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1 Introduction

Manyconvexoptimization algorithmshave strong theoretical guarantees and empirical
performance, but they are often limited to non-pathological, feasible problems; under
pathologies often the theory breaks down and the empirical performance degrades
significantly. In fact, the behavior of convex optimization algorithms under pathologies
has been studied much less, and many existing solvers often simply report “failure”
without informing the users of what went wrong upon encountering infeasibility,
unboundedness, or pathology. Pathological problem are numerically challenging, but
they are not impossible to deal with. As infeasibility, unboundedness, and pathology
can arise in practice (see, for example [12,17,18,36,38]), designing a robust algorithm
that behaves well in all cases is important to the completion of a robust solver.

In this paper, we propose a method based on Douglas–Rachford splitting (DRS)
that identifies infeasible, unbounded, and pathological conic programs. First-order
methods such as DRS are simple and can quickly provide a solution with low or
moderate accuracy. It is well known, for example by combining Theorem 1 of [32]
and Proposition 4.4 of [13], that the iterates of DRS converge to a fixed point if there
is one (a fixed point z∗ of an operator T satisfies z∗ = T z∗), and when there is no
fixed point, the iterates diverge unboundedly. However, the precise manner in which
they diverge has been studiedmuch less. Somewhat surprisingly, when iterates of DRS
diverge, the divergent iterates still provide useful information, whichwe use to classify
the conic program. For example, a separating hyperplane can be found when the conic
program is strongly infeasible, and an improving direction can be obtained when there
is one. When the problem is infeasible or weakly feasible, we can get information of
how to minimally modify the problem data to achieve strong feasibility.

Facial reduction is one approach to handle infeasible or pathological conic pro-
grams. Facial reduction reduces an infeasible or pathological problem into a reduced
problem that is strongly feasible, strongly infeasible, or unbounded with an improving
direction, which are the easier cases [9,10,26,37]. This reduced problem can then be
solved with, say, interior point methods [25]. However, facial reduction introduces a
new set of computational issues. After completing the facial reduction step, which has
its own the computational challenge and cost, the reduced problemmust be solved. The
reduced problem involves a cone expressed as an intersection of the original cone with
an linear subspace, and in general such cones neither are self-dual nor have a simple
formula for projection. This makes applying an interior point method or a first-order
method difficult, and existing work on facial reduction do not provide an efficient way
to address this issue.

Homogeneous self-dual embedding is a transformation that embeds a conic program
and its dual into a single larger conic program. In conjunction with interior point
methods, one can use the homogeneous self-dual embedding to identify and solve
some pathologies [14,19,28,39,40].

In contrast, our proposed method directly addresses infeasibility, unboundedness,
and pathologywithout transforming to a larger problem. Some cases are always identi-
fied, and some are identifiable under certain conditions. Being a first-order method, the
proposed algorithm relies on simple subroutines; each iteration performs projections
onto the cone and the affine space of the conic program and elementary operations
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such as vector addition. Consequently, the method is simple to implement and has a
lower per-iteration cost than interior point methods.

1.1 Basic definitions

Cones A set K ⊆ R
n is a cone if K = λK for any λ > 0. We write and define the

dual cone of K as

K ∗ = {
u ∈ R

n| uT v ≥ 0, for all v ∈ K
}
.

Throughout this paper, we focus on nonempty closed convex cones that we can effi-
ciently project onto. In particular, we do not require that the cone be self-dual. Example
of such cones include:

– The positive orthant:

R
k+ = {

x ∈ R
k | xi ≥ 0, i = 1, . . . , n

}

– Second order cone:

Qk+1 =
{
(x1, . . . , xk, xk+1) ∈ R

k × R+ | xk+1 ≥
√
x21 + · · · + x2k

}

– Rotated second order cone:

Qk+2
r =

{
(x1, . . . , xk, xk+1, xk+2) ∈ R

k × R
2+ | 2xk+1xk+2 ≥ x21 + · · · + x2k

}
.

– Positive semidefinite cone:

Sk+ = {
M = MT ∈ R

k×k | xT Mx ≥ 0 for any x ∈ R
k}

Conic programs Consider the conic program

minimize cT x
subject to Ax = b

x ∈ K ,

(P)

where x ∈ R
n is the optimization variable, c ∈ R

n , A ∈ R
m×n , and b ∈ R

m are
problem data, and K ⊆ R

n is a nonempty closed convex cone. We write p� =
inf{cT x | Ax = b, x ∈ K } to denote the optimal value of (P). For simplicity, we
assume m ≤ n and A is full rank.

The dual problem of (P) is

maximize bT y
subject to AT y + s = c

s ∈ K ∗,
(D)
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where y ∈ R
m and s ∈ R

n are the optimization variables. We write d� =
sup{bT y | AT y + s = c, s ∈ K ∗} to denote the optimal value of (D).

The optimization problem (P) is either feasible or infeasible; (P) is feasible if there
is an x ∈ K ∩ {x | Ax = b} and infeasible if there is not. When (P) is feasible, it
is strongly feasible if there is an x ∈ relintK ∩ {x | Ax = b} and weakly feasible
if there is not, where relint denotes the relative interior. When (P) is infeasible, it is
strongly infeasible if there is a non-zero distance between K and {x | Ax = b}, i.e.,
d(K , {x | Ax = b}) > 0, and weakly infeasible if d(K , {x | Ax = b}) = 0, where

d(C1,C2) = inf {‖x − y‖ | x ∈ C1, y ∈ C2} ,

and ‖ · ‖ denotes the Euclidean norm. Note that d(C1,C2) = 0 does not necessarily
imply C1 and C2 intersect. When (P) is infeasible we say p� = ∞ and when feasible
p� ∈ R∪{−∞}. Likewise, when (D) is infeasible we say d� = −∞ andwhen feasible
d� ∈ R ∪ {∞}.

As special cases, (P) is called a linear program when K is the positive orthant,
a second-order cone program when K is the second-order cone, and a semidefinite
program when K is the positive semidefinite cone.

1.2 Classification of conic programs

Every conic program of the form (P) falls under exactly one of the following 7 cases
(some of the following examples are taken from [19–22]). Discussions on most of
these cases exist in the literature. Some of these cases have a corresponding dual
characterization, but we skip this discussion as it is not directly relevant to our method.
We report the results of SDPT3 [35], SeDuMi [33], and MOSEK [23] using their
default settings. In Sect. 2, we discuss how to identify most of these 7 cases.

Case (a) p� is finite, both (P) and (D) have solutions, and d� = p�, which is the most
common case. For example, the problem

minimize x3
subject to x1 = 1

x3 ≥
√
x21 + x22

has the solution x� = (1, 0, 1) and p� = 1. (The inequality constraint corresponds to
x ∈ Q3.) SDPT3, SeDuMi and MOSEK can solve this example.

The dual problem, after some simplification, is

maximize y
subject to 1 ≥ y2,

which has the solution y� = 1 and d� = 1.
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Case (b) p� is finite, (P) has a solution, but (D) has no solution, d� < p�, or both.
For example, the problem

minimize x2
subject to x1 = x3 = 1

x3 ≥
√
x21 + x22

has the solution x� = (1, 0, 1) and optimal value p� = 0. (The inequality constraint
corresponds to x ∈ Q3.)

The dual problem, after some simplification, is

maximize y1 −
√
1 + y21 .

By taking y1 → ∞, we achieve the dual optimal value d� = 0, but no finite y1
achieves it.

In this example, SDPT3 reports “Inaccurate/Solved” and − 2.99305× 10−5 as the
optimal value; SeDuMi reports “Solved” and − 1.54566× 10−4 as the optimal value;
MOSEK reports “Solved” and − 2.71919 × 10−8 as the optimal value.

As another example, the problem

minimize 2x12

subject to X =
⎡

⎣
x11 x12 x13
x12 0 x23
x13 x23 x12 + 1

⎤

⎦ ∈ S3+,

has the solution

X� =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦

and optimal value p� = 0.
The dual problem, after some simplification, is

maximize 2y2

subject to

⎡

⎣
0 y2 + 1 0

y2 + 1 −y1 0
0 0 −2y2

⎤

⎦ ∈ S3+,

which has the solution y� = (0,−1) and optimal value d� = −2.
In this example, SDPT3 reports “Solved” and −2 as the optimal value; SeDuMi

reports “Solved” and −0.602351 as the optimal value; MOSEK reports “Failed” and
does not report an optimal value.

Note that case (b) can happen only when (P) is weakly feasible, by standard convex
duality [31].
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Case (c) (P) is feasible, p� is finite, but there is no solution. For example, the problem

minimize x3
subject to x1 = √

2
2x2x3 ≥ x21
x2, x3 ≥ 0

has an optimal value p� = 0 but has no solution since any feasible x satisfies x3 > 0.
(The inequality constraints correspond to x ∈ Q3

r .)
In this example, SDPT3 reports “Inaccurate/Solved” and 7.9509 × 10−5 as the

optimal value; SeDuMi reports “Solved” and 8.75436 × 10−5 as the optimal value;
MOSEK reports “Solved” and 4.07385 × 10−8 as the optimal value.

Case (d) (P) is feasible, p� = −∞, and there is an improving direction, i.e., there is
a u ∈ N (A) ∩ K satisfying cT u < 0. For example, the problem

minimize x1
subject to x2 = 0

x3 ≥
√
x21 + x22

has an improving direction u = (−1, 0, 1). If x is any feasible point, x + tu is feasible
for t ≥ 0, and the objective value goes to −∞ as t → ∞. (The inequality constraint
corresponds to x ∈ Q3.)

In this example, SDPT3 reports “Failed” and does not report an optimal value;
SeDuMi reports “Unbounded” and −∞ as the optimal value; MOSEK reports
“Unbounded” and −∞ as the optimal value.

Case (e) (P) is feasible, p� = −∞, but there is no improving direction, i.e., there is
no u ∈ N (A) ∩ K satisfying cT u < 0. For example, consider the problem

minimize x1
subject to x2 = 1

2x2x3 ≥ x21
x2, x3 ≥ 0.

(The inequality constraints correspond to x ∈ Q3
r .) Any improving direction u =

(u1, u2, u3) would satisfy u2 = 0, and this in turn, with the cone constraint, implies
u1 = 0 and cT u = 0. However, even though there is no improving direction, we can
eliminate the variables x1 and x2 to verify that

p� = inf
{− √

2x3 | x3 ≥ 0
} = −∞.

In this example, SDPT3 reports “Failed” and does not report an optimal value;
SeDuMi reports “Inaccurate/Solved” and − 175514 as the optimal value; MOSEK
reports “Inaccurate/Unbounded” and −∞ as the optimal value.
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Case (f) Strongly infeasible, where p� = ∞ and d(K , {x | Ax = b}) > 0. For
example, the problem

minimize 0
subject to x3 = −1

x3 ≥
√
x21 + x22

satisfies d(K , {x | Ax = b}) = 1. (The inequality constraint corresponds to x ∈ Q3.)
In this example, SDPT3 reports “Failed” and does not report an optimal value;

SeDuMi reports “Infeasible” and∞ as the optimal value;MOSEK reports “Infeasible”
and ∞ as the optimal value.

Case (g) Weakly infeasible, where p� = ∞ but d(K , {x | Ax = b}) = 0. For exam-
ple, the problem

minimize 0

subject to

[
0, 1, 1
1, 0, 0

]
x =

[
0
1

]

x3 ≥
√
x21 + x22

satisfies d(K , {x | Ax = b}) = 0, since

d(K , {x | Ax = b}) ≤ ‖(1,−y, y) − (1,−y,
√
y2 + 1)‖ → 0

as y → ∞. (The inequality constraint corresponds to x ∈ Q3.)
In this example, SDPT3 reports “Infeasible” and ∞ as the optimal value; SeDuMi

reports “Solved” and 0 as the optimal value; MOSEK reports “Failed” and does not
report an optimal value.

Remark In the case of linear programming, i.e., when K in (P) is the positive orthant,
there are only three possible cases: (a), (d), and (f).

1.3 Classification method overview

At a high level, our proposed method for classifying the 7 cases is quite simple. Given
an operator T and a starting point z0, we call zk+1 = T

(
zk

)
the fixed-point iteration

of T . Our proposed method runs three similar but distinct fixed-point iterations with
the operators

T1(z) = T̃ (z) + x0 − γ Dc (Operators)

T2(z) = T̃ (z) + x0

T3(z) = T̃ (z) − γ Dc,

where T̃ (z) = (1/2)(I+RN (A)RK )(z), D = I−AT (AAT )−1A, x0 = AT (AAT )−1b,
and γ > 0. We explain the notation in more detail in Sect. 2.
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Fig. 1 The flowchart for identifying cases (a–g). A solid arrow means the cases are always identifiable, a
dashed arrow means the cases sometimes identifiable

We can view T1 as the DRS operator of (P), T2 as the DRS operator with c set to
0 in (P), and T3 as the DRS operator with b set to 0 in (P). We use the information
provided by the iterates of these fixed-point iterations to solve (P) and classify the
cases. As outlined in Sect. 2.8, this is based on the theory of Sect. 2 and the flowchart
shown in Fig. 1.

1.4 Previous work

Previously, Bauschke, Combettes, Hare, Luke, and Moursi have analyzed Douglas–
Rachford splitting in other pathological problems such as: feasibility problems
between 2 affine sets [7], feasibility problems between 2 convex sets [4,8], and general
setups [2,5,6,24]. Our work builds on these past results.

123



A new use of Douglas–Rachford splitting for identifying…

2 Obtaining certificates from Douglas–Rachford Splitting

The primal problem (P) is equivalent to

minimize f (x) + g(x), (1)

where

f (x) = cT x + δ{x | Ax=b}(x)
g(x) = δK (x), (2)

and δC (x) is the indicator function of a set C defined as

δC (x) =
{
0 if x ∈ C

∞ if x /∈ C.

Douglas–Rachford splitting (DRS) [15] applied to (1) is

xk+1/2 = Proxγ g
(
zk

)

xk+1 = Proxγ f
(
2xk+1/2 − zk

)

zk+1 = zk + xk+1 − xk+1/2, (3)

which updates zk to zk+1 for k = 0, 1, . . .. Given γ > 0 and function h,

Proxγ h(x) = argminz∈Rn

{
h(z) + (1/2γ )‖z − x‖2

}

denotes the proximal operator with respect to γ h.
Given a nonempty closed convex set C ⊆ R

n , define the projection with respect to
C as

PC (x) = argminy∈C ‖y − x‖2

and the reflection with respect to C as

RC (x) = 2PC (x) − x .

Write I to denote both the n× n identity matrix and the identity map from R
n → R

n .
Write 0 to denote the origin point in R

n . Define

D = I − AT (AAT )−1A

x0 = AT (AAT )−1b = P{x | Ax=b}(0). (4)
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Write N (A) for the null space of A and R(AT ) for the range of AT . Then

P{x | Ax=b}(x) = Dx + x0,

PN (A)(x) = Dx .

Finally, define

T̃ (z) = 1

2
(I + RN (A)RK )(z).

Now we can rewrite the DRS iteration (3) as

xk+1/2 = PK
(
zk

)

xk+1 = D
(
2xk+1/2 − zk

) + x0 − γ Dc

zk+1 = zk + xk+1 − xk+1/2. (5)

Equivalently and more compactly, we can write

zk+1 = T̃ (zk) + x0 − γ Dc, (6)

which is also zk+1 = T1
(
zk

)
with T1 definied in (Operators).

Remark Instead of (2), we could have considered the more general form

f (x) = (1 − α)cT x + δ{x | Ax=b}(x),
g(x) = αcT x + δK (x)

with α ∈ R. By simplifying the resulting DRS iteration, one can verify that the iterates
are equivalent to the α = 0 case. Since the choice of α does not affect theDRS iteration
at all, we will only work with the case α = 0.

2.1 Convergence of DRS

A point x� ∈ R
n is a solution of (1) if and only if

0 ∈ ∂( f + g)(x�).

DRS, however, converges if and only if there is a point x� such that

0 ∈ ∂ f (x�) + ∂g(x�).

In general,

∂ f (x) + ∂g(x) ⊆ ∂( f + g)(x)
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for all x ∈ R
n , but the two are not necessarily equal.

We summarize the convergence of DRS in the theorem below. Its main part is a
direct result of Theorem1of [32] andPropositions 4.4 and 4.8 of [13]. The convergence
of xk+1/2 and xk+1 is due to [34]. Therefore, we do not prove it.

Theorem 1 Consider the iteration (6) with any starting point z0. If there is an x such
that

0 ∈ ∂ f (x) + ∂g(x),

then zk converges to a limit z�, xk+1/2 → x� = Proxγ g(z�), xk+1 → x� =
Proxγ g(z�), and

0 ∈ ∂ f (x�) + ∂g(x�).

If there is no x such that

0 ∈ ∂ f (x) + ∂g(x),

then zk diverges in that ‖zk‖ → ∞.

DRS can fail to find a solution to (P) even when one exists. Slater’s constraint
qualification is a sufficient condition that prevents such pathologies: if (P) is strongly
feasible, then

0 ∈ ∂ f (x�) + ∂g(x�)

for all solutions x� [30, Theorem 23.8]. This fact and Theorem 1 tell us that under
Slater’s constraint qualifications DRS finds a solution of (P) if one exists.

The following theorem, however, provides a stronger, necessary and sufficient char-
acterization of when the DRS iteration converges.

Theorem 2 ([31]) There is an x� such that

0 ∈ ∂ f (x�) + ∂g(x�)

if and only if x� is a solution to (P), (D) has a solution, and d� = p�.

Based on Theorems 1 and 2 we can determine whether we have case (a) with the
iteration (6)

with any starting point z0 and γ > 0.

– If limk→∞ ‖zk‖ < ∞, we have case (a), and vice versa.
– If limk→∞ ‖zk‖ = ∞, we do not have case (a), and vice versa.

With a finite number of iterations, we test ‖zk‖ ≥ M for some large M > 0. However,
distinguishing the two cases can be numerically difficult as the rate of ‖zk‖ → ∞ can
be very slow.
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2.2 Fixed-point iterations without fixed points

We say an operator T : R
n → R

n is nonexpansive if

‖T (x) − T (y)‖2 ≤ ‖x − y‖2

for all x, y ∈ R
n . We say T is firmly nonexpansive (FNE) if

‖T (x) − T (y)‖2 ≤ ‖x − y‖2 − ‖(I − T )(x) − (I − T )(y)‖2

for all x, y ∈ R
n . (FNE operators are nonexpansive.) In particular, all three operators

defined in (Operators) are FNE, as they are DRS operators [3]. It is well known [11]
that if a FNE operator T has a fixed point, its fixed-point iteration zk+1 = T

(
zk

)

converges to one with rate

‖zk+1 − zk‖ = o(1/
√
k).

Now consider the case where a FNE operator T has no fixed point, which has
been studied to a lesser extent. In this case, the fixed-point iteration zk+1 = T

(
zk

)

diverges in that ‖zk‖ → ∞ [32, Theorem 1]. Precisely in what manner zk diverges is
characterized by the infimal displacement vector [27]. Given a FNE operator T , we
call

v = Pran(I−T )(0)

the infimal displacement vector of T . To clarify, ran(I − T ) denotes the closure of
the set

ran(I − T ) = {x − T (x) | x ∈ R
n}.

Because T is nonexpansive, the closed set ran(I − T ) is convex [27], so v is uniquely
defined. We can interpret the infimal displacement vector v as the asymptotic output
of I − T corresponding to the best effort to find a fixed point.

Lemma 1 (Corollary 2.3 of [1]) Let T be FNE, and consider its fixed-point iteration
zk+1 = T

(
zk

)
with any starting point z0. Then

zk − zk+1 → v = Pran(I−T )(0).

In [1], Lemma 1 is proved in generality for nonexpansive operators, but we provide a
simpler proof in our setting in Theorem 3.

When T has a fixed point v = 0, but v = 0 is possible even when T has no fixed
point. In the following sections, we use Lemma 1 to determine the status of a conic
program, but, in general, zk − zk+1 → v has no rate. However, we only need to
determine whether limk→∞(zk+1 − zk) = 0 or limk→∞(zk+1 − zk) 
= 0, and we do
so by checking whether ‖zk+1 − zk‖ ≥ ε for some tolerance ε > 0. For this purpose,
the following rate of approximate convergence is good enough.
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Theorem 3 Let T be FNE, and consider its fixed point iteration

zk+1 = T (zk),

with any starting point z0, then

zk − zk+1 → v.

And for any ε > 0, there is an Mε > 0 (which depends on T , z0, and ε) such that

‖v‖ ≤ min
0≤ j≤k

‖z j − z j+1‖ ≤ ‖v‖ + Mε√
k + 1

+ ε

2
.

Proof (Proof of Theorem 3) For simplicity, we prove the result for 0 < ε ≤ 1. The
result for ε = 1 applies to the ε > 1 case.

Given any xε, we use the triangle inequality to get

‖zk − zk+1 − v‖ = ‖T k(z0) − T k+1(z0) − v‖ (7)

≤ ‖(T k(z0) − T k+1(z0)) − (T k(xε) − T k+1(xε))‖
+ ‖T k(xε) − T k+1(xε) − v‖. (8)

To bound the second term, pick an xε such that

‖xε − T (xε) − v‖ ≤ ε2

4(2‖v‖ + 1)
,

which we can do since v = Pran(I−T )(0) ∈ ran(I − T ). Since T is nonexpansive, we
have

‖T k(xε) − T k+1(xε)‖ − ‖v‖ ≤ ‖xε − T (xε)‖ − ‖v‖ ≤ ‖xε − T (xε) − v‖.

Since v = argminran(I−T ) ‖x‖, we have ‖T k(xε) − T k+1(xε)‖ − ‖v‖ ≥ 0. Putting
this together we get

0 ≤ ‖T k(xε) − T k+1(xε)‖ − ‖v‖ ≤ ε2

4(2‖v‖ + 1)
.

Since v = Pran(I−T )(0),

‖v‖2 ≤ yT v
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for any y ∈ ran(I − T ). Putting these together we get

‖T k(xε) − T k+1(xε) − v‖2 = ‖T k(xε) − T k+1(xε)‖2 + ‖v‖2
− 2(T k(xε) − T k+1(xε))

T v

≤ ‖T k(xε) − T k+1(xε)‖2 + ‖v‖2 − 2‖v‖2
= (‖T k(xε) − T k+1(xε)‖ + ‖v‖)(‖T k(xε) − T k+1(xε)‖ − ‖v‖)

≤ (2‖v‖ + ε2

4(2‖v‖ + 1)
)

ε2

4(2‖v‖ + 1)

≤ (2‖v‖ + 1)
ε2

4(2‖v‖ + 1)
= ε2

4

(9)

for 0 < ε ≤ 1.
Now let us bound the first term ‖(T k(z0)− T k+1(z0))− (T k(xε)− T k+1(xε))‖ on

the righthand side of (8). Since T is FNE, we have

‖(T k(z0) − T k+1(z0)) − (T k(xε) − T k+1(xε))‖2 = ‖T k(z0) − T k(xε)‖2
−‖T k+1(z0) − T k+1(xε)‖2.

Summing this inequality we have

k∑

j=0

‖(T k(z0) − T k+1(z0)) − (T k(xε) − T k+1(xε))‖2 ≤ ‖z0 − xε‖2. (10)

(8), (9), and (10) imply that

zk − zk+1 → v.

Furthermore,

min
0≤ j≤k

‖z j − z j+1 − v‖ ≤ Mε√
k + 1

+ ε

2
,

where Mε = ‖z0 − xε‖. As a result,

‖v‖ ≤ min
0≤ j≤k

‖z j − z j+1‖ ≤ ‖v‖ + Mε√
k + 1

+ ε

2
.

��

2.3 Feasibility and infeasibility

We now return to conic programs. Consider the operator T2 defined by T2(z) =
T̃ (z) + x0. As mentioned, we can view T2 as the DRS operator with c set to 0 in (P).
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The infimal displacement vector of T2 has a nice geometric interpretation: it is the
best approximation displacement between the sets K and {x | Ax = b}, and ‖v‖ =
d(K , {x | Ax = b}). Define the set

K − {x | Ax = b} = {y − x | y ∈ K , Ax = b}.

Theorem 4 (Theorem 3.4 of [4], Proposition 11.22 of [24]) The operator T2 has the
infimal displacement vector v = PK−{x | Ax=b}(0).

We can further understand v in terms of the projection PPR(AT )
(K ). Note that

PR(AT )(K ) is a cone because K is. PR(AT )(K ) is not always closed, but its closure

PR(AT )(K ) is. We prove the following result at the end of this subsection.

Lemma 2 (Interpretation of v) The infimal displacement vector v of T2 satisfies

v = PK−{x | Ax=b}(0) = PPR(AT )
(K )−x0

(0) = PPR(AT )
(K )(x0) − x0,

where x0 is given in (4) and K is any nonempty set.

Combining the discussion of Sect. 2.2 with Theorem 4 gives us Theorems 5 and 6.

Theorem 5 (Certificate of feasibility) Consider the iteration zk+1 = T2
(
zk

)
with any

starting point z0 ∈ R
n, then

1. (P) is feasible if and only if zk converges, and in this case xk+1/2 converges to a
feasible point of (P).

2. (P) is infeasible if and only if zk diverges in that ‖zk‖ → ∞.

Theorem 6 (Certificate of strong infeasibility) Consider the iteration zk+1 = T2
(
zk

)

with any starting point z0. We have zk − zk+1 → v and

1. (P) is strongly infeasible if and only if v 
= 0.
2. (P) is weakly infeasible or feasible if and only if v = 0.

When (P) is strongly infeasible, we can obtain a separating hyperplane from v. We
prove the following result at the end of this subsection.

Theorem 7 (Separating hyperplane) Consider the iteration zk+1 = T2
(
zk

)
with any

starting point z0. When (P) is strongly infeasible, zk − zk+1 → v 
= 0, and the
hyperplane

{x | hT x = β},

where h = −v ∈ K ∗ ∩ R(AT ) and β = −(vT x0)/2 > 0, strictly separates K and
{x | Ax = b}. More precisely, for any y1 ∈ K and y2 ∈ {x | Ax = b} we have

hT y1 < β < hT y2.
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Based on Theorems 5, 6, and 7, we can determine feasibility, weak infeasiblity, and
strong infeasibility and obtain a strictly separating hyperplane if one exists with the
iteration zk+1 = T2

(
zk

)
with any starting point z0.

– limk→∞ ‖zk‖ < ∞ if and only if (P) is feasible.
– limk→∞ ‖zk − zk+1‖ > 0 if and only if (P) is strongly infeasible, and Theorem 7
provides a strictly separating hyperplane.

– limk→∞ ‖zk‖ = ∞ and limk→∞ ‖zk − zk+1‖ = 0 if and only if (P) is weakly
infeasible.

With a finite number of iterations, we distinguish the three cases by testing ‖zk+1 −
zk‖ ≤ ε and ‖zk‖ ≥ M for some small ε > 0 and large M > 0. By Theorem 3, we
can distinguish strong infeasibility from weak infeasibility or feasibility at a rate of
O(1/

√
k). However, distinguishing feasibility from weak infeasibility can be numeri-

cally difficult as the rate of ‖zk‖ → ∞ can be very slowwhen (P) is weakly infeasible.

Proof (Proof of Lemma 2) Remember that by definition (4), we have x0 ∈ R(AT )

and

{x | Ax = b} = x0 + N (A) = x0 − N (A).

Also note that for any y ∈ R
n , we have

y + N (A) = PR(AT )(y) + N (A).

So

K − {x | Ax = b} = K + N (A) − x0 = PR(AT )(K ) − x0 + N (A),

and

K − {x | Ax = b} = PR(AT )(K ) + N (A) − x0 = PR(AT )(K ) − x0 + N (A). (11)

Since x0 ∈ R(AT ), we have PR(AT )(K ) − x0 ⊆ R(AT ), and, in particular,

PR(AT )(K ) − x0 is orthogonal to the subspace N (A). Recall

v = PPR(AT )
(K )−x0+N (A)(0).

So v ∈ PR(AT )(K ) − x0 ⊆ R(AT ) and

v = PPR(AT )
(K )−x0

(0).

Finally,
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v = argminx∈PR(AT )
(K )−x0

{
‖x‖22

}
= argminy∈PR(AT )

(K )

{
‖y − x0‖22

}
− x0

= PPR(AT )
(K )(x0) − x0

��

Proof (Proof of Theorem 7) Note that

v = PK−{x | Ax=b}(0) = PK+N (A)−x0
(0) = PK+N (A)

(x0) − x0

Using I = PK ∗∩R(AT ) + P−(K ∗∩R(AT ))∗ and (K ∗ ∩ R(AT ))∗ = K + N (A) [3], we
have

v = PK+N (A)
(x0) − x0 = −P−(K ∗∩R(AT ))(x0) = PK ∗∩R(AT )(−x0).

Since the projection operator is FNE, we have

−vT x0 = (v − 0)T (−x0 − 0) ≥ ‖PK ∗∩R(AT )(−x0)‖2 = ‖v‖2 > 0

and therefore vT x0 < 0, β = −vT x0/2 > 0.
So for any y1 ∈ K and y2 ∈ {x | Ax = b}, we have

hT y1 = −vT y1 ≤ 0 < −(vT x0)/2 = β < −vT x0 = hT y2,

where we have used h = −v = −PK ∗∩R(AT )(−x0) ∈ −K ∗ in the first inequality. ��

2.4 Modifying affine constraints to achieve strong feasibility

Loosely speaking, strongly feasible problems are the good cases that are easier to
solve, compared to weakly feasible or infeasible problems. Given a problem that is not
strongly feasible, how to minimally modify the problem to achieve strong feasibility
is often useful to know.

The limit zk − zk+1 → v informs us of how to do this. When d(K , {x | Ax =
b}) = ‖v‖ > 0, the constraint K ∩{x | A(x − y) = b} is infeasible for any y such that
‖y‖ < ‖v‖. In general, the constraint K ∩{x | A(x−v) = b} can be feasible or weakly
infeasible, but is not strongly feasible. The constraint K ∩ {x | A(x − v − d) = b} is
strongly feasible for an arbitrarily small d ∈ relintK . In other words, K ∩ {x | A(x −
v − d) = b} achieves strong feasibility with the minimal modification (measured by
the Euclidean norm ‖ · ‖) to the original constraint K ∩ {x | Ax = b}.
Theorem 8 (Achieving strong feasibility) Let v = PK−{x | Ax=b}(0), and let d be any
vector satisfying d ∈ relintK. Then the constraint K ∩ {x | A(x − v − d) = b} is
strongly feasible, i.e., there is an x such that x ∈ relintK ∩ {x | A(x − v − d) = b}.
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Proof (Proof of Theorem 8) By Lemma 2 we have

v + x0 ∈ PR(AT )(K ). (12)

Because PR(AT ) is a linear transformation, by Lemma 3 below

PR(AT )(relintK ) = relintPR(AT )(K ).

Since d ∈ relintK ,

PR(AT )(d) ∈ PR(AT )(relintK ) = relintPR(AT )(K ). (13)

Applying Lemma 4 to (12) and (13), we have

v + x0 + PR(AT )(d) ∈ relintPR(AT )(K ) = PR(AT )(relintK ).

Finally we have

0 ∈ PR(AT )(relintK ) − x0 − v − d + N (A) = relintK − {x | A(x − v − d) = b}.

��
Lemma 3 (Theorem 6.6 of [30]) If A(·) is a linear transformation and C is a convex
set, then A(relintC) = relintA(C).

Lemma 4 (Theorem 6.1 [30]) Let K be a convex cone. If x ∈ K and y ∈ relintK,
then x + y ∈ relintK.

2.5 Improving direction

(P) has an improving direction if and only if the dual problem (D) is strongly infeasible:

0 < d(0, K � + R(AT ) − c) = d({(y, s) | AT y + s = c}, {(y, s) | s ∈ K ∗}).

Theorem 9 (Certificate of improving direction) Exactly one of the following is true:

1. (P) has an improving direction, (D) is strongly infeasible, and PN (A)∩K (−c) 
= 0
is an improving direction.

2. (P) has no improving direction, (D) is feasible or weakly infeasible, and
PN (A)∩K (−c) = 0.

Furthermore,

PN (A)∩K (−c) = P
K ∗+R(AT )−c

(0).
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Theorem 10 Consider the iteration zk+1 = T3
(
zk

) = T̃
(
zk

)−γ Dc with any starting
point z0 and γ > 0. If (P) has an improving direction, then

d = lim
k→∞ zk+1 − zk = P

K ∗+R(AT )−c
(0) 
= 0

gives one. If (P) has no improving direction, then

lim
k→∞ zk+1 − zk = 0.

Based on Theorems 9 and 10 we can determine whether there is an improving
direction and find one if one exists with the iteration zk+1 = T̃

(
zk

) − γ Dc with any
starting point z0 and γ > 0.

– limk→∞ zk+1 − zk = 0 if and only if there is no improving direction.
– limk→∞ zk+1 − zk = d 
= 0 if and only if d is an improving direction.

With a finite number of iterations, we test ‖zk+1 − zk‖ ≤ ε for some small ε > 0. By
Theorem 3, we can distinguish whether there is an improving direction or not at a rate
of O(1/

√
k).

We need the following theorem for Sect. 2.7, it is proved similarly to Theorem 5
below.

Theorem 11 Consider the iteration

zk+1 = T̃
(
zk

) − γ Dc

with any starting point z0 and γ > 0. If (D) is feasible, then zk converges. If (D) is
infeasible, then zk diverges in that ‖zk‖ → ∞.

Proof (Proof of Theorem 9) The qualitative aspect of this theorem (duality between
existence of improving directions and strong infeasibility) is known [21]. To the best
of our knowledge, the quantitative aspect of this theorem (the meaning and characteri-
zation of PN (A)∩K (−c)) has not been explicitly addressed before. The following proof
slightly extends the argument of [21] to show both the qualitative and the quantitative
parts.

(P) has no improving direction if and only if

{x ∈ R
n|x ∈ N (A) ∩ K , cT x < 0} = ∅,

which is equivalent to cT x ≥ 0 for all x ∈ N (A) ∩ K . This is in turn equivalent to
c ∈ (N (A) ∩ K )∗. So

−c = P−(N (A)∩K )∗(−c).

if and only if there is no improving direction, which holds if and only if

0 = PN (A)∩K (−c).
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Assume there is an improving direction. Since the projection operator is firmly
nonexpansive, we have

0 < ‖PN (A)∩K (−c)‖2 ≤ (PN (A)∩K (−c))T (−c).

This simplifies to

(PN (A)∩K (−c))T c < 0,

and we conclude PN (A)∩K (−c) is an improving direction.

Using the fact that (N (A) ∩ K )∗ = K ∗ + R(AT ), we have

PN (A)∩K (−c) = −PN (A)∩K (c) = (P
K ∗+R(AT )

− I )(c) = P
K ∗+R(AT )−c

(0),

where we have used the identity I = PN (A)∩K + P
K ∗+R(AT )

in the second equality.
��

Proof (Proof of Theorems 10 and 11) Using the identities I = PN (A) + PR(AT ), I =
PK + P−K ∗ , and RR(AT )−γ c(z) = RR(AT )(z) − 2γ Dc, we have

T3(z) = T̃ (z) − γ Dc = 1

2
(I + RR(AT )−γ c R−K ∗)(z).

In other words, we can interpret the fixed point iteration

zk+1 = T̃
(
zk

) − γ Dc

as the DRS iteration on

minimize 0
subject to x ∈ R(AT ) − γ c

x ∈ −K ∗.

This proves Theorem 11.
UsingLemma1, applyingTheorem3.4 of [4] aswe did for Theorem4, and applying

Theorem 9, we get

zk − zk+1 → Pran(I−T3)
(0)

= P−K ∗−R(AT )+γ c
(0)

= −γ P
K ∗+R(AT )−c

(0)

= −γ PN (A)∩K (−c).

��
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2.6 Modifying the objective to achieve finite optimal value

Similar to Theorem 8, we can achieve strong feasibility of (D) by modifying c, and
(P) will have a finite optimal value.

Theorem 12 (Achieving finite p�) Letw = P
K ∗+R(AT )−c

(0), and let s be any vector

satisfying s ∈ relintK ∗. If (P) is feasible and has an unbounded direction, then by
replacing c with c′ = c + w + s, (P) will have a finite optimal value.

Proof (Proof of Theorem 12) Similar to Lemma 2, we have

w = PPN (A)(K ∗)−PN (A)(c)
(0).

And similar to Theorem 8, the new constraint of (D)

K ∗ ∩ {c + w + s − AT y}

is strongly feasible. The constraint of (P) is still K ∩ {x | Ax = b}, which is feasible.
By weak duality of we conclude that the optimal value of (P) becomes finite. ��

2.7 Other cases

So far, we have discussed how to identify and certify cases (a), (d), (f), and (g). We
now discuss sufficient conditions to certify the remaining cases.

The following theorem follows from weak duality.

Theorem 13 ([31] Certificate of finite p�) If (P) and (D) are feasible, then p� is finite.

Based on Theorem 11, we can determine whether (D) is feasible with the iteration
zk+1 = T3

(
zk

) = T̃
(
zk

) − γ Dc,
with any starting point z0 and γ > 0.

– limk→∞ ‖zk‖ < ∞ if and only if (D) is feasible.
– limk→∞ ‖zk‖ = ∞ if and only if (D) is infeasible.

With a finite number of iterations, we test ‖zk‖ ≥ M for some large M > 0. However,
distinguishing the two cases can be numerically difficult as the rate of ‖zk‖ → ∞ can
be very slow.

Theorem 14 (Primal iterate convergence)Consider theDRS iteration as defined in (5)
with any starting point z0. Assume (P) is feasible, if xk+1/2 → x∞ and xk+1 → x∞,
then x∞ is primal optimal, even if zk doesn’t converge.

When running thefixed-point iterationwithT1(z) = T̃ (z)+x0−γ Dc, if‖zk‖ → ∞
but xk+1/2 → x∞ and xk+1 → x∞, then we have case (b), but the converse is not
necessarily true.
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Proof (Proof of Theorem 14) Define

xk+1/2 = Proxγ g
(
zk

)

xk+1 = Proxγ f
(
2xk+1/2 − zk

)

zk+1 = zk + xk+1 − xk+1/2

as in (5) Define

∇̃g
(
xk+1/2) = (1/γ )

(
zk − xk+1/2)

∇̃ f
(
xk+1) = (1/γ )

(
2xk+1/2 − zk − xk+1).

It’s simple to verify that

∇̃g
(
xk+1/2) ∈ ∂g

(
xk+1/2)

∇̃ f
(
xk+1) ∈ ∂ f

(
xk+1).

Clearly,

∇̃g
(
xk+1/2) + ∇̃ f

(
xk+1) = (1/γ )

(
xk+1/2 − xk+1).

We also have

zk+1 = zk − γ ∇̃g
(
xk+1/2) − γ ∇̃ f

(
xk+1) = xk+1/2 − γ ∇̃ f

(
xk+1)

Consider any x ∈ K ∩ {x | Ax = b}. Then, by convexity of f and g,

g
(
xk+1/2) − g(x) + f

(
xk+1) − f (x) ≤ ∇̃g

(
xk+1/2)T (

xk+1/2 − x
)

+ ∇̃ f
(
xk+1)T (

xk+1 − x
)

=
(
∇̃g

(
xk+1/2) + ∇̃ f

(
xk+1)

)T (
xk+1/2 − x

)

+ ∇̃ f
(
xk+1)T (

xk+1 − xk+1/2)

= (
xk+1 − xk+1/2)T

(
∇̃ f

(
xk+1) − (1/γ )

(
xk+1/2 − x

))

= (1/γ )
(
xk+1 − xk+1/2)T (

x − zk+1)

We take the liminf on both sides and use Lemma 5 below to get

g(x∞) + f (x∞) ≤ g(x) + f (x).

Since this holds for any x ∈ K ∩ {x | Ax = b}, x∞ is optimal. ��
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Lemma 5 Let Δ1,Δ2, . . . be a sequence in R
n. Then

lim inf
k→∞ (Δk)T

k∑

i=1

(−Δi ) ≤ 0.

Proof Assume for contradiction that

lim inf
k→∞ (Δk)T

k∑

i=1

(−Δi ) > 2ε

for some ε > 0. Since the initial part of the sequence is irrelevant, assume without
loss of generality that

(Δ j )T
j∑

i=1

Δi < −ε

for j = 1, 2, . . ., summing both sides gives us, for all k = 1, 2, . . .

k∑

j=1

(Δ j )T
j∑

i=1

Δi < −εk.

Define

�{i ≤ j} =
{
1, if i ≤ j,

0, otherwise.

We have

k∑

j=1

k∑

i=1

(Δ j )TΔi
�{i ≤ j} < −εk,

0 ≤ 1

2

∥∥∥∥∥

k∑

i=1

Δi

∥∥∥∥∥

2

+ 1

2

k∑

i=1

∥∥∥Δi
∥∥∥
2

< −εk,

which is a contradiction. ��

2.8 The algorithms

We now collect the discussed classification results as three algorithms. The full algo-
rithm is simply running Algorithms 1, 2, and 3, and applying flowchart of Fig. 1. In
theory, the algorithms work with any value of γ > 0, although the empirical perfor-
mance can vary with γ .
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The algorithms rely on detecting whether certain quantities converge to 0 or ∞.
This can be numerically challenging in certain cases. However, certain pathologies
are inherently challenging, and we observe through the examples of Sect. 3 that our
method is competitive with other approaches.

Algorithm 1 Finding a solution

Parameters: γ , M , ε, z0

for k = 1, . . . do
xk+1/2 = PK

(
zk

)

xk+1 = D
(
2xk+1/2 − zk

) + x0 − γ Dc

zk+1 = zk + xk+1 − xk+1/2

end for
if ‖zk‖ < M then

Case (a)
xk+1/2 and xk+1 solution

else if xk+1/2 → x∞ and xk+1 → x∞ then
Case (b)
xk+1/2 and xk+1 solution

else
Case (b), (c), (d), (e), (f), or (g).

end if

Algorithm 2 Feasibility test

Parameters: M , ε, z0

for k = 1, . . . do
xk+1/2 = PK

(
zk

)

xk+1 = D
(
2xk+1/2 − zk

) + x0
zk+1 = zk + xk+1 − xk+1/2

end for
if ‖zk‖ ≥ M and ‖zk+1 − zk‖ > ε then

Case (f)
Strictly separating hyperplane defined by (zk+1 − zk , ((zk+1 − zk )T x0)/2)

else if ‖zk‖ ≥ M and ‖zk+1 − zk‖ ≤ ε then
Case (g)

else ‖zk‖ < M
Case (a), (b), (c), (d), or (e)

end if

2.9 Case-by-case illustration

In this section, we present a case-by-case illustration of the algorithms. We describe
the empirical behavior of the algorithms on cases (b), (c), (d), and (e) and demonstrate
how the classification works.

We skip the discussion of case (a), as it is the standard non-pathological case.
Algorithm 1 determines whether or not we have case (a). Case (f) and (g) are the
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Algorithm 3 Boundedness test
Prerequisite: (P) is feasible.
Parameters: γ , M , ε, z0

for k = 1, . . . do
xk+1/2 = PK

(
zk

)

xk+1 = D
(
2xk+1/2 − zk

) − γ Dc

zk+1 = zk + xk+1 − xk+1/2

end for
if ‖zk‖ ≥ M and ‖zk+1 − zk‖ ≥ ε then

Case (d)
Improving direction zk+1 − zk

else if ‖zk‖ < M then
Case (a), (b), or (c)

else
Case (a), (b), (c), or (e)

end if

infeasible cases, and Algorithm 2 determines whether or not we have case (f) or (g).
We skip the discussion of these cases, as we present more thorough experiments of
them in Sect. 3.

Case (b), (P) has a solution but (D) has no solution. Consider the example problem
of this case discussed in Sect. 1.2. When we run Algorithm 1, we empirically observe
that ‖zk‖ → ∞ and xk+1/2, xk+1 → x�, for γ = 0.1. This tells us we have case (b).

Case (b), −∞ < d� < p� < ∞. Consider the example problem of this case
discussed in Sect. 1.2.When we run Algorithm 1, we empirically observe that ‖zk‖ →
∞, xk+1/2 and xk+1 do not converge, and limk→∞ 2xk+1

12 = −0.2 for γ = 0.1. When
we run Algorithm 2, we empirically observe that zk converges to a limit. When we
run Algorithm 3, we empirically observe that zk converges to a limit. From this, we
can conclude we have case (b) or (c).

Case (b), −∞ = d� < p� < ∞ Consider the problem

minimize x1
subject to x2 − x3 = 0

x3 ≥
√
x21 + x22 ,

which has the solution set {(0, t, t) | t ∈ R} and optimal value p� = 0. Its dual problem
is

maximize 0
subject to y ≥ √

y2 + 1,

which is infeasible. This immediately tells us that p� > −∞ is possible even when
d� = −∞.

123



Y. Liu et al.

We can in fact analyze this example analytically. When we run Algorithm 1 with
starting point z0 = (z01, z

0
2, 0), the iterates z

k+1 = (
zk+1
1 , zk+2

2 , zk+1
3

)
are:

zk+1
1 = 1

2
zk1 − γ

zk+1
2 = 1

2
zk2 + 1

2

√(
zk1

)2 + (
zk2

)2

zk+1
3 = 0.

So ‖zk‖ → ∞. Furthermore, xk+1/2 = PK
(
zk

)
satisfies xk+1/2

1 → −2γ, xk+1/2
2 →

∞ and xk+1/2
3 → ∞, so xk+1/2 does not converge to the solution set. When we run

Algorithm 2, zk converges to a limit. When we run Algorithm 3, ‖zk‖ → ∞ and
zk+1 − zk → 0. From such observations, we could conclude we have case (b), (c), or
(e).

This example demonstrates that the converses of Theorems 13 and 14 are not true.

Case (c) In this case, |p�| < ∞ but there is no solution. Consider the example problem
of this case discussed in Sect. 1.2. When we run Algorithm 1, we empirically observe
that ‖zk‖ → ∞, xk+1/2 and xk+1 do not converge, and limk→∞ 2xk+1

3 = p� for
γ = 0.1. When we run Algorithm 2, we empirically observe that zk converges to a
limit. When we run Algorithm 3, we empirically observe that zk converges to a limit.
From this, we can conclude we have case (b) or (c).

Case (d) In this case, there is an improving direction. Consider the example problemof
this case discussed in Sect. 1.2.Whenwe runAlgorithm 1, we empirically observe that
‖zk‖ → ∞ and xk+1/2, xk+1 do not converge for γ = 0.1. When we run Algorithm
2, we empirically observe that zk converges to a limit. When we run Algorithm 3, we
empirically observe that ‖zk‖ → ∞ and limk→∞ ‖zk+1 − zk‖ > 0. From this, we
can conclude we have case (d).

Case (e) In this case, p� = −∞, but there is no improving direction. Consider the
example problem of this case discussed in Sect. 1.2. When we run Algorithm 1, we
empirically observe that ‖zk‖ → ∞ and xk+1/2, xk+1 do not converge for γ = 0.1.
When we run Algorithm 2, we empirically observe that zk converges to a limit. When
we run Algorithm 3, we empirically observe that ‖zk‖ → ∞ and zk+1 − zk → 0.
From this, we can conclude we have case (b), (c), or (e).

3 Numerical experiments

We test our algorithm on a library of weakly infeasible SDPs generated by [16]. These
semidefinite programs are in the form:

minimize C • X
subject to Ai • X = bi , i = 1, . . . ,m

X ∈ Sn+,
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Table 1 Percentage of
infeasibility detection in [16]

m = 10 m = 20

Clean Messy Clean Messy

SeDuMi 0 0 1 0

SDPT3 0 0 0 0

MOSEK 0 0 11 0

PP+SeDuMi 100 0 100 0

Table 2 Percentage of
infeasibility detection success

m = 10 m = 20

Clean Messy Clean Messy

Proposed method 100 21 100 99

Table 3 Percentage of success
determination that problems are
not strongly infeasible

m = 10 m = 20

Clean Messy Clean Messy

Proposed method 100 100 100 100

where n = 10, m = 10 or 20, and A • B = ∑n
i=1

∑n
j=1 Ai j Bi j denotes the inner

product between two n × n matrices A and B.
The library provides “clean” and “messy” instances.Given a clean instance, amessy

instance is created with

Ai ← UT

⎛

⎝
m∑

j=1

Ti j A j

⎞

⎠U for i = 1, . . . ,m

bi ←
m∑

j=1

Ti j b j for i = 1, . . . ,m,

where T ∈ Z
m×m and U ∈ Z

n×n are random invertible matrices with entries in
[−2, 2].

In [16], four solvers are tested, specifically, SeDuMi, SDPT3 and MOSEK from
the YALMIP environment, and the preprocessing algorithm of Permenter and Parrilo
[29] interfaced with SeDuMi. Table 1 reports the numbers of instances determined
infeasible out of 100weakly infeasible instances. The four solvers have varying success
in detecting infeasibility of the clean instances, but none of them succeed in the messy
instances.

Our proposed method performs better. However, it does require many iterations
and does fail with some of the messy instances. We run the algorithm with N = 107

iterations and label an instance infeasible if 1/‖zN‖ ≤ 8×10−2 (cf. Theorems 5 and 6).
Table 2 reports the numbers of instances determined infeasible out of 100 weakly
infeasible instances. Curiously, our method and other existing methods perform better
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with the larger instances of m = 20. This behavior is also reported and discussed
in [16], the paper that provides the library of pathological instances. We suspect this
phenomenon is inherent to the data set, not our algorithm.

We would like to note that detecting whether or not a problem is strongly infea-
sible is easier than detecting whether a problem is infeasible. With N = 5 × 104

and a tolerance of ‖zN − zN+1‖ < 10−3 (c.f Theorem 6) our proposed method cor-
rectly determined that all test instances are not strongly infeasible. Table 3 reports the
numbers of instances determined not strongly infeasible out of 100 weakly infeasible
instances.

Acknowledgements W. Yin would like to thank Professor Yinyu Ye for his question regarding ADMM
applied to infeasible linear programs during the 2014 Workshop on Optimization for Modern Computation
held at Peking University.
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