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Abstract. Convolutional sparse representations are a form of sparse representation with a structured,
translation-invariant dictionary. Most convolutional dictionary learning algorithms to date oper-
ate in batch mode, requiring simultaneous access to all training images during the learning process,
which results in very high memory usage and severely limits the training data size that can be used.
Very recently, however, a number of authors have considered the design of online convolutional dic-
tionary learning algorithms that offer far better scaling of memory and computational cost with
training set size than batch methods. This paper extends our prior work, improving a number of
aspects of our previous algorithm; proposing an entirely new one, with better performance, that
supports the inclusion of a spatial mask for learning from incomplete data; and providing a rigorous
theoretical analysis of these methods.
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1. Introduction.

1.1. Sparse representations and dictionary learning. Sparse signal representation aims
to represent a given signal by a linear combination of only a few elements of a fixed set of
signal components [36]. For example, we can approximate an N -dimensional signal s ∈ RN as

s ≈ Dx = d1x1 + · · ·+ dMxM ,(1)

whereD = [d1,d2, . . . ,dM ] ∈ RN×M is the dictionary withM atoms and x = [x1, x2, . . . , xM ]T

∈ RM is the sparse representation. The problem of computing the sparse representation x
given s and D is referred to as sparse coding. Among a variety of formulations of this problem,
we focus on basis pursuit denoising (BPDN) [9]:

min
x

(1/2) ‖Dx− s‖22 + λ ‖x‖1 .(2)
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1590 J. LIU, C. GARCIA-CARDONA, B. WOHLBERG, AND W. YIN

Sparse representations have been used in a wide variety of applications, including denois-
ing [16, 36], superresolution [69, 75], classification [67], and face recognition [66]. A key issue
when solving sparse coding problems as in (2) is how to choose the dictionary D. Early
work on sparse representations used a fixed basis [45], such as wavelets [39] or discrete cosine
transform [26], but learned dictionaries can provide better performance [2, 16].

Dictionary learning aims to learn a good dictionary D for a given distribution of signals.
If s is a random variable, the dictionary learning problem can be formulated as

min
D∈C

Es

{
min
x

1

2
‖Dx− s‖22 + λ ‖x‖1

}
,(3)

where C = {D | ‖dm‖22 ≤ 1, ∀m} is the constraint set, which is necessary to resolve the scaling
ambiguity between D and x.

Batch dictionary learning methods (e.g., [18, 17, 2, 68]) sample a batch of training signals
{s1, s2, . . . , sK} before training and minimize an objective function such as

min
D∈C,x

K∑
k=1

{
1

2
‖Dxk − sk‖22 + λ ‖xk‖1

}
.(4)

These methods require simultaneous access to all the training samples during training.
In contrast, online dictionary learning methods process training samples in a streaming

fashion. Specifically, let s(t) be the chosen sample at the tth, training step. The framework of
online dictionary learning is

x(t) = SC
(
D(t−1); s(t)

)
,

D(t) = D-update
(
{D(τ)}t−1

τ=0, {x
(τ)}tτ=1, {s(τ)}tτ=1

)
,

(5)

where SC denotes sparse coding, for instance, (2), and D-update computes a new dictionary
D(t) given the past information {D(τ)}t−1

τ=0, {x(τ)}tτ=1, {s(τ)}tτ=1. While each outer iteration
of a batch dictionary learning algorithm involves computing the coefficient maps xk for all
training samples, online learning methods compute the coefficient map x(t) for only one, or a
small number, of the training sample s(t) at each iteration, the other coefficient maps {x(τ)}t−1

τ=1

used in the D-update having been computed in previous iterations. Thus, these algorithms
can be implemented for large sets of training data or dynamically generated data. Online D-
update methods and the corresponding online dictionary learning algorithms can be divided
into two classes:

Class I: First-order algorithms [55, 35, 1] are inspired by stochastic gradient descent
(SGD), which only uses first-order information, the gradient of the loss function, to update
the dictionary D.

Class II: Second-order algorithms. These algorithms are inspired by recursive least squares
(RLS) [47, 15], iterative IRLS [34, 56], kernel RLS [21], second-order stochastic approximation
(SA) [37, 51, 71, 48, 74, 30], etc. They use previous information {D(τ)}t−1

τ=0, {x(τ)}tτ=1, {s(τ)}tτ=1

to construct a surrogate function F (t)(D) to estimate the true loss function of D and then
update D by minimizing this surrogate function. These surrogate functions involve bothDow
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ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1591

first-order and second-order information, i.e., the gradient and Hessian of the loss function,
respectively.

The most significant difference between the two classes is that Class I algorithms only need
access to information from the current step, t, i.e., D(t−1),x(t), s(t), while Class II algorithms
use the entire history up to step t, i.e., {D(τ)}t−1

τ=0, {x(τ)}tτ=1, {s(τ)}tτ=1. However, as we
discuss in section 4 below, it is possible to store this information in aggregate form so that
the memory requirements do not scale with t.

1.2. Convolutional form. Convolutional sparse coding (CSC) [31, 70] [62, sec. II], a
highly structured sparse representation model, has recently attracted increasing attention for
a variety of imaging inverse problems [24, 33, 72, 43, 61, 73]. CSC aims to represent a given
signal s ∈ RN as a sum of convolutions,

s ≈ d1 ∗ x1 + · · ·+ dM ∗ xM ,(6)

where dictionary atoms {dm}Mm=1 are linear filters and the representation {xm}Mm=1 is a set of
coefficient maps, each map xm having the same size N as the signal s. Since we implement the
convolutions in the frequency domain for computational efficiency, it is convenient to adopt
circular boundary conditions for the convolution operation.

Given {dm} and s, the maps {xm} can be obtained by solving the convolutional basis
pursuit denoising (CBPDN) `1-minimization problem

min
{xm}

1

2

∥∥∥∥∥
M∑
m=1

dm ∗ xm − s

∥∥∥∥∥
2

2

+ λ
M∑
m=1

‖xm‖1 .(7)

The corresponding dictionary learning problem is called convolutional dictionary learning
(CDL). Specifically, given a set of K training signals {sk}Kk=1, CDL is implemented via mini-
mization of the function

min
{dm},{xk,m}

1

2

K∑
k=1

∥∥∥∥∥
M∑
m=1

dm ∗ xk,m − sk

∥∥∥∥∥
2

2

+ λ
K∑
k=1

M∑
m=1

‖xk,m‖1

subject to ‖dm‖2 ≤ 1, ∀m ∈ {1, . . . ,M} ,(8)

where the coefficient maps xk,m, k ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}, represent sk and the norm
constraint avoids the scaling ambiguity between dm and xk,m.

The masked CDL problem [25, 59], which is able to learn the convolutional dictionary from
training signals with missing samples, is a variant of (8):

min
{dm},{xk,m}

1

2

K∑
k=1

∥∥∥∥∥
M∑
m=1

W � (dm ∗ xk,m − sk)

∥∥∥∥∥
2

2

+ λ

K∑
k=1

M∑
m=1

‖xk,m‖1

subject to ‖dm‖2 ≤ 1, ∀m ∈ {1, . . . ,M} ,(9)

where the masking matrix W is usually a {0, 1}-valued matrix that masks unknown or unre-
liable pixels and operator � denotes pointwise multiplication.Dow
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Complexity of batch CDL. Most current CDL algorithms [8, 25, 24, 62, 54, 59, 22, 10]
are batch learning methods that alternatively minimize over {xk,m} and {dm}, dealing with
the entire training set at each iteration. When K is large, the dm update subproblem
is computationally expensive; e.g., the single-step complexity and memory usage are both
O(KMN log(N)) for one of the current state-of-the-art methods [54, 22]. For example, for a
medium-sized problem with K = 40, N = 256 × 256,M = 64, we have KMN log(N) ≈ 109,
which is computationally very expensive.

1.3. Contribution of this article. The goal of the present work is to develop online con-
volutional dictionary learning methods for training data sets that are much larger than those
that are presently feasible. We develop online methods for CDL in two directions: first-order
method and second-order method. The contribution of this article includes the following:

1. An efficient first-order online CDL method (Algorithm 1) that provides a new frame-
work with lower learning time and memory requirements than our previous state-of-
the-art online method [32].

2. An efficient second-order online CDL method (Algorithm 2) that improves the algo-
rithm proposed in [32] and proves its convergence.

3. An online CDL method for masked images, which is, to the best of our knowledge, the
first online algorithm able to learn dictionaries from a partially masked training set.

4. An analysis of the forgetting factor1 used in Algorithm 2.
5. An analysis of the stopping condition in the D-update.
6. An analysis of the effects of circular boundary conditions on dictionary learning.
Relationship with other works. Recently, two other works on online CDL [13, 57] have

appeared. Both of them study second-order SA methods. They use the same framework as
[37] but different methods to update D: [13] uses projected coordinate descent, and [57] uses
the iterated Sherman–Morrison update [62]. Our previous work [32] uses the frequency-domain
fast iterative shrinkage-thresholding algorithm (FISTA) to update D, with a forgetting factor
technique inspired by [47, 38] to correct the surrogate function, and uses “region sampling” to
reduce the memory cost. In this paper, the second-order SA algorithm, Algorithm 2, improves
the algorithm in [32] by introducing two additional techniques: an improved stopping condition
for FISTA and image splitting. The former technique greatly reduces the number of inner-loop
iterations of the D-update. The latter, compared with “region sampling,” fully utilizes all the
information in the training set. With these techniques, Algorithm 2 converges faster than the
algorithm in [32].

The method in [13] is designed for a different problem than (8) and is therefore not directly
comparable with our methods. The other recent paper on online CDL [57], which appeared
while we were completing this work, proposed an algorithm that uses the same framework as
our previous work [32] and is therefore expected to offer similar performance to our initial
method.

2. Preliminaries. Here we introduce our notation. The signal is denoted by s ∈ RN and
the dictionaries by d = (d1 d2 . . . dM )T ∈ RML, where the dictionary kernels (or filters)
are dm ∈ RL. The coefficient maps are denoted by x = (x1 x2 . . . xM )T ∈ RMN , where

1This technique is used in previous works [47, 38, 51, 48] but not theoretically analyzed.Dow
nloa

ded
 06/

07/1
9 to

 128
.97.

27.2
0. R

edis
trib

utio
n su

bjec
t to 

SIA
M l

icen
se o

r co
pyri

ght;
 see

 http
://w

ww
.sia

m.o
rg/j

ourn
als/

ojsa
.php



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1593

xm ∈ RN is the coefficient map corresponding to dm. In addition to the vector form, x, of
the coefficient maps, we define an operator form X. First, we define a linear operator Xm on
dm such that Xmdm = dm ∗ xm and let X , (X1 X2 · · ·XM ). Then we have

Xd ,
M∑
m=1

Xmdm =
M∑
m=1

dm ∗ xm ≈ s .(10)

Hence, X : RML → RN , a linear operator defined from the dictionary space to the signal
space, is the operator form of x.

2.1. Problem settings. Now we reformulate (8) into a more general form. (The masked
problem (9) will be discussed in section 5.) Usually, the signal is sampled from a large training
set, but we consider the training signal s as a random variable following the distribution
s ∼ PS(s). Our goal is to optimize the dictionary d. Given s, the loss function l to evaluate
d,x is defined as

l(d,x; s) = (1/2) ‖Xd− s‖22 + λ ‖x‖1 .(11)

Given s, the loss function f to evaluate d and the corresponding minimizer are, respectively,

f(d; s) , min
x
l(d,x; s) and x∗(d; s) , arg min

x
l(d,x; s) .(12)

A general CDL problem can be formulated as

min
d∈C

Es[f(d; s)] ,(13)

where C is the constraint set of C = {d | ‖dm‖2 ≤ 1,∀m}.

2.2. Two online frameworks. Now we consider the CDL problem (13) when the training
signals s(1), s(2), . . . , s(t), . . . arrive in a streaming fashion. Inspired by online methods for stan-
dard dictionary learning problems, we propose two online frameworks for the CDL problem
(13). One is a first-order method based on projected SGD [55, 35, 1]:

d(t) = ProjC

(
d(t−1) − η(t)∇f

(
d(t−1); s(t)

))
.(14)

The other is a second-order method, which is inspired by least squares estimator for
dictionary learning [37, 47, 51, 71, 48, 74, 30]. A naive least squares estimator can be written as

d(t) = arg min
d∈C

min
x
`(d,x, s(1)) + · · ·+ min

x
`(d,x, s(t))︸ ︷︷ ︸

Objective function on training samples F (t)(d)

 .
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This is not practical because the inner minimizer of x depends on d, which is unknown. To
solve this problem, we can fix d when we minimize over x, i.e.,

x(t) = arg min
x

`(d(t−1),x; s(t))(15a)

d(t) = arg min
d∈C

`(d,x(1), s(1)) + · · ·+ `(d,x(t), s(t))︸ ︷︷ ︸
Surrogate function F(t)(d)

 .(15b)

Direct application of these methods to the CDL problem is very computationally expensive,
but we propose a number of techniques to reduce the time and memory usage. The details
are discussed in sections 3 and 4, respectively.

2.3. Techniques to calculate operator X. Before introducing our algorithms for (13),
we consider a basic problem and two computational techniques that are used in this section
as well as in sections 3 and 4.

With s and x fixed, the basic problem is

min
d∈RML

l(d,x; s) + ιC(d) ,(16)

where ιC(·) is the indicator function2 of set C. To solve this problem, we can apply projected
gradient descent (GD) [5]

d(t) = ProjC

(
d(t−1) − η(t)XT

(
Xd(t−1) − s

))
,(17)

where (t) is the iteration index and XT (Xd− s) is the gradient of l with respect to d. Since
X is a linear operator from RML to RN , the cost of directly computing (17) is O(NML).
However, we can exploit the sparsity or the structure of operator X to yield a more efficient
computation that greatly reduces the time complexity.

2.3.1. Computing with sparsity property. The first option is to utilize the sparsity of
X. Specifically, X is saved as a triple array (i, j, v), which records the indices (i, j) and
values v of the nonzero elements of X, so that only the nonzero entries in X contribute to
the computational time. This triple array is commonly referred as a coordinate list and is a
standard way of representing a sparse matrix.

Let us compute the nonzero entries of operator X. The operator form Xm of the N -
dimensional vectors xm = ((xm)1, . . . , (xm)N )T can be written as

Xm =


(xm)1 (xm)N (xm)N−1 . . . (xm)N−L+2

(xm)2 (xm)1 (xm)N . . . (xm)N−L+3

(xm)3 (xm)2 (xm)1 . . . (xm)N−L+4
...

...
...

. . .
...

(xm)N (xm)N−1 (xm)N−2 . . . (xm)N−L+1

 ,

2The indicator function is defined as: ιC(d) =
{

0, if d∈C
+∞, otherwise .Dow
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ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1595

where each column is a circular shift of xm and L is the dimension of each dictionary kernel.
Thus, the densities of xm and Xm are the same. Assuming the density of vector x is ρ,
the number of nonzero entries of operator X is NMLρ, giving a single-step complexity of
O(NMLρ) for computing (17).

2.3.2. Computing in the frequency domain. Another option is to utilize the structure of
X. It is well known that convolving two signals of the same size corresponds to the pointwise
multiplication of their frequency representations. Our method below takes advantage of this
property. First, we zero-pad each dm from RL to RN to match the size of s. Then the basic
problem can be written as

min
d∈RMN

l(d,x; s) + ιCPN
(d) ,(18)

where the set CPN is defined as

CPN , {dm ∈ RN : (I − P )dm = 0, ‖dm‖2 ≤ 1} .(19)

Operator P preserves the desired support of dm and masks the remaining part to zeros.
Projected GD (17) has an equivalent form:

d(t) = ProjCPN

(
d(t−1) − η(t) ∂l

∂d
(d(t−1),x; s)

)
.(20)

Then, using the Plancherel formula, we can write the loss function3 l as

l(d,x; s) =

∥∥∥∥∥∑
m

dm ∗ xm − s

∥∥∥∥∥
2

2︸ ︷︷ ︸
‖Xd−s‖2

=

∥∥∥∥∥∑
m

d̂m � x̂m − ŝ

∥∥∥∥∥
2

2︸ ︷︷ ︸
‖X̂d̂−ŝ‖2

,(21)

where ·̂ denotes the corresponding quantity in the frequency domain and � means pointwise
multiplication. Therefore, we have d̂ ∈ CMN , and X̂ = (X̂1 X̂2 · · · X̂M ) is a linear operator.
Define the loss function in the frequency domain

l̂(d̂, x̂; ŝ) = (1/2)
∥∥X̂d̂− ŝ

∥∥2
,(22)

which is a real-valued function defined in the complex domain. The Cauchy–Riemann con-
dition [3] implies that (22) is not differentiable unless it is constant. However, the conjugate
cogradient4 [49]

∂l̂

∂d̂
(d̂, x̂; ŝ) , X̂H(X̂d̂− ŝ)(23)

exists and can be used for minimizing (22) by gradient descent.

3We ignore the term λ ‖x‖1 in l here because x is fixed in this problem.
4The conjugate cogradient of function f(x) : Cn → R is defined as ∂f

∂<(x) + i ∂f
∂=(x) , where <(x), I=(x) are

the real part and imaginary part of x. The derivation of (22) is given in Appendix A.Dow
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Since each item X̂m in X̂ is diagonal, the gradient is easy to compute, with a complexity of
O(NM) instead of O(NML). Based on (23), we have the following modified gradient descent:

d(t) = ProjCPN

(
IFFT

(
d̂(t−1) − η(t) ∂l̂

∂d̂

(
d̂(t−1), x̂; ŝ

)))
.(24)

To compute (24), we transform d(t) into its frequency-domain counterpart d̂(t), perform gra-
dient descent in the frequency domain, return to the spatial domain, and project the result
onto the set CPN.

In our modified method (24), the iterate d(t) is transformed between the frequency and
spatial domains because the gradient is cheaper to compute in the frequency domain, but
projection is cheaper to compute in the spatial domain.

Equivalence of (20) and (24). We can prove

X̂H(X̂d̂− ŝ) = FFT
(
XT (Xd− s)

)
∀x,d, s ,(25)

which means that the conjugate cogradient of l̂ is equivalent to the gradient of l. Thus,
modified GD (24) coincides with standard GD (20) using the conjugate cogradient.

A proof of (25) given in Appendix B. A similar result is also given in [44] under the name
“conjugate symmetry.”

3. First-order method: Algorithm 1. Recall the projected SGD step (14)

d(t) = ProjC

(
d(t−1) − η(t)∇f(d(t−1); s(t))

)
,

where parameter η(t) is the step size5. Given the definition of f in (12), ∇f(d(t−1); s(t)) is the
partial derivative with respect to d at the optimal x [38, 11], i.e., ∇f(d; s) = ∂l

∂d(d,x∗(d, s); s),
where x∗ is defined by (12).

Thus, to compute the gradient ∇f(d(t−1); s(t)), we should first compute the coefficient
maps x(t) of the tth training signal s(t) with dictionary d(t−1), which is given by (15a). Then
we can compute the gradient as

∇f
(
d(t−1); s(t)

)
=

∂l

∂d

(
d(t−1),x(t); s(t)

)
=
(
X(t)

)T (
X(t)d(t−1) − s(t)

)
.

Based on the discussion in section 2.3, we can perform gradient descent either in the spatial
domain or in the frequency domain. In the frequency domain, the conjugate cogradient of ∇f̂
is

∇f̂(d̂(t−1); ŝ(t)) =
∂l̂

∂d̂

(
d̂(t−1), x̂(t); ŝ(t)

)
=
(
X̂(t)

)H (
X̂(t)d̂(t−1) − ŝ(t)

)
.

The full algorithm is summarized in Algorithm 1.

5Some authors refer to it as the learning rate.Dow
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Algorithm 1. Online Convolutional Dictionary Learning (Modified SGD).

Initialize: Initialize d(0) with a random dictionary.
1 for t = 1, . . . , T do

2 Sample a signal s(t).

3 Solve convolutional sparse coding problem (15a) to obtain x(t).
4 if Option I then

5 Update dictionary in the spatial domain with sparse matrix X(t):

d(t) = ProjC

(
d(t−1) − η(t)

(
X(t)

)T (
X(t)d(t−1) − s(t)

))
6 else if Option II then
7 Update dictionary in the frequency domain:

x̂(t) = FFT(x(t))

d(t) = ProjCPN

(
IFFT

(
d̂(t−1) − η(t)

(
X̂(t)

)H (
X̂(t)d̂(t−1) − ŝ(t)

)))
8 end

9 end

Output: d(T )

Table 1
Single-step complexity and memory usage of Algorithm 1. N : signal dimension; M : number of dictionary

kernels; L: size of each kernel; ρ: average density of the coefficient maps.

Scheme Single-step complexity Memory usage

Spatial (dense matrix) TCBPDN +O(NML) O(NML)

Spatial (sparse matrix) TCBPDN +O(NMLρ) O(NMLρ)

Frequency update TCBPDN +O(NM log(N)) +O(NM) O(MN)

Complexity analysis of Algorithm 1. We list the single-step complexity and the
memory usage of different options in Table 1. Both the frequency-domain update and the
sparse matrix technique reduce single-step complexities. The comparison between these two
computational techniques depends on the sparsity of X(t) and the dictionary kernel size L. In
section 6.1, we will numerically compare these methods.

Convergence of Algorithm 1. Algorithm 1, by (25), is equivalent to the standard pro-
jected SGD. Thus, by properly choosing step sizes η(t), Algorithm 1 converges to a stationary
point [23]. A diminishing step size rule η(t) = a/(b + t) is used in other dictionary learning
works [1, 37]. The convergence performances with different step sizes are numerically tested
in section 6.1.

4. Second-order method: Algorithm 2. In this section, we first introduce some details of
directly applying the second-order stochastic approximation method (15) to CDL problems,
then we discuss some issues and our resolutions.Dow
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Aggregating the true loss function f(d; s(t)) on the tth sample s(t), the objective function
on the first t training samples is

F (t)(d) =
1

t

(
t∑

τ=1

f
(
d; s(τ)

))
≈ F (d) = Es[f(d; s)] .(26)

The central limit theorem tells us that F (t) → F as t → ∞. However, as discussed in
section 2.2, F (t) is not computationally tractable. To update d efficiently, we introduce the
surrogate function F (t) of F (t). Given s(t), x(t) is computed by CBPDN (12) using the latest
dictionary d(t−1), then a surrogate of f(d; s(t)) is given as

x(t) = arg min
x

`(d(t−1),x; s(t)), f (t)(d) , l
(
d,x(t); s(t)

)
.(27)

The surrogate function of F (t) is defined as

F (t)(d) =
1

t

(
f (1)(d) + · · ·+ f (t)(d)

)
.(28)

Then, at the tth step, the dictionary is updated as

d(t) = arg min
d∈RML

F (t)(d) + ιC(d) .(29)

Solving subproblem (29). To solve (29), we apply FISTA [4], which needs to compute
a gradient at each step. The gradient for the surrogate function can be computed as

∇F (t)(d) =
1

t

(
t∑

τ=1

(
X(τ)

)T
X(τ)

)
d− 1

t

(
t∑

τ=1

(
X(τ)

)T
s(τ)

)
.

We cannot follow this formula directly since the cost increases linearly in t. Instead, we
perform the recursive updates

A(t) = A(t−1) + (X(t))TX(t) , b(t) = b(t−1) + (X(t))T s(t) ,(30)

where (X(t))TX(t) is the Hessian matrix of f (t). These updates, which have a constant cost
per step, yield ∇F (t)(d) = (A(t)d − b(t))/t. The matrix A(t)/t, the Hessian matrix of the
surrogate function F (t), accumulates the Hessian matrices of all the past loss functions. This
is why we call this method the second-order stochastic approximation method.

Practical issues
• Inaccurate loss function: The surrogate function F (t) involves old loss functions f (1),
f (2), . . ., which contain old information x(1),x(2), . . .. For example, x(1) is computed
using d(0) (cf. (27)).
• Large single-step complexity and memory usage: Handling a whole image s(t) at each

time is still a large-scale problem.
• FISTA is slow at solving subproblem (29): FISTA takes many steps to reach a sufficient

accuracy.
To address these points, four modifications are given in this section.6

6Improvements I and II have been addressed in our previous work [32]. In the present article, we include
their theoretical analysis and introduce the new enhancement of the stopping criterion (Improvement III).Dow
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4.1. Improvement I: Forgetting factor. At time t, the dictionary is the result of an

accumulation of past coefficient maps x
(τ)
m , τ < t, which were computed with the then-available

dictionaries. A way to balance accumulated past contributions and the information provided
by the new training samples is to compute a weighted combination of these contributions [47,
38, 51, 48]. This combination gives more weight to more recent updates since those are the
result of a more extensively trained dictionary. Specifically, we consider the following weighted
(or modified) surrogate function:

F (t)
mod(d) =

1

Λ(t)

t∑
τ=1

(τ/t)pf (τ)(d) , Λ(t) =
t∑

τ=1

(τ/t)p .(31)

This function can be written in recursive form as

Λ(t) = α(t)Λ(t−1) + 1 ,(32)

Λ(t)F (t)
mod(d) = α(t)Λ(t−1)F (t−1)

mod (d) + f (t)(d) .(33)

Here α(t) ∈ (0, 1) is a forgetting factor, which has its own time evolution,

α(t) = (1− 1/t)p,(34)

regulated by the forgetting exponent p > 0. As t increases, the factor α(t) increases (α(t) → 1 as
t→∞), reflecting the increasing accuracy of the past information as the training progresses.
The dictionary update (29) is modified correspondingly to

d(t) = arg min
d∈RML

F (t)
mod(d) + ιC(d) .(35)

This technique has been used in some previous dictionary learning works, as we mentioned
before, but was not theoretically analyzed. In this paper, we prove in Propositions 1 and 2

that F
(t)
mod → F as t→∞, where F

(t)
mod is a weighted approximation of F :

F
(t)
mod(d) =

1

Λ(t)

(
t∑

τ=1

(τ/t)pf(d; s(τ))

)
.(36)

Moreover, in Theorem 1, F (t)
mod, the surrogate of F

(t)
mod, is also proved to be convergent on the

current dictionary, i.e., F (t)
mod(d(t))− F (t)

mod(d(t))→ 0.
Effect of the forgetting exponent p. A small p tends to lead to a stable algorithm since

all the training signals are given nearly equal weights and F
(t)
mod is a stochastic approximation of

F with small variance. Propositions 1 and 2 give theoretical explanations of this phenomenon.

However, a small p leads to an inaccurate surrogate loss function F (t)
mod since it gives large

weights to old information. In the extreme case, as p → 0, the modified surrogate function
(31) reduces to the standard one (28). Section 6.2.1 reports the related numerical results.Dow
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Figure 1. An example of image splitting: N = 256× 256→ Ñ = 128× 128.

4.2. Improvement II: Image splitting. Both the single-step complexity and memory us-
age are related to the signal dimension N . For a typical imaging problem, N = 256× 256 or
greater, which is large. To reduce the complexities, we use small regions7 instead of the whole
signal. Specifically, as illustrated in Figure 1, we split a signal s(t) ∈ N into small regions

s
(t)
split,1, s

(t)
split,2, . . . ∈ Ñ , with Ñ < N , and treat them as if they were distinct signals. In this

way, the training signal sequence becomes

{ssplit} , {s
(1)
split,1, . . . , s

(1)
split,n, s

(2)
split,1, . . . , s

(2)
split,n, . . .} .

Boundary issues. The use of circular boundary conditions for signals that are not
periodic has the potential to introduce boundary artifacts in the representation and therefore
also in the learned dictionary [70]. When the size of the training images is much larger than
the kernels, there is some evidence that the effect on the learned dictionary is negligible [8], but
it is reasonable to expect that these effects will become more pronounced for smaller training
images, such as the regions we obtain when using a small splitting size Ñ . The possibility
of severe artifacts when the image size approaches the kernel size is illustrated in Figure 2.
In section 6.2.2, we study this effect and show that using a splitting size that is twice the
kernel size in each dimension is sufficient to avoid artifacts, as expected from the argument
illustrated in Figure 2.

4.3. Improvement III: Stopping FISTA early. Another issue in surrogate function method
is the stopping condition of FISTA. A small fixed tolerance will result in too many inner-loop
iterations for the initial steps. Another strategy, as used in SPAMS [37, 28], is a fixed number
of inner-loop iterations, but it does not have any theoretical convergence guarantee.

In this article, we propose a “diminishing tolerance” scheme in which subproblem (35) is
solved inexactly, but the online learning algorithm is still theoretically guaranteed to converge.
The stopping accuracy is increasing as t increases. Specifically, the stopping tolerance is
decreased as t increases. Moreover, with a warm start (using d(t−1) as the initial solution

7In our previous work [32], we sample some small regions from the whole signals in the limited memory
algorithm, which performs worse than the algorithm training with the whole signals. We claimed that the
performance sacrifice is caused by the circular boundary condition. In fact, this is caused by the sampling. In
that paper, we sample small regions with random center position and fixed size. If we sample small regions
in this way, some parts of the image are not sampled, but some are sampled several times. Consequently, in
the present paper, we propose the “image-splitting” technique in Algorithm 2, which avoids this issue. It only
shows worse performance when the splitting size is smaller than a threshold, which is actually caused by the
boundary condition.Dow
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Figure 2. An illustration of the boundary artifacts with two-dimensional square signals and dictionary
kernels.

for the tth step), the number of inner-loop iterations stays moderate as t increases, which is
validated by the results in Figure 8.

Stopping metric. We use the fixed point residual (FPR) [12]

R(t)(g) ,
∥∥∥g − ProjC

(
g − η∇F (t)

mod(g)
)∥∥∥(37)

for two reasons. One is its simplicity; if FISTA is used to solve (35), this metric can be
computed directly as R(t)(gjaux) = ‖gj+1 − gjaux‖. The other is that a small FPR implies a
small distance to the exact solution of the subproblem, as shown in Proposition 3 below.

Stopping condition. In this paper, we consider the following stopping condition:

R(t)(gjaux) ≤ τ (t) , τ0/(1 + αt) ,(38)

where the tolerance τ (t) is large during the first several steps and reduces to zeros at the rate
of O(1/t) as t increases. In the tth step, once (38) is satisfied, we stop the D-update (FISTA)
and continue to the next step. The effect of this stopping condition is theoretically analyzed
in Propositions 3 and 4 and numerically demonstrated in section 6.2.3 below.

4.4. Improvement IV: Computational techniques in solving subproblem (35). Based
on the discussion in section 2.3, we have two options to solve subproblem (35). One is to solve

in the spatial domain utilizing sparsity. The gradient of F (t)
mod(d) is

∇F (t)
mod(d) =

1

Λ(t)

t∑
τ=1

(τ/t)p
(

(X(t))TX(t)d− (X(τ))T s(τ)
)

=
1

Λ(t)

(
A

(t)
modd− b

(t)
mod

)
,

where A
(t)
mod and b

(t)
mod are calculated in a recursive form in line 5 of Algorithm 2. The other

option is to update in the frequency domain. The conjugate cogradient of F̂ (t)
mod(d̂) is

∇F̂ (t)
mod(d̂) =

1

Λ(t)

t∑
τ=1

(τ/t)p
(

(X̂(t))T X̂(t)d̂− (X̂(τ))T ŝ(τ)
)

=
1

Λ(t)

(
Â

(t)
modd̂− b̂

(t)
mod

)
,
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Algorithm 2. Online Convolutional Dictionary Learning (Surrogate Splitting).

Initialize: Initialize d(0), let A
(0)
mod ← 0,b

(0)
mod ← 0 or Â

(0)
mod ← 0, b̂

(0)
mod ← 0.

1 for t = 1, . . . , T do

2 Sample a signal s(t) from {ssplit}.
3 Solve convolutional sparse coding problem (15a) to obtain x(t).
4 if Option I then

5 Update A
(t)
mod,b

(t)
mod in the spatial domain with sparse matrix X(t):

A
(t)
mod = α(t)A

(t−1)
mod + (X(t))TX(t), b

(t)
mod = α(t)b

(t−1)
mod + (X(t))T s(t)

6 Solve the following subproblem with FISTA (stopping condition (38)):

d(t) = arg min
d∈RML

F (t)
mod(d) + ιC(d) .

7 else if Option II then

8 Update Â
(t)
mod, b̂

(t)
mod in the frequency domain:

Â
(t)
mod = α(t)Â

(t−1)
mod + (X̂(t))HX̂(t), b̂

(t)
mod = α(t)b̂

(t−1)
mod + (X̂(t))H ŝ(t)

9 Solve the following subproblem with frequency domain FISTA (stopping
condition (38), see Appendix C):

d(t) = arg min
d∈RMN

F̂ (t)
mod(d̂) + ιCPN

(d) .

10 end

11 end

Output: d(T )

where Â
(t)
mod and b̂

(t)
mod are calculated in a recursive form in line 7 of Algorithm 2. With

the gradients, we can apply FISTA or frequency-domain FISTA on the problem (35), as in
Algorithm 2.

Complexity analysis of Algorithm 2. If we solve (35) directly, the operator X(t) is
a linear operator from RLM to RN . Thus, the complexity of computing the Hessian matrix
of f (t), (X(t))TX(t), is O(L2M2N), and the memory cost is O(L2M2). Otherwise, if we solve
(35) utilizing the sparsity of X, the computational cost of computing (X(t))TX(t) can be
reduced to O(L2M2Nρ), where ρ is the density of sparse matrix X(t), but the memory cost
is still O(L2M2) because (X(t))TX(t) is not sparse, although X(t) is. In comparison, if we
solve (35) in the frequency domain, the frequency-domain operator X̂(t) = (X̂1, X̂2, . . . , X̂M )
is a linear operator from CMN to CN , which seems to lead to a larger complexity to compute
the Hessian: O(M2N3) flops and O(M2N2) memory cost. However, since each componentDow
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Table 2
Single-step complexity and memory usage of Algorithm 2. N : signal dimension; M : number of dictionary

kernels; L: size of each kernel; ρ: average density of the coefficient maps; J : average loops of FISTA in each
step. This is numerically tested in Table 4.

Scheme Single-step complexity Memory usage

Spatial (dense matrix) TCBPDN +O(L2M2N) + J ×O(L2M2) O(L2M2) +O(LMN)

Spatial (sparse matrix) TCBPDN +O(L2M2Nρ) + J ×O(L2M2) O(L2M2) +O(LMNρ)

Frequency update
TCBPDN + (O(M2N) + O(MN log(N)))
+ J × (O(M2N) +O(MN log(N))) O(M2N)

X̂m is diagonal, the frequency-domain product (X̂(t))HX̂(t) has only O(M2N) nonzero values.
Both the number of flops and the memory cost are O(M2N). The complexities are listed in
Table 2.

4.5. Convergence of Algorithm 2. First, we start with some assumptions:8

Assumption 1. All the signals are drawn from a distribution with a compact support.

Assumption 2. Each sparse coding step (12) has a unique solution.

Assumption 3. The surrogate functions are strongly convex.

Assumption 1 can easily be guaranteed by normalizing each training signal. Assumption 2
is a common assumption in dictionary learning and other linear regression papers [37, 14].
Practically, it must be guaranteed by choosing a sufficiently large penalty parameter λ in
(12) because a larger penalty parameter leads to a sparser x. See Appendix D for details.
Assumption 3 is a common assumption in RLS (see Definition 3.1 in [29]) and dictionary
learning (see Assumption B in [38]).

Proposition 1 (weighted central limit theorem). Suppose Zi
i.i.d∼ PZ(z) with a compact

support, expectation µ, and variance σ2. Define the weighted approximation of Z: Ẑnmod ,
1∑n

i=1(i/n)p
∑n

i=1(i/n)pZi. Then we have

√
n(Ẑnmod − µ)

d→ N

(
0,

p+ 1√
2p+ 1

σ

)
(39)

E
[√

n
∣∣Ẑnmod − µ

∣∣] = O(1) .(40)

This proposition is an extension of the central limit theorem (CLT). As p → 0, it reduces to
the standard CLT. The proof is given in Appendix E.3.

Proposition 2 (convergence of functions). With Assumptions 1–3, we have

E
[√

t
∥∥F − F (t)

∥∥
∞

]
≤M(41)

E
[√

t
∥∥F − F (t)

mod

∥∥
∞

]
≤ p+ 1√

2p+ 1
M(42)

where M > 0 is some constant unrelated with t and ‖f‖∞ = supd∈C ‖f(d)‖.

8The specific formulas for Assumptions 2 and 3 are shown in Appendix D.Dow
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This proposition is an extension of Donsker’s theorem (see Lemma 7 in [38] and Chapter
19 in [53]). The proof is given in Appendix E.4.

Moreover, it shows that weighted approximation F
(t)
mod and standard approximation F (t)

have the same asymptotic convergence rate O(1/
√
t). However, the error bound factor (p+1)/√

2p+ 1 is a monotone increasing function in p ≥ 0. Thus, a larger p leads to a larger variance

and slower convergence of F
(t)
mod. This explains why we cannot choose p to be too large.

Proposition 3 (convergence of FPR implies convergence of iterates). Let (d∗)(t) be the exact
minimizer of the tth subproblem:

(d∗)(t) = arg min
d

F (t)
mod(d) + ιC(d) .(43)

Let d(t) be the solution obtained by the frequency-domain FISTA (Algorithm 3) with our pro-
posed stopping condition (38). Then we have∥∥d(t) − (d∗)(t)

∥∥ ≤ O (t−1
)
.(44)

The proof is given in Appendix E.1.

Proposition 4 (the convergence rate of Algorithm 2). Let d(t) be the sequence generated by
Algorithm 2. Then we have ∥∥d(t+1) − d(t)

∥∥ = O
(
t−1
)
.(45)

Compared with Lemma 1 in [38], which shows the convergence rate of the surrogate
function method with exact D-update, our Proposition 4 shows that the inexact D-update
(38) shares the same rate. Since our inexact version stops FISTA earlier, it is faster. The
proof of this proposition is given in Appendix E.2.

Theorem 1 (almost sure convergence of Algorithm 2). Let F (t)
mod be the surrogate function

sequence and d(t) the iterate sequence, both generated by Algorithm 2. Then we have, with
probability 1, the following:

1. F (t)
mod(d(t)) converges.

2. F (t)
mod(d(t))− F (d(t))→ 0.

3. F (d(t)) converges.
4. dist(d(t), V )→ 0, where V is the set of stationary points of the CDL problem (13).

The proof is given in Appendix E.5.

5. Learning from masked images. In this section, we focus on the masked CDL problem
(9), for which there are no existing online algorithms. Let

lmask(d,x; s) ,
1

2

∥∥∥∥∥W �
(

M∑
m=1

dm ∗ xm − s

)∥∥∥∥∥
2

2

+ λ
M∑
m=1

‖xm‖1 .

The objective function is defined as

fmask(d; s) , min
x
lmask(d,x; s) ,(46)Dow
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allowing (9) to be written as a stochastic minimization problem:

min
d

Es[fmask(d; s)] + ιC(d) .(47)

Both Algorithms 1 and 2 can be applied to the masked CDL problem (47). First, we write
lmask in a concise form:

lmask(d,x; s) = 1/2 ‖W �Xd−W � s‖22 + λ ‖x‖1 .

Thus, if we substitute operator X with W � X and s with W � s and substitute standard
CSC with masked CSC [25, 59], everything is the same as CDL without W , and we can
apply Algorithms 1 and 2, with Option I, on (47). The numerical results for masked CDL are
reported in section 7.

A variant of Algorithm 1 with Option II is also able to solve (47). First, lmask on the
frequency domain is

l̂mask(d̂, x̂; ŝ) = 1/2
∥∥∥W � IFFT

(
X̂d̂− ŝ

)∥∥∥2

2
+ λ ‖x‖1 .

Similarly to the derivation in section 3, we derive the conjugate cogradient of f̂mask:

∇f̂mask(d̂(t−1); ŝ(t)) =
∂l̂mask

∂d̂

(
d̂(t−1), x̂(t); ŝ(t)

)
=
(
X̂(t)

)H
FFT

{
W � IFFT

(
X̂(t)d̂(t−1) − ŝ(t)

)}
.

The masked variant of Algorithm 1, Option II, can be derived from ∇f̂mask as

d(t) = ProjCPN

(
IFFT

(
d̂(t−1) − η(t)∇f̂mask(d̂(t−1); ŝ(t))

))
.

Algorithm 2, Option II, however, is not easily applied to (47). Computing the Hessian
matrix in the frequency domain

Â
(t)
mask = α(t)Â

(t−1)
mask + (X̂(t))HFFT

(
W � IFFT(X̂(t))

)
= α(t)Â

(t−1)
mask + (X̂(t))HFFT

(
W �X(t)

)
requires an FFT on each column of a matrix W � X(t) ∈ RMN×N , which is very computa-
tionally expensive.

6. Numerical results: Learning from a clean data set. All the experiments are computed
using MATLAB R2016a running on a workstation with 2 Intel Xeon(R) X5650 CPUs clocked
at 2.67 GHz. Implementations of these algorithms are available in the MATLAB version of the
SPORCO software library [63] and will be included in a future release of the Python version
of this library. The dictionary size is 12×12×64, and the signal size is 256×256. Dictionaries
are evaluated by comparing the functional values obtained by computing CBPDN (12) on the
test set. A smaller functional value indicates a better dictionary. Similar methods to evaluateDow
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1606 J. LIU, C. GARCIA-CARDONA, B. WOHLBERG, AND W. YIN

Figure 3. Tuning the step size of modified SGD (Algorithm 1). A learning epoch is one pass through the
whole training set. With a large fixed η, the algorithm converges fast at first but becomes unstable later on; with
a small fixed η, the algorithm converges slowly. A diminishing step size provides a good balance.

the dictionary are also used in other dictionary learning works [38, 52]. The regularization
parameter is chosen as λ = 0.1.

The training set consists of 40 images selected from the MIRFLICKR-1M data set [27],9

and the test set consists of 20 different images from the same source. All of the images used
were originally of size 512× 512. To accelerate the experiments, we crop the borders of both
the training images and testing images and preserve the central part to yield 256× 256. The
training and testing images are preprocessed by dividing by 255 to rescale the pixel values to
the range [0, 1] and high-pass filtering.10

In this work, we solve the convolutional sparse coding step using an ADMM algorithm [58]
with an adaptive penalty parameter scheme [64]. The stopping condition is that both primal
and dual normalized residuals [64] be less than 10−3, and the relaxation parameter is set to
1.8 [62].

6.1. Validation of Algorithm 1. First, we test the effect of step size η(t) in Algorithm 1.
We can choose either a fixed step size or a diminishing step size:

η(t) = η0 or η(t) = a/(t+ b).

The results of experiments to determine the best choice of η are reported in Figure 3. We test
the convergence performance of fixed step size scheme with values η0 ∈{1, 0.3, 0.1, 0.03, 0.01}.

9The actual image data contained in this data set are of very low resolution since the data set is primarily
targeted at image classification tasks. The original images from which those used here were derived were
obtained by downloading the original images from Flickr that were used to derive the MIRFLICKR-1M images.

10The preprocessing is applied due to the inability of the standard CSC model to effectively represent low-
frequency/large-scale image components [61, section 3]. In this case, the high-pass component is computed as
the difference between the input signal and a low-pass component computed by Tikhonov regularization with
a gradient term [65, p. 3], with regularization parameter 5.0.Dow
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ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1607

Table 3
Comparison between different options of Algorithm 1. λ = 0.1, average density of X: 0.0037. This is the

validation of Table 1.

Schemes
Average single-step complexity (seconds) Memory

usage (MB)CBPDN FFT/IFFT Update d(t) Total

Spatial (dense matrix) 14.8 0 1.978 16.8 2346.44

Spatial (sparse matrix) 14.8 0 0.241 15.1 111.38

Frequency domain 14.8 0.047 0.025 14.9 154.84

Figure 4. Different options of Algorithm 1. Frequency-domain update (Option II) performs the best.

We also test the convergence performance of the diminishing step size scheme with values
a ∈ {5, 10, 20}; b ∈ {5, 10, 20} and report the best (a = 10, b = 5) in Figure 3. When a large
fixed step size is used, the functional value decreases fast initially but becomes unstable later
on. A smaller step size causes the opposite. A diminishing step size balances accuracy and
convergence rate.

Second, we test the computational techniques (computing with sparsity/computing in the
frequency domain), as Table 3 shows. Both techniques reduce the complexity of updating
d(t). Option I has better memory cost, while Option II has better calculation time. Figure 4
shows the objective values versus training time.

6.2. Validation of Algorithm 2. For Algorithm 2, we test the four techniques separately:
the forgetting exponent p, image splitting with size Ñ , stopping tolerance of FISTA τ (t), and
computational techniques (sparsity or frequency-domain update).

6.2.1. Validation of Improvement I: Forgetting exponent p. In this section, we fix
Ñ = 256 × 256 (no splitting) and τ (t) = 10−4, which is small enough to give an accurate
solution. Figure 5 shows that when p = 0, the curve is monotonic and with small oscillation,
but it converges to a higher functional value. When p is larger, the algorithm converges to
lower functional values. When p is too large, for instance, p ∈ {40, 80}, the curve oscillatesDow
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1608 J. LIU, C. GARCIA-CARDONA, B. WOHLBERG, AND W. YIN

Figure 5. Effect of Technique I (forgetting exponent p) in Algorithm 2. A small p leads to a higher
functional value, while a large p leads to instability. p = 10 is a good choice.

Figure 6. Effect of the Technique II (image-splitting with size Ñ) in Algorithm 2. A learning epoch is
one pass through the whole training set. Boundary artifacts become significant when the splitting region size is
smaller than twice the dictionary kernel size. Here the kernel size is 12× 12 so the threshold is 24× 24.

severely, which indicates large variance. These results are consistent with Propositions 1 and 2.
In the remaining sections, we fix p = 10 since it is shown to be a good choice.

6.2.2. Validation of Improvement II: Image splitting with size Ñ and boundary
artifacts. In this section, we again fix τ (t) = 10−4. Convergence comparisons are shown
in Figure 6, and the dictionaries obtained with different Ñ are displayed Figure 7. In our
experiments, we only consider square signals (Ñ = 12×12, 16×16, 32×32, 64×64, 256×256)
and square dictionary kernels (L = 12×12). When Ñ ≥ 22L, say, Ñ = 32×32 or Ñ = 64×64,Dow
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ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1609

Figure 7. Effect of Technique II (image splitting with size Ñ) in Algorithm 2: visualization of boundary
artifacts.

the algorithm converges to a good functional value, which is the same as that without image
splitting. However, when Ñ is smaller than the threshold 22L, say, Ñ = 16 × 16 or 12 × 12,
the algorithm converges to a higher functional value, which implies worse dictionaries. Thus,
we can conclude that the splitting size should be at least twice the dictionary kernel size in
each dimension. Otherwise, it will lead to boundary artifacts. This phenomenon is consistent
with the discussion in section 4.2. The artifacts are specifically displayed in Figure 7. When
Ñ is smaller than the threshold, say, 12× 12, the features learned are incomplete.

This section only studies the effect, due to boundary artifacts, of image splitting on objec-
tive functional values. As Table 2 shows, it also helps reducing computing time and memory
cost, which is numerically validated in section 6.2.4.

6.2.3. Validation of Improvement III: Stopping tolerance of FISTA τ (t). In this section,
we fix p = 10, Ñ = 256 × 256 (no splitting). Figure 8 shows the effect of using different τ (t).
Using a small stopping tolerance τ (t) = 10−4 leads to a good functional value 101.1 but a
large number of FISTA iterations, while a large tolerance 10−2 leads to a large functional
value 104.4 and a small number of FISTA iterations. Consider our proposed diminishing
tolerance rule (38) τ (t) = 0.01/t. When the algorithm starts, t = 1, we have τ (1) = 10−2.
At the end of the algorithm, t = 100, τ (100) = 10−4. Based on the results in Figure 8, our
diminishing tolerance avoids a large number of FISTA loops, especially at the initial steps,
while losing little accuracy, as the final objective, 101.3, is close to 101.1.

6.2.4. Validation of Improvement IV: Computational techniques. In this section, we
fix p = 10, τ (t) = 0.01/t, and compare the calculation time and memory usage of the spatial-
domain update and the frequency-domain update. Table 4 illustrates that image splitting
helps reduce the single-step complexity and memory usage for both Option I (spatial-domain
update) and Option II (frequency-domain update). For Option II, the advantage of smaller
splitting size Ñ is more significant than that of option I. When Ñ = 256 × 256, Option I
is much better than Option II; but when Ñ = 64 × 64, the single-step time of Option II is
comparable with that of Option I. The reason for this is that, for Option I, reducing Ñ only
helps reduce the single-step time cost of CBPDN, updating Hessian matrix A(t) and the loops
of FISTA, but does not help reduce the time cost of single-step time cost in FISTA. However,Dow
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1610 J. LIU, C. GARCIA-CARDONA, B. WOHLBERG, AND W. YIN

Figure 8. Effect of Technique III (stopping FISTA early) in Algorithm 2. Final objective with τ (t) = 10−4:
101.1. Final objective with τ (t) = 10−2: 104.4. Final objective with τ (t) = 0.01/t: 101.3, where t is the
iteration index with range 1 ≤ t ≤ 100. Our diminishing tolerance τ (t) = 0.01/t provides a useful balance in
that it reduces the number of FISTA iterations while losing little accuracy on the final functional value.

Table 4
Comparison of two options in Algorithm 2 with different splitting size Ñ . λ = 0.1, average density of X:

0.0037. This is the validation of Table 2. When Ñ = 64 × 64, the two options share similar performance:
Option I is better on time cost, and Option II is better on memory cost. Image splitting is necessary for Option
II but not necessary for Option I.

Ñ
Average single-step complexity (seconds) Memory

usage (MB)
CBPDN Update A(t) FISTA

(loops × single step)
Total

Update in the spatial domain with dense matrix

256× 256 14.8 25.1 57 × 0.017 40.9 3058.56

128× 128 3.42 6.80 37 × 0.017 10.8 1258.37

64× 64 1.05 2.25 24 × 0.017 3.71 808.32

(Option I) Update in the spatial domain with sparse matrix

256× 256 14.8 4.47 57 × 0.017 20.3 486.91

128× 128 3.42 1.77 37 × 0.017 5.82 366.51

64× 64 1.05 0.84 24 × 0.017 2.30 342.90

(Option II) Update in the frequency domain (including extra time caused by FFT)

256× 256 14.8 0.89 57 × 1.068 76.6 2458.84

128× 128 3.42 0.22 37 × 0.244 12.7 622.28

64× 64 1.05 0.06 24 × 0.072 2.84 158.11

for Option II, image splitting not only reduces those three complexities but also reduces the
single-step complexity of FISTA. Furthermore, Option II uses much less memory than Option
I when Ñ = 64× 64.

Figure 9(a) and Figure 9(b) compare the objective functional value versus time. Figure 9(a)
indicates that reducing Ñ does not help a lot for Option I. Table 4 shows that smaller ÑDow
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ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1611

Figure 9. Effect of splitting region size Ñ on different options.

reduces the single-step complexity, but it also reduces the gain in each step because a smaller
splitting size leads to less information used for training. This is a trade-off. By Figure 9(a),
Ñ = 128× 128 is a good choice.

Option II, in contrast, benefits more from smaller Ñ , as can be seen from Figure 9(b)
and Table 4. Although splitting a training image reduces the gain in each step, the benefit
overwhelms the loss. Thus, for Option II, the smaller the splitting size, the better, as long as
Ñ is larger than the threshold for boundary artifacts.

6.3. Main result I: Convergence speed. In this section, we study the convergence speeds
of all the methods on the clean data set, without a masking operator. We compare our
methods with two leading batch learning algorithms: the method of Papyan et al. [41], which
uses K-SVD and updates the dictionary in the spatial domain, and an algorithm [22] that uses
the ADMM consensus dictionary update [54], which is computed in the frequency domain. For
batch learning algorithms, we test on subsets of 10, 20, and 40 images selected from the training
set. For online learning algorithms, since they are scalable in the size of the training set, we
just test our methods on the whole training set of 40 images. All the parameters are tuned
as follows. For batch learning algorithms (Papyan et al.), we use the software they released,
and for batch learning algorithms (ADMM consensus update), we use the “adaptive penalty
parameter” scheme in [64]. For modified SGD (Algorithm 1), we use the step size of 10/(5+t).
For surrogate splitting (Algorithm 2), we use p = 10, τ (t) = 0.01/t, Ñ = 128 × 128 for the
spatial-domain update and Ñ = 64× 64 for the frequency-domain update, as we tuned in the
previous sections. For our algorithm proposed in [32], we use p = 10, τ (t) = 10−3, Ñ = 64×64.

The performance comparison of batch and online methods is presented in Figure 10. The
advantage of online learning is significant (note that the time axis is logarithmically scaled).
To obtain the same functional value 101 on the test set, batch learning takes 15 hours, our
previous method [32] takes around 1.5 hours, Algorithm 2 with Option II takes around 1 hour,
and Algorithms 1 and 2 with Option I take less than 1 hour. We can conclude that, bothDow
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1612 J. LIU, C. GARCIA-CARDONA, B. WOHLBERG, AND W. YIN

Figure 10. Main result I: convergence speed comparison between online algorithms and batch algorithms.

Figure 11. Main result I: convergence speed comparison between online methods in this article.

modified SGD (Algorithm 1) and surrogate splitting (Algorithm 2) converge faster than the
batch learning algorithms and our previous method.

6.4. Main result II: Memory usage. As Table 5 shows, both Algorithms 1 and 2 save a
large amount of memory.

6.5. Main result III: Dictionaries obtained by different algorithms. In Figure 12, we
display the dictionaries obtained by the algorithms in section 6.3. A small training set, say, 10Dow
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ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1613

Table 5
Main result II: Memory usage comparison in megabytes.

Scheme Memory (MB)

Batch learning (consensus update, batch K = 10) 1959.58

Batch learning (consensus update, batch K = 20) 3887.08

Batch learning (consensus update, batch K = 40) 7742.08

Batch learning (Papyan et al. [41], batch K = 10) 1802.29

Batch learning (Papyan et al. [41], batch K = 20) 3390.24

Batch learning (Papyan et al. [41], batch K = 40) 6566.15

Our algorithm “Online-Samp” in [32] 158.11

Algorithm 1, Option I (sgd-spatial) 111.38

Algorithm 1, Option II (sgd-frequency) 154.84

Algorithm 2, Option I (surro-spatial) 342.90

Algorithm 2, Option II (surro-frequency) 158.11

images, leads to some random kernels in the dictionaries. A training set containing 40 images
works much better. Our algorithms can learn comparable dictionaries (see Figure 12(c), 12(i),
and 12(h)) within much less time (see Figure 10) and much less memory usage (see Table 5).

7. Numerical results: Learning from the noisy data set. In this section, we try to learn
dictionaries from noisy images. We test the algorithms on the training set with salt-and-
pepper impulse noise at known pixel locations. We apply the noise to 10%, 20%, and 30% of
the pixels, as Figure 13 shows. We use the data set with 40 training images and 20 testing
images with uniform size 256×256, which are the same with those in section 6. All the images
are preprocessed by applying a high-pass filter computed as the difference between the input
and a nonlinear low-pass filter.11 When the number of noisy pixels is low, say, 10%, SGD
without masking (Algorithm 1) still can learn some features, as Figure 13(b) demonstrates.
When the number of noisy pixels is significant, say, 30%, SGD without masking “learns”
nothing valid, as Figure 13(h) demonstrates. However, SGD with masking technique works
much better because it “ignores” the noisy pixels.

7.1. Masked CDL: Online algorithms vs, batch algorithm. We compare our algorithms
with masked loss function and a batch dictionary learning algorithm12 [59] incorporating the
mask via the mask decoupling technique [25]. We use additive mask simulation (AMS) [59] to
solve sparse coding step with the masked objective function. The parameters for Algorithms 1
and 2 are chosen similarly as those in section 6. For Algorithm 1, we choose η(t) = 10/(5 + t)
and Option I. For Algorithm 2, we choose p = 10, Ñ = 1282, τ (t) = 0.01/(10 + t), and Option
I. A comparison of functional values on the noise-free test set is shown in Figure 14. Our
online algorithms converge much faster and more stably. Algorithms 1 and 2 take around 1
hour to converge, while the mask-decoupling scheme requires more than 10 hours.

11The low-pass component was computed by `2 total-variation denoising [46] of the input image with a
spatial mask informed by the known locations of corrupted pixels in the data fidelity term.

12We used the implementation cbpdndlmd.m from the MATLAB version of the SPORCO library [63], with
the iterated Sherman–Morrison dictionary update solver option [62].Dow
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Figure 12. Main result III: A comparison of dictionaries learned using different algorithms.

8. Numerical results: Learning from a large data set. In this section, we test the fea-
sibility of our methods on a large data set, which is not tractable for batch methods. This
training set consists of 1000 images of size 256× 256 selected from the MIRFLICKR-1M dataDow
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ONLINE CONVOLUTIONAL DICTIONARY LEARNING 1615

Figure 13. Learning from the noisy training set.

set, and the testing set consists of 50 distinct images with the same size from the same source.
A dictionary of 100 kernels with size 12×12 is trained, and the related experiment results are
reported in Figure 15.

The parameters for Algorithms 1 and 2 are chosen the same as those in section 6. For
Algorithm 1, we choose η(t) = 10/(5 + t) and Option I. For Algorithm 2, we choose p= 10,
Ñ = 1282, τ (t) = 0.01/t, and Option I.

Unlike the experiments in section 6, we run our algorithms with only one epoch, i.e.,
true online learning. Results in Figure 15 demonstrate that our Algorithms 1 and 2 are bothDow
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Figure 14. Learning from the noisy training set: speed test. Both Algorithms 1 and 2 use Option I. “Batch”
refers to iterated Sherman–Morrison dictionary update [62] with mask decoupling technique [25], as in [59].

Figure 15. Learning from a large data set.Dow
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feasible on large data set. The first-order method, Algorithm 1, has a cheaper single step, but
it learns less with the same number of iterations. The second-order method, Algorithm 2, has
the converse behavior, achieveing a slightly smaller functional value with the same number of
iterations. Finally, Figure 15(d) shows that the two algorithms have similar performance in
terms of functional value on the test set with respect to training time. This result is consistent
with those in section 6.

9. Conclusions. We have proposed two efficient online convolutional dictionary learning
methods. Both of them have a theoretical convergence guarantee and show good performance
on both time and memory usage. Compared to recent online CDL works [13, 57], which use
the same framework but different D-update algorithms, our second-order method improves
the framework by several practical techniques. Our first-order method, to the best of our
knowledge, is the first attempt to use first-order methods in online CDL. It shows better
performance in time and memory usage and requires fewer parameters to tune. Moreover,
based on these two methods, we have also proposed an online dictionary learning method,
which is able to learn meaningful dictionaries from a partially masked training set. Although
only single-channel images are considered in this article, our online methods can easily be
extended to the multichannel case [60].

Appendix A. Derivation of conjugate cogradient (23) of the frequency-domain loss
function l̂. Consider a real-valued function defined on the complex domain f : Cn → R,
which can be viewed as a function defined on the 2n-dimensional real domain: f(x) =
f (<(x) + i=(x)), where <(x),=(x) ∈ Rn are the real part and the imaginary part, respec-
tively. By [49], “conjugate cogradient” is defined as

∇f(x) ,
∂f

∂<(x)
+ i

∂f

∂=(x)
.(48)

Based on (48), we give a derivation of (23).

Recall the definition l̂(d̂, x̂; ŝ) = 1/2
∥∥X̂d̂ − ŝ

∥∥2
. Substituting X̂ = <(X̂) + i=(X̂), d̂ =

<(d̂) + i=(d̂), and ŝ = <(ŝ) + i=(ŝ) into l̂, we have

l̂(d̂, x̂; ŝ)

=
1

2

∥∥<(X̂)<(d̂)−=(X̂)=(d̂)−<(ŝ) + i
(
=(X̂)<(d̂) + <(X̂)=(d̂)−=(ŝ)

)∥∥2

=
1

2

∥∥<(X̂)<(d̂)−=(X̂)=(d̂)−<(ŝ)
∥∥2

+
1

2

∥∥=(X̂)<(d̂) + <(X̂)=(d̂)−=(ŝ)
∥∥2
.

The partial derivatives on <(d̂) and =(d̂) are, respectively,

∂l̂

∂<(d̂)
= <(X̂)T

(
<(X̂)<(d̂)−=(X̂)=(d̂)−<(ŝ)

)
+ =(X̂)T

(
=(X̂)<(d̂) + <(X̂)=(d̂)−=(ŝ)

)
∂l̂

∂=(d̂)
= =(X̂)T

(
−<(X̂)<(d̂)+=(X̂)=(d̂) +<(ŝ)

)
+<(X̂)T

(
=(X̂)<(d̂) +<(X̂)=(d̂)−=(ŝ)

)
.
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Therefore,

X̂H(X̂d̂− ŝ)

= (<(X̂)− i=(X̂))T
(
(<(X̂)<(d̂)−=(X̂)=(d̂)−<(ŝ))

+ i
(
=(X̂)<(d̂) + <(X̂)=(d̂)−=(ŝ)

))
=

∂l̂

∂Rd̂
+ i

∂l̂

∂Id̂
.

By the definition of conjugate cogradient (48), the right side of the above equation is the
conjugate cogradient of l̂, i.e.,

∇l̂(d̂, x̂; ŝ) = X̂H(X̂d̂− ŝ) .

Appendix B. Proof of the equivalence between the gradients in the frequency domain
and spatial domain (25).

Proof. Let F be the Fourier operator from CN to CN , so that F−1 = FH is the inverse
Fourier operator. x and X are the vector form and the operator form of the coefficient map,
respectively. x̂ and X̂ are the corresponding vector and operator in the frequency domain.
By definition, we have that x̂ = Fx. We claim that

X̂ = FXFH .(49)

To prove this, notice that

X̂d̂ = F (x ∗ d) = F (Xd) = FXFHFd = FXFH d̂ ∀d ∈ RN .

Thus, we have X̂ = FXFH . With this equation, we have

X̂H(X̂d̂− ŝ) =
(
FXFH

)H(FXFHFd−Fs
)

=
(
FXTFH

)
(FXd−Fs)

= F(XT (Xd− s)) ,

which is exactly (25).

Appendix C. Frequency-domain FISTA. To solve (35), we propose frequency-domain
FISTA, Algorithm 3. It calculates the gradient in the frequency domain and does projec-
tion and extrapolation in the spatial domain. Mathematically speaking, (25) illustrates that
frequency-domain FISTA is actually equivalent with standard FISTA. However, calculating
the convolutional operator in the frequency domain reduces computing time. Thus, our algo-
rithm is faster.

Appendix D. Details of the assumptions.

D.1. Description of Assumption 2. To represent Assumption 2 in a concise way, we use
the notation

Dx =

M∑
m=1

dm ∗ xm ≈ s ,
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Algorithm 3. Frequency-domain FISTA for solving subproblem (35).

Input: Hessian matrix Â
(t)
mod and vector b̂

(t)
mod.

Dictionary of last iterate: d(t−1).
Initialize: Let g0 = d(t−1) (warm start), g0

aux = g0, γ0 = 1.
1 for j = 0, 1, 2, . . . until condition (38) is satisfied do

2 Compute DFT: ĝjaux = FFT(gjaux).

3 Compute conjugate cogradient: ∇F̂ (t)
mod(ĝjaux) = 1

Λ(t)

(
Â

(t)
modĝjaux − b̂

(t)
mod

)
.

4 Compute the next iterate:

(50) gj+1 = ProjCPN

(
IFFT

(
ĝjaux − η∇F̂

(t)
mod(ĝjaux)

))
.

Let γj+1 =
(

1 +
√

1 + 4(γj)2
)
/2, then compute the auxiliary variable:

(51) gj+1
aux = gj+1 +

γj − 1

γj+1
(gj+1 − gj) .

5 end

Output: d(t) ← gJ , where J is the last iterate.

where x ∈ RMN , s ∈ RN , and D : RMN → RN is the convolutional dictionary. Then CBPDN
problem (7) could be written as

min
x∈RMN

(1/2) ‖Dx− s‖22 + λ ‖x‖1 .(52)

The coefficient map x is usually sparse, and Λ is the set of indices of nonzero elements in x.
Then we have Dx = DΛxΛ. By the results in [20], problem (52) has the unique solution if
DT

ΛDΛ is invertible,13 and its unique solution satisfies

x∗Λ = (DT
ΛDΛ)−1(DT

Λs− λsign(x∗Λ)) .(53)

Specifically, Assumption 2 is for all signals s and dictionaries d, the smallest singular value
of DT

ΛDΛ is lower bounded by a positive number, i.e.,

σmin(DT
ΛDΛ) ≥ κ .(54)

Except for condition (54), other types of uniqueness conditions of CSC are studied in
recent works [40, 42, 50].

13Although [20] only studies standard sparse coding, the uniqueness condition can be applied to the con-
volutional case because the only condition in their proof is “for a convex function f(x) on Rn, x a minimum
if and only if 0 ∈ ∂f(x).” The only assumption is the convexity of the function, with no assumptions on the
signals and dictionaries. Thus, large signals and convolutional dictionaries as in our case are consistent with
the condition in [20].Dow
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D.2. Description of Assumption 3. Specifically, Assumption 3 is the surrogate functions

F (t)
mod(d) are uniformly strongly convex, i.e.,〈

∇F (t)
mod(d)−∇F (t)

mod(d̃),d− d̃
〉
≥ µ

∥∥d− d̃
∥∥2

(55)

for all t,d, d̃ for some µ > 0.

Appendix E. Proofs of propositions and the theorem. Before proving propositions, we
introduce a useful lemma.

Lemma 2 (uniform smoothness of surrogate functions). Under Assumptions 1 and 2, we

have that f (t) (27) and F (t)
mod(36) are uniformly L-smooth, i.e.,∥∥∇f (t)(d)−∇f (t)(d̃)

∥∥ ≤ Lf∥∥d− d̃
∥∥∥∥∇F (t)

mod(d)−∇F (t)
mod(d̃)

∥∥ ≤ LF∥∥d− d̃
∥∥(56)

for all t,d, d̃ for some constants Lf > 0, LF > 0.

Proof. First, we consider a single surrogate function:∥∥∇f (t)(d)−∇f (t)(d̃)
∥∥ =

∥∥(X(t))T (X(t))(d− d̃)
∥∥ .

By d ∈ C (the compact support of d), Assumption 1 (the compact support of s), and (53)
(regularity of convolutional sparse coding), we have that x(t) is uniformly bounded. Therefore,
X(t), the operator form of x(t), is also uniformly bounded,∥∥X(t)

∥∥ ≤M(57)

for all t for some M > 0, which is independent of t.
By (31), we have∥∥∥∇F (t)

mod(d)−∇F (t)
mod(d̃)

∥∥∥ =

∥∥∥∥∥ 1

Λ(t)

t∑
τ=1

(τ/t)p(X(τ))T (X(τ))(d− d̃)

∥∥∥∥∥
≤ 1

Λ(t)

t∑
τ=1

(τ/t)p
∥∥∥(X(τ))T (X(τ))(d− d̃)

∥∥∥ ,
which, together with (57), implies (56).

E.1. Proof of Proposition 3. Given the strong convexity (55) and smoothness (56) of the
surrogate function, we start to prove Proposition 3.

Proof. To prove (44), we consider a more general case. Let g∗ be the minimizer of the
following subproblem:

g∗ = arg min
d

F(d) + ιC(d) ,

where F is µ-strongly convex and L-smooth. Moreover, gj and gjaux are the iterates generated
in Algorithm 3, and j is the loop index. Then we want to show thatDow
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∥∥gj+1 − g∗
∥∥ ≤ CR(t)(gjaux) ∀j ≥ 0 .(58)

By (25), it is enough to prove the above for the spatial-domain FISTA. By strong convexity
and smoothness of F , we obtain

‖gj+1 − g∗‖2

=
∥∥Proj(gjaux − η∇F(gjaux))− Proj(g∗ − η∇F(g∗))

∥∥2

≤
∥∥gjaux − η∇F(gjaux)− g∗ − η∇F(g∗)

∥∥2

=
∥∥gjaux − g∗ − η

(
∇F(gjaux)−∇F(g∗)

)∥∥2

= ‖gjaux − g∗‖2 − 2η
〈
gjaux − g∗,∇F(gjaux)−∇F(g∗)

〉
+ η2

∥∥∇F(gjaux)−∇F(g∗)
∥∥2

≤ (1− 2µη + η2L2)‖gjaux − g∗‖2 .

Combining the above inequality and the definition of FPR (37), we have

R(gjaux) =
∥∥gjaux − Proj

(
gjaux − η∇F(gjaux)

)∥∥
= ‖gjaux − g(j+1)‖
= ‖gjaux − g∗ − (g(j+1) − g∗)‖
≥ ‖gjaux − g∗‖ − ‖g(j+1) − g∗‖

≥
(

1−
√

1− 2µη + η2L2
)
‖gjaux − g∗‖

≥ 1−
√

1− 2µη + η2L2√
1− 2µη + η2L2

‖gj+1 − g∗‖ .

Let the step size be small enough η ≤ min (µ/L2, 1/µ); then we have 0 ≤ 1− 2µη+ η2L2 ≤ 1,
which implies (58). Combining (58) and (38), we get (44).

E.2. Proof of Proposition 4.

Proof. Recall (d∗)(t) (43) is the “exact solution” of the tth iterate and d(t) is the “inexact
solution” of the tth iterate (i.e., the approximated solution obtained by stopping condition

(38)). Then, by the strong convexity of F (t)
mod, we have

F (t)
mod(d(t+1))−F (t)

mod(d(t))

= F (t)
mod(d(t+1))−F (t)

mod((d∗)(t))−
(
F (t)

mod(d(t))−F (t)
mod((d∗)(t))

)
≥ µ‖d(t+1) − (d∗)(t)‖2 − L‖d(t) − (d∗)(t)‖2

≥ µ
(
‖d(t+1) − d(t)‖ − ‖d(t) − (d∗)(t)‖

)2
− L‖d(t) − (d∗)(t)‖2 .

Let r(t) = ‖d(t+1) − d(t)‖. If r(t) ≤ C/t, Proposition 4 is directly proved. Otherwise,
Proposition 3 (44) implies r(t) − ‖d(t) − (d∗)(t)‖ ≥ r(t) − C/t ≥ 0 and

F (t)
mod(d(t+1))−F (t)

mod(d(t)) ≥ µ
(
r(t) − C

t

)2

− LC2

t2
.(59)Dow
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On the other hand,

F (t)
mod(d(t+1))−F (t)

mod(d(t)) = F (t)
mod(d(t+1))−F (t+1)

mod (d(t+1))︸ ︷︷ ︸
T1

+F (t+1)
mod (d(t+1))−F (t+1)

mod (d(t))︸ ︷︷ ︸
T2

+ F (t+1)
mod (d(t))−F (t)

mod(d(t))︸ ︷︷ ︸
T3

.

Now we will give the upper bounds of T1,T2,T3. Given the smoothness of F (t)
mod(56) and

(d∗)(t+1) being the minimizer of F (t)
mod, we have an upper bound of T2:

T2 = F (t+1)
mod (d(t+1))−F (t+1)

mod (d(t))

= F (t+1)
mod (d(t+1))−F (t+1)

mod ((d∗)(t+1))−
(
F (t+1)

mod (d(t))−F (t+1)
mod ((d∗)(t+1))

)
≤ L‖d(t+1) − (d∗)(t+1)‖2 − 0 ≤ LC2

t2
.

(60)

Based on (31), the gradient of F (t)
mod −F

(t+1)
mod is bounded by∥∥∥∇F (t)

mod(d)−∇F (t+1)
mod (d)

∥∥∥
=

∥∥∥∥∥∇F (t)
mod(d)− α(t+1)Λ(t)

Λ(t+1)
∇F (t)

mod(d)− 1

Λ(t+1)
∇f (t+1)(d)

∥∥∥∥∥
≤ 1

Λ(t+1)

∥∥∥∇F (t)
mod(d)

∥∥∥+
1

Λ(t+1)

∥∥∥∇f (t+1)(d)
∥∥∥ ≤ C0/(Λ

(t+1)) ≤ C1/t

for some constant C1 > 0. The second inequality follows from d ∈ C (the compact support
of d), Assumption 1 (the compact support of s), and (57) (boundedness of X). The last
inequality is derived by the follows:

1

Λ(t+1)
=

(t+ 1)p∑(t+1)
τ=1 τp

≤ (t+ 1)p∫ (t+1)
0 τpdτ

=
p

t+ 1
.

Then F (t)
mod −F

(t+1)
mod is a Lipschitz continuous function with L = C1/t, which implies

T1 + T3 ≤
C1

t
r(t) .

Therefore,

F (t)
mod(d(t+1))−F (t)

mod(d(t)) ≤ C1

t
r(t) +

LC2

t2
.(61)

Combining (59) and (61), we have

µ

(
r(t) − C

t

)2

− LC2

t2
≤ C1

t
r(t) +

LC2

t2
,Dow
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which implies

(r(t))2 − 2C + C1

t
r(t) ≤ 2LC2

µt2
.

This can be written more neatly as

(r(t))2 − 2
C2

t
r(t) ≤ C3

t2
for some C2 > 0, C3 > 0 .

Finally, r(t) is bounded by r(t) ≤ (C2 +
√
C2

2 + C3)/t, and (45) is proved.

E.3. Proof of Proposition 1.

Proof. Define a sequence of random variables Yi = ipZi. Their expectations and variances
are µi = ipµ and σ2

i = i2pσ2, respectively. Now we apply the Lyapunov central limit theorem
on the stochastic sequence {Yi}. First, we check the Lyapunov condition [6]. Let

s2
n =

n∑
i=1

σ2
i =

n∑
i=1

i2pσ2 = Θ(n2p+1);

then we have

1

s2+δ
n

n∑
i=1

E
[
|Yi − µi|2+δ

]
≤ 1

s2+δ
n

n∑
i=1

(ipσ)2+δ = O
(

n2p+1+δp

n2p+1+δp+δ/2

)
= O(n−δ/2) .(62)

The Lyapunov condition is satisfied, so, by the Lyapunov central limit theorem, we have
1
sn

∑n
i=1(Yi − µi)

d→ N(0, 1). Furthermore, the definition of Ẑnmod indicates

1

sn

n∑
i=1

(Yi − µi) =
1

sn

n∑
i=1

ip(Zi − µ) =

∑n
i=1 i

p√∑n
i=1 i

2pσ

(
1∑n
i=1 i

p

n∑
i=1

ip(Zi − µ)

)

=

∑n
i=1 i

p√∑n
i=1 i

2pσ
(Ẑnmod − µ) .

Given the inequalities

n∑
i=1

ip <

∫ n+1

1
spds <

1

p+ 1
(n+ 1)p+1 ,

n∑
i=1

ip >

∫ n

0
spds =

1

p+ 1
(n)p+1 ,

we have

1

sn

n∑
i=1

(Yi − µi) ≤
(

1 +
1

n

)p+1 1

σ

√
2p+ 1

p+ 1

√
n(Ẑnmod − µ) ,

1

sn

n∑
i=1

(Yi − µi) ≥
(

1 +
1

n

)−(p+1) 1

σ

√
2p+ 1

p+ 1

√
n(Ẑnmod − µ) .

Then (39) is obtained by 1
sn

∑n
i=1(Yi − µi)

d→ N(0, 1) and (1 + 1/n)→ 1.Dow
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The formula Var(X) = EX2 − (EX)2 ≥ 0 implies(
E
[√

n
∣∣Ẑnmod − µ

∣∣])2
≤ E

[
n
∣∣Ẑnmod − µ

∣∣2] .
By the independence of different Zi, we have

E
[
n
∣∣Ẑnmod − µ

∣∣2] =
n

(
∑n

i=1 i
p)2

n∑
i=1

E
[
i2p
∣∣Zi − µ∣∣2] ≤ (p+ 1)2

2p+ 1
B2 ,

where B is the upper bound of Zi as Zi is compact supported, and (40) is proved.

E.4. Proof of Proposition 2.

Proof. First, we fix d ∈ C. Let i → τ, n → t, Zi → f(d; s(τ)); then, by Proposition 1, we
have

E
[√

t
∣∣F (d)− F (t)

mod(d)
∣∣] ≤ p+ 1√

2p+ 1
B ∀t ∈ {1, 2, . . .}

for some B> 0 for fixed d. Since F and F
(t)
mod are continuously differentiable and have uni-

formly bounded derivatives (57), we have that E[
√
t|F (d)−F (t)

mod(d)|] is uniformly continuous

w.r.t d on a compact set C. Thus, the boundedness of E[
√
t|F (d)−F (t)

mod(d)|] on each d implies
the boundedness for all d ∈ C. Inequality (42) is proved. Taking p→ 0, we have (41).

E.5. Proof of Theorem 1.

Proof. Let u(t) = F (t)
mod(d(t)). Inspired by the proof of Proposition 3 in [38], we will show

that u(t) is a “quasi-martingale” [19]:

u(t+1) − u(t)

= F (t+1)
mod (d(t+1))−F (t)

mod(d(t))

= F (t+1)
mod (d(t+1))−F (t+1)

mod (d(t))︸ ︷︷ ︸
T2

+F (t+1)
mod (d(t))−F (t)

mod(d(t))︸ ︷︷ ︸
T4

.

The bound of T2 is given by (60). Furthermore, definition (27) tells us f (t+1)(d(t)) =
f(d(t); s(t+1)), which implies

T4 = F (t+1)
mod (d(t))−F (t)

mod(d(t))

=

(
1

Λ(t+1)
f(d(t); s(t+1)) +

α(t+1)Λ(t)

Λ(t+1)
F (t)

mod(d(t))

)
−F (t)

mod(d(t))

=
f(d(t); s(t+1))− F (t)

mod(d(t))

Λ(t+1)
+
F

(t)
mod(d(t))−F (t)

mod(d(t))

Λ(t+1)
.

By the definitions of f (12) and F (36), we have F
(t)
mod(d(t)) ≤ F (t)

mod(d(t)). Define Gt as all
the previous information: Gt , {x(τ), s(τ),d(τ)}tτ=1. Thus, taking conditional expectation, we
obtainDow
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E[T4|Gt] ≤
1

Λ(t+1)

(
E[f(d(t); s(t+1))|Gt]− F (t)

mod(d(t))
)

=
1

Λ(t+1)

(
F (d(t))− F (t)

mod(d(t))
)
.

Therefore, the positive part of E[T4|Gt] is bounded by

E[T4|Gt]+ ≤
1

Λ(t+1)
‖F − F (t)

mod‖∞ = O
(

1

t3/2

)
,

where the second inequality follows from (42). Given the bound of T2 (60) and T4, we have

∞∑
t=1

E
[
E[u(t+1) − u(t)|Gt]+

]
≤
∞∑
t=1

(
O
(

1

t3/2

)
+O

(
1

t2

))
< +∞ ,

which implies that u(t+1) generated by Algorithm 2 is a quasi-martingale. Thus, by results in
[7, section 4.4] or [38, Theorem 6], we have that u(t) converges almost surely.

For the proofs of 2, 3, and 4, using the results in Propositions 42 and in this paper,
following the same proof line of Propositions 3 and 4 in [38], we can obtain the results in 2,
3, and 4.
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