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In this paper, we develop algorithms to overcome the curse of dimensionality in non-
convex state-dependent Hamilton-Jacobi partial differential equations (HJ PDEs) arising 
from optimal control and differential game problems. The subproblems are independent 
and they can be implemented in an embarrassingly parallel fashion. This is ideal for 
perfect scaling in parallel computing. The algorithm is proposed to overcome the curse 
of dimensionality [1,2] when solving HJ PDE. The major contribution of the paper is to 
change either the solving of a PDE problem or an optimization problem over a space of 
curves to an optimization problem of a single vector, which goes beyond the work of [40]. 
We extend the method in [7,9,15], and conjecture a (Lax-type) minimization principle to 
solve state-dependent HJ PDE when the Hamiltonian is convex, as well as a (Hopf-type) 
maximization principle to solve state-dependent HJ PDE when the Hamiltonian is non-
convex, as a generalization of the well-known Hopf formula in [18,25,50]. We showed 
the validity of the formula under restricted assumption for the sake of completeness, 
and would like to bring our readers to [62] which validates our conjectures in a more 
general setting. We conjectured the weakest assumption of our formula to hold is a 
pseudoconvexity assumption similar to one stated in [50]. Our method is expected to have 
application in control theory, differential game problems and elsewhere.

© 2019 Published by Elsevier Inc.

1. Introduction

Hamilton-Jacobi-Isaacs partial differential equations (HJ PDE) are crucial in analyzing continuous/differential dynamic 
games, control theory problems, and dynamical systems coming from the physical world, e.g. [20]. An important application 
is to compute the evolution of geometric objects [42], which was first used for reachability problems in [33,34], to our 
knowledge.

Numerical solutions to HJ PDE have attracted a lot of attention. Most of the methods involve the introduction of a grid 
and a finite difference discretization of the Hamiltonian. Some of these well-known methods using discretization include 
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ENO/WENO-type methods [41] and Dijkstra-type [16] methods such as fast marching [59] and fast sweeping [58]. However, 
with their discretization nature, these numerical approaches of HJ PDE suffer from poor scaling with respect to dimension 
d, hence rendering them impossible to be applied to problems in high dimensions.

Research has therefore been conducted by several groups in search of possible algorithms that can scale reasonably 
with dimension. Some new algorithms are introduced in e.g. [14,27,28]. In [7,9,15], the authors proposed a causality-free 
method for solving possibly non-convex and time dependent HJ PDE based on the generalized Hopf-Lax formula. Using the 
Hopf-Lax formula, the PDE becomes decoupled and the solution at each point can be effectively calculated by d-dimensional 
minimization, with d the space dimension.

In this work, we propose to extend the method in [7,9,15]. The major contribution of the paper is to change either the 
solving of a PDE problem or an optimization problem over a space of curves to an optimization problem of a single vector. 
We conjecture the (Lax-type) minimization principle to solve state-dependent HJ PDE when the Hamiltonian is convex. We 
also conjecture a (Hopf-type) maximization principle to solve state-dependent HJ PDE when the Hamiltonian is non-convex
but when the initial data is convex. In particular the conjectured (Hopf-type) maximization principle is a generalization of 
the well-known Hopf formula in [18,25,50]. We validated our conjectures under restricted assumptions and refers to [62]
for the validation of our formula under a less restricted setting. The optimization problems are of the same dimension as 
the dimensions of the HJ PDE. A coordinate descent method is suggested for the minimization procedure in the generalized 
Lax/Hopf formula, and numerical differentiation is used to compute the derivatives. This method is preferable since the 
evaluation of the function value itself requires some computational effort, especially when we handle higher dimensional 
optimization problems. The use of multiple initial guesses is suggested to overcome possibly multiple local extrema since 
the optimization process is no longer convex. A simple numerical ODE solver is used to compute the bi-characteristics in the 
Hamiltonian system. A numerical quadrature rule is used for computing integrals with respect to time inside the minimiza-
tion or maximization principles. Coordinate descent is also used and a numerical differentiation is performed to minimize 
the number of calculation procedures in each iteration steps. In this paper we illustrate the practicality of our method us-
ing the simplest ODE solvers, quadrature rules and finite difference methods, namely the forward Euler, rectangular rule, 
and forward difference methods. Nonetheless, all these components of the optimization can be improved by using better 
numerical methods, e.g. pseudo-spectral methods for ODE, Gauss-Lobatto quadrature rules, etc. These choices, together with 
choosing an appropriate mesh-size in time, minimize errors effectively. Our method does not use a mesh in space, and solu-
tions can be computed at each point (x, t) in a totally decoupled and embarrassingly parallel manner. Moreover, the solution 
to the HJ PDE is evaluated at each point (x, t) by coordinate minimization described by the minimization or maximization 
principles at that point.

As for high dimensional control, we would like to compare our work with [40], which is concerned with discrete ap-
proximations of a particular set of control, namely the discrete linear-convex control problems involving a quadratic control. 
In the paper, both the final parameter v as well as the whole curve representing controls are unknowns. The major contri-
bution of our paper are to remove the optimization over the control (getting the HJ PDE as in [7,9,15]), as well as extending 
our method in [7,9,15] to a much more general setting, i.e. differential games/nonconvex problems and the Hamilton-Jacobi 
limit. Also, our algorithm is faster comparing with [40] even at the discrete level because we remove the optimization over 
the control. We have also proposed both the Lax and the Hopf version, while [40] focuses only on the analogue of a Lax 
type formula. We would like to remark that by considering and working on the dual, the algorithm can be made much 
faster in many cases, especially when the initial data is convex.

Our formal statements of the conjectures that are used for computation will be given in section 3. However, before we 
give an exact formulation of our conjectures, let us briefly provide our main conjectures. In what follows, we denote p as 
the co-state variable and H(x, p, t) as the Hamiltonian, as well as ϕ(x, t) as the value function satisfying (2.1)–(2.2). We 
also denote (γ (t), p(t)) as the bi-characteristic curve in the phase space that shall satisfy the constraints in the following 
formulae. Then we conjecture the followings:

1. Minimization principle (Lax Formula) Assume H(x, p, t) ∈ C2 and is convex w.r.t. p, and (A5) is satisfied, then there 
exists t0 such that the viscosity solution to (2.1)–(2.2) can be represented as for t ≤ t0 that:

ϕ(x, t) = min
v∈Rd

{
g(γ (x, v,0)) +

t∫
0

{〈p(x, v, s), ∂p H(γ (x, v, s), p(x, v, s), s)〉 − H(γ (x, v, s), p(x, v, s), s)
}

ds :

γ̇ (x, v, s) = ∂p H(γ (x, v, s), p(x, v, s), s),
ṗ(x, v, s) = −∂x H(γ (x, v, s), p(x, v, s), s),

γ (x, v, t) = x, p(x, v, t) = v

}
(1.1)

and its discrete approximation given a small δ,

ϕ(x, t) ≈ min
v∈Rd

{
g(x0(x, v)) + δ

N−1∑ {〈pn(x, v), ∂p H(xn(x, v), pn(x, v), tn)〉 − H(xn(x, v), pn(x, v), tn)
} :
n=1
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xn+1(x, v) − xn(x, v) = δ∂p H(xn(x, v), pn(x, v), tn),

pn−1(x, v) − pn(x, v) = δ∂x H(xn(x, v), pn(x, v), tn),

xN = x, pN = v

}

We would like to remark that the bi-characteristics (γ (x, v, ·), p(x, v, ·)) depend on the two initial conditions x and v , 
and this dependence is emphasized using notations that include the two independent variables.

2. Maximization principle (Hopf Formula) Assume H(x, p, t) ∈ C2 and g(p) ∈ C2 is convex w.r.t. p that satisfies (A5). 
Assume the pseudoconvex condition stated in Conjecture 3.12 holds, then there exists t0 such that the viscosity solution 
to (2.1)–(2.2) can be represented as, for t < t0, that:

ϕ(x, t)

= max
v∈Rd

{
〈x, v〉 − g∗(p(x, v,0)) −

t∫
0

{
H(γ (x, v, s), p(x, v, s), s) − 〈∂x H(γ (x, v, s), p(x, v, s), s), γ (x, v, s)〉

}
ds:

γ̇ (x, v, s) = ∂p H(γ (x, v, s), p(x, v, s), s),
ṗ(x, v, s) = −∂x H(γ (x, v, s), p(x, v, s), s),

γ (x, v, t) = x, p(x, v, t) = v

}
(1.2)

and its discrete approximation given a small δ

ϕ(x, t)

≈ max
v∈Rd

{
〈xN , v N〉 − g∗(p1(x, v)) − δ

N∑
n=1

H(xn(x, v), pn(x, v), tn) + δ

N−1∑
n=1

〈xn(x, v), ∂x H(xn(x, v), pn(x, v), tn)〉 :

xn(x, v) − xn−1(x, v) = δ∂p H(xn(x, v), pn(x, v), tn),

pn(x, v) − pn+1(x, v) = δ∂x H(xn(x, v), pn(x, v), tn),

xN = x, pN = v

}

and in both cases the argument v attaining the minimum or the maximum in the respective formula is ∂xϕ(x, t) when ϕ is 
smooth at (x, t). These are the key conjectures from a practical point of view. When H(x, p, t) is non-smooth (e.g. in the case 
when H(x, p, t) is homogeneous of degree 1 w.r.t. p), more general forms of the respective conjectures are also available. 
We must emphasize that these modifications of the formulas are necessary when H is non-smooth or otherwise some 
part of sub-gradient flow will be missed and the formula will be incorrect. We notice that, in particular, our conjectured 
(Hopf-type) maximization principle is a generalization of the well-known Hopf formula in [18,25,50].

Our approach of using the minimization or maximization principle goes between the indirect method (Pontryagin’s max-
imum principle) and the direct method (direct optimization over the spaces of curves) and is optimal for computational 
efficiency. This way we are able to minimize the number of variables to be optimized; since a discretization of curve needs 
a lot of variables, meanwhile, we keep a variable and the functional to maintain a descent algorithm that guarantee con-
vergence to a local minimum. The correctness of the computed limit (i.e. if it is a global minimum) can be checked by the 
condition p(0) ∈ ∂ g(γ (0)).

The rest of our paper is organized as follows: in subsection 2.1 we introduce the general class of HJ-PDE that we are 
interested in, and then we briefly explain the connection between HJ-PDE and differential games subsection 2.2. Then in 
section 3, first in subsection 3.2, we showed the formula are true in a restricted set of assumptions; and then we discuss the 
major formulae that we use in our work: the conjectured minimization principle (Lax formulation) in subsection 3.3 and the 
conjectured maximization principle (Hopf formulation) in subsection 3.4. We then go on to explain briefly our numerical 
techniques in section 4 and the certificate of correctness. Numerical examples are given in section 5.

We would like to bring the readers to notice that after a previous version of our paper in arXiv is out, [62] showed that 
our conjectures hold in a more general setting than we did. However for the sake of completeness, we keep the proof with 
restricted assumptions, and we refer our readers to the more general case shown in [62].

2. Review of Hamilton-Jacobi equations and differential games

2.1. Hamilton-Jacobi equations

In this work, we are concerned with an approximation scheme for solving the following HJ PDE:

∂

∂t
ϕ(x, t) + H(x,∇xϕ(x, t), t) = 0 in R

d × (0,∞) , (2.1)

where H : Rd × R
d × R → R is a continuous Hamiltonian function bounded from below by an affine function, ∂

∂t ϕ and 
∇xϕ respectively denote the partial derivatives with respect to t and the gradient vector with respect to x of the function 
ϕ :Rd × (0, ∞) → R. We are also given the initial data
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ϕ(x,0) = g(x) in R
d . (2.2)

We aim to compute the viscosity solution [12,13] at a given point x ∈ R
d and time t ∈ (0, ∞).

Viscosity solution to (2.1)–(2.2) is explicitly given by the Hopf-Lax formulae when H is x independent, since the integral 
curves of the Hamiltonian vector field (i.e., bi-characteristics in the phase space) are straight lines when projected to x-space. 
In general, when H is x-dependent, we have shown in section 3.2 that, under restricted assumptions, a minimization 
or maximization principle approximates the solution to the HJ PDE. They are formulated using a KKT condition which 
gives bi-characteristics in the phase (i.e. follow the flow along the Hamiltonian vector field generated by H). We then 
postulate in section 3 that the minimization and maximization principles may hold true for more general cases. In [62]
the authors verified our main conjectures under a more relaxed set assumptions using the notions of minimax, in both the 
Hamilton-Jacobi-Ballman situation and in some special cases of Hamilton-Jacobi-Issac situation (i.e. when the Hamiltonian is 
non-convex). This is a first and monumental work which suggests the validity of our conjecture in a more general situation.

In fact, another closely-related theory, namely the minimax viscosity solution, is introduced in [32,54,55], and connec-
tions are made to control problems and differential games can be found in [30,31,53,56]. The theory goes in parallel with 
the definition and theory of viscosity solution [20] coming from differential game, and in the case with convex Hamiltonian, 
they always coincide. A general notion of minimax viscosity solution (with non-convex but smooth Hamiltonian) helps to 
recast the solution using a formulation that involves patching the graph of multi-valued geometric solutions in a correct 
manner, e.g. in [6,5]. In the convex case, under further assumption, the solution can be formulated as a mini-max saddle 
point problem of a functional over the spaces of curves [5]. With convex Hamiltonian, the minimax solution is actually also 
known as the principle of least action, e.g. [5,48]. A slightly different but very similar direction, which uses Wentzell-Freidlin 
theory and construct minimum action methods, are also developed, as in e.g. [17,22,23,60]. However, it is known that the 
general formulation of minimax solution coincide with the viscosity solution only if the dynamically programming principle 
(i.e. the semigroup property) is satisfied for the minimax solution [4,61]. In fact, in the work [61], the author shows further 
that the viscosity solution can be constructed by a limiting sequence of minimax solutions, but such a limiting process may 
defy the purpose of formulating the solution of the viscosity solution as a calculable process in the form of an optimization. 
Besides, in full generality e.g. in [6,5] the generating function is assumed to be quadratic at infinity and they are described 
using deformation retract and relative cohomology (in the spirit of Morse theory), and this may bring difficulty for compu-
tational purpose. For more exposition of the minimax solution and development of this relationship with control problem, 
we refer the readers to [62].

On the other hand, there is a well-known notion of Pontryagin’s maximum principle [45] giving us an optimality condi-
tion for the control. In particular, work e.g. in [10] links the maximum principle and dynamic programming, which discussed 
in the non-smooth case when will the costate variable coincide with a partial generalized gradient of the value function (cf. 
[10]) for a clear definition. However the optimality condition has a final condition for the state variable and an initial con-
dition for the co-state variable, We hope to avoid forward-backward iteration to compute for an optimal. The motivation of 
our conjecture over this KKT condition is to keep a Lyapunov functional such that a numerical algorithm can minimize, and 
therefore guarantee descent of a functional and convergence of a subsequence of an algorithm even with more pathological
behaviors of H and g , e.g. non-convexity, etc.

The purpose of our conjecture is to find an appropriate generalization of Hopf formula such that it still involves a d
dimensional optimization problem, thus one may apply a good optimization algorithm for computing the viscosity solution. 
We are not aiming at full generality; as one will need more sophisticated mathematical language while the resulting for-
mulation may not be easy for computational purpose. On the other hand, we would also prefer to obtain generality that is 
sensible and not restricted to a restricted class of Hamiltonian H(x, p, t) (convex w.r.t. p, concave w.r.t. x and satisfying a 
finite concavity-convexity assumption, cf. Assumptions (A) and Theorem 2.3 in [48]) (see also Theorem 4.8 in [49]). Since 
it is unclear how far such conditions and notions can be generalized as well as remained computable, we only show in a 
restricted case that our formulas hold in subsection 3.2. We leave a more general version as a conjecture.

2.2. Differential games and its connection with non-convex Hamilton-Jacobi equations

In this subsection, we give a brief introduction to the specific optimal control and differential game problems we are 
considering, and a brief explanation as to how we recast them as problems of solving HJ PDE’s. We follow discussions in 
[7,9,15,20], see also [18], about optimal control and also for differential games, and their links with HJ PDE.

To start with, we first consider two convex compact sets C and D , in which control parameters lie. Then let 
us denote A = {a : [t, T ] → C : a is measurable}, which is referred to as the admissible set of Player I; and B =
{b : [t, T ] → D : b is measurable}, which is referred to as the admissible set of Player II. We call the measurable functions 
a : [t, T ] → C in the set A and the function b : [t, T ] → D in the set B as controls performed by Players I and II respectively.

We start with a system of differential equations given as follows. Fix 0 ≤ t < T , x ∈R
d . We consider{

dx
ds (s) = f (s, x(s),a(s),b(s)) t ≤ s ≤ T ,

x(t) = x .
(2.3)

We assume that the function

f : [0, T ] ×R
d × A × B →R

m



380 Y.T. Chow et al. / Journal of Computational Physics 387 (2019) 376–409
is uniformly continuous and{
| f (t, x,a,b)| ≤ C1

| f (t, x,a,b) − f (t, y,a,b)| ≤ C1|x − y|,
for some constant C1 and for all 0 ≤ t ≤ T , x, y ∈R

m , a ∈ A, b ∈ B . The unique solution to (2.3) is called the response of the 
controls a(·), b(·). Then we introduce the payoff functional for a given pair of (x, t):

P (a,b) := Pt,x(a(·),b(·)) :=
T∫

t

h(s, x(s),a(s),b(s))ds + g(x(T )),

where g : Rd → R satisfies{
|g(x)| ≤ C2

|g(x) − g(y)| ≤ C2|x − y|,
and h satisfies{

|h(t, x,a,b)| ≤ C3

|h(t, x,a,b) − h(t, y,a,b)| ≤ C3|x − y|,
for some constants C2, C3 and all 0 ≤ t ≤ T , x, y ∈R

m , a ∈ A, b ∈ B . In a differential game, the goal of player I is to maximize 
the functional P by choosing his control a whereas that of player II is to minimize P by choosing his control b.

Now we are ready to define the lower and upper values of the differential game, based on the notation introduced above. 
We first define the two sets containing the respective controls of players I and II:

M(t) := {a : [t, T ] → A : a is measurable},
N(t) := {b : [t, T ] → B : a is measurable}.

Define a strategy for player I as the map

α : N(t) → M(t)

for each t ≤ s ≤ T and b, ̂b ∈ B such that

b(τ ) = b̂(τ ) for a.e. t ≤ τ ≤ s ⇒ α[b](τ ) = α[b̂](τ ) for a.e. t ≤ τ ≤ s.

Therefore a strategy for player I α[b] is the control of player I given that of player II as b. Similarly, let us define a strategy 
for player II as

β : M(t) → N(t)

for each t ≤ s ≤ T and a, ̂a ∈ A such that

a(τ ) = â(τ ) for a.e. t ≤ τ ≤ s ⇒ β[a](τ ) = β[â](τ ) for a.e. t ≤ τ ≤ s.

Again a strategy for player II β[a] is the control of player II given that of player I as a.
Now let 	(t) denote the set of all strategies for I and 
(t) for II beginning at time t . We are well equipped to define the 

upper and lower values of the differential game. The lower value V (x, t) is defined as

V (x, t) := inf
β∈
(t)

sup
a∈M(t)

Pt,x(a, β[a])

:= inf
β∈
(t)

sup
a∈M(t)

⎧⎨
⎩

T∫
t

h(s, x(s),a(s),β[a](s))ds + g(x(T ))

⎫⎬
⎭ ,

where x(·) solves (2.3) for a given pair of (x, t). Likewise, the upper value U (x, t) is defined as

U (x, t) := sup
α∈	(t)

inf
b∈N(t)

Pt,x(α[b],b)

:= sup
α∈	(t)

inf
b∈N(t)

⎧⎨
⎩

T∫
t

h(s, x(s),α[b](s),b(s))ds + g(x(T ))

⎫⎬
⎭ ,

where x(·) again solves (2.3) for a given pair of (x, t).
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In fact, derived from dynamic programming optimality conditions in [20], the lower and upper values V and U are the 
viscosity solutions of a certain possibly nonconvex HJ PDE. For the sake of exposition, we first define the following two 
Hamiltonians:

H̃+(x, p, t) = max
b∈B

min
a∈A

{−〈 f (t, x,a,b), p〉 − h(t, x,a,b)},
H̃−(x, p, t) = min

a∈A
max
b∈B

{−〈 f (t, x,a,b), p〉 − h(t, x,a,b)}.

A very important case of this class of Hamiltonian is when H̃±(t, x, p) are homogeneous of degree 1, which is highlighted 
in this work. In fact, in the case where

f (t, x,a,b) = a − b

h(t, x,a,b) = −Ic1(x,t)A(x,t)(a) + Ic2(x,t)B(x,t)(b),

where I� is the indicator functions of the sets �, i.e.

I�(x) =
{

0 if x ∈ �

∞ if x /∈ �

and A(x, t) and B(x, t) are balanced, then

H̃+(x, p, t) = max
b∈B

min
a∈A

{〈b − a, p〉 + Ic1(x,t)A(x,t)(a) − Ic2(x,t)B(x,t)(b)}
= max

b∈c2(x,t)B(x,t)
min

a∈c1(x,t)A(x,t)
{〈b − a, p〉}

= max
[c2(x,t)]−1b∈B(x,t)

min
[c1(x,t)]−1a∈A(x,t)

{〈b − a, p〉}
= max

b∈B(x,t)
min

a∈A(x,t)
{〈c2(x, t)b − c1(x, t)a, p〉},

H̃−(x, p, t) = min
a∈A

max
b∈B

{〈b − a, p〉 + Ic1(x,t)A(x,t)(a) − Ic2(x,t)B(x,t)(b)}
= min

a∈c1(x,t)A(x,t)
max

b∈c2(x,t)B(x,t)
{〈b − a, p〉}

= min
[c1(x,t)]−1a∈A(x,t)

max
[c2(x,t)]−1b∈B(x,t)

{〈b − a, p〉}
= min

a∈A(x,t)
max

b∈B(x,t)
{〈c2(x, t)b − c1(x, t)a, p〉},

thus it holds that H̃+ and H̃− coincide, as well as the following relationship:

H̃±(x, p, t) = max
b∈B(x,t)

min
a∈A(x,t)

{c1(x, t)〈a, p〉 − c2(x, t)〈b, p〉}
= c1(x, t) min

a∈A(x,t)
{〈a, p〉} − c2(x, t) max

b∈B(x,t)
{〈b, p〉}

= −c1(x, t)I∗
A(x,t)(p) + c2(x, t)I∗

B(x,t)(p).

In this case, H±(x, p, t) can be written as a difference of two positively homogeneous (of degree 1) Hamiltonians 
�1(x, ·, t), �2(x, ·, t), namely,

H̃±(x, p, t) = −c1(x, t)�1(x, p, t) + c2(x, t)�2(x, p, t)

where �1(x, ·, t) and �2(x, ·, t) have their respective Wulff sets as A(x, t) and B(x, t) (see [21,24,43] for more details of the 
Wulff set).

Now, for a general pair of H̃±(x, p, t), we have the following well-known theorem:

Theorem 2.1. [20] The function U is the viscosity solution to the HJ PDE :{
∂
∂t U − H̃+(x,∇xU , t) = 0 on R

d × (−∞, T ),

U (x, T ) = g(x) on R
d.

Similarly, the function V is the viscosity solution to the HJ PDE:
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{
∂
∂t V − H̃−(x,∇x V , t) = 0 on R

d × (−∞, T ),

V (x, T ) = g(x) on R
d.

It is worth mentioning again that, in a general setting where h is possibly nonconvex, the two Hamiltonians H̃+(x, p, t)
and H̃−(x, p, t) may not coincide. But, when they do, there is the following corollary:

Corollary 2.2. [20] If

H̃+(x, p, t) = H̃−(x, p, t) on [t, T ] ×R
d ×R

d,

then it holds that U = V .

Hereafter, when U = V , we write ϕ(x, t) := U (x, T − t) = V (x, T − t), and write H(x, p, t) = H̃±(x, p, T − t), then{
∂
∂t ϕ + H(x,∇xϕ, t) = 0 on R

d × (0,∞),

ϕ(x,0) = g(x) on R
d.

Note that in general, the Hamiltonians H can be nonconvex and/or nonconcave, and this is one very important occasion 
in which nonconvex HJ PDE arises. We would like to mention that the convention to write the HJ-PDE as an initial value 
problem or terminal value problem is a matter of convention. One may write that either with the variable t or with the 
variable T − t and switch between the two formulations. Since for many applications it is stated as an initial value problem, 
we would like to stick to the convention using initial value problem.

In the next section, we will discuss possible representation formulae of the HJ-PDE equation, which may help us to 
compute the solution quickly and in parallel. We will prove they hold for restricted assumptions, and refer to the readers 
to [62] for the case with less restricted assumptions.

3. Representation formulae for viscosity solution of HJ PDE

In this section, we prove in subsection 3.2 that the two formulas hold under restricted assumptions. Then we go on to 
making a conjecture of a (Lax-type) minimization principle for the viscosity solution to (2.1)–(2.2) when H is convex, and a 
(Hopf-type) maximization principle when H is non-convex but when g is convex that they shall still hold in this case other 
less restricted assumptions. In several examples given in the paper, when a Hopf formula is known for the solution, our 
conjectured representation reduces to these known formulae. We refer our readers to [62] for a proof that our conjectures 
shall hold for a less restricted set of assumptions.

Before we provide our formal statements of the conjectures, for the sake of exposition, let us emphasize that the formulae 
stated in Section 1 are the key conjectures from a practical point of view. When H(x, p, t) is non-smooth, more general 
forms of the respective conjectures are necessary. The precise statements and proof under restricted assumptions will be 
given in the following subsections. Then we make our conjecture that the two formula still hold under less restricted 
assumptions. One point to remark is that our conjectured Hopf formula is a generalization of the well-known Hopf formula 
in [18,25,50].

3.1. A simplified system

In order to show the formula is true in a simplified setting, for the sake of exposition, let us consider first a simplified
system of differential equations: Fix 0 ≤ t < T , x ∈R

d . We consider{
dx
ds (s) = f (s, x(s), u(s)) t ≤ s ≤ T ,

x(t) = x,

where u(·) ∈ U(t) = {u : [t, T ] → U : u is measurable} is again a control and U is the admissible set. We again assume that 
the function

f : [0, T ] ×R
d × U →R

m

is uniformly continuous and{
| f (t, x, u)| ≤ C1

| f (t, x, u) − f (t, y, u)| ≤ C1|x − y|,
for some constant C1 and for all 0 ≤ t ≤ T , x, y ∈R

m , u ∈ U .
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We also consider the following simplified payoff function

P (u) := Pt,x(u(·)) :=
T∫

t

h(s, x(s), u(s))ds + g(x(T )).

We consider also the value function

U (x, t) := inf
u∈U(t)

Pt,x(u) = inf
u∈U(t)

⎧⎨
⎩

T∫
t

h(s, x(s), u(s))ds + g(x(T ))

⎫⎬
⎭ ,

and the Hamiltonian

H̃(x, p, t) := max
u∈U

{−〈 f (t, x, u), p〉 − h(t, x, u)} as well as H(x, p, t) = H̃(x, p, T − t) . (3.1)

This is actually the special case of the setting as discussed in Section 2.2 when the set C = {0} is a singleton, after we 
denote b(·) as u(·) instead. In this special case H(t, x, p) is always convex w.r.t. p.

One point to note is that, the argument to get either a Lax and a Hopf formula in the general case with differential games 
as discussed in section 2.2 shall be similar with the standard assumption on the set of strategy following the causality.

3.2. Verification of minimization/maximization principles under restricted assumptions

Before we go to our statement of conjectures, let us show that the formula in section 1 holds for some restricted 
assumptions for the sake of completeness. A proof under less restricted assumptions can be found in [62]. In this subsection, 
we suppress the time dependency of f and h (and thus H) to simplify the statements and proofs of the theorems. We note 
that the same statements remain true with time dependency. We keep the time dependency in the next subsection.

In what follows, we first state the set of assumptions that we may use. For notational sake, let us write

H(x, p, u) := h(x, u) + 〈p, f (x, u)〉 .

Let us consider the following list of assumptions that we will consider:

(A1) U is a compact convex set in Rd;
(A2) H(x, p, u) is proper lower semi-continuous and quasi-convex w.r.t. u.
(A3) H(x, p) as defined in (3.1) is proper upper semi-continuous and quasi-concave w.r.t. x.
(A4) H(x, p) is equi-coercive (under parameters p) w.r.t. x in the following sense: for all K > 0, there exists N (independent 

of p)

|H(x, p)| ≥ K .

whenever ‖x‖ ≥ N .
(A5) g(x) is proper lower semi-continuous and convex w.r.t. x, and is coercive w.r.t. x in the following sense:

‖g(x)‖ → ∞ as ‖x‖ → ∞
(A6) H(x, p) is proper concave w.r.t. x, and is H(x, p) is equi-coercive (under parameters x) w.r.t. p.
(A7) H(x, p, u), H(x, p), g(x) and g∗(p) are all in C2 in all its variables.

3.2.1. Verification of minimization principle under restricted assumptions
Before we proceed, we would also like to state the following lemma directly from definition:

Lemma 3.1. Under the assumption (A2), H(x, p, t) as defined in (3.1) is convex and lower semi-continuous w.r.t. p.

Proof. Both properties follow from the fact that H(p, x, u, s) is linear w.r.t. p. �
With these assumptions at hand, we have the following lemmas. We would like to remark that the following is a more 

discrete version of the minimax formula appeared in [5].

Lemma 3.2. Let (X, U, P) :=
(
{xn}N−1

n=0 , {u∗
n}N−1

n=0 , {pn}N−1
n=0

)
∈ R

3dN and

F1(X,U,P) := g(x0) + δ

N−1∑
h(xn, un) +

N−1∑
〈pn, xn+1 − xn〉 + δ

N−1∑
〈pn, f (xn, un)〉
n=0 n=0 n=0
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and

F̃1(X,P) := g(x0) +
N−1∑
n=0

〈pn, xn+1 − xn〉 − δ

N−1∑
n=0

H(xn, pn, sn).

If (A1) and (A2) are satisfied, then we have

min
{un}N−1

n=0 ∈U N
inf

{xn}N−1
n=0

sup
{pn}N−1

n=0

F1(X,U,P) = inf
{xn}N−1

n=0

sup
{pn}N−1

n=0

F̃1(X,P) . (3.2)

Proof. Fixing X, consider F1(X, ·, ·) : (U, P) �→ F1(X, U, P). Since F1 is affine in P , together with (A1) and (A2), we apply a 
classical minimax theorem, e.g. strong Lagrange duality satisfying Slater’s condition [3,47] or Sion’s minimax theorem [29,
52] (an extension of Von Neumann minimax theorem[39], see also [46]), to deduce for a fixed X ,

inf
{un}N−1

n=0 ∈U
sup

{pn}N−1
n=0

F1(X,U,P) = sup
{pn}N−1

n=0

inf
{un}N−1

n=0 ∈U
F1(X,U,P) .

Now taking the infimum at both hand sides w.r.t X, and noticing

min
{un}N−1

n=0 ∈U N
inf

{xn}N−1
n=0

sup
{pn}N−1

n=0

F1(X,U,P) = inf
{xn}N−1

n=0

min
{un}N−1

n=0 ∈U N
sup

{pn}N−1
n=0

F1(X,U,P) ,

the result now follows from the definition of H(t, x, p) in (3.1). �
Notice Lemma 3.2 is a version of representation formula with a minimal amount of assumption, and this expression

gives the finite dimensional analogy well-known principle of least action as in e.g. [5,48].

Lemma 3.3. If (A1), (A2), (A4), (A6), (A7) are satisfied, then we have

min
{un}N−1

n=0 ∈U N
inf

{xn}N−1
n=0

sup
{pn}N−1

n=0

F1(X,U,P)

= inf
v∈Rd

{
g(x0) + δ

N−1∑
n=0

〈pn,
xn+1 − xn

δ
〉 − δ

N−1∑
n=0

H(xn, pn) :

xn+1(x, v) − xn(x, v) = δ∂p H(xn(x, v), pn(x, v)),

pn−1(x, v) − pn(x, v) = δ∂x H(xn(x, v), pn(x, v)),

xN = x, pN = v

}
. (3.3)

Proof. Let (X̃, P) :=
(
{xn}N−1

n=1 , {pn}N−1
n=0

)
∈ R

(2N−1)d . From Lemma 3.2, since (A1) and (A2), are satisfied, we have that (3.2)

holds. Therefore it remains to show that the term inf{xn}N−1
n=0

sup{pn}N−1
n=0

F̃1(X, P) equals to (3.3). Notice that

inf
{xn}N−1

n=0

sup
{pn}N−1

n=0

F̃1(X,P) = inf
x0

inf
{xn}N−1

n=1

sup
{pn}N−1

n=0

F̃1(x0, X̃,P) .

We now wish to argue that under assumptions (A6), (A7) and (A8), for a fixed x0, either that there exists (X̃
∗
(x0), P∗(x0))

(depending on x0) such that the mini-max problem inf{xn}N−1
n=1

sup{pn}N−1
n=0

F̃1(x0, X̃, P) = F̃1(x0, X̃
∗
(x0), P∗(x0)), or one has 

inf{xn}N−1
n=1

sup{pn}N−1
n=0

F̃1(X, P) = ∞.

In fact, for a fixed set of (x0, X̃), by (A6), either sup{pn}N−1
n=0

F̃1(x0, X̃, P) is attained and thus, by (A7) there is P∗(x0, X̃)

smoothly depending on (x0, X̃) s.t.

xn+1(x, v) − xn(x, v) = δ∂p H(xn(x, v), p∗
n(x, v, (x0, X̃)))

holds, or the supremum is infinity. Now let us take infimum over X̃. For x0 such that for all X̃ the value sup{pn}N−1
n=0

F̃1(x0, X̃, P)

= ∞, we have that inf{xn}N−1
n=1

sup{pn}N−1
n=0

F̃1(x0, X̃, P) = ∞. Otherwise, for x0 such that there exists X̃ with sup{pn}N−1
n=0

F̃1(x0, X̃, P)

�= ∞, by (A4) and (A7), we again either have X̃∗
satisfies

∂X̃

(
N−1∑

〈p∗
n(x, v, (x0, X̃

∗
)), x∗

n+1(x, v, x0) − x∗
n(x, v, x0)〉 − δ

N−1∑
H(x∗

n(x, v, x0), p∗
n(x, v, (x0, X̃

∗
)))

)
= 0 ,
n=0 n=0
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which gives, fixing x0, the following for all n = 1, ..., N − 1, using the smooth dependence of (x0, X̃) �→ P∗(x0, X̃) and a chain 
rule, that

p∗
n−1(x, v, (x0, X̃

∗
)) − p∗

n(x, v, (x0, X̃
∗
)) − δ∂x H(x∗

n(x, v, x0), p∗
n(x, v, (x0, X̃

∗
)))

= −
(

N−1∑
l=0

(
x∗

l+1(x, v, x0) − x∗
l (x, v, x0) − δ∂p H(x∗

l (x, v, x0), p∗
l (x, v, (x0, X̃

∗
)))

)
∂X̃n

p∗
l (x, v, (x0, X̃

∗
))

)
,

= −
(

N−1∑
l=0

(
xl+1(x, v) − xl(x, v) − δ∂p H(xl(x, v), p∗

l (x, v, (x0, X̃)), sl)
) ∣∣∣∣

X=X̃
∗∂X̃n

p∗
l (x, v, (x0, X̃

∗
))

)
,

= 0

where the last equality comes from the optimality condition defining (x0, X̃) �→ P∗(x0, X̃); or that
inf{xn}N−1

n=1
sup{pn}N−1

n=0
F̃1(x0, X̃, P) = −∞. However the case that the infimum get to −∞ will arrive at absurdity since we 

have tracing back Lemma 3.2

−∞ < inf
{u0}N−1

n=1

inf
{xn}N−1

n=1

sup
{pn}N−1

n=0

F̃1(x0, X̃,P) = inf
{xn}N−1

n=0

sup
{pn}N−1

n=0

F̃1(X,P) = −∞

which arrives at contradiction.
Concluding the above argument, for each x0, either we have inf{xn}N−1

n=1
sup{pn}N−1

n=0
F̃1(x0, X̃, P) = ∞ or

inf{xn}N−1
n=1

sup{pn}N−1
n=0

F̃1(x0, X̃, P) = F̃1(x0, X̃
∗
(x0), P∗(x0)) for some (X∗(x0), P∗(x0)) = (X̃

∗
(x0), P∗(x0, X̃

∗
)) s.t.

⎧⎪⎨
⎪⎩

xn+1(x, v) − xn(x, v) = δ∂p H(xn(x, v), pn(x, v)),

pn−1(x, v) − pn(x, v) = δ∂x H(xn(x, v), pn(x, v)),

xN = x .

(3.4)

Notice the condition as the initial condition ∂x g(x0) = p0 do not appear because we fixed a value x0. Now for any choice of 
(X(x0), P(x0)) satisfying (3.4) will give the same value F̃1(x0, X̃(x0), P(x0)) by concavity of F̃1(x0, X̃, P) w.r.t. P. Therefore,

inf
x0

inf
{xn}N−1

n=1

sup
{pn}N−1

n=0

F̃1(x0, X̃,P) = min

{
∞, inf

x0∈{x0:∃(X∗(x0),P∗(x0)) satisfying (3.4)}
inf
v N

F̃1(x0, X̃
∗
(x0),P∗(x0))

}
.

The conclusion of the lemma follows from the surjection between v ∈ R
d and x0 ∈ {x0 : ∃(X∗(x0), P∗(x0)) satisfying (3.4)}

via the correspondence p∗
N (x0) = v . �

We would like to have the following two remarks: (1) in fact if H is non-smooth w.r.t. u, even H(x, p, s) =
maxu∈U {−H(x, p, u)}, in general we do not have ∂p H(x, p, s) = −∂pH(x, p, u∗)} where u∗ is such that H(x, p, u∗) =
maxu∈U {−H(x, p, u)}. Therefore in general the KKT condition (which is also referred to as Pontryagin’s maximum prin-
ciple [45] in the continuous case) would be stated using H. However under appropriate regularity assumption (e.g. (A2), 
(A6) and (A8)), we have the two partial derivatives coinciding, i.e. ∂p H(x, p) = −∂pH(x, p, u∗)}. (2) actually our assumptions 
(A1), (A2), (A4), (A6), (A7) already guarantee the existence of the adjoint variables, and even smooth dependence, that there 
exists P∗(x0, X̃) smoothly depending on (x0, X̃) in the middle of the proof. These assumptions are clearly stronger than what 
we need, but we assume here for the simplicity of our argument.

A clear connection made between the maximum principle and dynamic programming is discussed in literature, e.g. in 
[10], which discussed in the non-smooth case when will the costate variable coincide with a partial generalized gradient of 
the value function (cf. [10]) for a clear definition.

3.2.2. Verification of maximization principle under restricted assumptions
Using a similar but slightly different argument as in Lemma 3.2, we also obtain similarly the following lemma:

Lemma 3.4. Write (X, U, P) :=
(
{xn}N−1

n=0 , {u∗
n}N−1

n=0 , {pn}N
n=1

)
∈R

3dN , (X̃, U, P) :=
(
{xn}N−1

n=1 , {u∗
n}N−1

n=0 , {pn}N
n=1

)
∈R

(3N−1)d,

F2(X,U,P) := g(x0) + δ

N−1∑
n=0

h(xn+1, un+1) +
N−1∑
n=0

〈pn+1, xn+1 − xn〉 + δ

N−1∑
n=0

〈pn+1, f (xn+1, un+1)〉 ,

and
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F̃2(X̃,P) := 〈pN , x〉 − g∗(p1) − δ

N∑
n=1

H(xn, pn) +
N−1∑
n=1

〈pn − pn+1, xn〉.

If (A1), (A2), (A3), (A4) and (A5) are satisfied, then we have then we have

min
{un}N−1

n=0 ∈U N
inf

{xn}N−1
n=0

sup
{pn}N

n=1

F2(X,U,P) = sup
{pn}N

n=1

inf
{xn}N−1

n=1

F̃2(X̃,P) . (3.5)

Proof. The first part of the argument goes similar as in the proof of the previous lemma. In fact, fixing X, we see that 
F2(X, ·, ·) : (U, P) �→ F2(X, U, P) is affine w.r.t. P . Together with (A1), (A2) and Definition (3.1) of H(t, x, p) and summation 
by part, we again apply a classical minimax theorem, e.g. strong Lagrange duality [3,47], to get

inf
{un}N−1

n=0 ∈U
sup

{pn}N
n=1

F2(X,U,P) = sup
{pn}N

n=1

inf
{un}N−1

n=0 ∈U
F2(X,U,P) = sup

{pn}N
n=1

F̂2(X,P) ,

where

F̂2(X,P) := g(x0) − 〈p1, x0〉 − δ

N−1∑
n=0

H(xn+1, pn+1) +
N−1∑
n=1

〈pn − pn+1, xn〉 + 〈pN , x〉.

Hence we get

min
{un}N−1

n=0 ∈U N
inf

{xn}N−1
n=0

sup
{pn}N

n=1

F2(X,U,P) = inf
{xn}N−1

n=0

sup
{pn}N

n=1

F̂2(X,P) .

Now since H(s, x, p) satisfies (A3), we have F̂2(X, P) is lower-semicontinuous and quasi-convex w.r.t. X . Since (A4) and (A5) 
are satisfied, there exists a compact (and convex, w.l.o.g.) C N ⊂ R

dN such that

inf
{xn}N−1

n=0

sup
{pn}N

n=1

F̂2(X,P) = inf
{xn}N−1

n=0 ∈C N
sup

{pn}N
n=1

F̂2(X,P)

From Lemma 3.1 F̂2(X, U , P ) is upper-semicontinuous and quasi-concave w.r.t. P . Therefore we may apply Sion’s minimax 
theorem [29,52] to get

inf
{xn}N−1

n=0 ∈C N
sup

{pn}N
n=1

F̂2(X,P) = sup
{pn}N

n=1

inf
{xn}N−1

n=0 ∈C N
F̂2(X,P)

and in fact inf{xn}N−1
n=0 ∈C N can be replaced by min{xn}N−1

n=0 ∈C N . Now considering (A4) and (A5) again, we obtain

sup
{pn}N

n=1

inf
{xn}N−1

n=0 ∈C N
F̂2(X,P) = sup

{pn}N
n=1

inf
{xn}N−1

n=0

F̂2(X,P) .

Our conclusion now comes from the fact that

inf
x0

F̂2(X,P) = F̃2(X̃,P)

by the definition of Fenchel-Legendre transform [35]. �
Lemma 3.5. If (A1), (A2), (A4),(A5), (A6), (A7) are satisfied, then we have

min
{un}N−1

n=0 ∈U N
inf

{xn}N−1
n=0

sup
{pn}N

n=1

F2(X,U,P)

= sup
v∈Rd

{
〈pN , x〉 − g∗(p1) − δ

N∑
n=1

H(xn, pn) + δ

N−1∑
n=1

〈 pn − pn+1

δ
, xn〉 :

xn(x, v) − xn−1(x, v) = δ∂p H(xn(x, v), pn(x, v)),

pn(x, v) − pn+1(x, v) = δ∂x H(xn(x, v), pn(x, v)),

xN = x, pN = v

}
. (3.6)



Y.T. Chow et al. / Journal of Computational Physics 387 (2019) 376–409 387
Proof. Let (X̃, ̃P) :=
(
{xn}N−1

n=1 , {pn}N
n=2

)
∈ R

(2N−2)d . Again since (A6) and (A7) imply (A3), from Lemma 3.4, we have that 

(3.5) holds. Therefore it remains to show that the term sup{pn}N
n=1

inf{xn}N−1
n=1

F̃2(X̃, P) equals to (3.6). Notice again that

sup
{pn}N

n=1

inf
{xn}N−1

n=1

F̃2(X̃,P) = sup
p1

sup
{pn}N

n=2

inf
{xn}N−1

n=1

F̃2(X̃, p1, P̃) .

Now as in Lemma 3.4, we now wish to argue that under assumptions (A6), (A7) and (A8), for a fixed p1, either 
that there exists (X̃

∗
(p1), ̃P

∗
(p1)) (depending on p1) such that the max-min problem sup{pn}N

n=2
inf{xn}N−1

n=1
F̃2(X̃, p1, ̃P) =

F̃2(X̃
∗
(p1), p1, ̃P

∗
(p1)), or one has sup{pn}N

n=2
inf{xn}N−1

n=1
F̃2(X̃, p1, ̃P) = −∞.

Now, for a fixed set of (p1, ̃P), by (A4) and (A5), either inf{xn}N−1
n=1

F̃2(X̃, p1, ̃P) is attained and thus, by (A7) there is 

X̃
∗
(p1, ̃P) smoothly depending on (p1, ̃P) s.t.

pn(x, v) − pn+1(x, v) = δ∂x H(x∗
n(x, v, (p1, P̃)), pn(x, v)) ,

holds, or the infimum is minus infinity. Now let us take supremum over P̃. For p1 such that for all P̃ the value 
inf{xn}N−1

n=0
F̃2(X̃, pN , ̃P) = −∞, we have that sup{pn}N

n=2
inf{xn}N−1

n=1
F̃2(X̃, pN , ̃P) = −∞. Otherwise, for p1 such that there exists 

P̃ with inf{xn}N−1
n=1

F̃2(X̃, p1, ̃P) �= −∞, by (A6) and (A7), we again either have P̃∗
satisfies

∂P̃

(
〈p∗

N(x, v, p1), x〉 +
N−1∑
n=1

〈p∗
n(x, v, p1) − p∗

n+1(x, v, p1), x∗
n(x, v, (p1, P̃

∗
))〉

− δ

N∑
n=1

H(x∗
n(x, v, (p1, P̃

∗
)), p∗

n(x, v, p1))

)
= 0,

where we notice the last term is independent of P̃, and thus gives, fixing p1, the following for all n = 2, ..., N , using the 
smooth dependence of (p1, ̃P) �→ X̃

∗
(p1, ̃P) and a chain rule, that

x∗
n(x, v, (p1, P̃

∗
)) − x∗

n−1(x, v, (p1, P̃
∗
)) − δ∂p H(x∗

n(x, v, (p1, P̃
∗
)), p∗

n(x, v, p1))

= −
(

0 +
N−1∑
l=0

(
p∗

l (x, v, p1) − p∗
l+1(x, v, p1) − δ∂x H(x∗

l (x, v, (p1, P̃
∗
)), p∗

l (x, v, pN))
)

∂P̃n
x∗

l (x, v, (p1, P̃
∗
))

)
,

= −
(

N−1∑
l=0

(
pl(x, v) − pl+1(x, v) − δ∂x H(x∗

l (x, v, (p1, P̃)), pl(x, v))
) ∣∣∣∣

P=P̃
∗∂P̃n

x∗
l (x, v, (p1, P̃

∗
))

)
,

= 0

where the second equality used the fact that ∂P̃n
x∗

N (x, v, (p1, ̃P
∗
)) = ∂P̃n

x = 0 the last equality comes from the optimality 
condition defining (p1, ̃P) �→ X̃

∗
(p1, ̃P); or that sup{pn}N

n=2
inf{xn}N−1

n=1
F̃2(X̃, p1, ̃P) = ∞. However again case that the supremum 

get to ∞ will arrive at absurdity since we have tracing back Lemma 3.2

∞ > inf
{u0}N−1

n=1

inf
{xn}N−1

n=1

sup
{pn}N−1

n=0

F̃1(x0, X̃,P) = sup
{pn}N

n=1

inf
{xn}N−1

n=1

F̃2(X̃, pN , P̃) = ∞

which arrives at contradiction.
Concluding the above argument, for each p1, either we have sup{pn}N

n=2
inf{xn}N−1

n=1
F̃2(X̃, p1, ̃P) = −∞ or

sup{pn}N
n=2

inf{xn}N−1
n=1

F̃2(X̃, p1, ̃P) = F̃2(X̃
∗
(p1), p1, ̃P

∗
(p1)) for some (X∗(p1), P∗(p1)) = (X̃

∗
(p1), P∗(p1, X̃

∗
)) s.t.

⎧⎪⎨
⎪⎩

xn(x, v) − xn−1(x, v) = δ∂p H(xn(x, v), pn(x, v)),

pn(x, v) − pn+1(x, v) = δ∂x H(xn(x, v), pn(x, v)),

xN = x .

(3.7)

Notice the condition as the initial condition ∂x g∗(p1) = x1 do not appear because we fixed a value p1. Now for any choice 
of (X(x0), P(x0)) satisfying (3.4) will give the same value F̃1(x0, X̃(x0), P(x0)) by concavity of F̃1(x0, X̃, P) w.r.t. P. Therefore,

sup
p1

sup
{p }N

inf
{xn}N−1

F̃2(X̃, p1, P̃) = max

{
−∞, sup

p1∈{p1:∃(X∗(p1),P∗(p1)) satisfying (3.7)}
sup
v N

F̃2(X̃
∗
, p1, P̃

∗
)

}
.

n n=2 n=1
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The conclusion of the lemma follows from the surjection between v ∈ R
d and p1 ∈ {p1 : ∃(X∗(p1), P∗(p1)) satisfying (3.7)}

via the correspondence p∗
N (p1) = v . �

Again, assumptions (A1), (A2), (A4), (A5), (A6), (A7) already guarantee the existence and smooth dependence of (p1, ̃P) �→
X̃

∗
(p1, ̃P). These assumptions are stronger than what we need, but we assume them in this work for the simplicity of our 

argument.
Before we proceed, we again notice that all the statements above would with h and f depending on time s. From now 

on, we do not suppress the time dependence in the notation to indicate sometimes the necessity of a change of variable 
s �→ T − s. This, although mathematically trivial, may bring computational error if one is not fully aware of it, and is hence 
kept from now on.

3.3. Generalized Lax minimization principle for Convex/Concave Hamiltonian

We first describe how we obtain to a Lax formula under restricted assumptions and applying Lemma 3.2 and Lemma 3.4:

ϕ(x, t) := U (x, T − t) := inf
u∈U(T −t)

⎧⎨
⎩

T∫
T −t

h(s, x(s), u(s))ds + g(x(T ))

⎫⎬
⎭ .

We derive our formula as follows. Following [40], we shall first consider the following discretization (approximation) for a 
given δ such that δN = t , by denoting sn = δn and xN = x (and flipping the sign),

ϕ(x, t) ≈ ϕ1
N(x, t)

where

ϕ1
N(x, t)

:= min
{un}N−1

n=0 ∈U

{
g(x0) + δ

N−1∑
n=0

h(T − sn, xn, un) : xn+1 − xn = −δ f (T − sn, xn, un) for n = 0, . . . , N − 1, xN = x

}
,

= min
{un}N−1

n=0 ∈U N
inf

{xn}N−1
n=0

sup
{pn}N−1

n=0

F1(X,U,P),

where F1 is given as in Lemma 3.2, and the second equality comes from reformulating the problem with Lagrange multiplier.
Therefore, applying Lemma 3.2 and Lemma 3.4, we get the following:

Theorem 3.6. If (A1), (A2) are satisfied, then

ϕ1
N(x, t) = inf

{xn}N−1
n=0

sup
{pn}N−1

n=0

F̃1(X,P) .

If (A1), (A2), (A4), (A6), (A7) are satisfied, then we have

ϕ1
N(x, t) = inf

v∈Rd

{
g(x0) + δ

N−1∑
n=0

〈pn,
xn+1 − xn

δ
〉 − δ

N−1∑
n=0

H(xn, pn, sn) :

xn+1(x, v) − xn(x, v) = δ∂p H(xn(x, v), pn(x, v), sn),

pn−1(x, v) − pn(x, v) = δ∂x H(xn(x, v), pn(x, v), sn),

xN = x, pN = v

}
. (3.8)

We would like to remark that (A5) is not needed for the validity of the above formulae.
However, we notice that the resulting formula that we conjectured seems to be correct beyond these assumptions, as 

the numerical results show (especially when we take the minimum over all the paths satisfying the KKT conditions). We 
hope to get rigorous criteria for this formula to hold in the future. In fact, passing to the limit, in the special case when 
H(x, p, t) is smooth also w.r.t. p, we conjecture the following Lax formula.

Conjecture 3.7. Assume H(x, p, t) ∈ C2 and is convex w.r.t. p, and (A5) is satisfied, then there exists t0 such that the viscosity solution 
to (2.1)–(2.2) can be represented as (1.1) for t ≤ t0 . Moreover, if φ(x, t) is differentiable w.r.t. x at a neighborhood of (x, t) and the 
infimum is attained by ̃v, then we have ∂xϕ(x, t) = ṽ .
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We refer to it as the minimization principle, or the generalized Lax formula. This conjecture was validated under less 
restricted assumption in [62] after a previous version of our paper in arXiv in [8] was launched. [62] is a very important 
and monumental work which suggest the validity of our conjecture in a more general situation.

Remark 1. When H(x, p, t) is not differentiable at some given point p, then we believe that in formula (1.1), the Mor-
dukhovich subdifferential, ∂−

x H , as defined in [36–38], should be used instead of ∂x H . In that case the constraint becomes 
the inclusion γ̇ (x, v, s) ∈ ∂−

p H(γ (x, v, s), p(x, v, s), s), and infimum is taken over also all the curves (γ , p) ∈ C∞ satisfying 
the inclusion.

In below there are several examples for the conjecture, that we only provide a brief account.

Example 1. For Hamiltonian H(x, p, t) which is convex w.r.t. p, concave w.r.t. x and satisfying Assumptions (A) in [48], the 
following minimization principle holds for the viscosity solution to (2.1)–(2.2) (see Theorem 2.3 in [48] and Theorem 4.8 in 
[49]):

ϕ(x, t) = inf
γ ∈C∞,γ (t)=x

{g(γ (0)) +
t∫

0

L(γ (s), γ̇ (s), s)ds}

where the Lagrangian L is defined as

L(x,q, s) = sup
p

{〈p,q〉 − H(x, p, t)}.

This example may not satisfy either the assumptions in Lemma 3.2 and or Lemma 3.4, since U may not be compact.

Example 2. When H(x, p, t) is a convex homogeneous degree-1 functional w.r.t. p of the following special form

H(x, p, t) = c(x)�(p) ,

where c ∈ C∞ with C0 ≥ c(x) ≥ c0 for some C0, c0 > 0, and � is homogeneous of degree 1 functional. We recall the 
definition of the Wulff set W [43] of � defined as the set W such that the following equality holds:

�(p) = max
x∈W

〈p, x〉 = I∗
W (p)

with ∗ denoting the Fenchel-Legendre transform. We furthermore assume closed, strictly convex, balanced (i.e. −W = W ), 
absorbing (i.e. for all y ∈ R

d , y ∈ τ W for some τ > 0) with smooth boundary ∂W ∈ C∞ [21,24]. Then it is ready to check 
that the subdifferential of � is given as follows:

∂−
p �(p) =

{
∂p�(p) ∈ ∂W if p �= 0

W if p = 0.

For convenience sake, let us also define, for a closed, strictly convex, balanced, absorbing set W with smooth boundary 
∂W ∈ C∞ , the Minkowski functional of W [21,24], as follows

ρW (y) := inf{τ > 0 : y ∈ τ W }.
With this, we are ready to define a metric on Rd as follows:

d̃(x, y) := inf
t>0

{
t : γ ∈ C∞, γ (0) := x, γ (t) = y, γ̇ (s) ∈ c(γ (s))W

}
.

It is ready to check that d̃ defines a metric and thus (R, ̃d) forms a metric space.

Lemma 3.8. Assume the metric space (R, ̃d) is complete. If we define

C(x, t) :=
⋃

v∈Rd

⎧⎪⎪⎨
⎪⎪⎩γ (x, v,0) :

(γ , p) ∈ C∞
γ̇ (x, v, s) = ∂−

p H(γ (x, v, s), p(x, v, s)),
ṗ(x, v, s) = −∂x H(γ (x, v, s), p(x, v, s)),

γ (x, v, t) = x, p(x, v, t) = v

⎫⎪⎪⎬
⎪⎪⎭

and
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B(x, t) :=
⋃

0≤r≤t

⋃
v∈Rd\{0}

⎧⎨
⎩γ (x, v,0) :

γ̇ (x, v, s) = ∂p H(γ (x, v, s), p(x, v, s)),
ṗ(x, v, s) = −∂x H(γ (x, v, s), p(x, v, s)),

γ (x, v, r) = x, p(x, v, r) = v

⎫⎬
⎭ .

Then for all (x, t) ∈R
d+1 × (0, T ), we have B(x, t) is well-defined and

C(x, t) = B(x, t)

Proof. Before we get to the proof of well-definedness of B(x, t) and the equivalence of B(x, t) and C(x, t), let us first notice 
that for any curve (γ , p) ∈ C∞ satisfying the following inclusion

γ̇ (x, v, s) ∈ c(γ (x, v, s))∂−
p �(p(x, v, s)) , ṗ(x, v, s) = −∂xc(γ (x, v, s))�(p(x, v, s)) (3.9)

We have that

˙�(p(x, v, s)) = −〈l(x, v, s), ∂xc(γ (x, v, s))〉�(p(x, v, s))

where l(x, v, s) ∈ ∂−
p �(p(x, v, s)), i.e. we get that

�(p(x, v, s)) = �(v)exp (〈l(x, v, s), ∂xc(γ (x, v, s))〉) > 0 for all s ⇔ �(v) > 0

From the fact that W is absorbing, we conclude that

p(x, v, s) �= 0 for all s ⇔ v �= 0 .

With the above observation, now we would get to the proof of our lemma:

1. B(x, t) is well-defined:
Since for all (γ , p) ∈ C∞ satisfying (3.9) with γ (x, v, r) = x, p(x, v, r) = v , if v �= 0, by the above statement, we have 
that p(x, v, s) �= 0 for all 0 ≤ s ≤ r, and therefore �(p(x, v, s)) is smooth. Therefore ∂p�(p(x, v, s)) is well-defined for 
all s. By uniqueness and existence of ODE system, we have well-definedness of B(x, t) for all (x, t) ∈R

d+1 × (0, T ).
2. B(x, t) ⊂ C(x, t):

For y ∈ B(x, t), there exists a pair of curves (γ , p) ∈ C∞ and v �= 0, 0 ≤ r ≤ t such that

γ̇ (x, v, s) = ∂p H(γ (x, v, s), p(x, v, s)),
ṗ(x, v, s) = −∂x H(γ (x, v, s), p(x, v, s)),

γ (x, v, r) = x, p(x, v, r) = v

and γ (0) = y. Then γ̇ (x, v, s) = ∂p H(γ (x, v, s), p(x, v, s)) ∈ ∂W ∈ W . Now let us define γ̃ as a rescaling by γ̃ :=
γ (x, v, sr/t) where r/t ≤ 1, then we notice that γ̃ ∈ C∞ , ˙̃γ ∈ r/t∂W ∈ W and γ̃ (t) = x, γ̃ (0) = y. Now choose p̃(s) = 0
for all 0 ≤ s ≤ t . Thus we have (γ̃ , p̃) ∈ C∞ satisfying the differential inclusion defining C(x, t) and γ̃ (t) = x, p̃(t) = 0
initial value. Thus y = γ̃ (x, v, t) ∈ C(x, t).

3. C(x, t) ⊂ B(x, t):
For all y ∈ C(x, t), there exists (γ , p) ∈ C∞ such that

γ̇ (x, v, s) = ∂−
p H(γ (x, v, s), p(x, v, s)), ṗ(x, v, s) = −∂x H(γ (x, v, s), p(x, v, s))

and

γ (x, v,0) = y, γ (x, v, t) = x, p(x, v, t) = v.

Since the metric space (R, ̃d) is complete (and locally compact), by the Hopf-Rinow-Cohn-Vossen theorem [11,26], there 
exists a (globally) length minimizing geodesic γ̄ ∈ C∞ such that γ̄ (0) = y, γ̄ (r) = x, and d̃(x, y) = r for some r. Notice 
that

r = d̃(x, y) ≤ t

by definition since γ (x, v, ·) satisfies the conditions γ ∈ C∞, γ (0) := x, γ (t) = y, γ̇ (s) ∈ c(γ (s))W . Consider the vector 
l(s) := ˙̄γ (s)/c(γ̄ (s)). Now rewrite

d̃(x, y) = inf
γ ∈γ ∈C∞,t>0,γ (0):=x,γ (t)=y

t∫ (
1 + IW

(
γ̇ (s)

c(γ (s))

))
ds .
0
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From the fact that for any given γ ∈ C∞ ,

γ̇ (s) + ḣ(s)

c(γ (s) + h(s))
= γ̇ (s)

c(γ (s))
+ ḣ(s)

c(γ (s))
− γ̇ (s)〈∇xc(γ (s)),h(s)〉

[c(γ (s))]2
+ O (|h(s)|2 + |ḣ(s)|2)

for all h ∈ C∞
c , we obtain directly from variational calculus that the following optimality condition that γ̄ necessarily 

satisfies, for all perturbation h ∈ C∞
c :

r∫
0

〈
h(s),

( ˙̄p(s) + ∇xc(γ̄ (s)) 〈p̄(s), l(s)〉 )〉
ds = 0 for some p̄(s) ∈ ∂−[IW ] (l(s)) .

By the definition of Legendre transformation, the above condition is equivalent to the existence of p̄ such that

˙̄p(s) = −∇xc(γ̄ (s))�(p̄(s)) , l(s) ∈ ∂−
p �(p̄(s)). (3.10)

Now we would like to show that we may furthermore choose the dual vector p̄(s) �= 0 for some s (i.e. the strict 
complementary condition is satisfied and p̄ �= 0 as a function). In order to do so, we would like to argue that if we 
enlarge our constraint set from W to W ε := (1 + ε)W for any ε > 0, we still have a global optimizer but the optimizer 
differs from the original case when ε = 0. In fact, for all ε > 0, consider the problem

d̃ε(x, y) := inf
t>0

{
t : γ ∈ C∞, γ (0) := x, γ (t) = y, γ̇ (s) ∈ c(γ (s))W ε

}
,

then by reparametrization of each curve γ ∈ C∞ by a : s �→ s/(1 + ε), we get that

d̃ε(x, y) = (1 + ε)−1d̃(x, y)

and the new metric space (Rd, ̃dε) is also complete, and by Hopf-Rinow-Cohn-Vossen theorem [11,26], we have a unique 
minimizing geodesic γ̄ ε . Since the new optimization problem to obtain d̃ε(x, y) comes from a rescaling of the original 
problem d̃(x, y), we have γ̄ ε = γ̄ ◦ a. Therefore the optimizer γ̄ ε �= γ̄ unless ε = 0. Hence there is a dual vector p̄
satisfying (3.10) that satisfies a strict complementary condition, i.e. p̄(s) �= 0 for some s. Now since (γ̄ , p̄) satisfies (3.9)
and p̄(s) �= 0 for some s, one concludes that p̄(s) �= 0 for all s, and therefore ∂−

p �(p̄(s)) = ∂p�(p̄(s)). Hence there exists 
(γ̄ , p̄) ∈ C∞ that satisfies the bi-characteristic equation and γ̄ (0) = y, γ̄ (r) = x and 0 ≤ r ≤ t . Hence y ∈ B(x, t). �

Corollary 3.9. Assume Conjecture 3.7, i.e. (1.1), and Remark 1 are true. Assume the metric space (R, ̃d) is complete. Then

ϕ(x, t) = inf
v∈Rd\{0}

min
0≤r≤t

⎧⎨
⎩g(γ (x, v, r)) :

γ̇ (x, v, s) = −c(γ (x, v, s))∂p�(p(x, v, s)),
ṗ(x, v, s) = ∂xc(γ (x, v, s))�(p(x, v, s)),

γ (x, v,0) = x, p(x, v,0) = v

⎫⎬
⎭ . (3.11)

Proof. Apply Lemma 3.8 and a change of variable from v to −v and from s to t − s. �
We wish to remind that if �(p) = |p|2, we have ∂p�(p(v, s)) = p(v, s)/|p(v, s)|2. However, notice this example satisfies 

the assumption in Lemma 3.2, but does not satisfy the assumptions in Lemma 3.4. In fact the formula (3.11) is the Hugyens 
principle in disguise.

3.4. Generalized Hopf maximization with Hamiltonian H that are possibly neither convex nor concave, but the initial data g is convex

When the Hamiltonian H is neither convex nor concave, but the initial data g is convex, the aforementioned conjectured 
minimization principle does not seem to hold any longer. In light of the fact that in some special cases a Hopf formula 
holds, we conjecture that a generalized Hopf-type maximization principle shall hold for a wide class of problem.

We now describe how we get to a Hopf formula under restricted assumption by Lemma 3.4 and Lemma 3.5:

ϕ(x, t) := U (x, T − t) := inf
u∈U(T −t)

⎧⎨
⎩

T∫
T −t

h(s, x(s), u(s))ds + g(x(T ))

⎫⎬
⎭ .

We again derive our formula formally as follows. Again, following [40], we shall first consider the following discretization 
(approximation) for a given δ such that δN = t , by denoting sn = δn and xN = x

ϕ(x, t) ≈ ϕ2
N(x, t)

where
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ϕ2
N(x, t)

:= min
{un}N

n=1∈U

{
g(x0) + δ

N∑
n=1

h(T − sn, xn, un) : xn+1 − xn = −δ f (T − sn+1, xn+1, un+1) for n = 0, . . . , N − 1, xN = x

}
,

= inf
{xn}N−1

n=0

sup
{pn}N

n=1

F2(X,U,P),

where F2 is defined as in Lemma 3.4 and the second equality comes from reformulating the problem with Lagrange multi-
plier.

Now again if we apply Lemma 3.4 and Lemma 3.5, we get the following:

Theorem 3.10. If (A1), (A2), (A3), (A4) and (A5) are satisfied, then we have then we have

ϕ2
N(x, t) = sup

{pn}N
n=1

inf
{xn}N−1

n=1

F̃2(X̃,P) . (3.12)

If (A1), (A2), (A4), (A5), (A6), (A7) are satisfied, then we have

ϕ2
N(x, t) = sup

v∈Rd

{
〈pN , x〉 − g∗(p1) − δ

N∑
n=1

H(xn, pn, sn) + δ

N−1∑
n=1

〈 pn − pn+1

δ
, xn〉 :

xn(x, v) − xn−1(x, v) = δ∂p H(xn(x, v), pn(x, v), tn),

pn(x, v) − pn+1(x, v) = δ∂x H(xn(x, v), pn(x, v), tn),

xN = x, pN = v

}

Again, nonetheless, we notice that the resulting formula that we conjectured seems to be correct beyond these assump-
tions, as the numerical results show (again especially when we take the maximum over all the paths satisfying the KKT 
conditions). We hope to get some rigorous criteria for this formula to hold in the future.

In order to state our conjecture, in view of [50], let us define the following before we proceed.

Definition 3.11. Given a set S ∈ R
d . A function G : co(S) → R is pseudoconvex on S , where co(S) is the convex hull of S , if 

for all {si}d+1
i=1 ∈ S and {αi}d+1

i=1 such that αi ≥ 0 and 
∑d+1

i=1 αi = 1, we have

G

(
d+1∑
i=1

αi si

)
≤

d+1∑
i=1

αi G(si).

Now, passing N to the limit, we arrive at the following conjectured Hopf formula:

Conjecture 3.12. Assume H(x, p, t) ∈ C2 and g(p) ∈ C2 is convex w.r.t. p that satisfies (A5). Consider the set

S0(x, t)

:= argmax
v∈Rd

{
〈x, v〉 − g∗(p(x, v,0)) −

t∫
0

{
H(γ (x, v, s), p(x, v, s), s) − 〈∂x H(γ (x, v, s), p(x, v, s), s), γ (x, v, s)〉

}
ds:

γ̇ (x, v, s) = ∂p H(γ (x, v, s), p(x, v, s), s),
ṗ(x, v, s) = −∂x H(γ (x, v, s), p(x, v, s), s),

γ (x, v, t) = x, p(x, v, t) = v

}
.

Assume further that for all (x, t), we have that the function

G : co (S0(x, t)) →R

v �→ H(x, v, s) − 〈∂x H(x, v, t), x〉
is pseudoconvex on S0(x, t). Then there exists t0 such that the viscosity solution to (2.1)–(2.2) can be represented as (1.2) for t < t0 . 
Moreover, if φ(x, t) is differentiable w.r.t. x at a neighborhood of (x, t) and the infimum is attained by ̃v, then we have ∂xϕ(x, t) = ṽ .

We may refer to it as the maximization principle, or the generalized Hopf formula. One point to remark is that the 
conjectured Hopf formula is a generalization of the well-known Hopf formula in [18,25,50]. A proof that our formula holds 
under less restricted assumption that shown above is also done in [62], after a previous version of our paper [8] was 
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arXiv-ed. A proof that our formula holds under less restricted assumption that shown above is also done in [62], after a 
previous version of our paper [8] was arXiv-ed. We suspect the weakest assumption of our formula to hold is the above 
assumption of pseudoconvexity, similar to one stated in [50].

Remark 2. When H(x, p, t) is not differentiable at some given point p, then we believe again that in formula (1.2), the Mor-
dukhovich subdifferential, ∂−

x H , as defined in [36–38], should be used instead of ∂x H . In that case the constraint becomes 
the inclusion γ̇ (x, v, s) ∈ ∂−

p H(γ (x, v, s), p(x, v, s), s), and infimum is taken over also all the curves (γ , p) ∈ C∞ satisfying 
the inclusion before supremum over v is taken.

Remark 3. We expect a candidate of less restricted assumption than [62] as the above convexity assumption in the variable 
p in view of the theorem in [50]. A rigorous approach toward this formula might be following an approach of [50] to show 
the postulated formula is a minimax viscosity solution following the notations in [50] and references therein.

Below we present several examples where this conjecture is valid. We notice that none of the followings satisfies the 
assumptions of Lemma 3.4 and Lemma 3.5 given in the proof of our formula, since by Lemma 3.1, the Hamiltonian H(x, p, t)
given as in (3.1) under our assumptions are automatically convex.

Example 1. When H(x, p, t) = H(p, t), we have ṗ(v, s) = ∂x H(γ (v, s), p(v, s), s) = 0. Therefore assuming Conjecture 3.12, i.e. 
(1.2), and Remark 2, the conjectured formula gives

ϕ(x, t) = − inf
v∈Rd

{
g∗(p(x, v,0)) +

t∫
0

{
H(p(x, v, s), s) − 〈0, γ (x, v, s)〉

}
ds − 〈x, v〉 :

(γ , p) ∈ C∞
γ̇ (x, v, s) ∈ ∂−

p H(p(x, v, s), s),
ṗ(x, v, s) = 0,

γ (x, v, t) = x,
p(x, v, t) = v

}

= − inf
v∈Rd

{
g∗(v) +

t∫
0

H(v, s)ds − 〈x, v〉
}

which gets us back to the Hopf formula [50]. Note that in this example assumption in Lemma 3.4 or in Lemma 3.5 may not 
be satisfied since U may not be compact.

Example 2. When H(x, p, t) is a non-convex homogeneous degree-1 functional w.r.t. p in the following form:

H(x, p, t) = c1(x, t)�1(p) − c2(x, t)�2(p)

where �1 and �2 are with their Wulff sets W1, W2 [43] as strictly convex set with smooth boundary ∂W i ∈ C∞, i = 1, 2, 
then by definition of Mordukhovich subdifferential, we have

∂−
p H(x, p, t) =

{
c1(x, t)∂p�1(p) − c2(x, t)∂p�2(p) if p �= 0

∅ if p = 0.

Therefore assuming Conjecture 3.12, i.e. Equation (1.2) and Remark 2, we have:

ϕ(x, t) = − inf
v∈Rd\{0}

{
g∗(p(x, v,0)) +

t∫
0

{(
c1(γ (x, v, s), s) − 〈∂xc1(γ (x, v, s), s), γ (x, v, s)〉

)
�1(p(v, s))

−
(

c2(γ (x, v, s), s) − 〈∂xc2(γ (x, v, s), s), γ (x, v, s)〉
)

�2(p(x, v, s))

}
ds − 〈x, v〉 :

γ̇ (x, v, s) = c1(γ (x, v, s), s)∂p�1(p(x, v, s)) − c2(γ (x, v, s), s)∂p�2(p(x, v, s))
ṗ(x, v, s) = −∂xc1(γ (x, v, s), s)�1(p(x, v, s)) − ∂xc2(γ (x, v, s), s)�2(p(x, v, s)),

γ (x, v, t) = x, p(x, v, t) = v

}
. (3.13)

When H(x, p, t) = −c(x)|p|2, we have, from (3.13) and integration by parts, that

ϕ(x, t) = sup
v∈Rd\{0}

{
g(γ (x, v, t)) :

γ̇ (x, v, s) = c2(γ (x, v, s))p(x, v, s)/|p(v, s)|2
ṗ(x, v, s) = −∂xc2(γ (x, v, s))|p(x, v, s)|2,

γ (x, v,0) = x, p(x, v,0) = v

}
.

This is again Hugyens principles in disguise. In these examples, assumption in Lemma 3.4 or in Lemma 3.5 are not satisfied.
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When H(x, p, t) is, on the other hand, a convex homogeneous degree-one functional w.r.t. p, i.e. when c2(x, t) = 0, and 
hence H(x, p, t) = c(x, t)�(p) for some c > 0 and �, then assuming Conjecture 3.12, i.e. Equation (1.2) and Remark 2, we 
obtain

ϕ(x, t)

= − inf
v∈Rd\{0}

{
g∗(p(x, v,0)) +

t∫
0

{(
c(γ (x, v, s), s) − 〈∂xc(γ (x, v, s), s), γ (x, v, s)〉

)
�(p(v, s))

}
ds − 〈x, v〉 :

(γ , p) ∈ C∞
γ̇ (x, v, s) ∈ c(γ (x, v, s), s)∂−

p �(p(x, v, s))
ṗ(x, v, s) = −∂xc(γ (x, v, s), s)�(p(x, v, s)),

γ (x, v, t) = x, p(x, v, t) = v

}
.

Note that in this example assumptions in Lemma 3.4 are satisfied but that of Lemma 3.5 are not satisfied.

Example 3. When the HJ PDE comes from an ODE system in a differential game, we have the following finite horizon 
problem with initial state x ∈ R

d . We consider the (Lipschitz) solution x : [t, T ] →R
d of the following linear dynamic system 

with initial condition x at time t:{
dx
ds (s) = Mx(s) + NC (s)a(s) + ND(s)b(s) in (t, T )

x(t) = x

where M is a given d × d matrix independent of time, and {NC (s)}t<s<T , {ND(s)}t<s<T are two families of d × d matrices 
with real entries. Using the notation in section 2.2, if we let

f (t, x,a,b) = Mx(s) + NC (s)a + ND(s)b

h(t, x,a,b) = −IC(t)(p) + ID(t)(p),

for some family of convex sets {C(s)}t<s<T ⊂ C , {D(s)}t<s<T ⊂ D , our Hamiltonian read:

H̃±(x, p, t) = max
b∈D(t)

min
a∈C(t)

{−〈Mx + NC (t)a + ND(t)b, p〉} = −〈Mx, p〉 + �C(t)(−N∗
C (t)p) − �D(t)(−N∗

D(t)p),

where

�W (p) := max
x∈W

〈x, p〉.
After a change of variable to get from a finite time PDE problem (−∞, T ) to an initial time PDE problem (0, ∞), we have 
the upper/lower values ϕ(x, t) := U (x, T − t) = V (x, T − t) satisfy:{

∂
∂t ϕ + H(x,∇xϕ, t) = 0 on R

d × (0,∞),

ϕ(x,0) = g(x) on R
d

where the Hamiltonian H is now

H(x, p, t) = H̃±(x, p, T − t) = −〈Mx, p〉 + �C(T −t)(−N∗
C (T − t)p) − �D(T −t)(−N∗

D(T − t)p).

Now, notice that H is smooth w.r.t. x, assuming Conjecture 3.12, i.e. Equation (1.2) and Remark 2, together with the fact 
that ∂x H(x, p, t) = −M∗ p and a change of variable, we get the same formula as in (2.5) in [9]. In fact, the generalized Hopf 
formula gives

ϕ(x, t)

= − min
p∈Rd

{
g∗(e−M∗T p) +

t∫
0

{
�C(T −s)

(
[−e−M(T −s)NC (T − s)]∗ p

)
− �D(T −s)

(
[−e−M(T −s)ND(T − s)]∗ p

)}
ds

− 〈e−M(T −t)x, p〉
}
.

If we write z = e−M(T −t)x and write J (z) = g(eMT z), then this change of coordinate in the state variable by eMT gives rise 
to a symplectic change of coordinate in the phase variables by diag(eMT , e−M∗T ), hence
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J∗(p) = g∗(e−M∗T p),

and therefore we get to

ϕ(x(z), t)

= − min
p∈Rd

{
J∗(p) +

t∫
0

{
�C(T −s)

(
[−e−M(T −s)NC (T − s)]∗ p

)
− �D(T −s)

(
[−e−M(T −s)ND(T − s)]∗ p

)}
ds − 〈z, p〉

}

which is the same formula as in (2.5) in [9]. Note that in this example, both the assumptions in Lemma 3.4 and Lemma 3.5
are satisfied.

4. Numerical methods

4.1. Optimization methods: coordinate descent

In order for computation of optimization (in either the Lax formulation or the Hopf formulation) to be efficient, we have 
recast the initial value HJ PDE problem to minimization problem in d dimensions, where the curves γ and p inside the 
function evaluation (given a vector v) are defined explicitly as the solutions to the bi-characteristic equation. We suggest 
to solve the ODE’s numerically, given a pair of (x, v), up to time t using any ODE solver. This way the minimization/maxi-
mization problem reduces to optimization of a finite-dimensional problem (as a function of v). Similar to [9], we suggest to 
apply coordinate descent to the following functionals with argument v for a given pair (x, t):

F1
x,t(v) := g(γ (x, v, t,0)) +

t∫
0

{〈p(x, v, t, s), ∂p H(γ (x, v, t, s), p(x, v, t, s), s)〉 − H(γ (x, v, t, s), p(x, v, t, s), s)
}

ds

or (noticed we omitted r in this functional, but r is actually the final time of the ODE (γ , p) stated below)

F2
x,t(v) := min

0≤r≤t

{
g(γ (x, v, r,0))

}
or

Gx,t(v) := g∗(p(x, v, t,0)) +
t∫

0

{
H(γ (x, v, t, s), p(x, v, t, s), s) − 〈∂x H(γ (x, v, t, s), p(x, v, t, s), s), γ (x, v, t, s)〉

}
ds

− 〈x, v〉
where in either case, the pair γ (x, v, t, s), p(x, v, t, s) solves the following final value problem for the given pair of x, t (with 
the dependence of the curves w.r.t. x, t clearly indicated in the notion):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
γ̇ (x, v, t, s) = ∂p H(γ (x, v, t, s), p(x, v, t, s), s),

ṗ(x, v, t, s) = −∂x H(γ (x, v, t, s), p(x, v, t, s), s),

γ (x, v, t, t) = x,

p(x, v, t, t) = v.

Now, to minimize F1
x,t(·), F2

x,t(·) or Gx,t(·), we utilize a cyclic coordinate descent algorithm. We illustrate our algorithm 
with the functional Gx,t(·):

Algorithm 1. Take an initial guess of the Lipschitz constant L, and set count := 0. Initialize j1 := 1 and a parameter α := 1/L. 
For k = 1, ...., M , do:

1: {
vk+1

i = vk
i − α ∂iGx,t(vk) if i = jk,

vk+1
i = vk

i otherwise.

2:
jk+1 := jk + 1.

If jk+1 = d + 1, then reset jk+1 = 1.
3: If |vk+1 − vk| > ε, then set count := 0. If k = M , then reset k := 0 and set α := α/2 (i.e. let L := 2L).
i i
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4: If |vk+1 − vk| < ε, set count := count + 1.
5: If count = d, stop.

Return vfinal = vk+1.

We minimize F1
x,t(·), F2

x,t(·) in a similar fashion. In this algorithm, we will need to discuss how to evaluate the functional 
values and also their numerical derivatives. This will be discussed in the next subsection.

4.2. Evaluation of functional and its derivatives: ODE solver, numerical differentiation and integration

In this subsection, we discuss several numerical approximation used in our numerical experiments. First, in our step, we 
need to devise by ODE solvers. We suggest to use the standard forward Euler solver for a given stepsize 
s. Of course the 
performance can be improved by using more advanced solvers, such as the pseudo-spectral method, etc. We also need to 
deal with approximating integrals. Similar to [9], we suggest to evaluate either the derivatives of F1

x,t or Gx,t by numerical 
quadrature rules for integral computations. As for F2

x,t , we compute the maximum by directly choosing the maximum 
around the computed grid from the ODE solver in the case when H(x, p, t) = H(x, p), since the ODE will be the same in 
this case and the ODE solver will get to the function values of γ (v, s) easily.

F1
x,t(v) ≈ min

ri=i
s,i=0,...,t/
s

{
g(γ (x, v, ri,0))

}
(4.1)

with a same choice of 
s as the ODE solver. We also suggest, as in [9], a numerical differentiation rule for derivative 
computations. We integrate using a standard rectangular quadrature rule (we use F1

x,t to illustrate):

F1
x,t(v)

≈ g(γ (x, v, t,0))

+
∑

i

{〈p(x, v, t, i
s), ∂p H(γ (x, v, t, i
s), p(x, v, t, i
s), i
s)〉 − H(γ (x, v, t, i
s), p(x, v, i
s), t, i
s)
}

s

(4.2)

again with the same choice of 
s as in the ODE solver. We suggest approximating the partial derivative ∂iFx,t(p) (which 
means the differentiation of the function w.r.t. the direction ei ) by a finite difference:

∂iFx,t(v) ≈ F1
x,t(v + σ ei) −F1

x,t(v)

σ
(4.3)

with a given choice of σ . By using numerical differentiation, we have the advantage of not necessarily handling tedious an-
alytic computations of the derivative of Hamiltonian which might be singular at times. Also, we only have two evaluations 
of the function value per iteration. By performing numerical approximations, either ODE solvers, differentiation or integra-
tion, we are bound to introduce numerical errors. These errors introduced by numerical approximation can be effectively 
controlled by choosing appropriately small sizes of 
s and σ .

4.3. Certificate of correctness

The method we compute a sequence is guaranteed to converge to a local minimum under an assumption of lower 
semi-continuity and boundedness of the functional. However such a descent type algorithm cannot guarantee convergence 
to global optimal. However, we can check the correctness of the vector v that is computed p(0) ∈ ∂ g(γ (0)). With this 
certificate, in case a local optimal does not satisfy the assumption, we can discard the value thus computed and restart the 
algorithm with another initial guess.

5. Numerical results

In this section, we provide numerical experiments which compute viscosity solutions to HJ PDE with a time-dependent 
Hamiltonian arising from control system. For a given set of points (t, z), we use Algorithm 1 to compute (2.1)–(2.2). We 
set M = 500 and have a different initial guess of the Lipschitz constant L in each example. We evaluate (x, t) in a given 
set of grid points over some 2 dimensional cross-sections of the form [−3, 3]2 × {0}d−2. We choose our error tolerance 
in the coordinate descent iteration as ε = 0.5 × 10−7, which acts as our stopping criterion. The step-size in the numerical 
quadrature rule in (4.1), (4.2) as well as the forward Euler ODE solver is set to be different in each example, and they 
are all denoted as 
s. The step-size for numerical differentiation in (4.3) denoted by σ , and the Lipschitz constants L in
Algorithm 1 are also chosen differently in each example. In all our examples, we set random initial starting points uniformly 
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distributed in [−2, 2]d . We always consider the initial value to be a function with zero level set as an ellipse enclosed by 
the equation 〈x, Ax〉 = 1 where A−1 = diag(1, 25/4, 1/4, 1/4, ..., 1/4), i.e. our initial condition for the HJ PDE is

g(x) = 1

2
(〈x, Ax〉 − 1)

with the aforementioned A. For a convex Hamiltonian, we make one initial guess, and for a non-convex Hamiltonian, we 
perform at most 20 independent trials of random initial guesses to get rid of possible local minima or in places when 
the derivative of the viscosity solution does not exist. We present our run-time in the format of a × 10−c s × k where k
is the number of initial guesses made in the respective example. When d = 2, clear comparison is performed with our 
solution to the solution computed by a first order Lax-Friedrichs monotone scheme [41] with 
t = 0.001 and 
x = 0.005. 
We perform such comparison because we do not have an explicit solution for neither one of our examples, and therefore 
Lax-Friedrichs scheme (which has theoretical convergence guarantee) is used to compare with the solution we computed 
using the minimization/maximization principles. Our algorithm is implemented in C++ on an 1.7 GHz Intel Core i7-4650U 
CPU. In what follows, we present some examples.

Example 1. We solve for the state-dependent Hamiltonian of the linear form

H(x, p, t) = −0.2 c(x) − ∇c(x) · p ,

where

c(x) = 1 + 3 exp(−4|x − (1,1,0,0...,0)|22) .

The minimization principle (1.1) is used to compute the solution ϕ . The temporal stepsize is chosen as 
s = 0.02. In 
this example, since the Hamiltonian is linear, there exists only a unique v such that the constraints of (γ , p) in the bi-
characteristics are satisfied, and therefore there is nothing to optimize, thus no choices of σ and L are necessary. Fig. 1
(left) gives the solutions when d = 2, T = 0.12. The runtime using C++ is 9.929 × 10−7s × 1 per point. Fig. 1 (right) is the 
solution computed by the Lax-Friedrichs scheme, which illustrates that the two solutions coincide. Fig. 2 gives the solutions 
when d = 1024, T = 0.5. The runtime using C++ is 4.342 × 10−2s × 1 per point. The computation time is reasonably fast 
for a 1024 dimensional problem (although in this toy example, there is no optimization to solve). This example satisfies the 
assumptions in Lemma 3.2, but does not satisfy the assumptions in Lemma 3.3, Lemma 3.4 and in Lemma 3.5.

Example 2. Next we solve for the state-dependent Hamiltonian, the well-known harmonic oscillator:

H±(x, p, t) = ±1

2
(|p|22 + |x|22) .

The maximization principle (1.2) is used to compute the solution ϕ for both of the ± cases. The temporal stepsize is chosen 
as 
s = 0.02. The other constants are chosen as follows: stepsize σ = 0.001 and L = 3. Fig. 3 (left) gives the solutions when 
d = 2 and sign of H is negative, i.e. H− , T = 0.5. The runtime using C++ is 2.366 × 10−5s × 5 per point. Fig. 3 (right) is the 
solution computed by the Lax-Friedrichs scheme for comparison. Fig. 4 (left) gives the solutions when d = 2 and sign of H
is positive, i.e. H+, T = 0.5. The runtime using C++ is 2.605 × 10−5s × 5 per point. Fig. 4 (right) is the solution computed by 
the Lax-Friedrichs scheme for comparison. Fig. 6 gives the solutions when d = 7 and sign of H is negative, i.e. H− , T = 0.2. 
The runtime using C++ is 3.717 × 10−4s × 5 per point. The computation time is minimal for a 7 dimensional problem.

In order to test for an example with convex Hamiltonian but a non-convex initial condition, we take another initial 
function g(x) as the following Rosenbrock function:

g(x) = 0.4 × 10−3 ×
(
−100 + (1 − x1)

2 + 100(1 + x2 − x2
1)

2
)

. (5.1)

The Hamiltonian is chosen as H+ which is convex, and T = 0.5. We choose d = 2 for comparision. Fig. 5 (left) gives the 
solutions using the minimization principle. The runtime using C++ is 3.847 × 10−5 per point. Fig. 5 (right) is the solution 
computed by the Lax-Friedrichs scheme for comparison. To remark, both the convex case H+ and nonconvex case H− in 
this example does not satisfy the assumptions of any of the lemmas proved in this work since U may not be compact.

Example 3. We solve for the state-dependent Hamiltonian of the form

H±(x, p, t) = ±c(x)|p|2 ,

where

c(x) = 1 + 3 exp(−4|x − (1,1,0,0...,0)|2) .
2
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Fig. 1. Zero level sets of the solution φ(·, t) for t = 0.02, 0.04, ..., 0.12 in Example 1 with d = 2; left: minimization/maximization principle, right: Lax-
Friedrichs.

Fig. 2. Zero level sets of the solution φ(·, t) for t = 0.05, 0.1, ..., 0.25 by minimization/maximization principle in Example 1 with d = 1024; left: full-size; 
right: close-up.
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Fig. 3. Zero level sets of the solution φ(·, t) for t = 0.1, 0.2, ..., 0.5 by minimization/maximization principle in Example 2 with H− and d = 2; top: full-size; 
bottom: close-up.

Fig. 4. Zero level sets of the solution φ(·, t) for t = 0.1, 0.2, ..., 0.5 by minimization/maximization principle in Example 2 with H+ and d = 2; top: full-size; 
bottom: close-up.

Fig. 5. Zero level sets of the solution φ(·, t) for t = 0.1, 0.2, ..., 0.5 by minimization/maximization principle in Example 2 with H+ , d = 2 and non-convex 
initial data (5.1); top: full-size; bottom: close-up.
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Fig. 6. Zero level sets of the solution φ(·, t) for t = 0.1,0.2 by minimization/maximization principle in Example 2 with H− and d = 7.

Fig. 7. Zero level sets of the solution φ(·, t) for t = 0.1, 0.2, 0.3 in Example 3 with H+ and d = 2; left: minimization/maximization principle, right: Lax-
Friedrichs.

The minimization principle (1.1) is used to compute the solution ϕ for both of the ± cases. The temporal stepsize is chosen 
as 
s = 0.02. The other constants are chosen as follows: stepsize σ = 0.001 and L = 0.02. Fig. 7 gives the solutions when 
d = 2 and sign of H is positive, i.e. H+ , T = 0.3. The runtime using C++ is 6.865 × 10−4s × 5 per point. For comparison, 
Fig. 7 (right) is the solution computed by Lax-Friedrichs scheme. Fig. 8 gives the solutions when d = 2 and sign of H is 
negative, i.e. H− , T = 0.5. The runtime using C++ is 1.417 × 10−3s × 5 per point. Fig. 8 (right) is the solution computed 
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Fig. 8. Zero level sets of the solution φ(·, t) for t = 0.1, 0.2, ..., 0.5 in Example 3 with H− and d = 2; left: minimization/maximization principle, right: 
Lax-Friedrichs.
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Fig. 9. Zero level sets of the solution φ(·, t) for t = 0.1, 0.2, ..., 0.4 by minimization/maximization principle in Example 3 with H− and d = 10; top: full-size; 
middle and bottom: close-up.
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Fig. 10. Error with respect to the number of iterations with H+ in Example 3 at the point x = (−0.93,−0.35), t = 0.3 when 
s = 0.01 and σ = 0.005.

Table 1
Convergence table of the value with re-
spect to σ = 0.02, 0.03, .., 0.06 and 
s =
0.005 with H+ in Example 3 at the point 
x = (−0.93, −0.35), t = 0.3.

σ Error

0.06 3.539 × 10−4

0.05 2.903 × 10−4

0.04 4.468 × 10−4

0.03 6.185 × 10−4

0.02 1.818 × 10−4

Table 2
Convergence table of the value with 
respect to σ = 0.01 and 
s =
0.01, 0.015, .., 0.03 with H+ in Example 3
at the point x = (−0.93, −0.35), t = 0.3.


s Error

0.03 9.466 × 10−3

0.025 7.804 × 10−3

0.02 6.083 × 10−3

0.015 4.314 × 10−3

0.01 1.024 × 10−3

by Lax-Friedrichs scheme for comparison. The angles where a discontinuity of derivative is present are computed more 
accurately using our maximization principle. Fig. 9 gives the solutions when d = 10 and sign of H is negative, i.e. H− , 
T = 0.4. The runtime using C++ is 2.470 × 10−2s × 5 per point. The computation time is still excellent for a 10 dimensional 
problem. To remark, again the convex case H+ in this example satisfies the assumptions in Lemma 3.2, but does not satisfy 
the assumptions in Lemma 3.3, Lemma 3.4 and in Lemma 3.5. Whereas for the nonconvex case H− in this example does 
not satisfy the assumptions of any of the lemmas proved in this work.

In order to compare convergence of the method with respect to different discretization parameters, we compute the 
solutions with different 
s and σ to compare our result. We choose H+ and compare our solutions computed at the point 
x = (−0.93, −0.35), t = 0.3 with that of using the finest set of parameter 
s = 0.005 and σ = 0.01. We first fix 
s = 0.005
and compute the values of the function φ(x, t) using parameter different σ = 0.02, 0.03, .., 0.06. The convergence table of 
the value with respect to the discretization parameter is shown Table 1. In the comparison of this discretization parameter 
σ , the error does not show a clear trend of diminishing and shows a bit of oscillatory behaviour, although it is overall 
small as 
s goes to 0. We then fix σ = 0.01 and compute the values of the function φ(x, t) using parameter different 

s = 0.01, 0.015, .., 0.03. The convergence table of the value with respect to the discretization parameter is shown Table 2. 
In the comparison of this discretization parameter 
s, the error shows a clear trend of converging as goes to 0. In order 
to show convergence rate, as an example, Fig. 10 shows the convergence of the algorithm 
s = 0.01 and σ = 0.005. As we 
may observe from the figure, the convergence is sublinear.

Example 4. To test our maximization principle for a general state-dependent non-convex Hamilton-Jacobi equation, we use 
a state-dependent non-convex Hamiltonian of the following form given in [19] but a different problem from [19]:

H(x, p, t) = −c(x)p1 + 2|p2| −
√

|p1|2 + |p2|2 − 1 ,

where we write p = (p1, p2) and

c(x) = 2
(

1 + 3 exp(−4|x − (1,1)|22)
)

.
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Fig. 11. Zero level sets of the solution φ(·, t) for t = 0.025, 0.05, ..., 0.1 in Example 4 with d = 2; left: minimization/maximization principle, right: Lax-
Friedrichs.
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Fig. 12. Zero level sets of the solution φ(·, t) for t = 0.1, 0.2, 0.3; left: minimization/maximization principle in Example 5 with k = 1 and d = 2, right: 
Lax-Friedrichs.
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Fig. 13. Example 5 with k = 1 and d = 2. Left: functional to be minimized at x = (−0.93, −0.35), t = 0.3 (black star: global minimum; red stars: an iterate 
of coordinate descent with random initial guess; green star: final iterate of the coordinate descent method.) Right: 2 norm of the gradient of the functional. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The maximization principle (1.2) is used to compute the solution ϕ . The temporal stepsize is chosen as 
s = 0.005. The 
other constants are chosen as follows: stepsize σ = 0.001 and L = 4. Fig. 11 gives the solutions with T = 0.1. The runtime 
using C++ is 7.279 × 10−2s × 5 per point. Fig. 11 (right) is the solution computed by the Lax-Friedrichs scheme for compari-
son. The example is to illustrate that the maximization principle coincide with the Lax-Friedrichs solution in a quite general 
case. To remark, for this case, the example does not satisfy the assumptions of any of the lemmas proved in this work.

Example 5. We solve for the state-dependent non-convex Hamiltonian of the form

H(x, p, t) = c1(x)|p1,...,k|2 − c2(x)|pk+1,...,d|2 ,

where

c1(x) = c(x) , c2(x) = c(−x) , c(x) = 2
(

1 + 3 exp(−4|x − (1,1)|22)
)

.

In this case the maximization principle (1.2) is used to compute the solution ϕ . The constants are chosen as follows: the 
temporal stepsize 
s = 0.02, stepsize in numerical differentiation σ = 0.001 and L = 50.

Fig. 12 gives the solutions when d = 2 and k = 1, T = 0.3. The runtime using C++ is 9.094 × 10−2s × 20 per point. To 
compare, Fig. 12 (right) is the solution computed by Lax-Friedrichs scheme for comparison. Now there is small defect in the 
solution computed by the maximization principle at one point of the wave-front close to x = (−1, −0.4), owing to the high 
non-convexity and non-smoothness of the corresponding functionals around that point.

In order to pin down the exact problem causing the defect, let us fix x = (−0.93, −0.35) and t = 0.3 Fig. 13 (left) shows 
the functional to be minimized. The black star is the global minimizer. It is clear that we now have a local minimizer 
(attractor) which has a comparable size of basin of attraction as the global minimizer. Moreover consider Fig. 13 (right), 
which shows the norm of the gradient for the functional to be minimized, we can clearly see that around the two basins of 
attractions, there is a long V-shape trench with gradient of very small magnitude. With this kind of structure, it is very likely 
that a gradient type method either get stuck at a local minimum (as one may see, there is almost at least 0.5 probability 
that one may fall into the basin of attraction of the local minimum); or it will drag very slowly along the trench and is very 
difficult to leave it before converging to a global minimum. In fact, this truly happen quite often. As shown in Fig. 13 (left) 
the red stars show the path of an iteration of coordinate descent with a random initial guess and green star is the final 
iterate. It is clear that the iterates drag along the trench and fall into the attraction basin of a local minimum. In fact, this 
structure of the functional make descent-type algorithms less easy to find the global minimum, unless better optimization 
methods are considered, e.g. adding momentum [44,51,57]. Fig. 14 gives the solutions when d = 7 and k = 1, T = 0.3. The 
runtime using C++ is 5.428 × 10−1s × 20 per point. The computation time is still acceptable for a 7 dimensional problem 
which is fully non-convex and state-dependent. To remark, again, this example does not satisfy the assumptions of any of 
the lemmas proved in this work.
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