J Sci Comput (2019) 78:29-63 @ CrossMark
https://doi.org/10.1007/s10915-018-0757-z

Global Convergence of ADMM in Nonconvex Nonsmooth
Optimization

Yu Wang! - Wotao Yin? - Jinshan Zeng?

Received: 23 November 2016 / Revised: 6 December 2017 / Accepted: 30 May 2018 /
Published online: 7 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper, we analyze the convergence of the alternating direction method of
multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective func-
tion, ¢ (xo, ..., Xp, y), subject to coupled linear equality constraints. Our ADMM updates
each of the primal variables x, . . ., x,, y, followed by updating the dual variable. We separate
the variable y from x;’s as it has a special role in our analysis. The developed convergence
guarantee covers a variety of nonconvex functions such as piecewise linear functions, £,
quasi-norm, Schatten-g quasi-norm (0 < g < 1), minimax concave penalty (MCP), and
smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as
compact manifolds (e.g., spherical, Stiefel, and Grassman manifolds) and linear complemen-
tarity constraints. Also, the xo-block can be almost any lower semi-continuous function. By
applying our analysis, we show, for the first time, that several ADMM algorithms applied to
solve nonconvex models in statistical learning, optimization on manifold, and matrix decom-
position are guaranteed to converge. Our results provide sufficient conditions for ADMM
to converge on (convex or nonconvex) monotropic programs with three or more blocks, as
they are special cases of our model. ADMM has been regarded as a variant to the augmented
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Lagrangian method (ALM). We present a simple example to illustrate how ADMM con-
verges but ALM diverges with bounded penalty parameter . Indicated by this example and
other analysis in this paper, ADMM might be a better choice than ALM for some nonconvex
nonsmooth problems, because ADMM is not only easier to implement, it is also more likely
to converge for the concerned scenarios.

Keywords ADMM - Nonconvex optimization - Augmented Lagrangian method - Block
coordinate descent - Sparse optimization

1 Introduction

In this paper, we consider the (possibly nonconvex and nonsmooth) optimization problem:

minimize D (X0, X1,...,Xp, y) (M

subject to  Agxo + Ajxy +---+ Apx, + By = b,

where ¢ : R"0 x - .- x R"» x R? — RU{oo} is a continuous function, x; € R" are variables
with their coefficient matrices A; € R i = 0,..., p,and y € R is the last variable
with its coefficient matrix B € R™*9. The model remains as general without y and By; but
we keep y and B to simplify the notation.

We set b = 0 throughout the paper to simplify our analysis. All of our results still hold if
b # 0 is in the image of the matrix B, i.e., b € Im(B).

Besides the linear constraints in (1), any constraint on each variable xq, x1, ..., x, and y
can be treated as an indicator function and included in the objective function ¢. Therefore,
we do not include constraints like: xg € Xp, x1 € &, ...,x, € X)), y € V.

In spite of the success of ADMM on convex problems, the behavior of ADMM on noncon-
vex problems has been largely a mystery, especially when there are also nonsmooth functions
and nonconvex sets in the problems. ADMM generally fails on nonconvexity problems, but it
has found to not only work in some applications but often exhibit great performance! Indeed,
successful examples include: matrix completion and separation [47,49,61,63], asset alloca-
tion [56], tensor factorization [34], phase retrieval [57], compressive sensing [9], optimal
power flow [64], direction fields correction [31], noisy color image restoration [31], image
registration [6], network inference [39], and global conformal mapping [31]. In these appli-
cations, the objective function can be nonconvex, nonsmooth, or both. Examples include the
piecewise linear function, the £, quasi-norm for ¢ € (0, 1), the Schatten-g (0 < g < 1) [59]
quasi-norm f(X) = Y, 0;(X)? (where o;(X) denotes the ith largest singular value of X),
and the indicator function ¢, where B is a nonconvex set.

The success of these applications can be intriguing, since these applications are far beyond
the scope of the theoretical conditions that ADMM is proved to converge. In fact, even the
three-block ADMM can diverge on a simple convex problem [10]. Nonetheless, we still find
that it works well in practice. This has motivated us to explore in the paper and respond to this
question: when will the ADMM type algorithms converge if the objective function includes
nonconvex nonsmooth functions?

We present our Algorithm 1, where Lg denotes the augmented Lagrangian (2), and show
that it converges for a large class of problems. For simplicity, Algorithm 1 uses the standard
ADMM subproblems, which minimize the augmented Lagrangian £z with all but one variable
fixed. It is possible to extend them to inexact, linearized, and/or prox-gradient subproblems
as long as a few key principles (cf. §3.1) are preserved.
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Algorithm 1 Nonconvex ADMM for (1)
0

Initialize x?, e, xg, yO, w
while stopping criteria not satisfied do
fori =0,...,pdo

k+1 . k+1
X; +o argmin,, Lﬂ(x<':.' L X, x];l., yk, wk);
end for
YA — argmin, LKLy, wh):;
Wkt wk 4 <Axk+l + Byk+1);
k<—k+1;
end while
return x'f, - ,x;‘, and yk.

In this paper, under some assumptions on the objective and matrices, Algorithm 1 is proved
to converge. Algorithm 1 is a generalization to the coordinate descent method. By setting
Ag, Ay, ..., Ap, Bto0, Algorithm 1 reduces to the cyclic coordinate descent method.

1.1 Proposed Algorithm

Our variableis x := [x¢; ...; x,] € R" wheren = Z{;O nj.LetA :=[Ag --- Ap] e R"™*"
and Ax := Zf:o A;x; € R™.To present our algorithm, we define the augmented Lagrangian:

LgX, y,w) = ¢(X,y) + (w, Ax + By) + gIIAx + By|>. )

The proposed Algorithm 1 extends the standard ADMM to multiple variable blocks. It also
extends the coordinate descent algorithms dealing with linear constraints. We let x; =
[x0; ... Xi—1] € RO+ Hi-tandx_; 1= [xi41;...; xp] € RM+TH0 (clearly, x .o and
X p are null variables, which may be used for notational ease). Subvectors x<; := [x<;, X;]
and x>; are defined similarly. The convergence of Algorithm 1 will be given in Theorems 1
and 2.

1.2 Relation to the Augmented Lagrangian Method (ALM)

ALM is a widely-used method for solving constrained optimization models [23,44]. It applies
broadly to nonconvex nonsmooth problems. ADMM is an approximation to ALM by sequen-
tially updating each of the primal variables.

ALM generally uses a sequence of penalty parameters {8}, which is nondecreasing and
possibly unbounded. When ¥ becomes large, the ALM subproblem becomes ill-conditioned.
Therefore, using bounded ﬁk is practically desirable (see [12, Theorem 5.3], [3, Proposition
2.4], or [4, Chapter 7]). For general nonconvex and nonsmooth problems, it is well known
that ,Bk , k € N is bounded is not enough for the convergence of ALM [3, Section 2.1].
Proposition 2 below introduces a simple example on which ALM diverges with any bounded
B¥. It is surprising, however, that ADMM converges in finite steps for any fixed 8 > 1 on
this example.

Proposition 1 Consider the problem

2

minimize x? — y? 3)

x,yeR

subjectto x =y, x € [—1,1].
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It holds that

1. If {B¥|k € N} is bounded, ALM generates a divergent sequence;
2. for any fixed B > 4, ADMM generates a convergent and finite sequence to a solution.

The proof is straightforward and included in the “Appendix”. ALM diverges because
Lg(x,y,w) does not have a saddle point, and there is a non-zero duality gap. ADMM,
however, is unaffected. As the proof shows, the ADMM sequence satisfies Zyk = —wk, Vk.
By substituting w = —2y into Lg(x, y, w), we get a convex function in (x, y)! Indeed,

2
p,y) = Lo,y w)|,_ , = (= yH) () = 2y(x — ) + §|x -y

_B+2
2

Ix — y> + t—1,11(x),

where ¢g is the indicator function of set S (that is, ts(x) = 0 if x € §; otherwise, equals
infinity). It turns out that ADMM solves (3) by performing the following coordinate descent
iteration to p(x, y):

d
yk-H — yk _ ﬂ2ﬁ_4 @p(xkﬂ’ yk).

{xk“ = argmin, p(x, y),

Our analysis for the general case will show that the primal variable y somehow “controls”
the dual variable w and reduces ADMM to an iteration that is similar to coordinate descent.

1.3 Related Literature

The original ADMM was proposed in [19,21]. For convex problems, its convergence was
established firstly in [20] and its convergence rates given in [15,16,22] in different set-
tings. When the objective function is nonconvex, the recent results [28,37,61] directly make
assumptions on the iterates (xk, yk, why. Hong et al. [24] deals with the nonconvex separable
objective functions for some specific A;, which forms the sharing and consensus problem.
Li and Pong [32] studied the convergence of ADMM for some special nonconvex models,
where one of the matrices A and B is an identity matrix. Wang et al. [51,52] studied the
convergence of the nonconvex Bregman ADMM algorithm, which includes ADMM as a
special case. We review their results and compare to ours in Sect. 4 below.

1.4 Contribution and Novelty

The main contribution of this paper is the establishment of the global convergence of Algo-
rithm 1 under certain assumptions given in Theorems 1 and 2 below. The assumptions apply
to largely many nonconvex and nonsmooth objective functions. The developed theoretical
results can be extended to the case where subproblems are solved inexactly with summable
errors. We also allow the primal block variables x1, . . ., x, to be updated in an arbitrary order
as long as xg is updated first and y is updated last (just before the w-update). The novelty of
this paper can be summarized as follows:

(1) Weaker assumptions. Compared to the related works [24,28,32,37,51,52,61], the
convergence conditions in this paper are weaker, extending the ADMM theory to sig-
nificantly more nonconvex functions and nonconvex sets. See Table 1. In addition, we
allow the primal variables xi, ..., x, to be updated in an arbitrary order at each iter-
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(@)

3)

ation,! which is new in the ADMM literature. We show that most of our assumptions
are necessary by providing counter examples. We also give the first example that causes
ADMM to converge but ALM to diverge.

New examples. By applying our main theorems, we prove convergence for the non-
convex ADMM applied to the following problems which could not be recovered from
previous convergence theory:

statistical regression based on nonconvex regularizer such as minimax concave
penalty(MCP), smoothly clipped absolute deviation (SCAD), and £, quasi-norm;
minimizing smooth functions subject to norm or Stiefel/Grassmannian manifold con-
straints;

matrix decomposition using nonconvex Schatten-g regularizer;

smooth minimization subject to complementarity constraints.

Novel techniques. We improve upon the existing analysis techniques and introduce new
ones.

(a)

(b)

(©

An induction technique for nonconvex, nonsmooth case. The analysis uses the aug-
mented Lagrangian as the Lyapunov function: Algorithm 1 produces a sequence
of points whose augmented Lagrangian function values are decreasing and lower
bounded. This technique appeared first in [24] and also in [32,51]. However, it has
trouble handling nonsmooth functions. An induction technique is introduced to over-
come this difficulty and extend the current framework to nonconvex, nonsmooth,
multi-block cases. The technique is used in the proof of Lemma 9.

Restricted prox-regularity. Most of the convergence analysis of nonconvex opti-
mization either assumes or proves the sufficient descent and bounded subgradient
properties (c.f., [1,24]). This property is easily obtainable if the objective is smooth.
However, some nonconvex and nonsmooth objectives (€.g. nonconvex £, quasi-norm)
violate these properties. We overcome this challenge with the introduced restricted
prox-regularity property (Definition 2). If the objective satisfies such a property, we
prove that the sequence enjoy sufficient descent and bounded subgradients after a
finite number of iterations.

More general linear mappings. Most nonconvex ADMM analysis is applied to the
primal variables x and y directly. This requires the matrices Ao, Ay, ..., A,, B to
either identity or have full column/row rank. In this paper, we introduce techniques
to work with possibly rank-deficient Ao, Ay, ..., Ap, B (see, for example, Lemma
5). This allows us to ensure convergence of ADMM on some important applications
in signal processing and statistical learning (see Sect. 5).

In addition, we use several other techniques that are tailored to relax our convergence
assumptions as much as possible.

1.5 Notation and Organization

We denote R as the real number set, R U {+o00} as the extended real number set, R, as the
positive real number set, and N as the natural number set. Given a matrix X, Im(X) denotes
its image, 0; (X) denotes its ith largest singular value. | - || represents the Euclidean norm
for a vector or the Frobenius norm for a matrix. dom( f) denotes the domain of a function

! This is the best that one hope (except for very specific problems) since [62, Section 1] shows a convex
2-block problem, which ADMM fails to converge.
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f. For any two square matrices A and B with the same size, A > B means that A — B is
positively semi-definite.

The remainder of this paper is organized as follows. Section 2 presents the main conver-
gence analysis. Section 3 gives the detailed proofs. Section 4 discusses the tightness of the
assumptions, the primal variable update order, and inexact minimization issues. Section 5
applies the developed theorems in some typical applications and obtains novel convergence
results. Finally, Sect. 6 concludes this paper.

2 Main Results
2.1 Definitions

In our definitions, df denotes the set of general subgradients of f in [45, Definition 8.3].
We call a function Lipschitz differentiable if it is differentiable and its gradient is Lipschitz
continuous. The functions given in the next two definitions are permitted in our model.

Definition 1 (Piecewise linear function) A function f : R* — R is piecewise linear if there
exist polyhedraﬂl, ..., Ug C R", vectors ay, ...,ax € R", and points by, ..., bg € R
such that L_JlK:1 Uy =R, U NU; =0 (Vi #j)and f(x) = al.Tx + b; when x € U,
i=1,...,K.

Definition 2 (Restricted prox-regularity) For a lower semi-continuous function f, let M €
Ry, f: RY - RU {oo}, and define the exclusion set

Sy = {x edom(f) : ||d|| > M foralld € af (x)}.

f is called restricted prox-regular if, for any M > 0 and bounded set T < dom f, there
exists ¥ > 0 such that

)4

fO) + S lx —yIP= f@) +(d,y—x), VxeT\Sy, yeT, dedf(x), |l <M.
“

(If T\ Sy is empty, (4) is satisfied.)

Definition 2 is related to, but weaker than, the concepts prox-regularity [43], hypomono-

tonicity [45, Example 12.28] and semi-convexity [26,30,38,40], all of which impose global

conditions. Definition 2 only requires (4) to hold over a subset. As shown in Proposition

1, while prox-regular functions include any convex functions and any C' functions with

Lipschitz continuous gradients, restricted prox-regular functions further include a set of non-

smooth non-convex functions such as £, quasi-norms (0 < g < 1), Schatten-g quasi-norms
(0 < g < 1), and indicator functions of compact smooth manifolds.

Proposition 1 Examples of (restricted) prox-regular functions The following functions are
prox-regular functions:

(1) convex functions, including indicator functions of convex sets,
(2) C! smooth functions with L-Lipschitz continuous gradient.

The following functions are restricted prox-regular functions:

(1) £4(x) = |Ix||] function for g € (0, 1);
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(2) Schatten-q quasi-norm: ||All, = > aiq, where q € (0, 1) and o; is the ith largest
singular value of A;

(3) Indicator functions ts of a compact C* manifold, such as the unit sphere in a finite
Euclidean space.

Definition 2 introduces functions that do not satisfy (4) globally only because they are
asymptotically “steep” in the exclusion set Sjs. Such functions include [x|? (0 < ¢ < 1),
for which Sy, has the form (—eyy, 0) U (0, €5); the Schatten-g quasi-norm (0 < g < 1), for
which Sy = {X : 3i, 0;(X) < ep} as well as log(x), for which Sy = (0, €37), where €y,
is a constant depending on M. We only need (4) because the iterates xf‘ of Algorithm 1, for
all large k, never enter the exclusion set Sy;.

2.2 Main Theorems

To ensure the boundedness of the sequence (x¥, y*, w*), we only need the coercivity of the
objective function within the feasible set.

Al (coercivity) Define the feasible set F := {(x, y) € R"*4 : Ax+ By = 0}. The objective
function ¢ (x, y) is coercive over this set, that is, ¢(x,y) — oo if (x,y) € F and
Il (x, Y)II = oo;

If the feasible set of (x, y) is bounded, then A1 holds trivially for any continuous objective
function. Therefore, A1 is much weaker than assuming that the objective function is coercive
over the entire space R"9. The assumption Al can be dropped if the boundedness of the
sequence can be deducted from other means.

Within the proof, A; x?‘ and By* often appear in the first order conditions (e.g. see Egs. (12),
(13)). In order to have a reverse control, i.e., controlling xf‘ , ¥ based on A ,-xf‘ , Byk, we need
the following two assumptions on matrices A; and B.

A2 (feasibility) Im(A) C Im(B), where Im(-) returns the image of a matrix;
A3 (Lipschitz sub-minimization paths)

(a) For any fixed x, argmin {¢ (X, y) : By = u} has a unique minimizer. H : Im(B) —
R? defined by H (u) £ argminy{q) (x, y) : By = u} is a Lipschitz continuous map.

(b) Fori = 0,..., p and any x_;, x~; and y, argminx[ {dp(x<i, xi, x=i,y) @ Aixi =
u} has a unique minimizer and F; : Im(A;) — R" defined by F;(u) =
argmin, {¢(x<;, Xi, X=i, y) : A;jx; = u} is a Lipschitz continuous map.

Moreover, the above F; and H have a universal Lipschitz constant M > 0.
These two assumptions allow us to control x{‘, y¥ by A,'x!‘, ByF as in Lemma 1.
Lemma 1 It holds that, Yk, ky € N,
Iy9 =y < M1 BY* — By, )
I — 2 < MAxt — APl i=01,.. p, (©6)
where M is given in A3.

They weaken the full column rank assumption typically imposed on matrices A; and
B. When A; and B have full column rank, their null spaces are trivial and, therefore, F;, H
reduce to linear operators and satisfy A3. However, the assumption A3 allows non-trivial null
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H(u*) + Null(B)

H(u)

sub-minimization path

Fig. 1 TIllustration of the assumption A3, which assumes that H (1) = argmin{i(y) : By = u} is Lipschitz
[46]

spaces and holds for more functions. For example, if a function f is a C? with its Hessian
matrix H bounded everywhere o1/ > H > o2l (01 > o2 > 0), then F satisfies A3 for
any matrix A. If the uniqueness fails to hold, i.e., there exists y, y» such that By; = By»
and ¢ (x, y1) = ¢ (X, y2), then the augmented Lagrangian cannot distinguish them, causing
troubles to the boundedness of the sequence (Fig. 1).

As for the objective function, we consider two different scenarios:

— Theorem 1 considers the scenario where x and y are decoupled in the objective function;
— Theorem 2 considers the scenario where x and y are possibly coupled but their function
¢ (x, y) is Lipschitz differentiable.

The model in the first scenario is

minimize fxo,x1,...,xp) +h(y) )

X05X1 500X p, Y

subject to  Agxo + Ajxy +---+ Apx, + By = b,

where the function f : R” — R U {o0} (n = Z}D:o n;) is proper, continuous, and possibly
nonsmooth, and the function /2 : R? — R is proper and differentiable. Both f and & can be
nonconvex.

Theorem 1 Suppose that AI-A3 and the following assumptions hold.
A4 (objective- f regularity) f has the form

)4
) =g+ filxi)

i=0
where

(i) g(x) is Lipschitz differentiable with constant Ly,
(ii) Either
a. fo is lower semi-continuous, f;(x;) is restricted prox-regular (Definition 2) for
i=1,...,p; Or
b. The supremum sup{||d|| : xo € S, d € dfo(x0)} is bounded for any bounded set
S, fi(x;j) is continuous and piecewise linear (Definition 1) fori =1, ..., p;

A5 (objective-h regularity) h(y) is Lipschitz differentiable with constant L,

Then, Algorithm 1 converges subsequently for any sufficiently large B (the lower bound is
given in Lemma 9), that is, starting from any x(l), e xg, yo, wO, i generates a sequence that
is bounded, has at least one limit point, and that each limit point (X*, y*, w*) is a stationary
point of Lg, namely, 0 € 0Lg(x*, y*, w™).
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In addition, if Lg is a Kurdyka-Lojasiewicz (KE) function [1,5,35], then (xk, yk, wh)
converges globally? to the unique limit point (x*, y*, w*).

Assumptions A4 and A5 regulate the objective functions. None of the functions needs to be
convex. fp can be any lower semi-continuous function, and the non-Lipschitz differentiable
parts f1, ..., fn of f shall satisfy either Definitions 1 or 2. Under Assumptions A4 and AS,
the augmented Lagrangian function Lg is lower semi-continuous.

It will be easy to see, from our proof in Sect. 3.3, that the Lipschitz differentiable assump-
tion on g can be relaxed to hold just in any bounded set, since the boundedness of {x} is
established before that property is used in our proof. Consequently, g can be functions like
e*, whose derivative is not globally Lipschitz.

Functions satisfying the KL inequality include real analytic functions, semi-algebraic
functions and locally strongly convex functions (more information can be referred to Sect.
2.2 in [60] and references therein).

In the second scenario, x and y can be coupled in the objective as shown in (1), but the
objective needs to be smooth.

Theorem 2 Suppose that AI-A3 hold and ¢ in (1) is Lipschitz differentiable with constant
Lgy. Then, Algorithm 1 has the same subsequential and global convergence results as stated
in Theorem 1.

Although Theorems 1 and 2 impose different conditions on the objective functions, their
proofs are similar. Hence, we will focus on proving Theorem 1 first and leave the proof of
Theorem 2 to the “Appendix”.

3 Proof
3.1 Keystones

The following properties hold for Algorithm 1 under our assumptions. Here, we first list them
and present Proposition 2, which establishes convergence assuming these properties. Then
in the next two subsections, we prove these properties.

P1 (Boundedness) {x*, y¥, w*} is bounded, and £z (x*, y*, w¥) is lower bounded.
P2 (Sufficient descent) There is a constant C{(8) > 0 such that for all sufficiently large k,
we have

ﬁﬁ(xk, yk7 wk) _ Lﬂ(xk-‘rl, yk+1, wk+1)

P
= B (1BO = HI2+ Y I = 12). ®)

i=1

P3 (Subgradient bound) There exists C2(8) > Oand d**! € L5 (x 1, yk+! wh+1) such
that

P
101 = 2B (1BOH =391+ Y2 14 = xH1). ©)

i=1

It is our intention to start i at 1, thus skipping the xp-block, in (8) and (9).

2 “Globally” here means regardless of where the initial point is.
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P4 (Limiting continuity) If (x*, y*, w*) is the limit point of a sub-sequence (x*s, y& | wks)
fors € N, then Lg(x*, y*, w*) = lim,;_, .C,s(xks, yk“', wks).

The proposition below is standard and not new though it does not appear exactly in the
literature.

Proposition 2 Suppose that when an algorithm is applied to the problem (7), its sequence
(x¥, y&, wk) satisfies P1-P4. Then, the sequence has at least a limit point (x*, y*, w*),
and any limit point (x*, y*, w*) is a stationary point. That is, 0 € dLg(x*, y*, w*), or
equivalently,

0 = Ax* + By*, (10a)
0edfx*)+ATw", (10b)
0 € dh(y*) + BT w*. (10c)

Furthermore, the running best rates’ of the sequences {|| B(ykJrl - yk) Iz + Zle ||Ai(x{‘ -
xf“)”z} and {||d* 1)} are 0(%) and o(ﬁ), respectively. Moreover, if Lg is a KL function,

then (x*, yk, wk) converges globally to the unique point (X*, y*, w*).

Proof The proof is standard. Similar steps are found in, for example, [1,60].

By P1, the sequence (x¥, y*, w¥) is bounded, so there exist a convergent subsequence
and a limit point, denoted by (x%, y%, wk) ey — (x*, y*, w*) as s — +o00. By Pl
and P2, Lg(x¥, y*, w*) is monotonically nonincreasing and lower bounded, and therefore
I AixF — AixEtY | — 0and | By* — By**!|| — 0as k — oo. Based on P3, there exists
d* e 8L‘,3(Xk, yk, w¥) such that ||d¥|| — 0. In particular, ld* || — 0ass — oo. Based
on P4, Lg x*, y*, w*) = limy Lg (xk~“, yk»‘, w"“‘). By definition of general subgradient [45,
Definition 8.3], we have 0 € 9Lg(x*, y*, w*).

The running best rate of the sequence {||B(yk+] - yk) 1%+ Zipzl [|A; (x{‘ - x{‘“) 1} can
be easily obtained via taking advantage of [17, Lemma 1.2] or [29, Theorem 3.3.1]. By (9),
it is obvious that the running best rate of the sequence {ad&thy is o(ik).

Similar to the proof of Theorem 2.9 in [1], we can claim the global convergence of the
considered sequence (x*, y*, wF)reny under the KE assumption of Lg. ]

In P2, the sufficient descent inequality (8) is only required for any sufficiently large k, not all k.
In our analysis, P1 gives subsequence convergence, P2 measures the augmented Lagrangian
descent, and P3 bounds the subgradient by total point changes. The reader may still obtain
P1-P4 when generalizing Algorithm 1, for example, by replacing the direct minimization
subproblems to prox-gradient or inexact subproblems and by relaxing the ordering in which
the primal variables are updated.

3.2 Preliminaries

In this subsection, we give some useful lemmas that will be used in the main proof. To save
space, throughout this section we assume assumptions A1-AS5 hold, and let

+ L+ . k+1 k+1 k+1
Ly w) = LY W), (11)
In addition, we let A_sx.y := D, _ A;x; and, in a similar fashion, A-sx-s 1= D, Ajx;.
3A nonnegative sequence ay induces its running best sequence by = minf{a; : i < k}; therefore, a; has

running best rate of o(1/k) if by = o(1/k).
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Lemma?2 If > M2Ly, (M is defined in A3), all the subproblems in Algorithm 1 are well
defined.

This lemma is on its own, so we leave its proof to the “Appendix”.

Lemma 3 (bound dual by primal) Let A (BT B) be the smallest strictly-positive eigenvalue
of BTB, C & LhA;M l/Z(BTB) For all k € N, it holds that

(a) BTw* = —Vh(yh).
(b) |wt —wk|| < CIByT — By*||.

Proof Part (a) follows directly from the optimality condition of y¥: 0 = Vh(y*)+ BT wk—1 +
BBT (Ax* + By*), and w* = wk~1 + g (Ax* + By).
Then let us prove Part (b). Since wt — w* = B(AxT + By™) € Im(B), we get

_1/2 —1/2

(B"B)| BT (w" —wh)| = (BT B)IIVA(y™)

—Vh(y )l < ClIByT — By¥|.

lw® —wh| <2

The last inequality follows from the Lipschitz property of VA4 and Lemma 1. O

3.3 Main Proof

This subsection proves Theorem 1 for Algorithm 1 under Assumptions A1-AS. Forallk € N
andi =0, ..., p, because of the optimality of xf, we can introduce the following general
subgradients dik and c?ik,

a_lik = —(ATwt + ,3,0, yedfxT x’;i , (12)

<l’
df o= —Vig(xD, xt xk ) +dk e 3f,'(xi+), (13)

<i?’ l
where
pf = Al (AsixX, — AcixD) + AT (BYY — By™).
The next two lemmas estimate the descent of Lg(X, y, w) at each iteration.
Lemma 4 (descent of ll,g during x; update) The iterates in Algorithm 1 satisfy

1. z:,g(xq, xkyk, wk)>£,3(x<l, xoxk vk wk) i =0, p;
2. Lp(xk, vk, wk)zﬁlg(x"',y wk);

3. L‘,ﬂ(xk, yk, wky — Lp(x, yk, wh) = P _ori, where
5 B
rii= fOd a2l = O al) — @F xf = x5+ DA — A2 2 0,
(14)
where d_l.k is defined in (12).
4. Fori =1,..., p (without the blocki = 0), if
"
FG) + Sl =12 = fiGh) + (5 = x5, (15)

holds with constant y; > 0 (later, this condition will be shown to hold), then we have
2 2
> B—viM . LeM

where the constants Ly and M are defined in Assumptions A4 and A3, respectively.

I AixF — AixFI2, (16)
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Proof Part 1 follows directly from the minimization subproblems, which give xi+ .Part2is
a result of

14
L, yh wh) — Lpxt, 5 wh) =Y (Lp0eky xf 2 vh wh)
i=0

+ o+ Lk koK
= LGl a2l v wh),

and part 1. Part 3: Each term in the sum equals f(x<l, xk xl;) - f(xi'i, xi+, x/;.) plus

B
(wk, Aixk — Aixh) + 5||A<,~xii

+ Aixk + AsixE 4+ ByR|IP — /3||A<,x + AixiT 4+ Asixb, + BYF|?
:(wk,A,-x{‘—Aixl*)Jr(ﬂ( <xt A+ At +A>,x>,+By),A,-xf—AiX,*>

B
+ §||Aixf — AixT)?

= (Al wh + Bpf, xf —x) + équ — Aux|)?

where the first equality follows from the cosine rule: ||b + c||2 — |la + cl? = b —al?*+
2{(a 4+ c,b —a) withb = Aix;‘, a= Aixi+, and ¢ = A<,x + A>lx + By
Part 4. Let dl.k be defined in (13). From the inequalities (6) and (15), we get

HGH = ficgh — @ xF x> — ||x — x5
; M
> —VTnAxf — AxF2. (17

By the assumption A4 part (i) and (6), we also get

L
gy xf xL) = G x aly) = (VigWhx xLp o =)z =S - I
L,M?
>~ Axf — AP, (18)
Finally, rewriting the expression of r; and applying (17) and (18) we obtain
ri= (gt xf Xk ) — gt xk ) — (VigGeh L Xt xE ) xf = X))
() fiosh) — o xf =) + DA - axp?
B —yiM?* — L,M?>
> ’ £ Aixf — ATl
2
[m}

The assumption (15) in the part 4 of Lemma 4 is the same as (4) in Definition 2 except the
latter holds for more functions due to the exclusion set Sys. In order to relax (15) to (4),
we must find M and specify the exclusion set Sys. (This complicates our analysis but is
necessary for many nonconvex functions such as the £, quasi-norm.) We will finally achieve
this relaxation in Lemma 9.
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Lemma 5 (descent of Lg due to y and w updates) If 8 > 2(LpM? + 1+ C), where C is
the constant specified in Lemma 3 and Ly, is the Lipschitz constant in Assumption A5, then
forany k e N

Laxt, 5wk — Lpx T,y T wh) > |1 ByT — ByF|2 (19)

Proof Because /2 > L,M?* + 14 C and B~ < 1/C, we know

B C* LyM? L,M?

2 B 2

>LyM>*+1+C—-C-— > 1. (20)

From the assumption A5 and Lemma 3(b), it follows

LgxT, y*, wh) — Lpxt, y T, wh)

B 1
=h(") —hOH) + (™, By — Byt) + EnBy+ — By|? - Enw+ —wk)?
LyM? B Cc?
> —= 1Byt — By*||I* + EnBy* - ByM|? - F”By+ - By*|? Q1)
> [|By* — ByF|I?, (22)

The first inequality holds because

h(*) —h(y") + (wT, By* — By™)
=h(" — (") + (BTwT, Y —yT)
h(y*) —h(y) — (V). Y —yT)
Ly, ¢

> lly

LhM
2

—y* ||2 (Lipschitz differentiable of — h)

IBy* — By*|1%.
The last inequality holds because of (20). O

Based on Lemmas 4 and 5, we now establish the following results:

Lemma 6 (Monotone, lower-bounded Lg and (P1) bounded sequence) If 8 > 2(Ly, M2+
1 + C) as in Lemma 5, then the sequence (x*, y*, w¥) generated by Algorithm 1 satisfies

1. Lg(xk, yk wh) > Lp(x*, yF, wh).

2. Lg (xX, y&, wk) is lower bounded for all k € N and converges as k — oc.
3. {xK, yk, wkY is bounded.

Proof Part 1. It is a direct result of Lemma 4 part 2, and Lemma 5.
Part 2. By the assumption A2, there exists y’ such that Ax* + By’ = 0 and y = H(By').
By the assumptions A1-A2, we have

FOO + () = min{ £ +h(y) : Ax + By = 0} > —oc.
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Then we have

B

Lpet, 38wty = F&H + RGN + (BTwh, =) + TIAXE + By
= £ +ROY +VROY, Y — ) + Diadt + Byt
— LyM?
(Lemma 1, Vi is Lipschitz) > f(x*) +h(y') + ﬁihllek + ByM|?

2
> —0OQ.

Part 3. From parts 1 and 2, Lg (x¥, y*, w*) is upper bounded by Lg x°, y9, w0) and so are
F&xF) + h(y') and |Ax* + By*|?. By the assumption Al, {x*} is bounded and, therefore,
{Byk} is also bounded. By Lemma 1, we know that {yk} is bounded. By Lemma 3, (BT wky
is also bounded. Similar to the proof in Lemma 3(b), wk —w e Im(B). Therefore, the
boundedness of BT w¥ implies the boundedness of wk. O

It is important to note that, once f is larger than the threshold, the constants and bounds in
Lemmas 5 and 6 only rely on the objective f(x) 4+ h(y), matrices A, B, and the initial point
(x2, y0, w0) but will be independent of B, which is essential to the proof of Lemma 9 below.

Lemma 7 (Asymptotic regularity) limg_ o | By — Byt || = 0 and limy—, o |w* —w™| =
0.

Proof The first result follows directly from Lemmas 4, 5, and 6 (part 2), and the second result
from Lemma 3 part (b). O

The lemma below corresponds to the assumption A4, part(ii)-b.

Lemma 8 (Boundedness for piecewise linear f;’s) Consider the case that f;, i =1,..., p,
are piece-wise linear. There exist constants M* > 0 (independent of B), M and L ¢ defined
in A3 and A4, respectively, for any €y > 0, when B > max{2(M* + 1)/65, LyM?+1+C},
there exists ky| € N such that the followings hold for all k > kp;:

1. ||Aix;" — AixF|l < eg and ||x} — xFIl < Meo, i =0, ..., p;
2. IVg(xk) — Vg(xM)|l < (p + 1)MLgeo.

Proof Part 1. Since the number K of the linear pieces of f; is finite fori = 1,..., p,
dfp is bounded for x in any bounded set S, and {xk, yk, wk} is bounded (see Lemma 6),

3 f(xF,, x;7, x* ) are uniformly bounded for all k and i. Since d* € & f (x,, x;7, xX ) (see

(12)), the first three terms of r; (see (14)) are bounded by a universal constant M * independent
of B:

Feliafoxl) = falon ol = df -y e =M M),
Hence, as long as 8 > 2(M* + 1)/63,
||Al-xl.+ — A,-xlkll >e=> ri > geg - M*>1 (23)

= Lg (xii,xf,xl;, yk, wk> —-1>Lg (xii,x?',x];i, yk, wk) .
24
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By Lemmas 4, 5, and 6, this means Lg(x*, y*, wk) — 1 > Lzx*, y*, wT). Since
{Lg (x¥, y*, wk)} is lower bounded, IIA,')ci+ — Aixlk || > €o can only hold for finitely many k.
Thus fori =1, ..., p, we have

IAixm — Aixk|l < €.
As for i = 0, because of Lemma 7, we know
p
limsup [| Agxg — Aoxg | < limsup || Y (Aix;" — Aixf) + By — By*|| < peo.
k .
i=1

Thus for large k > k, ||A0x6" — A0x§|| < (p + 1)ep By Lemma 1, we know Part 1 is
correct.
Part 2 follows from || Vg(x*) — Vg(x*)|| < Lg|lx* — x*|, part 1 above, and Lemma 1.

[m}
Lemma 9 (Sufficient descent property P2) Suppose
14
B > max {Z(M /e LM +1+C,) yibd? + LgMZ},
i=1
where y; (i = 1, ..., p) and €y are constants only depending on f, M > M* is a constant

independent of B. Then, Algorithm 1 satisfies the sufficient descent property P2.

It is worth noting that the proof below will be much simpler if there are only two blocks,
instead of p + 2, or if we assume prox-regular functions f; instead of the less restrictive
restricted prox-regular functions.

Proof We will show the lower bound (16) fori = 1, ..., p, which, along with Lemma 4
part 3 and Lemma 5, establishes the sufficient descent property P2.

We shall obtain the lower bound (16) in the backward orderi = p,(p — 1),..., 1. In
light of Lemmas 4, 5, and 6, each lower bound (16) for r; gives us ||A,~xf — Aixl?Lll —- 0
as k — oo. We will first show (16) for rj. Then, after we do the same for 1, ..., 741,
we will get ||ij§ - ij;.r|| — Ofor j = p,p—1,...,i 4+ 1, using which we will get
the lower bound (16) for the next r;. We must take this backward order since pl?‘ (see (13))
includes the terms ijf - ij;f forj=p,p—1,...,i+1.

Our proof for each i is divided into two cases. In Case 1, f;’s are restricted prox-regular
(cf. Definition 2), we will get (16) for r; by validating the condition (15) in Lemma 4 part
4 for f;. In Case 2, f;’s are piecewise linear (cf. Definition 1), we will show that (15) holds
for y; = 0 for k > kpy, and following the proof of Lemma 4 part 4, we directly get (16) with
vi =0.

Base step, take i = p.
Case 1) fp is restricted prox-regular. Ati = p, the inclusion (13) simplifies to

dy = —(Vpg(x™) + Alw") — BAT(BY* — By™) € of,(x)). (25)

By Lemma 6 part 3 and the Lipschitz continuity of Vg, there exists a constant M > M*
(independent of ) such that

IVpe(x™) + Afw™| <M — 1.
By Lemma 7, there exists k,, € N such that, for k > k,

BIAT(BY* — By")| < 1.
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Then, we apply the triangle inequality to (25) to obtain
5l < IVpgx™) + ATwT || + BIIAT (By* — By")|| < M.

Use this M to define Sy in Definition 2, which qualifies f), for (4) and thus validates the
assumption in Lemma 4 part 4, proving the lower bound (16) for r),. As already argued, we
get im0 |Apx% — Apx || =0.

Case 2): f;’s are piecewise linear (cf. Definition 1). From ||By — ByT|| - 0 and lwk —
wt|| — 0 (Lemma 7) and |[Vg(x*) — Vg(xT)| < (p + DMLge (Lemma 8). In light
of (25), d} € 0fp(x))), df € 3f,(xk¥?) such that [|d;} — di| < 2(p + VML, for all
sufﬁciently large k.

Note that €y > 0 can be arbitrarily small. Given df, € afp (x;) and d; € afp (xf,“’z),
when the following two properties both hold: (i) ||d; — dﬁ I < 2(p+ M Lgep and (ii)
||x;," - xf, | < Mey (Lemma 8 part 1), we can conclude that x;," and xfj belongs to the same
U,. Suppose x5 € Uj, and x& € U j,. Because of (ii), the polyhedron Uj, is adjacent to the
polyhedron sz or j1 = jo. If UJ1 and sz are adjacent (j; # j2)andaj = aj,, then we can
concatenate U j, and U j, together and all the following analysis carries through. If U ;, and
U j, are adjacent (ji # j») and a}, # aj,, then property (i) is only possible if at least one of
x,‘f, x¥ belongs to their intersection U ; aNU; ]2 so we can include both points in either U j,
or sz, again giving us j; = j. Since x;, xp € Uj and df, € 8fp(x;'), from the convexity
of the linear function, we have

Fo(p) = o) = (dhy, xjy —x;7) = 0,

which strengthens the inequality (15) for i = p with y, = 0. By following the proof for
Lemma 4 part 4, we get the lower bound (16) for ), with y,, = 0. As already argued, we get
limy o0 |Apxh — At = 0.
Inductive step, leti € {p —1, ..., 1} and make the inductive assumption: limy_, » || A jxf —
ij]ﬂl =0,j=p,...,i+ 1, which together with limy_ || By — By || = 0 (Lemma 7)
gives limy_, o ,oik = 0 (defined in (13)).

Case 1) f; is restricted prox-regular. From (13), we have

df = —(Vigtly, xF, 2L + ALw®) = Bpi € 0fi (6. (26)

Following a similar argument in the case i = p above, there exists k; € N such that, for
k > max{k,, kp—1, ..., k;}, we have

laf | < IVigh, x x50 + AL w™ | + Bllpf | < M.

Use this M to define Sy in Definition 2 for f; and thus validates the assumption in Lemma 4
part4 for f;. Therefore, we get the lower bound (16) for 7; and thus limy ||A,~xlgc — A,')c;r | =0.
Case 2): f;’s are piecewise linear (cf. Definition 1). The argument is the same as in the
base step for case 2, except at its beginning we must use dik in (26) instead of dﬁ in (25).
Therefore, we omit this part.
Finally, by combining r; > B/ =Ll 4ok 12 for i = 1, p. with
Lemmas 4 and 5, we establish the sufficient descent property P2. O

Lemma 10 (Subgradient bound property P3) Algorithm 1 satisfies Property P3.
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Proof Because f(x) = g(x) + Zf’zl fi(x;), we know

aLaxt. vt wh) = Lg|” v v + vt ot
Xy, wT) = ™ S VyLg, Vi Lg | (X7, yT, w™).
1 i=1

In order to prove the lemma, we only need to show that each block of d.Lg can be controlled
by some constant depending on . Therefore, it suffices to prove for s = 0, ..., p, there

. aLc
exists dy € 52 (xT, y*, w) such that

p
lds || < (Omax (As) B+LnM+0max (A5)C) (Z IAix} — Aixf |l + | ByT — By"n) .27
i=1

and
+ o+ ot Con+ k
IVwLp(x™, y™, wh) SEHBY — By"ll, (28)
IVy Lot y*, wh) < LyMIIBy*™ — By¥||. (29)
In order to prove (28), we have V,,Lg(x™, yT,wT) = AxT + Byt = %(w‘* — wk). By

Lemma 3, ||V, Lg(xt, yT, wh)| < %IIByJr — By*||. In order to prove (29), notice that

VyLg(xt, y*, wt) = BT (w — wk) and apply Lemma 3. In order to prove (27), observe
that fors =0, ..., p,

0Lp
dxg

= Vg D)+ 3fx)) + ATwt + AT (Ax™ + ByT) (30)
= Viglko, )+ 0f () + ATwh 4 pAT (Asd, + Ash 4 BYY) G

(X+, y+7 w+)

+ AT (wt — wh) + BAT <A>Sxis — Aogx + Byt — Byk)
+ Vigx™) — ng(x;, xis . (32)
For the parenthesized term in (31), the first order optimal condition for x;" yields
0 € Vygrty, xk ) + 0 () + ATwk 4 AT (Agsx; Ak Byk) .
Thus for s =0, ..., p, we can have d; as in (33),
dy = (AT (" — wh)
+BAT (A>xxjs —Aogxk Byt - Byk) + Vig(xh) = Vig(x,, xk )

oL
€ —ﬁ(

xtoyt wh). (33)
0X;

Note that forany s, xé‘ does not appearinany dy. w+ —w*, A_xF —A_xk Byt —ByF, and
Vog(xt) —Vyg(xd,, xk ) canall be bounded by (}F_ [ A;x;t — A,~x§‘|| + Byt — By |)).
Therefore, if we define the largest singular value of A to be omax (As), we have the bound
for dj:

14
lds | < (omax(As)B + LuM + 0max (A5)C) (Z lAix} — Aixfll + 1 ByT — Bykn) :

i=1
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That completes the proof. O

Proof (of Theorem 1). Lemmas 5, 9, and 10 establish the properties P1-P3. In order to show
P4, we first note that Lg (x"f, yk“‘, wk»“) is monotonic nonincreasing due to Lemma 9, which
implies the convergence of Lg (xks ykf, wks). Since Ly is lower semicontinuous (l.s.c.), we
have lim;_, o Lg (xFs | yhs whs) > Lg(x*, y*, w*). Because the only potentially discontinu-
ous terms in Lg are fy, ..., fp, we have

lim L5035, wh) — Lo, y* w*) ) limsup fi () = fi(x))-
§—>00 N §—>00
1
However, because xl{( * is the optimal solution for the sub-problem
ks o Lks=1 Cko—1
Do X, x Ly T

];‘i_l, yks=1 wk=1y Taking the limit over their difference, we have

wh—1), we know Lﬁ(xli"i+1,x;“,xi"i,yk~*'_1,w"»*‘_l) >

miny; Lg(x
Lg (xgi, X
lim sup,_, o, fi(xf *) — fi(x}) < 0. That completes the proof for P4. Theorem 1 follows
from Proposition 2. O

4 Discussion

4.1 Tightness of Assumptions

In this section, we demonstrate the tightness of the assumptions in Theorem 1 and compare
them with related recent works. We only focus on results that do not make assumptions on
the iterates themselves.

Hongetal. [24] uses VA (yk ) to bound w*. This inspired our analysis. They studied ADMM
for nonconvex consensus and sharing problem. Their formulation is

yeees

P
subject to Z Ajxi —y=0.

i=0
where £ is Lipschitz differentiable, A; has full column rank and f; is Lipschitz differentiable
or convex fori = 0, ..., p. Moreover, dom( f;) is required to be a closed bounded set for
i=0,...,p.

The boundedness of dom(f;) implies the assumption Al. The requirement of A; for
i =1,...,pand B = —I implies A2 and A3. Moreover, f(xo,...,Xp) = Zi fi(xi),
which clearly implies A4. h satisfies AS, too. This shows our theorem could fully cover their
case.

Wang et al. [51] studies the so-called Bregman ADMM and includes the standard ADMM
as a special case. The following formulation is considered:

P
rginimifve Z(; fitxi) +h(y)
im

0seesXp

p
subject to Z Ajxi + By = 0.
i=0
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By setting all the auxiliary functions in their algorithm to zero, their assumptions for the
standard ADMM reduce to

(a) B isinvertible.
(b) his Lipschitz differentiable and lower bounded. There exists By > 0 such that h — SoVh
is lower bounded.

© f= Zfzo fi(x;) where f;,i =0, ..., pis strongly convex.

It is easy to see that (a), (b) and (c) imply assumptions A1 and A3, (a) implies A2, (c) implies
A4 and (b) implies AS. Therefore, their assumptions are stronger than ours. We have much
more relaxed conditions on f, which can have a coupled Lipschitz differentiable term with
separable restricted prox-regular or piecewise linear parts. We also have a simpler assumption
on the boundedness without using 7 — Vh.

Li and Pong [32] studies ADMM and its proximal version for nonconvex objectives. Their

formulation is

minimize fy(xo) + h(y)
X0,y

subject to xg + By = 0.

Their assumptions for ADMM are

(1) fo is lower semi-continuous.

2) he C? with bounded Hessian matrix c;/ > VZh = ¢;1 where ¢3 > ¢ > 0.
(3) B is full row rank.

(4) h is coercive and fp is lower bounded.

The assumptions (3) and (4) imply our assumptions Al and A4, (3) implies A2 and A3, and
(2) implies AS. Our assumptions on / and the matrices A, B are more general.

In summary, our convergence conditions for ADMM on nonconvex problems are the most
general to the best of our knowledge. It is natural to ask whether our assumptions can be
further weakened. We will provide some examples to demonstrate that, while A1, A4 and A3
can probably be further weakened, A5 and A2 are essential in the convergence of nonconvex
ADMM and cannot be completely dropped in general. In [10], their divergence example is

minimize 0 (34a)
X1,X2,y
1 1 1 0
subjectto | 1 |x1+ |1 |x2+|2]|y=10]. (34b)
1 2 2 0

Another related example is shown in [32, Example 7].

minimize tg, (x1) + ts, (x2) (35a)

X1,X2,Y
subject to x; =y (35b)
X2 =y, (35¢)

where S; = {x = (x1,x2) | x2 = 0}, S2 = {(0,0), (2, 1), (2, —1)}. These two examples

satisfy A1 and A4—AS5 but fail to satisfy A2. Without A2, for come cases ADMM is incapable

to find a feasible point at all, let alone a stationary point. Therefore, A2 is indispensable.
To see the necessity of A5 (the smoothness of /1), consider another divergence example

minimize — |x| + |y| (36a)
x,y

subjectto x = y, x € [—1, 1]. (36b)
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For any B8 > 0, with the initial point O, yo, wd) = (—%, 0, —1), we get the sequence
(L yHFL 2y = (2,0,1) and (x%, y*, w) = (=3,0, 1) for k € N, which
diverges. This problem satisfies all the assumptions except A5, without which w* cannot be
controlled by y* anymore. Therefore, A5 is also indispensable.

Although the assumptions A2 and A5 seem essential for the convergence of ADMM,
other assumptions, especially the assumption A4, might be further relaxed. Moreover, our
result requires the y-block to be updated at last right before the update of multiplier. Further
studies could be carried out to study the case when a different order is used.

4.2 Primal Variables’ Update Order in ADMM

We discuss about the update order of {x; };_, and y in this subsection. Theorem 1 and Theorem
2 apply to the ADMM in which the primal variables xo, ..., x, are sequentially updated in
a fixed order. With minor changes to the proof, both theorems still hold for arbitrary update
orders of x, ..., xp, possibly different between iterations, as long as x¢ is always the first
and y is always the last primal variable to update, just before w. In particular, xp, ..., x,
could be updated using random scheme or greedy scheme, which may help avoid low-quality
local solutions. Recently, randomized ADMM is considered in papers such as [27,42,50].
[50] considered the randomly permuted ADMM for solving linear systems, and proved its
convergence in the expectation sense. However, in general, permutation including the last
block y could cause ADMM to diverge (A convex example can be found in [62]). Consider

minimize x(1+4 y)
x,yeR

subjectto x —y =0.

It is easy to check that, if we fix the update order to either x, y, w or y, x, w for all iterations,
Algorithm 1 converges. However, if we alternate between the two update orders, we obtain
(witha := 1/B) the diverging sequence (x 21, y2k+1 2k+ly — Qu(a—1), —, «—1) and
(x2k, yzk, w*) = (—a, 2a(x — 1), —a). Another divergent example when primal variables’
update order alternates is the following convex and nonsmooth problem:

minimize 2|x — 1| + |y| (37a)
x,y
subject to x = y. (37b)

4.3 Inexact Optimization of Subproblems

Note that all subproblems in Algorithm 1 should be solved exactly. This might restrict the
wide use of the algorithm in real applications. Thus, the convergence of the inexact version of
Algorithm 1 is discussed here. We extend the developed convergence results to the following
inexact version of Algorithm 1 under some additional assumptions. More specifically, we
assume that the sequence {x*, y*, w¥} generated by the inexact version of Algorithm I
satisfies

P1’ (Boundedness) {xk, yk, wk} is bounded, and Lg (xk, y", wk ) is lower bounded,;
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P2’ (Sufficient descent) there is a nonnegative sequence {1} and a constant C; > 0 such
that for all sufficiently large k, we have

Lok, y%, wh) — Lokt yoH! kel

P
> CL(IBOM = yO12 + ) A = xH1%) — e (38)

i=1

P3’ (subgradient bound) and there exists d“*! € 3.L5(xK+1, yk+1 wk+1) such that

P
12" < Co(IBGMH =y I+ D 1A+ = xHI) + me. (39)
i=1
When ), nx < oo, the convergence results in Theorem 1 still hold for this sequence. This
is because Proposition 2 still holds when the error is summable. However, when a specific
algorithm is applied to solve these subproblems inexactly, it might require some additional
conditions, and we leave this in the future work.

5 Applications

In this section, we apply the developed convergence results to several well-known applica-
tions. To the best of our knowledge, all the obtained convergence results are novel and cannot
be recovered from the previous literature.

(A) Statistical Learning

Statistical learning models often involve two terms in the objective function. The first term
is used to measure the fitting error. The second term is a regularizer to control the model
complexity. Generally speaking, it can be written as

p
minimize X;li (Ajx — b)) +r(x), (40)
=
where A; € R"™>*" b; € R™ and x € R”". Examples of the fitting measure /; include
least squares, logistic functions, and other smooth functions. The regularizers can be some
sparsity-inducing functions [2,14,54,63,65-67] such as MCP, SCAD, ¢, quasi-norms for
0 < g < 1. Take LASSO as an example,

1
minimize Elly — Ax||> + Allx]l;.
X

The first term ||y — Ax||? measures the difference between the linear model Ax and outcome
y. The second term ||x||; measures the sparsity of x.
In order to solve (40) using ADMM, we reformulate it as

p
minirr[l]ize r(x) + Zli(A,-Z,' —by),
X»{Zi},-=1 i=1

subjectto x =z;, Vi=1,..., p. 41)

Algorithm 2 gives the standard ADMM algorithm for this problem.
Based on Theorem 1, we have the following corollary.
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Algorithm 2 ADMM for (41)

Denote z = [z1; 225 - -+ s 2pl, W = [w; wo; -+ s wpl.

Initialize x°, zo, wo arbitrarily;

while stopping criterion not satisfied do

k
Xkl argmin, r(x) + g le:l(zf-( + % -0
fors=1,...,pdo
k
zlﬁl < argmin, Is(Aszs — bs) + g(Zs + % —xkHhZ

wi T = wk 4 BT - xk D,
end for
k< k+1;
end while
return xk.

Corollary 1 Letr(x) = ||x||Z =Y. |xil9, 0 < g < 1, SCAD, MCP, or any piecewise linear
function, if

i) (Coercivity) r(x) + Y, ;i (Aix + b;) is coercive;
ii) (Smoothness) Foreachi =1, ..., p, l; is Lipschitz differentiable.

then for sufficiently large B, the sequence (x*,z%, wK)generated by Algorithm 2 has limit
points and all of its limit points are stationary points of the augmented Lagrangian Lg.

Proof Rewrite the optimization to a standard form, we have

P
minimize 7 (x) + > li(Aizi — by), (42a)
x~{Zi},'):1 i=1
subjectto Ex + I,z = 0. (42b)
where E = —[I,;...;1,] € R"7*" I,, € R"W*" is the identity matrix, and z =
[z1;...;zp] € R, Fitting (42) to the standard form (7), there are two blocks (x, z) and

B=1,. f(x) =r(x)and h(z) = Y. l;(Ajzi — bi).

Now let us check A1-A5. Al holds because of i). A2 holds because B = I,,,. A5 holds
because of ii). A3 holds because E and I,, both have full column ranks. If 7 (x) is piecewise
linear, then A4 holds naturally. If r(x) is MCP

Mxl— %, if x| < y2

P, (x) £ s
e B A
or SCAD
Alx], if x| <A
2 2
0,.(x) 2 3 Alx| — 2”"2“‘%24 ifa < |x] <yA .
Ly + DAz, if x| > yA

we can verify that those functions are the maximum of a set of quadratic functions. Then by
[43, Example 2.9], we know they are prox-regular. Hence, it remains to verify A4(ii)a that
r(x) = >, |x;|4 is restricted prox-regular. When g = 1, this is trivial; when 0 < ¢ < 1, it
has been proved in Proposition 1. This verifies A4 and completes the proof. O
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(B) Minimization on Compact Manifolds
Compact manifolds and their projection operators such as spherical manifolds $"~!, Stiefel
manifolds (the set of p orthonormal vectors xi,...,x, € R", p < n) and Grassmann

manifolds (the set of subspaces in R” of dimension p) often arise in optimization. Some
recent studies and algorithms can be found in [31,36,58]. A simple example is:

minimize J(x),
xeRn
subjectto [ x||> = 1, (43)
More generally, let S be any compact set. We consider the problem
minimize J(x),
xeRn
subjectto x € S, (44)

which can be rewritten to the following form:

minimize t(s(x) + J(y), (45a)
X,y

subjectto x —y =0, (45b)

where ¢5(-) is the indicator function: t5(x) = 0if x € Sorocoif x ¢ S. Applying ADMM to
solve this problem, we get Algorithm 3.

Algorithm 3 ADMM for minimization on a compact set (45)

Initialize xo, yo, w0 arbitrarily;
while stopping criterion not satisfied do
. k
A Projg (58 — % );

. k
yk+l <= argmin,, J(y) + g”y — % — k1 HZ;

Wkt wk 4 gk T — kel
k<—k+1.

end while

return xk.

Based on Theorem 1, we have the following corollary.

Corollary 2 If J is Lipschitz differentiable, then for any sufficiently large B, the sequence
(x*, y*, w*) generated by Algorithm 3 has at least one limit point, and each limit point is a
stationary point of the augmented Lagrangian Lg.

Proof To show this corollary, we shall verify assumptions A1-AS.

The assumption A1 holds because the feasible set is a bounded set and J is lower bounded
on the feasible set. A2 and A3 hold because both A and B are identity matrices. A5 holds
because J is Lipschitz differentiable. A4 holds because ¢g is lower semi-continuous. O

@ Springer



J Sci Comput (2019) 78:29-63 53

(C) Smooth Optimization Over Complementarity Constraints

We consider the following optimization problem over complementarity constraints.
minimize h(x, y)
{x.y}
subjectto xTy =0,x >0,y >0, (46)

where h(x, y) is a smooth function with Lipschitz differentiable gradient. The considered
problem is a special case of the mathematical programming with equilibrium constraints
(MPEC) [11], and includes the linear complementarity problem (LCP) [13] as a special case.
In order to apply the ADMM algorithm to solve this problem, we introduce two auxiliary
variables x’, y’ € R" and define the complementarity set S £ {(x,y) : xTy = 0, x >
0, y > 0}. With these notations, problem (46) can be reformulated as follows

minimize 5(x’, ¥) + h(x, y)

{(x'.y".x,y}

subjectto x' —x =0, y —y =0, 47)
I
where t5(x’, y') denotes the indicator function of the set S. Furthermore, let xo = (); , ) and
the second block y = (; ) Then (47) becomes

minimize tg5(Xg) + A(y)
X0,y
subjectto x9 —y = 0. (48)

Corollary 3 Assume that h is Lipschitz differentiable and coercive over the complementarity
set, then for sufficiently large B, the sequence (X’é, vk, w¥) generated by Algorithm ADMM
applied to (48) has limit points and all of its limit points are stationary points of the augmented
Lagrangian Lg.

Proof In order to prove this corollary, we only need to verify assumptions A1-A5. A1 holds
for the coercivity of 4 over S and the specific form of tg. A2 is obvious due to in this case
A =Tand B = —I. A3 holds for both I and —I being full column rank. A4 can be satisfied
by setting fo = ts and g = 0. A5 holds due to the Lipschitz differentiability of 4. Thus,
according to Theorem 1, we complete the proof. O

(D) Matrix Decomposition

ADMM has also been applied to solve matrix related problems, such as sparse principle com-
ponent analysis (PCA) [25], matrix decomposition [48,53], matrix completion [7], matrix
recovery [41], non-negative matrix factorization [49,61] and background/foreground extrac-
tion [8,63].

In the following, we take the video surveillance image-flow problem as an example. A
video can be formulated as a matrix V where each column is a vectorized image of a video
frame. It can be generally decomposed into three parts, background, foreground, and noise.
The background has low rank since it does not move. The derivative of the foreground is
small because foreground (such as human beings, other moving objectives) moves relatively
slowly. The noise is generally assumed to be Gaussian and thus can be modeled via Frobenius
norm.
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More specifically, consider the following matrix decomposition model:

m—1
s 2
minimize p(X) + Zl 1Y = Yl + 1 Z1, (49)
1=
subjectto V=X+Y + Z, (50)

where X, Y, Z, V € R™™ Y; isthe ith column of Y, || - || ¢ is the Frobenius norm, and p(X)
is any lower bounded lower semi-continuous penalty function, for example, the Schatten-g
quasi-norm || X ||, (0 < g < 1):

1All, =Y of (4),

i=1
where o;(A) is the ith largest singular value of A.
The corresponding ADMM algorithm is given in Algorithm 4.

Algorithm 4 ADMM for (49)
Initialize Y 0, ZO, wo arbitrarily;
while stopping criteria not satisfied do
k+1 : B k k kgn2.
X < argminy p(X) + 51X +Y* +Z% =V + W*/BlF;
. 2
YH  argming 0 11Y; - Y5l + gnx"“ +Y+4+2zk—v +2W’</ﬁ|\p;
ZKHT — argming 1Z)3 + B X% 4 vk 4 2 — v 4 Wh/ B
Wk+] «— Wk +,3(Xk+1 4 yk+] + Zk-H —V);
k<—k+1;

end while
return Xk, Yk, VA

Corollary 4 For a sufficiently large B, the sequence (X*, Y* Z¥, W¥) generated by Algo-
rithm 4 has at least one limit point, and each limit point is a stationary point of the augmented
Lagrangian function Lg.

Proof Let us verify assumptions A1-AS5. The assumption A1 holds because of the coercivity

of || - | and || - |l A2 and A3 hold because all the coefficient matrices are identity matrices.
AS holds because | - ||% is Lipschitz differentiable. A4 holds because p is lower semi-
continuous. O

6 Conclusion

This paper studied the convergence of ADMM, in its multi-block and original cyclic update
form, for nonconvex and nonsmooth optimization. The objective can be certain nonconvex
and nonsmooth functions while the constraints are coupled linear equalities. Our results
theoretically demonstrate that ADMM, as a variant of ALM, may converge under weaker
conditions than ALM. While ALM generally requires the objective function to be smooth,
ADMM only requires it to have a smooth part 4(y) while the remaining part f(x) can be
coupled, nonconvex, and include separable nonsmooth functions and indicator functions of
constraint sets.
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Our results relax the previous assumptions (e.g., semi-convexity) and allow the nonconvex
functions such as ¢, quasi-norm (0 < g < 1), Schatten-g quasi-norm, SCAD, and others
that often appear in sparse optimization. They also allow nonconvex constraint sets such as
unit spheres, matrix manifolds, and complementarity constraints.

The underlying proof technique identifies an exclusion set where the sequence does not
enter after finitely many iterations. We also manage to have a very general first block xq.
We show that while the middle p blocks x1, ..., x,, can be updated in an arbitrary order for
different iterations, the first block xg should be updated at first and the last block y at last;
otherwise, the concerned iterates may diverge according to the existing example.

Our results can be applied to problems in matrix decomposition, sparse recovery, machine
learning, and optimization on compact smooth manifolds and lead to novel convergence
guarantees.
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Appendix

Proof of Proposition 1 The fact that convex functions and the C! regular functions are prox-
regular has been proved in the previous literature, for example, see [43]. Here we only prove
the second part of the proposition.

(1): For functions r(x) = >_; |x;|? where 0 < g < 1, the set of general subgradient of
r(-)is

ar(x)={d =I[dy;...;dy]|d; = q -sign(x)|x;|? " if x; # 0;d; e Rifx; =0}.

For any two positive constants C >0and M > 1, take y =max [ ‘W’Cii;Mc), q(1 — q)c‘f_2 ],
where .

c: %(%) =4 . The exclusion set Sy, contains the set {x| miny; xo |x;| < 3c}. For any point
z€B(0,C)/Syandy € B(O, C),if lz—y|| < c, thensupp(z) C supp(y) and [|zllo < lI¥ o,
where B(0, C) £ {x]||lx|| < C}, supp(z) denotes the index set of all non-zero elements of z
and ||z]|o denotes the cardinality of supp(z). Define

/ yi iesupp(z) .
”={o i g supp(c) " P

Then for any d € dr(z), the following line of proof holds,

(a)
Iyl = lzld —(d,y —2) = 1Y 11§ — 208 —(d, Yy —2)

®» ql—¢q) ,_
2—4—?—wqﬂk—ﬂw

© ql—q) .,
z———;—wqﬂh—ﬂﬁ (51)

where (a) holds for [[y[I3 = Iy’ + Ily — Y'lIZ by the definition of y’,
(b) holds because r(x) is twice differentiable along the line segment connecting z and
y/, and the second order derivative is no bigger than ¢(1 — ¢)c?2, and (c) holds because
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lz—yll = llz— ¥'|l. Whileif ||z — y|| > c, then for any d € 9r(z), we have

2nC4 +2MC
— -’ 62

Iyllg = llzllg —{d,y —z) = —=(@2nC? +-2MC) = —
Combining (51) and (52) yields the result.
(2): We are going to verify that Schatten-g quasi-norm || - ||,
Without loss of generality, suppose A € R"*" is a square matrix.
Suppose the singular value decomposition (SVD) of A is

B r_ [zl vl
A=UxXV! =[Uy, U] [0 0] [VzT , (53)

is restricted prox-regular.

where U, V € R"*" are orthogonal matrices, and ¥; € RX*K is diagonal whose diagonal
elements are 0; (A),i = 1, ..., K. Then the general subgradient of ||A||Z [55]is

A AIG = U\ DV +{U>I'V) | I is an arbitrary matrix},

where D € RX*X is a diagonal matrix whose ith diagonal element is d; = go; (A)4~ .
Now we are going to prove || - ||Z is restricted prox-regular, i.e., for any positive parameters

M, P > 0,thereexists y > Osuchthatforany |B|r < P,||Allp < P,A ¢ Sy ={A|VX €

AN, I1Xp > M},and T = Ui DV + Us 'V € 8||All, IIT | < M, we hope to show

Y
IWM—WN$%KB—MZ—?M—BM. (54)

Leteg = 3(M/q)!/ =D If | B — A|| > €, we have

IBI§ = 141§ — (T, B— A) = —n* P4 — M - |B — Al|r
> —(Mey ' +n*Pleg?)||A — B (55)
If|B — Allp < €, consider the decompositionof B = Up X8VI = B+ B, where B| =
Up ZJIB VBT, Z‘f is the diagonal matrix preserving elements of X8 bigger than %(M/q) AU
and B, = Up PV} where 2f = x5 — xf.
Define aset S’ £ {T € R™"|||T||z < P, ming,~0i(T) > €}. Let’s prove A, By € §'.
If ming, -0 0; (A) < (M/q)"/=V then for any X € d||Allf, X = UyDV] + U,V and

Xl = U DV | » = mingod ™" > M,
F 1 IlF Oq i
;>

which contradicts with the face that A ¢ Sps. As for By, because of |[A — Bl < €y and
ming, -0 0; (A) < (M/q)"/ 4=V using Weyl inequalities will we get By € S'.
Define the function F : §" C R**" — R"¥" for A = UlZJVlT, F(A) = U1DV1T,Where
D = diag(qo1 (A", ... qo1(A)17")

and (09-! = 0). Based on [18, Theorem 4.1] and the compactness of §’, F(A) is Lip-
schitz continuous in ', i.e., there exists L > 0, for any two matrices A,B € S,
|F(A) — F(B)||r < L||A — B| p. This implies

L
IBill§ = IA1G — (U1DV], B) — A) = —5 1B = Al (56)
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In addition, because ||U2TU3||F < ||B1 — Allp/€o and ||V2T Vel < IIB1 — Allp/€o0 (see
[33D),

M2
(U2 V), By — A) = (I U Up SV Va) = —e—anl — A% (57)
0

Furthermore, ||By|§ — (7. B2) = 0 and |B; —Allp < |B—Alr + |B—Bilr <
2||B — A|| g, together with (56) and (57) we have

IBlIG — 1AlG — (T, B — A) = IIBillg — |1 Allg — (T, Bi — A)+ | B2llg — (T, Ba)

L M ) 4M? 5
z—\7+t = JIBi—Allp 2 — | 2L+ — | 1B = Allf.
€0 €0

(58)

Combining (55) and (58), we finally prove (54) with appropriate y .

(3): We need to show that the indicator function tg of a p-dimensional compact C 2
manifold § is restricted prox-regular. First of all, by definition, the exclusion set Sy; of g is
empty for any M > 0. Since S is compact and C2, there are a series of C2 homeomorphisms
hy : RP — R", n e {l,...,m}and § > O such that for any x, there exist an n and an o,
satisfying x = h;,(ax) € S. Furthermore, for any ||y — x| < §, we can find an «,, satisfying
y= hn (O[y)-

Note that dtg(x) = Im(];,n (x))l, where ‘]hn is the Jacobian of h,. For any d € di5(x),
ldll = M and [lx — y|| <,

ts(y) —ts(x) = (d. y — x) = — (d. hy(ay) — hy(aty)
=—(d, hyay) — hylax) — Jp, (@y — ay))
> —|ld|| - ylloty — e ?
> — MyC?|x — y|*, (59)

where y and C are the Lipschitz constants of Vi, and h,; ! respectively. Forany ||y —x|| > &,

ts(y) —ts(x) _(dvy_x>:_(dsy_x)
== lldll - Iy — xIl

M
z—EWy—w% (60)

where M is the maximum of ||d|| over dts(x). Combining (59) and (60) shows that ¢g is
restricted prox-regular. O

Proof (Lemma 1) By the definitions of H in A3(a) and yk ,we have yk = H(B yk ). Therefore,

Ikt — y*2|| = ||[H(By*") — H(By*?)|| < M| By* — By*2|. Similarly, by the optimality
of x¥, we have x¥ = F;(A;xk). Therefore, [x" — x| = |[Fi(Aixf) — F(Ax)| <
M Aixf — Aix! . a)

Proof (Lemma 2) Let us first show that the y-subproblem is well defined. To begin with,
we will show that (y) is lower bounded by a quadratic function of By:
LhM

: 2
Byl~.
S—IByl

h(y) = h(H(0)) — (M| VR(HO)I) - | Byl —
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By A3, we know &(y) is lower bounded by h(H (BY)):
h(y) = h(H(BY)).
Because of AS and A3, h(H (By)) is lower bounded by a quadratic function of By:

L
h(H(BY)) = h(H(0)) +(VAh(H(0)), H(By) — H(0)) — ThllH(By) —HOI* (61
72

LyM 5
= h(H () = [IVAR(HODI| - M - | Byl = ——— I BYl| (62)

Therefore A (y) is also bounded by the quadratic function:

h(y) =z h(H(0)) = [[VR(H(O)|| - M - || By

Recall that y-subproblem is to minimize the Lagrangian function w.r.t. y, by neglecting other
constants, it is equivalent to minimize:
. B
argmin P(y) := h(y) + (w* + BAXT, By) + E||By||2. (63)
Because /(y) is lower bounded by —LhTW ||By||2, when g > L,M, P(y) — ooas || By|| —
oo. This shows that y-subproblem is coercive with respect to By. Because P(y) is lower
semi-continuous and argmin 4 (y) s.t. By = u has a unique solution for each u, the minimal
point of P (y) must exist and the y-subproblem is well defined.
As for the x;-subproblem, i =0, ..., p, ignoring the constants yields

: + ko k ok . + k
argmin Lg(x7;, x;, x2;, y', w") = argmin f(x2;, x;, x_;

éngw +Asixt £ ALxk, 4 A+ BYP
(64)
=argmin f(x0;, x;, x5) 4+ h(u) — h(u)
1
+ gnBu - By* - Ewknz. (65)

whereu = H(—A_; x A>,x — A;x;). The first two terms are coercive bounded because

A<,x + A>,x + A ;X;i + Bu = 0 and Al. The third and fourth terms are lower bounded
because his Llpschltz differentiable. Because the function is lower semi-continuous, all the
subproblems are well defined. O

Proof (Proposition 1) Define the augmented Lagrangian function to be

B
Lgx,y,w) =x> =y +wx —y) + Sl = yI2

It is clear that when B = 0, Lg is not lower bounded for any w. We are going to show that

for any B > 2, the duality gap is not zero.

inf sup Lg(x,y, w) > sup mf Eﬁ(x, y, w).
xe[—1,1],yeR R weR X€[—1,1],

On one hand, because sup,,cgr Lg(x, y, w) = +0owhenx # yandsup,,cg Lg(x,y, w) =0
when x = y, we have

inf sup Lg(x,y,w) =0.
xe[—1,1],yeR R
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On the other hand, letr = x — y,

sup inf Rﬁﬁ(x, y,w)=sup inf  t(Q2x —1t)+ wt + gtz

weR X€[—1,1],ye weR x€[—1,1],teR
=sup inf (w+2x)+ F=2p (66)
weR X€[—1,11,7eR 2
, (w +2x)? max{(w — 2)%, (w + 2)%} 2
=sup inf ———— = sup — =— . (67
werX€l-1,11  2(B —2) weR 2(B—2) B—2

This shows the duality gap is not zero (but it goes to 0 as 8 tends to 00).

Then let us show that ALM does not converge if ﬁk is bounded, i.e., there exists 8 > 0
such that X < B for any k € N. Without loss of generality, we assume that % equals to the
constant § for all k € N. This will not affect the proof. ALM consists of two steps

1) (kL yktly = argmin, ,Lg(x, y, wh),
2) wk+l — wk + .L.(xk—H _ yk+1)_

Since (x¥1 — yk+1) € 9y (wk) where ¥ (w) = inf, y Lg(x, y, w), and we already know

~ max((w — 2)2, (w +2)?)

)

inf Lg(x,y, w) =
X,y

2(B—2)
we have
0= k—% ifwk >0

A= gut + 5 ifwt <0

Note that when w¥ = 0, the optimization probleminf, , L(x, y, 0) has two distinct minimal
points which lead to two different values. This shows no matter how small 7 is, w* will
oscillate around 0 and never converge.

However, although the duality gap is not zero, ADMM still converges in this case. There
are two ways to prove it. The first way is to check all the conditions in Theorem 1. Another
way is to check the iterates directly. The ADMM iterates are

k k
2 = max (—l,min(l, LA i))) RN R (D,
B+2 B B—=2 B
wk+1 — wk 4 ﬂ(xk-‘rl _ yk+l)_ (68)
The second equality shows that w* = —2y¥, substituting it into the first and second equalities,
we have
|
1 = max{—1, min{1, y}}, <! = s (ﬂxk‘H - 2yk> : (69)

Here |y*t!] < % + ﬁwk |. Thus after finite iterations, |y*| < 2 (assume B > 4). If

[y¥| < 1, the ADMM sequence converges obviously. If |y¥| > 1, without loss of generality,
we could assume 2 > yf > 1. Then x¥*1 = 1. It means 0 < y**! < 1, so the ADMM
sequence converges. Thus, we know for any initial point y° and w®, ADMM converges. O
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Proof (Theorem 2) Similar to the proof of Theorem 1, we only need to verify P1-P4 in
Proposition 2. Proof of P2: Similar to Lemmas 4 and 5, we have

E,g(xk, yk7 U)k) _ Eﬁ(xk-‘rl k+1 wk+1)

1 B—
> —Enwk w2+ Z M aixk — a2
B—L
+ %nBy" — ByM)2, (70)
Since BT wk = —d,¢ (x, y¥) for any k € N, we have

P
lwk —w < C1Lg (Z e — x4 flyk = ! ||) :

i=0

where C; = omin(B), omin(B) is the smallest positive singular value of B, and L is the
Lipschitz constant for ¢. Therefore, we have

Eﬂ(xk, yk’ wk) _ Eﬁ(xk-‘rl, yk+l’ wk+1)

B—LyM CLgM )\ <
> ( = - /;’ DAk — A
i=0

B—LsM CiLyM
+< eaini el | LAy Sl (7D

When 8 > max{1, LsM + 2C1LsM}, P2 holds.

Proof of P1: First of all, we have already shown Lg (xk, y*, wk) > Lg (xkFHL) phtl ktly
which means Lg (x¥, yk, w¥) decreases monotonically. There exists y’ such that Ax* + By’ =
0and y’ = H(BY'). In order to show Lg(x*, y*, w*) is lower bounded, we apply A1-A3 to
get

ﬂ 14
L,y wh) = ¢,y + (w ZAx + By )+ DI Y A+ BYSI?

B
= o3 +{dy, ' =)+ SIBY = BYIP = 0,y
B & 2
+ 1D A+ ByIIP = oo, (72)
i=0

for some d§ € 8y¢>(xk, yk). This shows that Lg (xk, yk, w¥) is lower bounded. If we view
(72) from the opposite direction, it can be observed that

ﬁ P
PO+ LI Y A+ BY P

i=1

is upper bounded by Lg (x2, y0, w9). Then Al ensures that {x, y*} is bounded. Therefore,
w* is bounded too.
Proof of P3, P4: This part is trivial as ¢ is Lipschitz differentiable. Hence we omit it.
O
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