, to
emulate an avatar touching an object event, the facilitator can
send a text message to the NPC to trigger the appropriate actions
from the NPC. Second, the generic event sensed by NPCs are
often too generic for the intended event. For example, when a
response is for a particular avatar to touch an object. The generic
touching event detected by the NPC cannot limit the touching
event to the particular avatar (a text message from the facilitator
does not have this issue). Hence, the responses in NPCDL are
various types in text messages in different channels.
In NPCDL, when sending a text message without specifying a
channel, it is defaulted to the public channel (channel 0). Each
NPC in MILE has three pre-defined channels: state_control
channel (channel -1 in NPCDL), action_control channel (channel
-2) and parameter_control channel (channel -3). Other channels
can be directly specified. A response specifies the channel
number (channel_num) for the text message, and the number of
keywords expected from the list of keywords, the list of keywords.
It has the following forms (See Lines (8), (10) in Figure 3 for
examples):
rbegin channel channel_num num_keyword [keyword list]
… interaction triggered by the response (reactions to the response)
rend
or
rbegin channel channel_num string
... interaction triggered by the response (reactions to the response)
rend
The latter is a concise form for the commonly used case when the
number of keywords in the response is 1. Line (8) in Figure 3

rbegin channel 0 1 ["yes"]
specifies a response from the public channel with one keyword
“yes”. An equivalent way to write this is rbegin channel 0 “yes”.
Another form for response handles the situation when a response
is detected, but not matching any specified responses. The format
is shown in the following.
rbegin allothers
... reactions to the response not matching any responses specified
rend

3.4 Interactions
An interaction is a sequence of actions and responses. NPCDL
allows the number of potential responses to an action to be
unbounded (can be any number) and the number of actions and
responses in the sequence to be unbounded. This is achieved by (1)
allowing each action to have any number of potential responses
(see the following generic format for an interaction), and (2) each
response recursively triggering a new interaction (see the response
format in Section 3.3).

Action :
 Response 1
 ……

77

 Response n

Lines (7) to (19) in Figure 3 specifies an interaction that allows
the NPC to perform the following interactions among others:
Interaction 1: Interaction 2:
NPC: Can you check it? NPC: Can you check it?
Trainee: Yes Trainee: Yes
NPC: Is it correct (with sound)? NPC: Is it correct (with sound)?
Trainee: Yes Trainee: No
NPC: Thank you (with sound). NPC: Ok, we will work on this.

3.5 Triggers
NPC interactions can be triggered by one of the two mechanisms:
time triggered and command triggered. Each NPC state can have
any number of command triggered interactions and one time-
triggered interaction.
A time trigger has two forms: the fixed time trigger with the
reserved word 'time' followed by a number and the random time
trigger with the reserved word 'randomtime' followed by two
numbers. Line (20) in Figure 3 'time 30' specifies that the
interaction is triggered every 30 seconds. Line (4) in Figure 3
'randomtime 20 30' specifies that the interaction is triggered in a
random time interval between 20 and 30 seconds.
A command trigger specifies the channel for the command and the
command string. Its form is a channel reserved word, followed by
a number specifying the channel number, which is then followed
by a command string. Line (3) in Figure 3 shows a command
trigger: channel -1 “-a1”: the command is the string “-a1” on the
state control channel. Facilitators, other avatars, and NPCs can use
this command to trigger the NPC to perform the interaction.

3.6 An Example
MILE training modules are designed based on Q-matrix [7] that
arranges the set of test items according to the specific subset of
attributes measured by each individual item. For each item at the
lowest level of the Q-matrix, one or more activities are designed.
One activity designed for our physics lab scenario consists of the
following steps:

1. The NPC raises a hand
2. If the trainee ignores the hand-raising after sometime,

the NPC responded with “Excuse me.” and repeat.
Otherwise if the trainee calls the NPC name, goto Step 3.

3. The NPC says “Hi, I think I need your help. The digital
multimeter is broken.”

4. If the trainee asks how the wires were connected, the
NPC will respond “Yes, I misconnected the wires.” If
the trainee asks other questions, the NPC will respond
“Yes, I have done it.”

The NPC described in the NPCDL description in Figure 4 will
support the NPC functionality in this activity. Note that a typical
interactive NPC supports many of such activities.
In this example, the askaction in line (3) supports the raising hand,
name calling, and question asking (Steps 1, 2, and 3; see the
discussion in Section 3.2). Lines (4) to (6) support the response
when the trainee asks how the wires were connected while Lines
(7) to (8) cover the case when the trainee did not ask that question.
Note that the response in Line (4) is rigid. The designer may
choose to use a less rigid checking and change Line (4) to

rbegin channel 0 1 ["wires”, “connected"]:

In this case, as long as the trainee’s answer includes one of the
keywords “wires” and “connected”, it is considered that the
trainee has asked the right question. It is a design choice to decide
which method is more appropriate.
(1) NPC example_NPC begin
(2) state default begin
(3) channel -1 "-activities1": askaction (say “Hi, I think I
 need your help. The digital multimeter is broken.”);
(4) rbegin channel 0 1 ["How the wires were connected?"] :
(5) action (say "Yes, I misconnected the wires.”);
(6) rend
(7) rbeginallothers:
(8) action (say “Yes, I have done it.”)
(9) rend
(10) end
(11) end

Figure 4. An example NPCDL description.

4. NPC_GEN
NPC_GEN takes an NPCDL program and translates it into an
LSL program with the same functionality. Due the space
limitation, we will only give a high-level overview about the
translation and briefly describe key techniques used in NPC_GEN.
NPC_GEN uses tools called flex and bison [8] to perform lexical
analysis and syntax analysis. After that, NPC_GEN uses the
syntax-direct translation technique [9] to perform semantic checks
and translate the NPCDL program into an LSL script.
LSL scripts have a special format: all global variables must be
declared before all subroutines, which in turn must be placed
before all LSL states. To generate such LSL scripts, we first use
syntax direct translation to collect all specified information in the
NPCDL program into internal data structures. After the complete
NPCDL program has been successfully parsed and all information
has been collected, the whole LSL script is generated based on the
internal data structures.

4.1 Code Generation
After NPC_GEN parses the program and collects all information,
it generates the LSL script for the NPC. As discussed earlier, there
are many LSL implementation details that are not specified by the
NPCDL description. Such details include declaring and
initializing variables, functions commonly used by all NPCs,
setting up message channels, some control functions such as
creating and destroying NPCs, common NPC functionality such
as self-removing when being touched, and common commands
that apply to all NPCs in all states. These details are not specified
in the NPCDL program but must be included in the NPC LSL
script. NPC_GEN pulls the implementation details information
from a hand-coded NPC script template. As such, for these non-
essential, but necessary features, all NPCs generated by
NPC_GEN share common functionality and have a similar feel.
For the common functionality, the generated NPC script can
customize the NPC behavior by modifying the value of one
variable, myid. NPCs with different myid’s will have different
names, different pre-defined channels, etc.
The overall LSL script code generation sequence in NPC_GEN is
shown in Figure 5. First, the file header is generated by the
gen_header() routine; common variable declarations are generated
by the gen_common_variables() routine: the generated code is
directly extracted from the NPC script template. After that,
gen_interaction_variables() converts the internal representations
of interactions into LSL lists, generates the interaction variables,

78

and assigns the LSL lists (interactions) to the variables. After that,
shared routines from the NPC template are generated by
gen_common_routines(). Then, program specific routines are
generated by gen_program_specific_routine(). Finally, the
common and NPCDL program specific LSL states are generated.

Figure 5. NPC_GEN code generation sequence.

4.2 Program Specific States
The generated LSL script has 1 common state, generated by
gen_common_states(), that performs the NPC creation function.
For each NPC state in the NPCDL program, NPC_GEN generates
four LSL states: idle, ask, interact_1, and interact_2. These four
states are the key to support the flexible interactions. For all NPC
states in a NPCDL program, the four LSL states are adapted from
the same template. The idle state performs timed interactions if
specified and waits for channel triggers. Once a channel trigger
happens, if the interaction starts from the askaction (raising hand,
waiting for name calling before performing the action and
reaction), the NPC moves to the ask state that supports the
functionality. If the interaction starts with a regular action, the
NPC will perform the action and move to the interact_1 state. In
the interact_1 and interact_2 states, the NPC checks if any
responses have arrived based on the current interaction (stored in
variable curr_interact in the generated LSL script). When a
response arrives, the NPC checks which branch that interaction
proceeds, and starts the new interaction (triggered by the response)
by properly setting the curr_interact variable and moving to the
other interact state. Note that interact_1 and interact_2 states are
identical (except for the state name). It is necessary to have both
since in LSL, moving to the same state has not effect and will not
reset the variables and restart a new interaction (and move to
another state will). We need these two states to deal with this
feature of LSL and ensure that each response triggers a new
interaction. Note also that the LSL logic in the interact states
understands the internal representation of interactions and can
proceed with the interaction properly.

4.3 Generating Triggers
The triggers for interactions are realized in a routine called
process_state_specific_msg_statename(). This routine is invoked
in all four LSL states that correspond to the NPC state named
statename in the NPCDL description. NPC_GEN generates a list
of triggers and the corresponding actions to start the interaction in
this routine.

5. USER STUDY
We conducted a small-scale user testing of NPC_GEN with three
non-programmer, education-majored designers including 2
females. A 25-minute orientation and explanation of NPCDL
grammar was provided via a 6-slide PowerPoint presentation.
Another 25 minutes were then used to explain three example
NPCDL programs and to demonstrate their functionality in the
OpenSimVR environment. The structure of NPCDL programs

and the NPCDL concepts were explained and demonstrated. One
of the examples contains a complex interaction with three
response options and three levels of interaction.
After the 50 minutes training, the participants spent the rest of the
1.5-hour session developing an NPCDL program for an NPC with
two two-layer interactions from scratch. Such an NPC is at a
medium complexity level and is typical in our MILE modules.
All participants demonstrated a satisfactory level of
comprehension within the 25-minute direct instruction of NPCDL.
They self-reported 7.5 (out of 10) for their confidence toward
using NPCDL.Their self-efficacy was even more obvious after the
case demonstration, with frequent utterances like “ok,” “aha,” or
“that’s easy” during and after the case demonstration.
All three participants finished their programming tasks
independently, in 30-32 minutes. All completed scripts are correct
in grammar and design logic, except for a couple of minor typos.
All generated NPC scripts were tested successfully in OpenSim.

6. CONCLUSIONS
We introduce NPC_GEN, an automatic NPC script generator.
NPC_GEN allows NPC to be developed and modified by novice,
non-technical people and significantly reduce the cost for
developing and maintaining NPCs. We have placed NPC_GEN on
the Internet (See footnote 1 in page 1) and encourage the
community to explore the capability of the tool. Our future plan is
to build on this work to automatically generate all scripts for the
whole MILE scenario.

7. ACKNOWLEDGMENT
This research is supported in part by NSF under grant 1632965.

8. REFERENCES
[1] Ke, F., and Im, T. 2013. Virtual-reality-based social

interaction training for children with high-functioning autism.
The J. of Educational Research, 106(6), 441-461.

[2] Hew, K. F., and Cheung, W. S. 2010. Use of three‐
dimensional (3‐D) immersive virtual worlds in K‐12 and
higher education settings: A review of the research. British
Journal of Educational Technology, 41(1), 33-55.

[3] Ke, F., Lee, S., & Xu, X. 2014. Immersive learning in a
Kinect-Integrated Virtual Reality Environment. Paper
presented at Asso. for Educational Comm. and Technology
International Convention 2014, Jacksonville, FL.

[4] OpenSimulator, http://opensimulator.org. [accessed: June 10,
2018]

[5] Heaton, Jeff. 2007. Introduction to Linden Scripting
Language for Second Life. Heaton Research, Incorporated.
ISBN-13: 978-1604390049.

[6] Dede, C. 2009. Immersive interfaces for engagement and
learning. Science, 323(5910), 66-69.

[7] Tatsuoka, K. K (1983). Rule-space: An approach for dealing
misconceptions based on item response theory. Journal of
Educational Measurement, 20, 345-354.

[8] Levine, John. 2009.flex & bison: Text Processing Tools.
O'Reilly Media. ISBN-13:978-0596155971.

[9] Aho, Alfred V., Lam, Monica S., Sethi, Ravi, and Ullman,
Jeffrey D. 2006. Compilers: Principles, Techniques, and
tools. Addison Wesley, 2nd edition.

 1) gen_header();
 2) gen_common_variables();
 3) gen_interaction_variables();
 4) gen_common_routines();
 5) gen_program_specific_routine();
 6) gen_common_states();
 7) gen_program_specific_states();

79

http://opensimulator.org/

