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Abstract In this paper, we analyze the convergence of the alternating direction method of
multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective func-
tion, φ(x0, . . . , x p, y), subject to coupled linear equality constraints. Our ADMM updates
eachof the primal variables x0, . . . , x p, y, followedbyupdating the dual variable.We separate
the variable y from xi ’s as it has a special role in our analysis. The developed convergence
guarantee covers a variety of nonconvex functions such as piecewise linear functions, �q

quasi-norm, Schatten-q quasi-norm (0 < q < 1), minimax concave penalty (MCP), and
smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as
compact manifolds (e.g., spherical, Stiefel, and Grassmanmanifolds) and linear complemen-
tarity constraints. Also, the x0-block can be almost any lower semi-continuous function. By
applying our analysis, we show, for the first time, that several ADMM algorithms applied to
solve nonconvex models in statistical learning, optimization on manifold, and matrix decom-
position are guaranteed to converge. Our results provide sufficient conditions for ADMM
to converge on (convex or nonconvex) monotropic programs with three or more blocks, as
they are special cases of our model. ADMM has been regarded as a variant to the augmented
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Lagrangian method (ALM). We present a simple example to illustrate how ADMM con-
verges but ALM diverges with bounded penalty parameter β. Indicated by this example and
other analysis in this paper, ADMMmight be a better choice than ALM for some nonconvex
nonsmooth problems, because ADMM is not only easier to implement, it is also more likely
to converge for the concerned scenarios.

Keywords ADMM · Nonconvex optimization · Augmented Lagrangian method · Block
coordinate descent · Sparse optimization

1 Introduction

In this paper, we consider the (possibly nonconvex and nonsmooth) optimization problem:

minimize
x0,x1,...,x p,y

φ(x0, x1, . . . , x p, y) (1)

subject to A0x0 + A1x1 + · · · + Apx p + By = b,

where φ : Rn0 ×· · ·×R
n p ×R

q → R∪{∞} is a continuous function, xi ∈ R
ni are variables

with their coefficient matrices Ai ∈ R
m×ni , i = 0, . . . , p, and y ∈ R

q is the last variable
with its coefficient matrix B ∈ R

m×q . The model remains as general without y and By; but
we keep y and B to simplify the notation.

We set b = 0 throughout the paper to simplify our analysis. All of our results still hold if
b �= 0 is in the image of the matrix B, i.e., b ∈ Im(B).

Besides the linear constraints in (1), any constraint on each variable x0, x1, . . . , x p and y
can be treated as an indicator function and included in the objective function φ. Therefore,
we do not include constraints like: x0 ∈ X0, x1 ∈ X1, . . . , x p ∈ Xp, y ∈ Y.

In spite of the success of ADMMon convex problems, the behavior of ADMMon noncon-
vex problems has been largely a mystery, especially when there are also nonsmooth functions
and nonconvex sets in the problems. ADMMgenerally fails on nonconvexity problems, but it
has found to not only work in some applications but often exhibit great performance! Indeed,
successful examples include: matrix completion and separation [47,49,61,63], asset alloca-
tion [56], tensor factorization [34], phase retrieval [57], compressive sensing [9], optimal
power flow [64], direction fields correction [31], noisy color image restoration [31], image
registration [6], network inference [39], and global conformal mapping [31]. In these appli-
cations, the objective function can be nonconvex, nonsmooth, or both. Examples include the
piecewise linear function, the �q quasi-norm for q ∈ (0, 1), the Schatten-q (0 < q < 1) [59]
quasi-norm f (X) = ∑

i σi (X)q (where σi (X) denotes the i th largest singular value of X ),
and the indicator function ιB, where B is a nonconvex set.

The success of these applications can be intriguing, since these applications are far beyond
the scope of the theoretical conditions that ADMM is proved to converge. In fact, even the
three-block ADMM can diverge on a simple convex problem [10]. Nonetheless, we still find
that it works well in practice. This has motivated us to explore in the paper and respond to this
question: when will the ADMM type algorithms converge if the objective function includes
nonconvex nonsmooth functions?

We present our Algorithm 1, where Lβ denotes the augmented Lagrangian (2), and show
that it converges for a large class of problems. For simplicity, Algorithm 1 uses the standard
ADMMsubproblems,whichminimize the augmentedLagrangianLβ with all but onevariable
fixed. It is possible to extend them to inexact, linearized, and/or prox-gradient subproblems
as long as a few key principles (cf. §3.1) are preserved.
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Algorithm 1 Nonconvex ADMM for (1)

Initialize x01 , . . . , x0p, y0, w0

while stopping criteria not satisfied do

for i = 0, . . . , p do
xk+1

i ← argminxi
Lβ(xk+1

<i , xi , xk
>i , yk , wk );

end for

yk+1 ← argminy Lβ(xk+1, y, wk );

wk+1 ← wk + β
(
Axk+1 + Byk+1

)
;

k ← k + 1;
end while
return xk

1 , . . . , xk
p and yk .

In this paper, under some assumptions on the objective andmatrices, Algorithm1 is proved
to converge. Algorithm 1 is a generalization to the coordinate descent method. By setting
A0, A1, . . . , Ap, B to 0, Algorithm 1 reduces to the cyclic coordinate descent method.

1.1 Proposed Algorithm

Our variable is x := [x0; . . . ; x p] ∈ R
n where n = ∑p

i=0 ni . LetA := [A0 · · · Ap] ∈ R
m×n

andAx := ∑p
i=0 Ai xi ∈ R

m . To present our algorithm,we define the augmentedLagrangian:

Lβ(x, y, w) := φ(x, y) + 〈w,Ax + By〉 + β

2
‖Ax + By‖2. (2)

The proposed Algorithm 1 extends the standard ADMM to multiple variable blocks. It also
extends the coordinate descent algorithms dealing with linear constraints. We let x<i :=
[x0; . . . ; xi−1] ∈ R

n0+n1+···+ni−1 and x>i := [xi+1; . . . ; x p] ∈ R
ni+1+···+n p (clearly, x<0 and

x>p are null variables, which may be used for notational ease). Subvectors x≤i := [x<i , xi ]
and x≥i are defined similarly. The convergence of Algorithm 1 will be given in Theorems 1
and 2.

1.2 Relation to the Augmented Lagrangian Method (ALM)

ALM is awidely-usedmethod for solving constrained optimizationmodels [23,44]. It applies
broadly to nonconvex nonsmooth problems. ADMM is an approximation to ALMby sequen-
tially updating each of the primal variables.

ALM generally uses a sequence of penalty parameters {βk}, which is nondecreasing and
possibly unbounded.Whenβk becomes large, theALMsubproblembecomes ill-conditioned.
Therefore, using bounded βk is practically desirable (see [12, Theorem 5.3], [3, Proposition
2.4], or [4, Chapter 7]). For general nonconvex and nonsmooth problems, it is well known
that βk , k ∈ N is bounded is not enough for the convergence of ALM [3, Section 2.1].
Proposition 2 below introduces a simple example on which ALM diverges with any bounded
βk . It is surprising, however, that ADMM converges in finite steps for any fixed β > 1 on
this example.

Proposition 1 Consider the problem

minimize
x,y∈R x2 − y2 (3)

subject to x = y, x ∈ [−1, 1].
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It holds that

1. If {βk |k ∈ N} is bounded, ALM generates a divergent sequence;
2. for any fixed β > 4, ADMM generates a convergent and finite sequence to a solution.

The proof is straightforward and included in the “Appendix”. ALM diverges because
Lβ(x, y, w) does not have a saddle point, and there is a non-zero duality gap. ADMM,
however, is unaffected. As the proof shows, the ADMM sequence satisfies 2yk = −wk , ∀k.
By substituting w ≡ −2y into Lβ(x, y, w), we get a convex function in (x, y)! Indeed,

ρ(x, y) := Lβ(x, y, w)
∣
∣
w=−2y = (x2 − y2) + ι[−1,1](x) − 2y(x − y) + β

2

∣
∣x − y

∣
∣2

= β + 2

2
|x − y|2 + ι[−1,1](x),

where ιS is the indicator function of set S (that is, ιS(x) = 0 if x ∈ S; otherwise, equals
infinity). It turns out that ADMM solves (3) by performing the following coordinate descent
iteration to ρ(x, y):

{
xk+1 = argminx ρ(x, yk),

yk+1 = yk − β

β2−4
d
dy ρ(xk+1, yk).

Our analysis for the general case will show that the primal variable y somehow “controls”
the dual variable w and reduces ADMM to an iteration that is similar to coordinate descent.

1.3 Related Literature

The original ADMM was proposed in [19,21]. For convex problems, its convergence was
established firstly in [20] and its convergence rates given in [15,16,22] in different set-
tings. When the objective function is nonconvex, the recent results [28,37,61] directly make
assumptions on the iterates (xk, yk, wk). Hong et al. [24] deals with the nonconvex separable
objective functions for some specific Ai , which forms the sharing and consensus problem.
Li and Pong [32] studied the convergence of ADMM for some special nonconvex models,
where one of the matrices A and B is an identity matrix. Wang et al. [51,52] studied the
convergence of the nonconvex Bregman ADMM algorithm, which includes ADMM as a
special case. We review their results and compare to ours in Sect. 4 below.

1.4 Contribution and Novelty

The main contribution of this paper is the establishment of the global convergence of Algo-
rithm 1 under certain assumptions given in Theorems 1 and 2 below. The assumptions apply
to largely many nonconvex and nonsmooth objective functions. The developed theoretical
results can be extended to the case where subproblems are solved inexactly with summable
errors.We also allow the primal block variables x1, . . . , x p to be updated in an arbitrary order
as long as x0 is updated first and y is updated last (just before the w-update). The novelty of
this paper can be summarized as follows:

(1) Weaker assumptions. Compared to the related works [24,28,32,37,51,52,61], the
convergence conditions in this paper are weaker, extending the ADMM theory to sig-
nificantly more nonconvex functions and nonconvex sets. See Table 1. In addition, we
allow the primal variables x1, . . . , x p to be updated in an arbitrary order at each iter-
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ation,1 which is new in the ADMM literature. We show that most of our assumptions
are necessary by providing counter examples. We also give the first example that causes
ADMM to converge but ALM to diverge.

(2) New examples. By applying our main theorems, we prove convergence for the non-
convex ADMM applied to the following problems which could not be recovered from
previous convergence theory:

– statistical regression based on nonconvex regularizer such as minimax concave
penalty(MCP), smoothly clipped absolute deviation (SCAD), and �q quasi-norm;

– minimizing smooth functions subject to norm or Stiefel/Grassmannianmanifold con-
straints;

– matrix decomposition using nonconvex Schatten-q regularizer;
– smooth minimization subject to complementarity constraints.

(3) Novel techniques.We improve upon the existing analysis techniques and introduce new
ones.

(a) An induction technique for nonconvex, nonsmooth case. The analysis uses the aug-
mented Lagrangian as the Lyapunov function: Algorithm 1 produces a sequence
of points whose augmented Lagrangian function values are decreasing and lower
bounded. This technique appeared first in [24] and also in [32,51]. However, it has
trouble handling nonsmooth functions. An induction technique is introduced to over-
come this difficulty and extend the current framework to nonconvex, nonsmooth,
multi-block cases. The technique is used in the proof of Lemma 9.

(b) Restricted prox-regularity. Most of the convergence analysis of nonconvex opti-
mization either assumes or proves the sufficient descent and bounded subgradient
properties (c.f., [1,24]). This property is easily obtainable if the objective is smooth.
However, somenonconvex andnonsmooth objectives (e.g. nonconvex �q quasi-norm)
violate these properties. We overcome this challenge with the introduced restricted
prox-regularity property (Definition 2). If the objective satisfies such a property, we
prove that the sequence enjoy sufficient descent and bounded subgradients after a
finite number of iterations.

(c) More general linear mappings. Most nonconvex ADMM analysis is applied to the
primal variables x and y directly. This requires the matrices A0, A1, . . . , Ap, B to
either identity or have full column/row rank. In this paper, we introduce techniques
to work with possibly rank-deficient A0, A1, . . . , Ap, B (see, for example, Lemma
5). This allows us to ensure convergence of ADMM on some important applications
in signal processing and statistical learning (see Sect. 5).

In addition, we use several other techniques that are tailored to relax our convergence
assumptions as much as possible.

1.5 Notation and Organization

We denote R as the real number set, R ∪ {+∞} as the extended real number set, R+ as the
positive real number set, and N as the natural number set. Given a matrix X , Im(X) denotes
its image, σi (X) denotes its i th largest singular value. ‖ · ‖ represents the Euclidean norm
for a vector or the Frobenius norm for a matrix. dom( f ) denotes the domain of a function

1 This is the best that one hope (except for very specific problems) since [62, Section 1] shows a convex
2-block problem, which ADMM fails to converge.
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f . For any two square matrices A and B with the same size, A � B means that A − B is
positively semi-definite.

The remainder of this paper is organized as follows. Section 2 presents the main conver-
gence analysis. Section 3 gives the detailed proofs. Section 4 discusses the tightness of the
assumptions, the primal variable update order, and inexact minimization issues. Section 5
applies the developed theorems in some typical applications and obtains novel convergence
results. Finally, Sect. 6 concludes this paper.

2 Main Results

2.1 Definitions

In our definitions, ∂ f denotes the set of general subgradients of f in [45, Definition 8.3].
We call a function Lipschitz differentiable if it is differentiable and its gradient is Lipschitz
continuous. The functions given in the next two definitions are permitted in our model.

Definition 1 (Piecewise linear function) A function f : Rn → R is piecewise linear if there
exist polyhedra U1, . . . , UK ⊂ R

n , vectors a1, . . . , aK ∈ R
n , and points b1, . . . , bK ∈ R

such that
⋃K

i=1 Ui = R
n , Ui

⋂
U j = ∅ (∀ i �= j), and f (x) = aT

i x + bi when x ∈ Ui ,
i = 1, . . . , K .

Definition 2 (Restricted prox-regularity) For a lower semi-continuous function f , let M ∈
R+, f : RN → R ∪ {∞}, and define the exclusion set

SM := {x ∈ dom( f ) : ‖d‖ > M for all d ∈ ∂ f (x)}.
f is called restricted prox-regular if, for any M > 0 and bounded set T ⊆ dom f , there
exists γ > 0 such that

f (y) + γ

2
‖x − y‖2 ≥ f (x) + 〈d, y − x〉, ∀ x ∈ T \ SM , y ∈ T, d ∈ ∂ f (x), ‖d‖ ≤ M.

(4)

(If T \ SM is empty, (4) is satisfied.)

Definition 2 is related to, but weaker than, the concepts prox-regularity [43], hypomono-
tonicity [45, Example 12.28] and semi-convexity [26,30,38,40], all of which impose global
conditions. Definition 2 only requires (4) to hold over a subset. As shown in Proposition
1, while prox-regular functions include any convex functions and any C1 functions with
Lipschitz continuous gradients, restricted prox-regular functions further include a set of non-
smooth non-convex functions such as �q quasi-norms (0 < q < 1), Schatten-q quasi-norms
(0 < q < 1), and indicator functions of compact smooth manifolds.

Proposition 1 Examples of (restricted) prox-regular functions The following functions are
prox-regular functions:

(1) convex functions, including indicator functions of convex sets,
(2) C1 smooth functions with L-Lipschitz continuous gradient.

The following functions are restricted prox-regular functions:

(1) �q(x) := ‖x‖q
q function for q ∈ (0, 1);
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(2) Schatten-q quasi-norm: ‖A‖q = ∑n
i=1 σ

q
i , where q ∈ (0, 1) and σi is the i th largest

singular value of A;
(3) Indicator functions ιS of a compact C2 manifold, such as the unit sphere in a finite

Euclidean space.

Definition 2 introduces functions that do not satisfy (4) globally only because they are
asymptotically “steep” in the exclusion set SM . Such functions include |x |q (0 < q < 1),
for which SM has the form (−εM , 0) ∪ (0, εM ); the Schatten-q quasi-norm (0 < q < 1), for
which SM = {X : ∃i, σi (X) < εM } as well as log(x), for which SM = (0, εM ), where εM

is a constant depending on M . We only need (4) because the iterates xk
i of Algorithm 1, for

all large k, never enter the exclusion set SM .

2.2 Main Theorems

To ensure the boundedness of the sequence (xk, yk, wk), we only need the coercivity of the
objective function within the feasible set.

A1 (coercivity)Define the feasible setF := {(x, y) ∈ R
n+q : Ax+ By = 0}. The objective

function φ(x, y) is coercive over this set, that is, φ(x, y) → ∞ if (x, y) ∈ F and
‖(x, y)‖ → ∞;

If the feasible set of (x, y) is bounded, then A1 holds trivially for any continuous objective
function. Therefore, A1 is much weaker than assuming that the objective function is coercive
over the entire space R

n+q . The assumption A1 can be dropped if the boundedness of the
sequence can be deducted from other means.

Within the proof, Ai xk
i and Byk often appear in the first order conditions (e.g. seeEqs. (12),

(13)). In order to have a reverse control, i.e., controlling xk
i , yk based on Ai xk

i , Byk , we need
the following two assumptions on matrices Ai and B.

A2 (feasibility) Im(A) ⊆ Im(B), where Im(·) returns the image of a matrix;

A3 (Lipschitz sub-minimization paths)

(a) For any fixed x, argminy{φ(x, y) : By = u} has a unique minimizer. H : Im(B) →
R

q defined by H(u) � argminy{φ(x, y) : By = u} is a Lipschitz continuous map.
(b) For i = 0, . . . , p and any x<i , x>i and y, argminxi

{φ(x<i , xi , x>i , y) : Ai xi =
u} has a unique minimizer and Fi : Im(Ai ) → R

ni defined by Fi (u) �
argminxi

{φ(x<i , xi , x>i , y) : Ai xi = u} is a Lipschitz continuous map.

Moreover, the above Fi and H have a universal Lipschitz constant M̄ > 0.

These two assumptions allow us to control xk
i , yk by Ai xk

i , Byk as in Lemma 1.

Lemma 1 It holds that, ∀k1, k2 ∈ N,

‖yk1 − yk2‖ ≤ M̄‖Byk1 − Byk2‖, (5)

‖xk1
i − xk2

i ‖ ≤ M̄‖Ai xk1
i − Ai xk2

i ‖, i = 0, 1, . . . , p, (6)

where M̄ is given in A3.

They weaken the full column rank assumption typically imposed on matrices Ai and
B. When Ai and B have full column rank, their null spaces are trivial and, therefore, Fi , H
reduce to linear operators and satisfy A3. However, the assumption A3 allows non-trivial null
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H(u∗) + Null(B)

H(u∗)
H(u)

sub-minimization path

Fig. 1 Illustration of the assumption A3, which assumes that H(u) = argmin{h(y) : By = u} is Lipschitz
[46]

spaces and holds for more functions. For example, if a function f is a C2 with its Hessian
matrix H bounded everywhere σ1 I � H � σ2 I (σ1 > σ2 > 0), then F satisfies A3 for
any matrix A. If the uniqueness fails to hold, i.e., there exists y1, y2 such that By1 = By2
and φ(x, y1) = φ(x, y2), then the augmented Lagrangian cannot distinguish them, causing
troubles to the boundedness of the sequence (Fig. 1).

As for the objective function, we consider two different scenarios:

– Theorem 1 considers the scenario where x and y are decoupled in the objective function;
– Theorem 2 considers the scenario where x and y are possibly coupled but their function

φ(x, y) is Lipschitz differentiable.

The model in the first scenario is

minimize
x0,x1,...,x p,y

f (x0, x1, . . . , x p) + h(y) (7)

subject to A0x0 + A1x1 + · · · + Apx p + By = b,

where the function f : Rn → R ∪ {∞} (n = ∑p
i=0 ni ) is proper, continuous, and possibly

nonsmooth, and the function h : Rq → R is proper and differentiable. Both f and h can be
nonconvex.

Theorem 1 Suppose that A1–A3 and the following assumptions hold.

A4 (objective- f regularity) f has the form

f (x) := g(x) +
p∑

i=0

fi (xi )

where

(i) g(x) is Lipschitz differentiable with constant Lg,
(ii) Either

a. f0 is lower semi-continuous, fi (xi ) is restricted prox-regular (Definition 2) for
i = 1, . . . , p; Or,

b. The supremum sup{‖d‖ : x0 ∈ S, d ∈ ∂ f0(x0)} is bounded for any bounded set
S, fi (xi ) is continuous and piecewise linear (Definition 1) for i = 1, . . . , p;

A5 (objective-h regularity) h(y) is Lipschitz differentiable with constant Lh;

Then, Algorithm 1 converges subsequently for any sufficiently large β (the lower bound is
given in Lemma 9), that is, starting from any x01 , . . . , x0p, y0, w0, it generates a sequence that
is bounded, has at least one limit point, and that each limit point (x∗, y∗, w∗) is a stationary
point of Lβ , namely, 0 ∈ ∂Lβ(x∗, y∗, w∗).
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In addition, if Lβ is a Kurdyka-Łojasiewicz (KŁ) function [1,5,35], then (xk, yk, wk)

converges globally2 to the unique limit point (x∗, y∗, w∗).

AssumptionsA4 andA5 regulate the objective functions. None of the functions needs to be
convex. f0 can be any lower semi-continuous function, and the non-Lipschitz differentiable
parts f1, . . . , fn of f shall satisfy either Definitions 1 or 2. Under Assumptions A4 and A5,
the augmented Lagrangian function Lβ is lower semi-continuous.

It will be easy to see, from our proof in Sect. 3.3, that the Lipschitz differentiable assump-
tion on g can be relaxed to hold just in any bounded set, since the boundedness of {xk} is
established before that property is used in our proof. Consequently, g can be functions like
ex , whose derivative is not globally Lipschitz.

Functions satisfying the KŁ inequality include real analytic functions, semi-algebraic
functions and locally strongly convex functions (more information can be referred to Sect.
2.2 in [60] and references therein).

In the second scenario, x and y can be coupled in the objective as shown in (1), but the
objective needs to be smooth.

Theorem 2 Suppose that A1–A3 hold and φ in (1) is Lipschitz differentiable with constant
Lφ . Then, Algorithm 1 has the same subsequential and global convergence results as stated
in Theorem 1.

Although Theorems 1 and 2 impose different conditions on the objective functions, their
proofs are similar. Hence, we will focus on proving Theorem 1 first and leave the proof of
Theorem 2 to the “Appendix”.

3 Proof

3.1 Keystones

The following properties hold for Algorithm 1 under our assumptions. Here, we first list them
and present Proposition 2, which establishes convergence assuming these properties. Then
in the next two subsections, we prove these properties.

P1 (Boundedness) {xk, yk, wk} is bounded, and Lβ(xk, yk, wk) is lower bounded.
P2 (Sufficient descent) There is a constant C1(β) > 0 such that for all sufficiently large k,

we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1)

≥ C1(β)
(
‖B(yk+1 − yk)‖2 +

p∑

i=1

‖Ai (xk
i − xk+1

i )‖2
)
. (8)

P3 (Subgradient bound) There exists C2(β) > 0 and dk+1 ∈ ∂Lβ(xk+1, yk+1, wk+1) such
that

‖dk+1‖ ≤ C2(β)
(
‖B(yk+1 − yk)‖ +

p∑

i=1

‖Ai (xk+1
i − xk

i )‖
)
. (9)

It is our intention to start i at 1, thus skipping the x0-block, in (8) and (9).

2 “Globally” here means regardless of where the initial point is.
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P4 (Limiting continuity) If (x∗, y∗, w∗) is the limit point of a sub-sequence (xks , yks , wks )

for s ∈ N, then Lβ(x∗, y∗, w∗) = lims→∞ Lβ(xks , yks , wks ).

The proposition below is standard and not new though it does not appear exactly in the
literature.

Proposition 2 Suppose that when an algorithm is applied to the problem (7), its sequence
(xk, yk, wk) satisfies P1–P4. Then, the sequence has at least a limit point (x∗, y∗, w∗),
and any limit point (x∗, y∗, w∗) is a stationary point. That is, 0 ∈ ∂Lβ(x∗, y∗, w∗), or
equivalently,

0 = Ax∗ + By∗, (10a)

0 ∈ ∂ f (x∗) + AT w∗, (10b)

0 ∈ ∂h(y∗) + BT w∗. (10c)

Furthermore, the running best rates3 of the sequences {‖B(yk+1 − yk)‖2 +∑p
i=1 ‖Ai (xk

i −
xk+1

i )‖2} and {‖dk+1‖} are o( 1k ) and o( 1√
k
), respectively. Moreover, if Lβ is a KŁ function,

then (xk, yk, wk) converges globally to the unique point (x∗, y∗, w∗).

Proof The proof is standard. Similar steps are found in, for example, [1,60].
By P1, the sequence (xk, yk, wk) is bounded, so there exist a convergent subsequence

and a limit point, denoted by (xks , yks , wks )s∈N → (x∗, y∗, w∗) as s → +∞. By P1
and P2, Lβ(xk, yk, wk) is monotonically nonincreasing and lower bounded, and therefore
‖Ai xk

i − Ai xk+1
i ‖ → 0 and ‖Byk − Byk+1‖ → 0 as k → ∞. Based on P3, there exists

dk ∈ ∂Lβ(xk, yk, wk) such that ‖dk‖ → 0. In particular, ‖dks ‖ → 0 as s → ∞. Based
on P4, Lβ(x∗, y∗, w∗) = lims Lβ(xks , yks , wks ). By definition of general subgradient [45,
Definition 8.3], we have 0 ∈ ∂Lβ(x∗, y∗, w∗).

The running best rate of the sequence {‖B(yk+1 − yk)‖2 +∑p
i=1 ‖Ai (xk

i − xk+1
i )‖2} can

be easily obtained via taking advantage of [17, Lemma 1.2] or [29, Theorem 3.3.1]. By (9),
it is obvious that the running best rate of the sequence {‖dk+1‖} is o( 1√

k
).

Similar to the proof of Theorem 2.9 in [1], we can claim the global convergence of the
considered sequence (xk, yk, wk)k∈N under the KŁ assumption of Lβ . ��
In P2, the sufficient descent inequality (8) is only required for any sufficiently large k, not all k.
In our analysis, P1 gives subsequence convergence, P2 measures the augmented Lagrangian
descent, and P3 bounds the subgradient by total point changes. The reader may still obtain
P1–P4 when generalizing Algorithm 1, for example, by replacing the direct minimization
subproblems to prox-gradient or inexact subproblems and by relaxing the ordering in which
the primal variables are updated.

3.2 Preliminaries

In this subsection, we give some useful lemmas that will be used in the main proof. To save
space, throughout this section we assume assumptions A1–A5 hold, and let

(x+, y+, w+) := (xk+1, yk+1, wk+1). (11)

In addition, we let A<s x<s := ∑
i<s Ai xi and, in a similar fashion, A>s x>s := ∑

i>s Ai xi .

3 A nonnegative sequence ak induces its running best sequence bk = min{ai : i ≤ k}; therefore, ak has
running best rate of o(1/k) if bk = o(1/k).
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Lemma 2 If β > M̄2Lh (M̄ is defined in A3), all the subproblems in Algorithm 1 are well
defined.

This lemma is on its own, so we leave its proof to the “Appendix”.

Lemma 3 (bound dual by primal)Let λ++(BT B) be the smallest strictly-positive eigenvalue
of BT B, C � Lh M̄λ

−1/2
++ (BT B). For all k ∈ N, it holds that

(a) BT wk = −∇h(yk).
(b) ‖w+ − wk‖ ≤ C‖By+ − Byk‖.
Proof Part (a) follows directly from the optimality condition of yk : 0 = ∇h(yk)+BT wk−1+
β BT (Axk + Byk), and wk = wk−1 + β

(
Axk + Byk

)
.

Then let us prove Part (b). Since w+ − wk = β(Ax+ + By+) ∈ Im(B), we get

‖w+ − wk‖ ≤ λ
−1/2
++ (BT B)‖BT (w+ − wk)‖ = λ

−1/2
++ (BT B)‖∇h(y+)

−∇h(yk)‖ ≤ C‖By+ − Byk‖.
The last inequality follows from the Lipschitz property of ∇h and Lemma 1. ��
3.3 Main Proof

This subsection proves Theorem 1 for Algorithm 1 under Assumptions A1–A5. For all k ∈ N

and i = 0, . . . , p, because of the optimality of xk
i , we can introduce the following general

subgradients dk
i and d̄k

i ,

d̄k
i := −(AT

i w+ + βρk
i ) ∈ ∂i f (x+

<i , x+
i , xk

>i ), (12)

dk
i := −∇i g(x+

<i , x+
i , xk

>i ) + d̄k
i ∈ ∂ fi (x+

i ), (13)

where

ρk
i := AT

i (A>i xk
>i − A>i x+

>i ) + AT
i (Byk − By+).

The next two lemmas estimate the descent of Lβ(x, y, w) at each iteration.

Lemma 4 (descent of Lβ during xi update) The iterates in Algorithm 1 satisfy

1. Lβ(x+
<i , x

k
i , xk

>i , yk, wk) ≥ Lβ(x+
<i , x

+
i , xk

>i , yk, wk), i = 0, . . . , p;
2. Lβ(xk, yk, wk) ≥ Lβ(x+, yk, wk);
3. Lβ(xk, yk, wk) − Lβ(x+, yk, wk) = ∑p

i=0 ri , where

ri := f (x+
<i , xk

i , xk
>i ) − f (x+

<i , x+
i , xk

>i ) − 〈d̄k
i , xk

i − x+
i 〉 + β

2
‖Ai xk

i − Ai x+
i ‖2 ≥ 0,

(14)

where d̄k
i is defined in (12).

4. For i = 1, . . . , p (without the block i = 0), if

fi (xk
i ) + γi

2
‖xk

i − x+
i ‖2 ≥ fi (x+

i ) + 〈dk
i , xk

i − x+
i 〉, (15)

holds with constant γi ≥ 0 (later, this condition will be shown to hold), then we have

ri ≥ β − γi M̄2 − Lg M̄2

2
‖Ai xk

i − Ai x+
i ‖2, (16)

where the constants Lg and M̄ are defined in Assumptions A4 and A3, respectively.
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Proof Part 1 follows directly from the minimization subproblems, which give x+
i . Part 2 is

a result of

Lβ(xk, yk, wk) − Lβ(x+, yk, wk) =
p∑

i=0

(Lβ(x+
<i , xk

i , xk
>i , yk, wk)

− Lβ(x+
<i , x+

i , xk
>i , yk, wk)

)
,

and part 1. Part 3: Each term in the sum equals f (x+
<i , xk

i , xk
>i ) − f (x+

<i , x+
i , xk

>i ) plus

〈wk, Ai xk
i − Ai x+

i 〉 + β

2
‖A<i x+

<i

+ Ai xk
i + A>i xk

>i + Byk‖2 − β

2
‖A<i x+

<i + Ai x+
i + A>i xk

>i + Byk‖2

= 〈wk, Ai xk
i − Ai x+

i 〉 + 〈β
(

A<i x+
<i + Ai x+

i + A>i xk
>i + Byk

)
, Ai xk

i − Ai x+
i 〉

+ β

2
‖Ai xk

i − Ai x+
i ‖2

= 〈AT
i w+ + βρk

i , xk
i − x+

i 〉 + β

2
‖Ai xk

i − Ai x+
i ‖2

where the first equality follows from the cosine rule: ‖b + c‖2 − ‖a + c‖2 = ‖b − a‖2 +
2〈a + c, b − a〉 with b = Ai xk

i , a = Ai x+
i , and c = A<i x+

<i + A>i xk
>i + Byk .

Part 4. Let dk
i be defined in (13). From the inequalities (6) and (15), we get

fi (xk
i ) − fi (x+

i ) − 〈dk
i , xk

i − x+
i 〉 ≥ −γi

2
‖xk

i − x+
i ‖2

≥ −γi M̄2

2
‖Axk

i − Ax+
i ‖2. (17)

By the assumption A4 part (i) and (6), we also get

g(x+
<i , xk

i , xk
>i ) − g(x+

<i , x+
i , xk

>i ) − 〈∇i g(x+
<i , x+

i , xk
>i ), xk

i − x+
i 〉 ≥ − Lg

2
‖xk

i − x+
i ‖2

≥ − Lg M̄2

2
‖Axk

i − Ax+
i ‖2. (18)

Finally, rewriting the expression of ri and applying (17) and (18) we obtain

ri = (
g(x+

<i , xk
i , xk

>i ) − g(x+
<i , x+

i , xk
>i ) − 〈∇i g(x+

<i , x+
i , xk

>i ), xk
i − x+

i 〉)

+ (
fi (xk

i ) − fi (x+
i ) − 〈dk

i , xk
i − x+

i 〉) + β

2
‖Axk

i − Ax+
i ‖2

≥ β − γi M̄2 − Lg M̄2

2
‖Ai xk

i − Ai x+
i ‖2.

��

The assumption (15) in the part 4 of Lemma 4 is the same as (4) in Definition 2 except the
latter holds for more functions due to the exclusion set SM . In order to relax (15) to (4),
we must find M and specify the exclusion set SM . (This complicates our analysis but is
necessary for many nonconvex functions such as the �q quasi-norm.) We will finally achieve
this relaxation in Lemma 9.

123



42 J Sci Comput (2019) 78:29–63

Lemma 5 (descent of Lβ due to y and w updates) If β > 2(Lh M̄2 + 1 + C), where C is
the constant specified in Lemma 3 and Lh is the Lipschitz constant in Assumption A5, then
for any k ∈ N

Lβ(x+, yk, wk) − Lβ(x+, y+, w+) ≥ ‖By+ − Byk‖2. (19)

Proof Because β/2 > Lh M̄2 + 1 + C and β−1 < 1/C , we know

β

2
− C2

β
− Lh M̄2

2
> Lh M̄2 + 1 + C − C − Lh M̄2

2
> 1. (20)

From the assumption A5 and Lemma 3(b), it follows

Lβ(x+, yk, wk) − Lβ(x+, y+, w+)

= h(yk) − h(y+) + 〈w+, Byk − By+〉 + β

2
‖By+ − Byk‖2 − 1

β
‖w+ − wk‖2

≥ − Lh M̄2

2
‖By+ − Byk‖2 + β

2
‖By+ − Byk‖2 − C2

β
‖By+ − Byk‖2 (21)

≥ ‖By+ − Byk‖2, (22)

The first inequality holds because

h(yk) − h(y+) + 〈
w+, Byk − By+〉

= h(yk) − h(y+) + 〈
BT w+, yk − y+〉

= h(yk) − h(y+) − 〈∇h(y+), yk − y+〉

= − Lh

2
‖yk − y+‖2 (Lipschitz differentiable of − h)

= − Lh M̄

2
‖Byk − By+‖2.

The last inequality holds because of (20). ��

Based on Lemmas 4 and 5, we now establish the following results:

Lemma 6 (Monotone, lower–bounded Lβ and (P1) bounded sequence) If β > 2(Lh M̄2 +
1 + C) as in Lemma 5, then the sequence (xk, yk, wk) generated by Algorithm 1 satisfies

1. Lβ(xk, yk, wk) ≥ Lβ(x+, y+, w+).
2. Lβ(xk, yk, wk) is lower bounded for all k ∈ N and converges as k → ∞.
3. {xk, yk, wk} is bounded.

Proof Part 1. It is a direct result of Lemma 4 part 2, and Lemma 5.
Part 2. By the assumption A2, there exists y′ such that Axk + By′ = 0 and y′ = H(By′).

By the assumptions A1–A2, we have

f (xk) + h(y′) ≥ min
x,y

{ f (x) + h(y) : Ax + By = 0} > −∞.
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Then we have

Lβ(xk, yk, wk) = f (xk) + h(yk) + 〈BT wk, yk − y′〉 + β

2
‖Axk + Byk‖2

= f (xk) + h(yk) + 〈∇h(yk), y′ − yk〉 + β

2
‖Axk + Byk‖2

(Lemma 1,∇h is Lipschitz) ≥ f (xk) + h(y′) + β − Lh M̄2

2
‖Axk + Byk‖2

> −∞.

Part 3. From parts 1 and 2, Lβ(xk, yk, wk) is upper bounded by Lβ(x0, y0, w0) and so are
f (xk) + h(y′) and ‖Axk + Byk‖2. By the assumption A1, {xk} is bounded and, therefore,
{Byk} is also bounded. By Lemma 1, we know that {yk} is bounded. By Lemma 3, {BT wk}
is also bounded. Similar to the proof in Lemma 3(b), wk − w0 ∈ Im(B). Therefore, the
boundedness of BT wk implies the boundedness of wk . ��
It is important to note that, once β is larger than the threshold, the constants and bounds in
Lemmas 5 and 6 only rely on the objective f (x) + h(y), matrices A, B, and the initial point
(x0, y0, w0) but will be independent of β, which is essential to the proof of Lemma 9 below.

Lemma 7 (Asymptotic regularity) limk→∞ ‖Byk − By+‖ = 0 and limk→∞ ‖wk −w+‖ =
0.

Proof The first result follows directly from Lemmas 4, 5, and 6 (part 2), and the second result
from Lemma 3 part (b). ��
The lemma below corresponds to the assumption A4, part(ii)-b.

Lemma 8 (Boundedness for piecewise linear fi ’s) Consider the case that fi , i = 1, . . . , p,
are piece-wise linear. There exist constants M∗ > 0 (independent of β), M̄ and Lg defined
in A3 and A4, respectively, for any ε0 > 0, when β > max{2(M∗ + 1)/ε20 , Lh M̄2 + 1+ C},
there exists kpl ∈ N such that the followings hold for all k > kpl:

1. ‖Ai x+
i − Ai xk

i ‖ < ε0 and ‖x+
i − xk

i ‖ < M̄ε0, i = 0, . . . , p;
2. ‖∇g(xk) − ∇g(x+)‖ < (p + 1)M̄ Lgε0.

Proof Part 1. Since the number K of the linear pieces of fi is finite for i = 1, . . . , p,
∂ f0 is bounded for x in any bounded set S, and {xk, yk, wk} is bounded (see Lemma 6),
∂i f (x+

<i , x+
i , xk

>i ) are uniformly bounded for all k and i . Since d̄k
i ∈ ∂i f (x+

<i , x+
i , xk

>i ) (see
(12)), the first three terms of ri (see (14)) are bounded by a universal constant M∗ independent
of β:

f (x+
<i , xk

i , xk
>i ) − f (x+

<i , x+
i , xk

>i ) − 〈d̄k
i , xk

i − x+
i 〉 ∈ [−M∗, M∗].

Hence, as long as β > 2(M∗ + 1)/ε20 ,

‖Ai x+
i − Ai xk

i ‖ ≥ ε0 ⇒ ri ≥ β

2
ε20 − M∗ > 1 (23)

⇒ Lβ

(
x+
<i , x

k
i , xk

>i , yk, wk
)

− 1 > Lβ

(
x+
<i , x

+
i , xk

>i , yk, wk
)

.

(24)
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By Lemmas 4, 5, and 6, this means Lβ(xk, yk, wk) − 1 > Lβ(x+, y+, w+). Since
{Lβ(xk, yk, wk)} is lower bounded, ‖Ai x+

i − Ai xk
i ‖ ≥ ε0 can only hold for finitely many k.

Thus for i = 1, . . . , p, we have

‖Ai x+
i − Ai xk

i ‖ < ε0.

As for i = 0, because of Lemma 7, we know

lim sup
k

‖A0x+
0 − A0xk

0‖ ≤ lim sup
k

‖
p∑

i=1

(Ai x+
i − Ai xk

i ) + By+ − Byk‖ ≤ pε0.

Thus for large k > kpl , ‖A0x+
0 − A0xk

0‖ ≤ (p + 1)ε0 By Lemma 1, we know Part 1 is
correct.

Part 2 follows from ‖∇g(xk) − ∇g(x+)‖ ≤ Lg‖xk − x+‖, part 1 above, and Lemma 1.
��

Lemma 9 (Sufficient descent property P2) Suppose

β > max
{
2(M + 1)/ε20 , Lh M̄2 + 1 + C,

p∑

i=1

γi M̄2 + Lg M̄2
}
,

where γi (i = 1, . . . , p) and ε0 are constants only depending on f , M > M∗ is a constant
independent of β. Then, Algorithm 1 satisfies the sufficient descent property P2.

It is worth noting that the proof below will be much simpler if there are only two blocks,
instead of p + 2, or if we assume prox-regular functions fi instead of the less restrictive
restricted prox-regular functions.

Proof We will show the lower bound (16) for i = 1, . . . , p, which, along with Lemma 4
part 3 and Lemma 5, establishes the sufficient descent property P2.

We shall obtain the lower bound (16) in the backward order i = p, (p − 1), . . . , 1. In
light of Lemmas 4, 5, and 6, each lower bound (16) for ri gives us ‖Ai xk

i − Ai x+
i ‖ → 0

as k → ∞. We will first show (16) for rp . Then, after we do the same for rp−1, . . . , ri+1,
we will get ‖A j xk

j − A j x+
j ‖ → 0 for j = p, p − 1, . . . , i + 1, using which we will get

the lower bound (16) for the next ri . We must take this backward order since ρk
i (see (13))

includes the terms A j xk
j − A j x+

j for j = p, p − 1, . . . , i + 1.
Our proof for each i is divided into two cases. In Case 1, fi ’s are restricted prox-regular

(cf. Definition 2), we will get (16) for ri by validating the condition (15) in Lemma 4 part
4 for fi . In Case 2, fi ’s are piecewise linear (cf. Definition 1), we will show that (15) holds
for γi = 0 for k ≥ kpl, and following the proof of Lemma 4 part 4, we directly get (16) with
γi = 0.
Base step, take i = p.
Case 1) f p is restricted prox-regular. At i = p, the inclusion (13) simplifies to

dk
p := −(∇pg(x+) + AT

p w+) − β AT
p (Byk − By+) ∈ ∂ f p(x+

p ). (25)

By Lemma 6 part 3 and the Lipschitz continuity of ∇g, there exists a constant M > M∗
(independent of β) such that

‖∇pg(x+) + AT
p w+‖ ≤ M − 1.

By Lemma 7, there exists kp ∈ N such that, for k > kp ,

β‖AT
p (Byk − By+)‖ ≤ 1.
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Then, we apply the triangle inequality to (25) to obtain

‖dk
p‖ ≤ ‖∇pg(x+) + AT

p w+‖ + β‖AT
p (Byk − By+)‖ ≤ M.

Use this M to define SM in Definition 2, which qualifies f p for (4) and thus validates the
assumption in Lemma 4 part 4, proving the lower bound (16) for rp . As already argued, we
get limk→∞ ‖Apxk

p − Apx+
p ‖ = 0.

Case 2): fi ’s are piecewise linear (cf. Definition 1). From ‖Byk − By+‖ → 0 and ‖wk −
w+‖ → 0 (Lemma 7) and ‖∇g(xk) − ∇g(x+)‖ < (p + 1)M̄ Lgε0 (Lemma 8). In light
of (25), dk

p ∈ ∂ f p(x+
p ), d+

p ∈ ∂ f p(xk+2
p ) such that ‖d+

p − dk
p‖ < 2(p + 1)M̄ Lgε0 for all

sufficiently large k.
Note that ε0 > 0 can be arbitrarily small. Given dk

p ∈ ∂ f p(x+
p ) and d+

p ∈ ∂ f p(xk+2
p ),

when the following two properties both hold: (i) ‖d+
p − dk

p‖ < 2(p + 1)M̄ Lgε0 and (ii)

‖x+
p − xk

p‖ < M̄ε0 (Lemma 8 part 1), we can conclude that x+
p and xk

p belongs to the same

U j . Suppose x+
p ∈ U j1 and xk

p ∈ U j2 . Because of (ii), the polyhedron U j1 is adjacent to the

polyhedron U j2 or j1 = j2. If U j1 and U j2 are adjacent ( j1 �= j2) and a j1 = a j2 , then we can
concatenate U j1 and U j2 together and all the following analysis carries through. If U j1 and
U j2 are adjacent ( j1 �= j2) and a j1 �= a j2 , then property (i) is only possible if at least one of
x+

p , xk
p belongs to their intersection U j1 ∩ U j2 so we can include both points in either U j1

or U j2 , again giving us j1 = j2. Since x+
p , xk

p ∈ U j1 and dk
p ∈ ∂ f p(x+

p ), from the convexity
of the linear function, we have

f p(xk
p) − f p(x+

p ) − 〈dk
p, xk

p − x+
p 〉 ≥ 0,

which strengthens the inequality (15) for i = p with γp = 0. By following the proof for
Lemma 4 part 4, we get the lower bound (16) for rp with γp = 0. As already argued, we get
limk→∞ ‖Apxk

p − Apx+
p ‖ = 0.

Inductive step, let i ∈ {p−1, . . . , 1} and make the inductive assumption: limk→∞ ‖A j xk
j −

A j x+
j ‖ = 0, j = p, . . . , i + 1, which together with limk→∞ ‖Byk − By+‖ = 0 (Lemma 7)

gives limk→∞ ρk
i = 0 (defined in (13)).

Case 1) fi is restricted prox-regular. From (13), we have

dk
i = −(∇i g(x+

<i , x+
i , xk

>i ) + AT
p w+) − βρk

i ∈ ∂ fi (x+
i ). (26)

Following a similar argument in the case i = p above, there exists ki ∈ N such that, for
k > max{kp, kp−1, . . . , ki }, we have

‖dk
i ‖ ≤ ‖∇i g(x+

<i , x+
i , xk

>i ) + AT
p w+‖ + β‖ρk

i ‖ ≤ M.

Use this M to define SM in Definition 2 for fi and thus validates the assumption in Lemma 4
part 4 for fi . Therefore, we get the lower bound (16) for ri and thus limk ‖Ai xk

i − Ai x+
i ‖ = 0.

Case 2): fi ’s are piecewise linear (cf. Definition 1). The argument is the same as in the
base step for case 2, except at its beginning we must use dk

i in (26) instead of dk
p in (25).

Therefore, we omit this part.

Finally, by combining ri ≥ β−γi M̄2−Lg M̄2

2 ‖Ai xk
i − Ai x+

i ‖2, for i = 1, . . . , p, with
Lemmas 4 and 5, we establish the sufficient descent property P2. ��

Lemma 10 (Subgradient bound property P3) Algorithm 1 satisfies Property P3.
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Proof Because f (x) = g(x) + ∑p
i=1 fi (xi ), we know

∂Lβ(x+, y+, w+) =
({

∂Lβ

∂xi

}p

i=1
,∇yLβ,∇wLβ

)

(x+, y+, w+).

In order to prove the lemma, we only need to show that each block of ∂Lβ can be controlled
by some constant depending on β. Therefore, it suffices to prove for s = 0, . . . , p, there
exists ds ∈ ∂Lβ

∂xs
(x+, y+, w+) such that

‖ds‖ ≤ (σmax(As)β+Lh M̄+σmax(As)C)

( p∑

i=1

‖Ai x+
i − Ai xk

i ‖ + ‖By+ − Byk‖
)

, (27)

and

‖∇wLβ(x+, y+, w+)‖ ≤ C

β
‖By+ − Byk‖, (28)

‖∇yLβ(x+, y+, w+)‖ ≤ Lh M̄‖By+ − Byk‖. (29)

In order to prove (28), we have ∇wLβ(x+, y+, w+) = Ax+ + By+ = 1
β
(w+ − wk). By

Lemma 3, ‖∇wLβ(x+, y+, w+)‖ ≤ C
β
‖By+ − Byk‖. In order to prove (29), notice that

∇yLβ(x+, y+, w+) = BT (w+ − wk) and apply Lemma 3. In order to prove (27), observe
that for s = 0, . . . , p,

∂Lβ

∂xs
(x+, y+, w+)

= ∇s g(x+) + ∂ fs(x+
s ) + AT

s w+ + β AT
s

(
Ax+ + By+) (30)

= ∇s g(x+≤s, xk
>s) + ∂ fs(x+

s ) + AT
s wk + β AT

s

(
A≤s x+≤s + A>s xk

>s + Byk
)

(31)

+ AT
s (w+ − wk) + β AT

s

(
A>s x+

>s − A>s xk
>s + By+ − Byk

)

+ ∇s g(x+) − ∇s g(x+≤s, xk
>s). (32)

For the parenthesized term in (31), the first order optimal condition for x+
s yields

0 ∈ ∇s g(x+≤s, xk
>s) + ∂ fs(x+

s ) + AT
s wk + β AT

s

(
A≤s x+≤s + A>s xk

>s + Byk
)

.

Thus for s = 0, . . . , p, we can have ds as in (33),

ds :=
(

AT
s (w+ − wk)

+β AT
s

(
A>s x+

>s − A>s xk
>s + By+ − Byk

)
+ ∇s g(x+) − ∇s g(x+≤s, xk

>s)
)

∈ ∂Lβ

∂xs
(x+, y+, w+). (33)

Note that for any s, xk
0 does not appear in any ds .w+−wk , A>s x+

>s−A>s xk
>s , By+−Byk , and

∇s g(x+)−∇s g(x+≤s, xk
>s) can all be bounded by

(∑p
i=1 ‖Ai x+

i − Ai xk
i ‖ + ‖By+ − Byk‖).

Therefore, if we define the largest singular value of As to be σmax(As), we have the bound
for ds :

‖ds‖ ≤ (
σmax(As)β + Lh M̄ + σmax(As)C

)
( p∑

i=1

‖Ai x+
i − Ai xk

i ‖ + ‖By+ − Byk‖
)

.
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That completes the proof. ��
Proof (of Theorem 1). Lemmas 5, 9, and 10 establish the properties P1–P3. In order to show
P4, we first note that Lβ(xks , yks , wks ) is monotonic nonincreasing due to Lemma 9, which
implies the convergence of Lβ(xks , yks , wks ). Since Lβ is lower semicontinuous (l.s.c.), we
have lims→∞ Lβ(xks , yks , wks ) ≥ Lβ(x∗, y∗, w∗). Because the only potentially discontinu-
ous terms in Lβ are f0, . . . , f p , we have

lim
s→∞Lβ(xks , yks , wks ) − Lβ(x∗, y∗, w∗) ≤

∑

i

lim sup
s→∞

fi (xks
i ) − fi (x∗

i ).

However, because xks
i is the optimal solution for the sub-problem

minxi Lβ(xks
<i , xi , xks−1

>i , yks−1, wks−1), we know Lβ(xks+1
<i , x∗

i , xks
>i , yks−1, wks−1) ≥

Lβ(xks≤i , xks−1
>i , yks−1, wks−1). Taking the limit over their difference, we have

lim sups→∞ fi (xks
i ) − fi (x∗

i ) ≤ 0. That completes the proof for P4. Theorem 1 follows
from Proposition 2. ��

4 Discussion

4.1 Tightness of Assumptions

In this section, we demonstrate the tightness of the assumptions in Theorem 1 and compare
them with related recent works. We only focus on results that do not make assumptions on
the iterates themselves.

Hong et al. [24] uses∇h(yk) to boundwk . This inspired our analysis. They studiedADMM
for nonconvex consensus and sharing problem. Their formulation is

minimize
x0,...,x p,y

p∑

i=0

fi (xi ) + h(y)

subject to
p∑

i=0

Ai xi − y = 0.

where h is Lipschitz differentiable, Ai has full column rank and fi is Lipschitz differentiable
or convex for i = 0, . . . , p. Moreover, dom( fi ) is required to be a closed bounded set for
i = 0, . . . , p.

The boundedness of dom( fi ) implies the assumption A1. The requirement of Ai for
i = 1, . . . , p and B = −I implies A2 and A3. Moreover, f (x0, . . . , x p) = ∑

i fi (xi ),
which clearly implies A4. h satisfies A5, too. This shows our theorem could fully cover their
case.

Wang et al. [51] studies the so-called Bregman ADMM and includes the standard ADMM
as a special case. The following formulation is considered:

minimize
x0,...,x p,y

p∑

i=0

fi (xi ) + h(y)

subject to
p∑

i=0

Ai xi + By = 0.
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By setting all the auxiliary functions in their algorithm to zero, their assumptions for the
standard ADMM reduce to

(a) B is invertible.
(b) h is Lipschitz differentiable and lower bounded. There exists β0 > 0 such that h −β0∇h

is lower bounded.
(c) f = ∑p

i=0 fi (xi ) where fi , i = 0, . . . , p is strongly convex.

It is easy to see that (a), (b) and (c) imply assumptions A1 and A3, (a) implies A2, (c) implies
A4 and (b) implies A5. Therefore, their assumptions are stronger than ours. We have much
more relaxed conditions on f , which can have a coupled Lipschitz differentiable term with
separable restricted prox-regular or piecewise linear parts.We also have a simpler assumption
on the boundedness without using h − ∇h.

Li and Pong [32] studies ADMMand its proximal version for nonconvex objectives. Their
formulation is

minimize
x0,y

f0(x0) + h(y)

subject to x0 + By = 0.

Their assumptions for ADMM are

(1) f0 is lower semi-continuous.
(2) h ∈ C2 with bounded Hessian matrix c2 I � ∇2h � c1 I where c2 > c1 > 0.
(3) B is full row rank.
(4) h is coercive and f0 is lower bounded.

The assumptions (3) and (4) imply our assumptions A1 and A4, (3) implies A2 and A3, and
(2) implies A5. Our assumptions on h and the matrices A, B are more general.

In summary, our convergence conditions for ADMMon nonconvex problems are the most
general to the best of our knowledge. It is natural to ask whether our assumptions can be
further weakened. We will provide some examples to demonstrate that, while A1, A4 and A3
can probably be further weakened, A5 and A2 are essential in the convergence of nonconvex
ADMM and cannot be completely dropped in general. In [10], their divergence example is

minimize
x1,x2,y

0 (34a)

subject to

⎛

⎝
1
1
1

⎞

⎠ x1 +
⎛

⎝
1
1
2

⎞

⎠ x2 +
⎛

⎝
1
2
2

⎞

⎠ y =
⎛

⎝
0
0
0

⎞

⎠ . (34b)

Another related example is shown in [32, Example 7].

minimize
x1,x2,y

ιS1(x1) + ιS2(x2) (35a)

subject to x1 = y (35b)

x2 = y, (35c)

where S1 = {x = (x1, x2) | x2 = 0}, S2 = {(0, 0), (2, 1), (2,−1)}. These two examples
satisfy A1 and A4–A5 but fail to satisfy A2.Without A2, for come cases ADMM is incapable
to find a feasible point at all, let alone a stationary point. Therefore, A2 is indispensable.

To see the necessity of A5 (the smoothness of h), consider another divergence example

minimize
x,y

− |x | + |y| (36a)

subject to x = y, x ∈ [−1, 1]. (36b)
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For any β > 0, with the initial point (x0, y0, w0) = (− 2
β
, 0,−1), we get the sequence

(x2k+1, y2k+1, w2k+1) = ( 2
β
, 0, 1) and (x2k, y2k, w2k) = (− 2

β
, 0,−1) for k ∈ N, which

diverges. This problem satisfies all the assumptions except A5, without which wk cannot be
controlled by yk anymore. Therefore, A5 is also indispensable.

Although the assumptions A2 and A5 seem essential for the convergence of ADMM,
other assumptions, especially the assumption A4, might be further relaxed. Moreover, our
result requires the y-block to be updated at last right before the update of multiplier. Further
studies could be carried out to study the case when a different order is used.

4.2 Primal Variables’ Update Order in ADMM

Wediscuss about the update order of {xi }p
i=0 and y in this subsection. Theorem1 andTheorem

2 apply to the ADMM in which the primal variables x0, . . . , x p are sequentially updated in
a fixed order. With minor changes to the proof, both theorems still hold for arbitrary update
orders of x1, . . . , x p , possibly different between iterations, as long as x0 is always the first
and y is always the last primal variable to update, just before w. In particular, x1, . . . , x p

could be updated using random scheme or greedy scheme, which may help avoid low-quality
local solutions. Recently, randomized ADMM is considered in papers such as [27,42,50].
[50] considered the randomly permuted ADMM for solving linear systems, and proved its
convergence in the expectation sense. However, in general, permutation including the last
block y could cause ADMM to diverge (A convex example can be found in [62]). Consider

minimize
x,y∈R x(1 + y)

subject to x − y = 0.

It is easy to check that, if we fix the update order to either x, y, w or y, x, w for all iterations,
Algorithm 1 converges. However, if we alternate between the two update orders, we obtain
(withα := 1/β) the diverging sequence (x2k+1, y2k+1, w2k+1) = (2α(α−1),−α, α−1) and
(x2k, y2k, w2k) = (−α, 2α(α −1),−α). Another divergent example when primal variables’
update order alternates is the following convex and nonsmooth problem:

minimize
x,y

2|x − 1| + |y| (37a)

subject to x = y. (37b)

4.3 Inexact Optimization of Subproblems

Note that all subproblems in Algorithm 1 should be solved exactly. This might restrict the
wide use of the algorithm in real applications. Thus, the convergence of the inexact version of
Algorithm 1 is discussed here. We extend the developed convergence results to the following
inexact version of Algorithm 1 under some additional assumptions. More specifically, we
assume that the sequence {xk, yk, wk} generated by the inexact version of Algorithm 1
satisfies

P1’ (Boundedness) {xk, yk, wk} is bounded, and Lβ(xk, yk, wk) is lower bounded;
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P2’ (Sufficient descent) there is a nonnegative sequence {ηk} and a constant C1 > 0 such
that for all sufficiently large k, we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1)

≥ C1
(‖B(yk+1 − yk)‖2 +

p∑

i=1

‖Ai (xk
i − xk+1

i )‖2) − ηk, (38)

P3’ (subgradient bound) and there exists dk+1 ∈ ∂Lβ(xk+1, yk+1, wk+1) such that

‖dk+1‖ ≤ C2
(‖B(yk+1 − yk)‖ +

p∑

i=1

‖Ai (xk+1
i − xk

i )‖) + ηk . (39)

When
∑

k ηk < ∞, the convergence results in Theorem 1 still hold for this sequence. This
is because Proposition 2 still holds when the error is summable. However, when a specific
algorithm is applied to solve these subproblems inexactly, it might require some additional
conditions, and we leave this in the future work.

5 Applications

In this section, we apply the developed convergence results to several well-known applica-
tions. To the best of our knowledge, all the obtained convergence results are novel and cannot
be recovered from the previous literature.

(A) Statistical Learning

Statistical learning models often involve two terms in the objective function. The first term
is used to measure the fitting error. The second term is a regularizer to control the model
complexity. Generally speaking, it can be written as

minimize
x∈Rn

p∑

i=1

li (Ai x − bi ) + r(x), (40)

where Ai ∈ R
mi ×n , bi ∈ R

mi and x ∈ R
n . Examples of the fitting measure li include

least squares, logistic functions, and other smooth functions. The regularizers can be some
sparsity-inducing functions [2,14,54,63,65–67] such as MCP, SCAD, �q quasi-norms for
0 < q ≤ 1. Take LASSO as an example,

minimize
x

1

2
‖y − Ax‖2 + λ‖x‖1.

The first term ‖y − Ax‖2 measures the difference between the linear model Ax and outcome
y. The second term ‖x‖1 measures the sparsity of x .

In order to solve (40) using ADMM, we reformulate it as

minimize
x,{zi }p

i=1

r(x) +
p∑

i=1

li (Ai zi − bi ),

subject to x = zi , ∀i = 1, . . . , p. (41)

Algorithm 2 gives the standard ADMM algorithm for this problem.
Based on Theorem 1, we have the following corollary.
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Algorithm 2 ADMM for (41)
Denote z = [z1; z2; · · · ; z p], w = [w1; w2; · · · ; wp].
Initialize x0, z0,w0 arbitrarily;
while stopping criterion not satisfied do

xk+1 ← argminx r(x) + β
2
∑p

i=1(z
k
i + wk

i
β − x)2;

for s = 1, . . . , p do

zk+1
s ← argminzs ls (As zs − bs ) + β

2 (zs + wk
s

β
− xk+1)2;

wk+1
s = wk

s + β(zk+1
s − xk+1);

end for
k ← k + 1;

end while
return xk .

Corollary 1 Let r(x) = ‖x‖q
q = ∑

i |xi |q , 0 < q ≤ 1, SCAD, MCP, or any piecewise linear
function, if

i) (Coercivity) r(x) + ∑
i li (Ai x + bi ) is coercive;

ii) (Smoothness) For each i = 1, . . . , p, li is Lipschitz differentiable.

then for sufficiently large β, the sequence (xk, zk,wk)generated by Algorithm 2 has limit
points and all of its limit points are stationary points of the augmented Lagrangian Lβ .

Proof Rewrite the optimization to a standard form, we have

minimize
x,{zi }p

i=1

r(x) +
p∑

i=1

li (Ai zi − bi ), (42a)

subject to Ex + Inpz = 0. (42b)

where E = −[In; . . . ; In] ∈ R
np×n , Inp ∈ R

np×np is the identity matrix, and z =
[z1; . . . ; z p] ∈ R

np . Fitting (42) to the standard form (7), there are two blocks (x, z) and
B = Inp . f (x) = r(x) and h(z) = ∑p

i=1 li (Ai zi − bi ).
Now let us check A1–A5. A1 holds because of i). A2 holds because B = Inp . A5 holds

because of ii). A3 holds because E and Inp both have full column ranks. If r(x) is piecewise
linear, then A4 holds naturally. If r(x) is MCP

Pγ,λ(x) �
{

λ|x | − x2
2λ , if |x | ≤ γ λ

1
2γ λ2, if |x | ≥ γ λ

,

or SCAD

Qγ,λ(x) �

⎧
⎪⎨

⎪⎩

λ|x |, if |x | ≤ λ

λ|x | − 2γ λ|x |−x2−λ2

2γ−2 , if λ < |x | ≤ γ λ
1
2 (γ + 1)λ2, if |x | ≥ γ λ

.

we can verify that those functions are the maximum of a set of quadratic functions. Then by
[43, Example 2.9], we know they are prox-regular. Hence, it remains to verify A4(ii)a that
r(x) = ∑

i |xi |q is restricted prox-regular. When q = 1, this is trivial; when 0 < q < 1, it
has been proved in Proposition 1. This verifies A4 and completes the proof. ��
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(B) Minimization on Compact Manifolds

Compact manifolds and their projection operators such as spherical manifolds Sn−1, Stiefel
manifolds (the set of p orthonormal vectors x1, . . . , x p ∈ R

n , p ≤ n) and Grassmann
manifolds (the set of subspaces in R

n of dimension p) often arise in optimization. Some
recent studies and algorithms can be found in [31,36,58]. A simple example is:

minimize
x∈Rn

J (x),

subject to ‖x‖2 = 1, (43)

More generally, let S be any compact set. We consider the problem

minimize
x∈Rn

J (x),

subject to x ∈ S, (44)

which can be rewritten to the following form:

minimize
x,y

ιS(x) + J (y), (45a)

subject to x − y = 0, (45b)

where ιS(·) is the indicator function: ιS(x) = 0 if x ∈ S or ∞ if x /∈ S. Applying ADMM to
solve this problem, we get Algorithm 3.

Algorithm 3 ADMM for minimization on a compact set (45)

Initialize x0, y0, w0 arbitrarily;
while stopping criterion not satisfied do

xk+1 ← ProjS(yk − wk

β );

yk+1 ← argminy J (y) + β
2 ‖y − wk

β − xk+1‖2;
wk+1 ← wk + β(yk+1 − xk+1);
k ← k + 1.

end while
return xk .

Based on Theorem 1, we have the following corollary.

Corollary 2 If J is Lipschitz differentiable, then for any sufficiently large β, the sequence
(xk, yk, wk) generated by Algorithm 3 has at least one limit point, and each limit point is a
stationary point of the augmented Lagrangian Lβ .

Proof To show this corollary, we shall verify assumptions A1–A5.
The assumption A1 holds because the feasible set is a bounded set and J is lower bounded

on the feasible set. A2 and A3 hold because both A and B are identity matrices. A5 holds
because J is Lipschitz differentiable. A4 holds because ιS is lower semi-continuous. ��
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(C) Smooth Optimization Over Complementarity Constraints

We consider the following optimization problem over complementarity constraints.

minimize{x,y} h(x, y)

subject to xT y = 0, x ≥ 0, y ≥ 0, (46)

where h(x, y) is a smooth function with Lipschitz differentiable gradient. The considered
problem is a special case of the mathematical programming with equilibrium constraints
(MPEC) [11], and includes the linear complementarity problem (LCP) [13] as a special case.
In order to apply the ADMM algorithm to solve this problem, we introduce two auxiliary
variables x ′, y′ ∈ R

n and define the complementarity set S � {(x, y) : xT y = 0, x ≥
0, y ≥ 0}. With these notations, problem (46) can be reformulated as follows

minimize
{x ′,y′,x,y}

ιS(x ′, y′) + h(x, y)

subject to x ′ − x = 0, y′ − y = 0, (47)

where ιS(x ′, y′) denotes the indicator function of the set S. Furthermore, let x0 =
(

x ′
y′
)

and

the second block y =
(

x
y

)

. Then (47) becomes

minimize
x0,y

ιS(x0) + h(y)

subject to x0 − y = 0. (48)

Corollary 3 Assume that h is Lipschitz differentiable and coercive over the complementarity
set, then for sufficiently large β, the sequence (xk

0, y
k, wk) generated by Algorithm ADMM

applied to (48) has limit points and all of its limit points are stationary points of the augmented
Lagrangian Lβ .

Proof In order to prove this corollary, we only need to verify assumptions A1-A5. A1 holds
for the coercivity of h over S and the specific form of ιS . A2 is obvious due to in this case
A = I and B = −I. A3 holds for both I and −I being full column rank. A4 can be satisfied
by setting f0 = ιS and g = 0. A5 holds due to the Lipschitz differentiability of h. Thus,
according to Theorem 1, we complete the proof. ��
(D) Matrix Decomposition

ADMMhas also been applied to solve matrix related problems, such as sparse principle com-
ponent analysis (PCA) [25], matrix decomposition [48,53], matrix completion [7], matrix
recovery [41], non-negative matrix factorization [49,61] and background/foreground extrac-
tion [8,63].

In the following, we take the video surveillance image-flow problem as an example. A
video can be formulated as a matrix V where each column is a vectorized image of a video
frame. It can be generally decomposed into three parts, background, foreground, and noise.
The background has low rank since it does not move. The derivative of the foreground is
small because foreground (such as human beings, other moving objectives) moves relatively
slowly. The noise is generally assumed to be Gaussian and thus can bemodeled via Frobenius
norm.
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More specifically, consider the following matrix decomposition model:

minimize
X,Y,Z

p(X) +
m−1∑

i=1

‖Yi − Yi+1‖ + ‖Z‖2F , (49)

subject to V = X + Y + Z , (50)

where X, Y, Z , V ∈ R
n×m , Yi is the i th column of Y , ‖ · ‖F is the Frobenius norm, and p(X)

is any lower bounded lower semi-continuous penalty function, for example, the Schatten-q
quasi-norm ‖X‖q (0 < q ≤ 1):

‖A‖q =
n∑

i=1

σ
q
i (A),

where σi (A) is the i th largest singular value of A.
The corresponding ADMM algorithm is given in Algorithm 4.

Algorithm 4 ADMM for (49)

Initialize Y 0, Z0, W 0 arbitrarily;
while stopping criteria not satisfied do

Xk+1 ← argminX p(X) + β
2 ‖X + Y k + Zk − V + W k/β‖2F ;

Y k+1 ← argminY
∑m

i=1 ‖Yi − Y j ‖ + β
2 ‖Xk+1 + Y + Zk − V + W k/β‖2F ;

Zk+1 ← argminZ ‖Z‖2F + β
2 ‖Xk+1 + Y k+1 + Z − V + W k/β‖2F ;

W k+1 ← W k + β(Xk+1 + Y k+1 + Zk+1 − V );
k ← k + 1;

end while
return Xk , Y k , Zk .

Corollary 4 For a sufficiently large β, the sequence (Xk, Y k, Zk, W k) generated by Algo-
rithm 4 has at least one limit point, and each limit point is a stationary point of the augmented
Lagrangian function Lβ .

Proof Let us verify assumptions A1–A5. The assumption A1 holds because of the coercivity
of ‖ · ‖F and ‖ · ‖q . A2 and A3 hold because all the coefficient matrices are identity matrices.
A5 holds because ‖ · ‖2F is Lipschitz differentiable. A4 holds because p is lower semi-
continuous. ��

6 Conclusion

This paper studied the convergence of ADMM, in its multi-block and original cyclic update
form, for nonconvex and nonsmooth optimization. The objective can be certain nonconvex
and nonsmooth functions while the constraints are coupled linear equalities. Our results
theoretically demonstrate that ADMM, as a variant of ALM, may converge under weaker
conditions than ALM. While ALM generally requires the objective function to be smooth,
ADMM only requires it to have a smooth part h(y) while the remaining part f (x) can be
coupled, nonconvex, and include separable nonsmooth functions and indicator functions of
constraint sets.
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Our results relax the previous assumptions (e.g., semi-convexity) and allow the nonconvex
functions such as �q quasi-norm (0 < q < 1), Schatten-q quasi-norm, SCAD, and others
that often appear in sparse optimization. They also allow nonconvex constraint sets such as
unit spheres, matrix manifolds, and complementarity constraints.

The underlying proof technique identifies an exclusion set where the sequence does not
enter after finitely many iterations. We also manage to have a very general first block x0.
We show that while the middle p blocks x1, . . . , x p can be updated in an arbitrary order for
different iterations, the first block x0 should be updated at first and the last block y at last;
otherwise, the concerned iterates may diverge according to the existing example.

Our results can be applied to problems in matrix decomposition, sparse recovery, machine
learning, and optimization on compact smooth manifolds and lead to novel convergence
guarantees.
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Appendix

Proof of Proposition 1 The fact that convex functions and the C1 regular functions are prox-
regular has been proved in the previous literature, for example, see [43]. Here we only prove
the second part of the proposition.

(1): For functions r(x) = ∑
i |xi |q where 0 < q < 1, the set of general subgradient of

r(·) is
∂r(x) = {

d = [d1; . . . ; dn] ∣∣di = q · sign(xi )|xi |q−1 if xi �= 0; di ∈ R if xi = 0
}
.

For any two positive constantsC >0 and M > 1, take γ =max
{
4(nCq+MC)

c2
, q(1 − q)cq−2

}
,

where
c � 1

3 (
q
M )

1
1−q . The exclusion set SM contains the set {x |minxi �=0 |xi | ≤ 3c}. For any point

z ∈ B(0, C)/SM and y ∈ B(0, C), if ‖z− y‖ ≤ c, then supp(z) ⊂ supp(y) and ‖z‖0 ≤ ‖y‖0,
where B(0, C) � {x |‖x‖ < C}, supp(z) denotes the index set of all non-zero elements of z
and ‖z‖0 denotes the cardinality of supp(z). Define

y′
i =

{
yi i ∈ supp(z)
0 i /∈ supp(z)

, i = 1, . . . , p.

Then for any d ∈ ∂r(z), the following line of proof holds,

‖y‖q
q − ‖z‖q

q − 〈
d, y − z

〉 (a)≥ ‖y′‖q
q − ‖z‖q

q − 〈
d, y′ − z

〉

(b)≥ − q(1 − q)

2
cq−2‖z − y′‖2

(c)≥ − q(1 − q)

2
cq−2‖z − y‖2, (51)

where (a) holds for ‖y‖q
q = ‖y′‖q

q + ‖y − y′‖q
q by the definition of y′,

(b) holds because r(x) is twice differentiable along the line segment connecting z and
y′, and the second order derivative is no bigger than q(1 − q)cq−2, and (c) holds because
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‖z − y‖ ≥ ‖z − y′‖. While if ‖z − y‖ > c, then for any d ∈ ∂r(z), we have

‖y‖q
q − ‖z‖q

q − 〈
d, y − z

〉 ≥ −(2nCq + 2MC) ≥ −2nCq + 2MC

c2
‖y − z‖2. (52)

Combining (51) and (52) yields the result.
(2): We are going to verify that Schatten-q quasi-norm ‖ · ‖q is restricted prox-regular.

Without loss of generality, suppose A ∈ R
n×n is a square matrix.

Suppose the singular value decomposition (SVD) of A is

A = UΣV T = [U1, U2] ·
[

Σ1 0
0 0

]

·
[

V T
1

V T
2

]

, (53)

where U, V ∈ R
n×n are orthogonal matrices, and Σ1 ∈ R

K×K is diagonal whose diagonal
elements are σi (A), i = 1, . . . , K . Then the general subgradient of ‖A‖q

q [55] is

∂‖A‖q
q = U1DV T

1 + {U2Γ V T
2

∣
∣Γ is an arbitrary matrix},

where D ∈ R
K×K is a diagonal matrix whose i th diagonal element is di = qσi (A)q−1.

Nowwe are going to prove ‖ · ‖q
q is restricted prox-regular, i.e., for any positive parameters

M, P > 0, there exists γ > 0 such that for any ‖B‖F < P , ‖A‖F < P , A /∈ SM = {A|∀ X ∈
∂‖A‖q

q , ‖X‖F > M}, and T = U1DV T
1 +U2Γ V T

2 ∈ ∂‖A‖q
q , ‖T ‖F ≤ M , we hope to show

‖B‖q
q − ‖A‖q

q − 〈
T, B − A

〉 ≥ −γ

2
‖A − B‖2F . (54)

Let ε0 = 1
3 (M/q)1/(q−1). If ‖B − A‖ > ε0, we have

‖B‖q
q − ‖A‖q

q − 〈
T, B − A

〉 ≥ −n2Pq − M · ‖B − A‖F

≥ −(Mε−1
0 + n2Pqε−2

0 )‖A − B‖2F . (55)

If ‖B − A‖F < ε0, consider the decomposition of B = UBΣ B V T
B = B1+B2 where B1 =

UBΣ B
1 V T

B ,Σ B
1 is the diagonalmatrix preserving elements ofΣ B bigger than 1

3 (M/q)1/(q−1),
and B2 = UBΣ B

2 V T
B where Σ B

2 = Σ B − Σ B
1 .

Define a set S′ � {T ∈ R
n×n |‖T ‖F ≤ P, minσi >0 σi (T ) ≥ ε0}. Let’s prove A, B1 ∈ S′.

If minσi >0 σi (A) < (M/q)1/(q−1), then for any X ∈ ∂‖A‖q
q , X = U1DV T

1 + U2Γ V T
2 and

‖X‖F ≥ ‖U1DV T
1 ‖F ≥ min

σi >0
qσ

q−1
i ≥ M,

which contradicts with the face that A /∈ SM . As for B1, because of ‖A − B‖F ≤ ε0 and
minσi >0 σi (A) < (M/q)1/(q−1), using Weyl inequalities will we get B1 ∈ S′.

Define the function F : S′ ⊂ R
n×n → R

n×n , for A = U1ΣV T
1 , F(A) = U1DV T

1 , where

D = diag(qσ1(A)q−1, . . . , qσ1(A)q−1)

and (0q−1 = 0). Based on [18, Theorem 4.1] and the compactness of S′, F(A) is Lip-
schitz continuous in S′, i.e., there exists L > 0, for any two matrices A, B ∈ S′ ,
‖F(A) − F(B)‖F ≤ L‖A − B‖F . This implies

‖B1‖q
q − ‖A‖q

q − 〈
U1DV T

1 , B1 − A
〉 ≥ − L

2
‖B1 − A‖2F . (56)
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In addition, because ‖U T
2 UB‖F < ‖B1 − A‖F/ε0 and ‖V T

2 VB‖F < ‖B1 − A‖F/ε0 (see
[33]),

〈
U2Γ V T

2 , B1 − A
〉 = 〈

Γ, U T
2 UBΣB V T

B V2
〉 ≥ − M2

ε20
‖B1 − A‖2F . (57)

Furthermore, ‖B2‖q
q − 〈

T, B2
〉 ≥ 0 and ‖B1 − A‖F ≤ ‖B − A‖F + ‖B − B1‖F ≤

2‖B − A‖F , together with (56) and (57) we have

‖B‖q
q − ‖A‖q

q − 〈
T, B − A

〉 = ‖B1‖q
q − ‖A‖q

q − 〈
T, B1 − A

〉 + ‖B2‖q
q − 〈

T, B2
〉

≥ −
(

L

2
+ M2

ε20

)

‖B1 − A‖2F ≥ −
(

2L + 4M2

ε20

)

‖B − A‖2F .

(58)

Combining (55) and (58), we finally prove (54) with appropriate γ .
(3): We need to show that the indicator function ιS of a p-dimensional compact C2

manifold S is restricted prox-regular. First of all, by definition, the exclusion set SM of ιS is
empty for any M > 0. Since S is compact and C2, there are a series of C2 homeomorphisms
hη : Rp �→ R

n , η ∈ {1, . . . , m} and δ > 0 such that for any x , there exist an η and an αx

satisfying x = hη(αx ) ∈ S. Furthermore, for any ‖y − x‖ ≤ δ, we can find an αy satisfying
y = hη(αy).

Note that ∂ιS(x) = Im(Jhη (x))⊥, where Jhη is the Jacobian of hη. For any d ∈ ∂ιS(x),
‖d‖ ≤ M and ‖x − y‖ ≤ δ,

ιS(y) − ιS(x) − 〈
d, y − x

〉 = − 〈
d, hη(αy) − hη(αx )

〉

= − 〈
d, hη(αy) − hη(αx ) − Jhη (αy − αx )

〉

≥ − ‖d‖ · γ ‖αy − αx‖2
≥ − Mγ C2‖x − y‖2, (59)

where γ andC are the Lipschitz constants of∇hη and h−1
η , respectively. For any ‖y−x‖ ≥ δ,

ιS(y) − ιS(x) − 〈
d, y − x

〉 = − 〈
d, y − x

〉

≥ − ‖d‖ · ‖y − x‖
≥ − M

δ
‖y − x‖2, (60)

where M is the maximum of ‖d‖ over ∂ιS(x). Combining (59) and (60) shows that ιS is
restricted prox-regular. ��

Proof (Lemma 1)By the definitions of H inA3(a) and yk ,wehave yk = H(Byk). Therefore,
‖yk1 − yk2‖ = ‖H(Byk1) − H(Byk2)‖ ≤ M̄‖Byk1 − Byk2‖. Similarly, by the optimality
of xk

i , we have xk
i = Fi (Ai xk

i ). Therefore, ‖xk1
i − xk2

i ‖ = ‖Fi (Ai xk1
i ) − Fi (Ai xk2

i )‖ ≤
M̄‖Ai xk1

i − Ai xk2
i ‖. ��

Proof (Lemma 2) Let us first show that the y-subproblem is well defined. To begin with,
we will show that h(y) is lower bounded by a quadratic function of By:

h(y) ≥ h(H(0)) − (
M̄‖∇h(H(0))‖) · ‖By‖ − Lh M̄2

2
‖By‖2.
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By A3, we know h(y) is lower bounded by h(H(By)):

h(y) ≥ h(H(By)).

Because of A5 and A3, h(H(By)) is lower bounded by a quadratic function of By:

h(H(By)) ≥ h(H(0)) + 〈∇h(H(0)), H(By) − H(0)
〉 − Lh

2
‖H(By) − H(0)‖2 (61)

≥ h(H(0)) − ‖∇h(H(0))‖ · M̄ · ‖By‖ − Lh M̄2

2
‖By‖2 (62)

Therefore h(y) is also bounded by the quadratic function:

h(y) ≥ h(H(0)) − ‖∇h(H(0))‖ · M̄ · ‖By‖ − Lh M̄2

2
‖By‖2.

Recall that y-subproblem is to minimize the Lagrangian function w.r.t. y, by neglecting other
constants, it is equivalent to minimize:

argmin P(y) := h(y) + 〈
wk + βAx+, By

〉 + β

2
‖By‖2. (63)

Because h(y) is lower bounded by− Lh M̄2

2 ‖By‖2, when β > Lh M̄ , P(y) → ∞ as ‖By‖ →
∞. This shows that y-subproblem is coercive with respect to By. Because P(y) is lower
semi-continuous and argmin h(y) s.t. By = u has a unique solution for each u, the minimal
point of P(y) must exist and the y-subproblem is well defined.

As for the xi -subproblem, i = 0, . . . , p, ignoring the constants yields

argmin Lβ(x+
<i , xi , xk

>i , yk, wk) = argmin f (x+
<i , xi , xk

>i )

+ β

2
‖ 1
β

wk + A<i x+
<i + A>i xk

>i + Ai xi + Byk‖2
(64)

= argmin f (x+
<i , xi , xk

>i ) + h(u) − h(u)

+ β

2
‖Bu − Byk − 1

β
wk‖2. (65)

where u = H(−A<i x+
<i − A>i xk

>i − Ai xi ). The first two terms are coercive bounded because
A<i x+

<i + A>i xk
>i + Ai xi + Bu = 0 and A1. The third and fourth terms are lower bounded

because h is Lipschitz differentiable. Because the function is lower semi-continuous, all the
subproblems are well defined. ��
Proof (Proposition 1) Define the augmented Lagrangian function to be

Lβ(x, y, w) = x2 − y2 + w(x − y) + β

2
‖x − y‖2.

It is clear that when β = 0, Lβ is not lower bounded for any w. We are going to show that
for any β > 2, the duality gap is not zero.

inf
x∈[−1,1],y∈R sup

w∈R
Lβ(x, y, w) > sup

w∈R
inf

x∈[−1,1],y∈RLβ(x, y, w).

On one hand, because supw∈R Lβ(x, y, w) = +∞when x �= y and supw∈R Lβ(x, y, w) = 0
when x = y, we have

inf
x∈[−1,1],y∈R sup

w∈R
Lβ(x, y, w) = 0.
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On the other hand, let t = x − y,

sup
w∈R

inf
x∈[−1,1],y∈RLβ(x, y, w) = sup

w∈R
inf

x∈[−1,1],t∈R t (2x − t) + wt + β

2
t2

= sup
w∈R

inf
x∈[−1,1],t∈R(w + 2x)t + β − 2

2
t2 (66)

= sup
w∈R

inf
x∈[−1,1] −

(w + 2x)2

2(β − 2)
= sup

w∈R
−max{(w − 2)2, (w + 2)2}

2(β − 2)
= − 2

β − 2
. (67)

This shows the duality gap is not zero (but it goes to 0 as β tends to ∞).
Then let us show that ALM does not converge if βk is bounded, i.e., there exists β > 0

such that βk ≤ β for any k ∈ N. Without loss of generality, we assume that βk equals to the
constant β for all k ∈ N. This will not affect the proof. ALM consists of two steps

1) (xk+1, yk+1) = argminx,yLβ(x, y, wk),

2) wk+1 = wk + τ(xk+1 − yk+1).

Since (xk+1 − yk+1) ∈ ∂ψ(wk) where ψ(w) = infx,y Lβ(x, y, w), and we already know

inf
x,y

Lβ(x, y, w) = −max((w − 2)2, (w + 2)2)

2(β − 2)
,

we have

wk+1 =
{

(1 − τ
β−2 )w

k − 2τ
β−2 if wk ≥ 0

(1 − τ
β−2 )w

k + 2τ
β−2 if wk ≤ 0

.

Note that when wk = 0, the optimization problem infx,y L(x, y, 0) has two distinct minimal
points which lead to two different values. This shows no matter how small τ is, wk will
oscillate around 0 and never converge.

However, although the duality gap is not zero, ADMM still converges in this case. There
are two ways to prove it. The first way is to check all the conditions in Theorem 1. Another
way is to check the iterates directly. The ADMM iterates are

xk+1 = max

(

−1,min(1,
β

β + 2
(yk − wk

β
))

)

, yk+1 = β

β − 2

(
xk+1 + wk

β

)
,

wk+1 = wk + β(xk+1 − yk+1). (68)

The second equality shows thatwk = −2yk , substituting it into the first and second equalities,
we have

xk+1 = max{−1,min{1, yk}}, yk+1 = 1

β − 2

(
βxk+1 − 2yk

)
. (69)

Here |yk+1| ≤ β
β−2 + 2

β−2 |yk |. Thus after finite iterations, |yk | ≤ 2 (assume β > 4). If

|yk | ≤ 1, the ADMM sequence converges obviously. If |yk | > 1, without loss of generality,
we could assume 2 > yk > 1. Then xk+1 = 1. It means 0 < yk+1 < 1, so the ADMM
sequence converges. Thus, we know for any initial point y0 and w0, ADMM converges. ��

123



60 J Sci Comput (2019) 78:29–63

Proof (Theorem 2) Similar to the proof of Theorem 1, we only need to verify P1–P4 in
Proposition 2. Proof of P2: Similar to Lemmas 4 and 5, we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1)

≥ − 1

β
‖wk − wk+1‖2 +

p∑

i=1

β − Lφ M̄

2
‖Ai xk

i − Ai xk+1
i ‖2

+ β − Lφ M̄

2
‖Byk − Byk+1‖2. (70)

Since BT wk = −∂yφ(xk, yk) for any k ∈ N, we have

‖wk − wk+1‖ ≤ C1Lφ

( p∑

i=0

‖xk
i − xk+1

i ‖ + ‖yk − yk+1‖
)

,

where C1 = σmin(B), σmin(B) is the smallest positive singular value of B, and Lφ is the
Lipschitz constant for φ. Therefore, we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1)

≥
(

β − Lφ M̄

2
− C Lφ M̄

β

) p∑

i=0

‖Ai xk
i − Ai xk+1

i ‖2

+
(

β − Lφ M̄

2
− C1Lφ M̄

β

)

‖Byk − Byk+1‖2. (71)

When β > max{1, Lφ M̄ + 2C1Lφ M̄}, P2 holds.
Proof of P1: First of all, we have already shownLβ(xk, yk, wk) ≥ Lβ(xk+1, yk+1, wk+1),

whichmeansLβ(xk, yk, wk) decreasesmonotonically. There exists y′ such thatAxk +By′ =
0 and y′ = H(By′). In order to show Lβ(xk, yk, wk) is lower bounded, we apply A1–A3 to
get

Lβ(xk, yk, wk) = φ(xk, yk) + 〈
wk,

p∑

i=0

Ai xk
i + Byk 〉 + β

2
‖

p∑

i=0

Ai xk
i + Byk‖2

= φ(xk, yk) + 〈
dk

y , y′ − yk 〉 + β

2
‖Byk − By′‖2 ≥ φ(xk, y′)

+ β

4
‖

p∑

i=0

Ai xk
i + Byk‖2 > −∞, (72)

for some dk
y ∈ ∂yφ(xk, yk). This shows that Lβ(xk, yk, wk) is lower bounded. If we view

(72) from the opposite direction, it can be observed that

φ(xk, y′) + β

4
‖

p∑

i=1

Ai xk
i + Byk‖2

is upper bounded by Lβ(x0, y0, w0). Then A1 ensures that {xk, yk} is bounded. Therefore,
wk is bounded too.

Proof of P3, P4: This part is trivial as φ is Lipschitz differentiable. Hence we omit it.
��
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