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The Extension of the Gauss Approach for the
Solution of an Overdetermined Set of

Algebraic Non Linear Equations
Newton G. Bretas and Arturo S. Bretas

Abstract—In this brief is presented an extension of the Gauss1

approach for the solution of an overdetermined set of algebraic2

non linear equations. Further, it is shown that the measurement3

error, in the Gauss approach, is in the measurement direction and4

that error has a unique decomposition: 1) the first component,5

which is orthogonal to the Jacobian range space, the residual and6

2) the other which is on the Jacobian range space. The latter is7

hidden in the Jacobian space when one minimizes the residual.8

The extension of the Gauss approach is then in the sense to min-9

imize the norm of the error. In engineering, the measurements10

may have gross errors, and then detection, identification, and11

correction of those errors are necessary. The Largest Normalized12

Error Test will be developed for that purpose. Considering the13

cyber-attack possibility, modeled as a malicious data attack,14

the error correction step is paramount. Applications on power15

networks will be used to show the hidden error component when16

using the Gauss minimization, and also to illustrate all the steps17

of the presented procedure as well as comparison to the current18

Gauss approach.19

Index Terms—Gauss minimization, orthogonal projections,20

recovering errors and composing errors.21

I. INTRODUCTION22

THE CHARACTERISTIC to deal with measurements23

in engineering and many other science’s fields impose24

a necessity to filter those data, and the Gauss minimization is25

widely accepted as an appropriate approach. Many versions of26

the Gauss proposition have appeared and the most known one27

is the Weighted Least Squares Estimation (WLSE) [1]–[3].28

The WLSE has several applications, as filter design [4], [5],29

cyber-physical security [6] and networks [7]. The Gauss30

approach proposes to minimize a functional given by the31

weighted residuals. Higher weights are attributed for the32

measurements of better qualities. However, if it is assumed33

the possibility of gross errors on the measurements, how34

could one attribute the weights to them? A second question35

that naturally arises is: (i) In case some measurements of36

the measurement set have gross errors will it be adequate37

to process them without a previous treatment? The intention38

of this brief is to provide answers to the previous questions39
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and, at same time, propose solutions. In this brief, it will 40

be shown that the error of the measurement equation has 41

a unique decomposition: (i) one component orthogonal to the 42

Jacobian range space and (ii) the other component is in the 43

Jacobian range space. It will be shown also that the Gauss 44

proposition minimizes only the first error component, known 45

as the measurement residual; the other error component is 46

hidden from the Gauss approach. Still, it will be shown how 47

to estimate the other error component and then an extension 48

of the Gauss proposition, where the minimization will be on 49

the norm of error and not the residual. In order to estimate 50

the hidden error component, the Innovation Index (II) will 51

be introduced. The II of a measurement is the information it 52

contains but not the other measurements of the measurement 53

set. A two-bus power network will be used to show the hidden 54

error component effect, when using the Gauss minimization, 55

and two other networks will be used to illustrate all the steps 56

of the presented procedure and used as comparison to the 57

Gauss approach. 58

II. GAUSS APPROACH: THEORETICAL BACKGROUND 59

Given a set of non-linear equations, as described in the 60

following: 61

z = h(x) + e (1) 62

where z ∈ Rm is the measurement vector, x ∈ RN is the state 63

variables vector, h : Rm → RN , (m > N) is a continuously non 64

linear differentiable function, e ∈ Rm is the measurement error 65

vector assumed having zero mean and Gaussian probability 66

distribution. N = 2n−1 is the number of unknown state vari- 67

ables to be estimated (n is the buses number of the network). 68

The Gauss approach proposes to minimize the 69

functional [2]: 70

J(x) = [z−h(x)]TW[z−h(x)] (2) 71

where W is a symmetric and positive definite real matrix. At 72

this stage of this brief, let us suppose W = I, that is, the 73

weight matrix as being the identity matrix. The functional J 74

is a norm in the measurement space Rm induced by the inner 75

product ⟨u, v⟩ = uTv, that is: 76

∥e∥2 = eTe = ⟨z−h(x), z−h(x)⟩ 77

∥e∥2 = [z−h(x)]T [z−h(x)] (3) 78

with ∥e∥2 being the square norm of the vector e. 79

The solution of (1), minimizing (3), is the vector x̂ obtained 80

iteratively from the solution of the linearized equation: 81

z = Hx + e (4) 82

where H = ∂h/∂x is the Jacobian of h(x). 83
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Let x̂ be the estimated state, the solution of that84

minimization problem, then the estimated measurement vector85

will be given by ẑ = h(x̂). The residual vector will be:86

r =
!
z−ẑ

"
∈ L
!
hj
"⊥

. (5)87

It happens that e, z and Hx̂ all belong to Rm, but Hx̂ belongs88

to the column space of H. That is, the space spanned by the89

columns hj of H and is denoted by L(hj), or a linear combina-90

tion of the column space of H. Rm can be written as the direct91

sum:92

Rm = L
!
hj
"
⊕ L
!
hj
"⊥

. (6)93

The measurement error, however, has a unique94

decomposition:95

e = e1 + e2; e1 ∈ L
!
hj
"
, e2 ∈ L

!
hj
"⊥

. (7)96

Since z is given and Hx̂ ∈ L(Hj), the choice of x cannot97

affect e1. As a direct conclusion, the least squares solution98

vector x̂ is optimal only for case where e1 = 0. This means99

that the projection of z on L(hj), call it ẑ must equal Hx̂.100

The important conclusion of this previous is that the WLSE101

is optimal only for the case where e1 = 0. However, when one102

error component exists, the other one also will exist, then in103

real life, the measurement vector z has always an error vector,104

e1 ̸= 0, they are coupled.105

Remark 1: One can induce that in case the measurement106

error e is contained inside an acceptable ball of radius r, that107

is, less than a threshold predefined value, and only in that108

case, the classical least mean squares will offer a reasonable109

solution. For the real life situations however, measurements110

may have large errors. Then, a generalization of the Least111

Squares approximation is required.112

III. EXTENSION OF THE GAUSS APPROACH113

Let us assume the possibility of the measurement error vec-114

tor e having large magnitudes, that is, beyond a pre-defined115

acceptable value. If one wants to use the classical solution116

of the WLSE, one must first apply the Hypothesis Testing to117

check if the error vector magnitude is inside a pre-defined118

acceptable region. In case the answer to this question is yes,119

one could apply the classical WLS solution as previously120

presented, although that is not the optimal solution. Otherwise,121

one should identify the measurements having the error e larger122

than a chosen threshold value and then correct them.123

To identify such measurements one needs to estimate the124

measurement error: the estimation of the measurement error125

can be obtained estimating the measurement residual as well126

as the hidden measurement error component, which is in the127

Jacobian range space. To do this the measurement Innovation128

Index (II) will be used, as presented in the following.129

To estimate the measurement error (e), one need to estimate130

the error components e1 and e2, and then the measurement131

error will be composed, that is:132

e2 = e2
1 + e2

2. (8)133

Let x̂ be the estimated state vector, result of the solution134

of the classical WLSE problem, which minimizes (3), and is135

given by:136

x̂ =
#

HTR−1H
$−1

HTR−1z = G−1HTR−1z (9)137

with R being the weighting matrix. In this case, the estimated 138

measurement vector ẑ is given by: 139

ẑ = Hx̂ = H
#

HTR−1H
$−1

HTR−1z 140

ẑ = HG−1HTR−1z = Kz (10) 141

with G being equal to HTR−1H. The residual vector r is given 142

by: 143

r = z−ẑ = z−Kz = (I −K)z = Se = e2. (11) 144

Since, for the i-th measurement, it is assumed ei ∼ 145

N(0, Rii) = N(0, σ 2), then: 146

E{r} = E{Se} = SE{e} = 0 (12) 147

cov{r} = E
%
rrT& = SE

%
eeT&ST = SRST = SR = # (13) 148

where σ is the measurement standard deviation and: 149

# = (I −K)R 150

# =
'

(1−K11)σ
2
1 K1mσ 2

m
Km1σ

2
1 (1−Kmm)σ 2

m

(
. (14) 151

Consequently, the normalized residual will be: 152

rN
i = |ri|√

#ii
= |ri|√

SiiRii
= |ri|

σi
√

(1−Kii)
153

rN
i ∼ N(0, 1) (15) 154

and ei
1 = Kei and ei

2 = (I −K)ei, respectively. 155

To find the masked error component e1, let us define the 156

Innovation Index (II) for the i-th measurement as being: 157

IIi =

)))e(i)
2

)))
R−1)))e(i)

1

)))
R−1

=
√

1−Kii√
Kii

. (16) 158

Equation (16) is easily derived just using the definition of 159

the norm and making some algebrism. 160

The II of a measurement is the ratio of new information 161

it contains related to the other measurements of the measure- 162

ment set [9]–[12]. Consequently, knowing the matrix K, the 163

measurement II can be calculated; knowing this index, and 164

the measurement residual, the ei
1 error component can be also 165

estimated and the measurement error e composed by: 166

∥êi∥2
R−1 = ∥ei

2∥2
R−1 + ∥ei

1∥2
R−1 = 1

II2
i
∥ei

2∥2
R−1 + ∥ei

1∥2
R−1 167

∥êi∥2
R−1 =

*

1 + 1

II2
i

+

∥ei
2∥2

R−1 =
*

1 + 1

II2
i

+

r2
i . (17) 168

Then, in this brief, the proposed Extension to the Gauss 169

methodology is in the sense of by minimizing the error. 170

That is: 171

Minx

m,

i=1

(1 + 1

II2
i
)r2

i (18) 172

with r2
i given by (3). 173

The measurement error, estimated in this way, is known 174

as Composed Measurement Error (CME). It can be normal- 175

ized as: 176

CMEN = CME/σ. (19) 177
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Fig. 1. Two-bus power network.AQ1

One can also obtain the measurement Composed178

Normalized Residual, that is, first normalizes the resid-179

ual and then composes the error; consequently, the CNE is in180

the residual subspace:181

CNE =
-

1 + 1
II2

.
rN . (20)182

Remark 2: One should be aware that that CMEN and183

CNE are different quantities, the first pertaining to the error184

subspace and the other to the residual subspace.185

For the gross error detection the χ2 Hypothesis testing is186

applied to the CMEN vector, with the number of measurements187

m as degree of freedom; the reason for that being the error is188

not a correlated quantity.189

For the gross error correction, (20) should be used since190

the CMEN , a vector of dimension m, is generated from the191

residual; this one being a vector of dimension (m −n); as192

a consequence, the vector CMEN contains noises.193

A two-bus power network will be used to show the appli-194

cation of the presented Gauss Extension formulation.195

Consider the two-bus power network illustrated on Figure 1.196

F(A) : 12 = 1.0526 and F(R) = P : 12 = 0.120 p.u. are the197

active and reactive power flows measurements, respectively,198

and the phase angle difference between the two buses (θ12)199

is the state variable to be estimated. Starting with an inicial200

phase angle difference estimate, the Jacobian matrix is cal-201

culated considering that state and the minimization of (18)202

is performed. The χ2 Hypothesis testing is applied, and if203

that results in gross error detection, the Largest Normalized204

Error test is used to identify the measurement with error; the205

correction is made through the CNE.206

Consider Figure 2, the plane formed by the F(A) : 12 and207

θ12 is represented.208

Figure 2 shows clearly what the Gauss proposition mini-209

mizes is the residual, (z−h(x)), although what one needs to210

minimize is the error, pertaining to the measurement space,211

and that is the Extension of the Gauss approach this brief212

presents. The measurement F(R) will form a similar figure in213

another plane with θ12.214

A. Current Test for Detection and Identification of215

Gross Errors216

With the normalized measurement residuals having normal217

distribution, it is assumed that the index J(x), i.e., the func-218

tion to be minimized in (3) has a Chi-square distribution (χ2)219

with m−N degrees of freedom. Then, choosing a probability220

“1−α” of false alarm (being α the significance level of the221

test), a number “C” is obtained (via Chi-square distribution222

table for χ2
m−N,α) such that, in the presence of gross error:223

J(x) > C.224

Remark 3: The previous assumption has the mistake of225

assuming the normalized residual as having a normal distri-226

bution. The reason for this affirmative is that m residuals has227

Fig. 2. The measurement error estimation.

m −N degrees of freedom and, consequently, cannot be an 228

uncorrelated variable, contradicting then the assumption. 229

This χ2 test applied to the residual, however, is not ade- 230

quately applied. Consequently, the tests results are not going 231

to give the guarantee, with the chosen uncertainty degree, that 232

at least one measurement may have the residual as superior to 233

a chosen threshold value. 234

In the gross error detection test, this brief proposes to use 235

the new J(x) index with the measurement error and not the 236

residual, as shown in (18). 237

For the purpose of gross error identification, the Largest 238

Normalized Error test should then be used; after normalizing 239

the error e it is submitted to the validation test: 240

Conjecture: Let be eN
k = | ek

σk
| ≤ λ (threshold value), where 241

eN
k is the largest among all eN

i , i = 1, . . . , m; σk = √
Rkk is 242

the kth measurement standard deviation, and R is the error 243

covariance matrix. Then if eN
k > λ, measurement gross error 244

will be detected. 245

Remark 4: The current gross error detection test is in incor- 246

rect because: (i) it uses the residual as a metric for the error; 247

(ii) it assumes a hyper-sphere for the normalized residual prob- 248

ability density function, assuming all the measurements are 249

correct, except one of them, the one having error, what is not 250

a valid real life situation. In what follows, it will be presented 251

the property of the Largest Normalized Error Test (LNET), in 252

order to detect and identify the measurements with errors as 253

shown in the previous conjecture. 254

B. Generalization of the Largest Normalized Residual Test: 255

The Largest Normalized Error Test 256

Theorem: Assuming all the measurements of a measurement 257

set with limited random errors, and adding gross error only 258

to one of the measurements, the measurement to which gross 259

error was added will have the largest increment of error among 260

all the measurements. 261

Proof: In [8] it was proved that the measurement error in its 262

normalized form (CMEN) and the normalized residuals are for- 263

mally equal, but numerically different from each other because 264

the projection matrix K is different. Also, the measurement 265

error pertains to the measurement sub-space, with m degrees 266

of freedom, and the measurement residual pertains to the resid- 267

ual sub-space, of dimension (m−N), and consequently with 268

(m−N) degrees of freedom and any comparison between them 269

is meaningless. 270
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Fig. 3. The three-bus network.

Suppose, now, that the measurements are perfect, without271

any error, the measurement residual will be given by:272

e2 = r = (I −K)z = RrWz (21)273

which in this situation are zeros for all the measurements. Let274

us suppose now that error is added only to the measurement zi275

and, consequently, for this new measurement: zn
i = zi + biσi,276

and all the other measurements staying with the same magni-277

tudes, n standing for new measurement. Following the same278

standard of demonstration of the classical largest normalized279

residual test, one obtains:280

rn −r = biσ
−1
i Rrui (22)281

where Rrui is the i-th column of the residual covariance matrix282

Rr, as in the largest normalized residual test.283

Consequently, and following the same standard of proof284

of the classical largest normalized residual test [2], one will285

obtain:286 ///rN,n
i −rN

i

/// ≥
///rN,n

j −rN
j

/// for all j ̸= i. (23)287

Transforming the residuals in errors one will get:288

///eN,n
i −eN

i

/// ≥
///eN,n

j −eN
j

///, j = 1, . . . , m (24)289

because the measurement with error is the one with more new290

information. As a conclusion, the largest error increase will291

occur on the measurement with error.292

If one generalizes the situation so that all measurements may293

have errors but are inside a ball of radius r and error is added294

to one measurement only, and using the previous theorem, one295

error magnitude will exist such that the largest error has to be296

in the measurement with error.297

OBS: For the previous generalization the Implicit Function298

Theorem property was used, that is, if a property is valid for299

an initial condition it will be valid for any other since no bifur-300

cation occurs going from one initial condition to the another.301

The previous demonstration gives support to use the largest302

normalized error test as a methodology to detect as well as to303

identify the measurements containing gross errors.304

C. The Choice of the Weight Matrix to Detect Measurements305

With Gross Errors306

To detect if there exist measurements containing gross307

errors, it must be assumed that all measurements may have308

error. This means one cannot use the measurement qualities309

as having effect on the measurement weights at the stage of310

gross error detection. To define an appropriate measurement311

TABLE I
THREE BUS NETWORK SIMULATION

weights at this SE stage let us suppose a simple problem where 312

it does exist just one variable to estimate and many related 313

measurements: suppose that all measurements have the same 314

quality and do not have gross errors; then as a natural conse- 315

quence, the weights for the measurements should be all equal. 316

For example, the inverse of a fixed percentage of the measure- 317

ment’s magnitude, because in that way the variable estimated 318

value will be an average of the measurements values. Suppose 319

now a situation where some of the measurements may have 320

error: if the measurement is such that, with the error, it has 321

a value larger than the correct value, it will have less weight 322

than a correct measurement and vice versa. 323

Conclusion: At the gross error detection stage, the measure- 324

ment weights should be a fixed percentage of the measurement 325

magnitude, independently of the measurement quality. At this 326

stage, the measurement quality cannot be taken in account. 327

Once the measurements with gross errors are identified and 328

corrected, the weight matrix is as proposed in the classical 329

state estimation, that is, the measurement quality should be 330

now taken in account. 331

In the next section, two power networks will be simulated 332

to show this brief proposition efficiency for the gross error 333

analysis as well the fail of the classical gross error analysis 334

proposal. 335

IV. CASE STUDY 336

Consider Figure 3. Using a three-bus network with the mea- 337

surements as shown in Figure 3, whose magnitudes are in 338

Table I, after random errors are added to them, a gross error 339

is added, one at a time, until the error is detected. Then 340
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TABLE II
IEEE 14 BUS NETWORK SIMULATIONS

the measurement with error is identified using the current341

Largest Normalized Residual Test (LNRT) and the presented342

methodology of this brief, the LNET. For this case, the global343

redundancy level is equal to 2.2 (GRL = 2.2). As can be seen,344

using the classical approach, six wrong gross errors identifica-345

tion have occurred, but using this brief proposition, in all cases346

the gross error was correctly detected and the measurement347

which had gross error was correctly identified.348

In Table I, the used nomenclature for the measurements are:349

I(A) : i means active power injection at bus i; F(R) : i−j means350

reactive flow at line i−j.351

As can be seen on Table I, the gross error detection and352

identification has worked correctly in all cases when using353

the LNET but in contrary, when using the LNRT, many detec-354

tion and identification flaws have occurred. Another important355

point is the proximity between the added error and the corre-356

sponding CNE for the measurement identified as having the357

error. Consider now the IEEE14 bus system [4], and the same358

test conditions as previously applied. Test results are presented359

on Table II.360

As can be seen on Table II, the gross error detection and361

identification has worked correctly in all simulated cases when362

using the LNET but in contrary, when using the residual363

LNRT, many fails occurred. In general, measurements with low364

Innovation Index tend to present a hidden error component of365

large magnitude, consequently leading the LNRT to fail in the366

error detection.367

V. CONCLUSION 368

This brief presents an extension of the Gauss approach to 369

solve overdetermined sets of algebraic non linear equations. 370

It was shown that the measurement error is composed of two 371

components: (i) one that is in the Jacobian range space (hid- 372

den component); (ii) other that is orthogonal to that space. The 373

latter component comes out to be the residual. The WLSE 374

should perform the minimization on the measurement error 375

and not on the residual. The gross error detection is per- 376

formed through the application of the χ2 test on the composed 377

error; the identification is performed using the LNET. In this 378

stage of the SE the measurement weights should be a per- 379

centage of the measurements magnitude. The measurement 380

correction is made using the measurement CNE. After the 381

correction, a new Gauss minimization is performed, now tak- 382

ing in account the measurement quality to define the weights. 383

This brief contribution when estimating the error and then 384

the possibility of correcting the measurement having error is 385

of paramount importance in these days due to cyber-attacks 386

becoming every day more real. Two power networks have 387

been used to show, in detail, each step of this brief proposi- 388

tion and at same time comparing the classical WLS solution. 389

The added error magnitude and the estimated normalized error, 390

CNE, are very close to each other, giving support to the idea of 391

estimating the measurement errors and then correcting those 392

measurements. 393
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The Extension of the Gauss Approach for the
Solution of an Overdetermined Set of

Algebraic Non Linear Equations
Newton G. Bretas and Arturo S. Bretas

Abstract—In this brief is presented an extension of the Gauss1

approach for the solution of an overdetermined set of algebraic2

non linear equations. Further, it is shown that the measurement3

error, in the Gauss approach, is in the measurement direction and4

that error has a unique decomposition: 1) the first component,5

which is orthogonal to the Jacobian range space, the residual and6

2) the other which is on the Jacobian range space. The latter is7

hidden in the Jacobian space when one minimizes the residual.8

The extension of the Gauss approach is then in the sense to min-9

imize the norm of the error. In engineering, the measurements10

may have gross errors, and then detection, identification, and11

correction of those errors are necessary. The Largest Normalized12

Error Test will be developed for that purpose. Considering the13

cyber-attack possibility, modeled as a malicious data attack,14

the error correction step is paramount. Applications on power15

networks will be used to show the hidden error component when16

using the Gauss minimization, and also to illustrate all the steps17

of the presented procedure as well as comparison to the current18

Gauss approach.19

Index Terms—Gauss minimization, orthogonal projections,20

recovering errors and composing errors.21

I. INTRODUCTION22

THE CHARACTERISTIC to deal with measurements23

in engineering and many other science’s fields impose24

a necessity to filter those data, and the Gauss minimization is25

widely accepted as an appropriate approach. Many versions of26

the Gauss proposition have appeared and the most known one27

is the Weighted Least Squares Estimation (WLSE) [1]–[3].28

The WLSE has several applications, as filter design [4], [5],29

cyber-physical security [6] and networks [7]. The Gauss30

approach proposes to minimize a functional given by the31

weighted residuals. Higher weights are attributed for the32

measurements of better qualities. However, if it is assumed33

the possibility of gross errors on the measurements, how34

could one attribute the weights to them? A second question35

that naturally arises is: (i) In case some measurements of36

the measurement set have gross errors will it be adequate37

to process them without a previous treatment? The intention38

of this brief is to provide answers to the previous questions39
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and, at same time, propose solutions. In this brief, it will 40

be shown that the error of the measurement equation has 41

a unique decomposition: (i) one component orthogonal to the 42

Jacobian range space and (ii) the other component is in the 43

Jacobian range space. It will be shown also that the Gauss 44

proposition minimizes only the first error component, known 45

as the measurement residual; the other error component is 46

hidden from the Gauss approach. Still, it will be shown how 47

to estimate the other error component and then an extension 48

of the Gauss proposition, where the minimization will be on 49

the norm of error and not the residual. In order to estimate 50

the hidden error component, the Innovation Index (II) will 51

be introduced. The II of a measurement is the information it 52

contains but not the other measurements of the measurement 53

set. A two-bus power network will be used to show the hidden 54

error component effect, when using the Gauss minimization, 55

and two other networks will be used to illustrate all the steps 56

of the presented procedure and used as comparison to the 57

Gauss approach. 58

II. GAUSS APPROACH: THEORETICAL BACKGROUND 59

Given a set of non-linear equations, as described in the 60

following: 61

z = h(x) + e (1) 62

where z ∈ Rm is the measurement vector, x ∈ RN is the state 63

variables vector, h : Rm → RN , (m > N) is a continuously non 64

linear differentiable function, e ∈ Rm is the measurement error 65

vector assumed having zero mean and Gaussian probability 66

distribution. N = 2n−1 is the number of unknown state vari- 67

ables to be estimated (n is the buses number of the network). 68

The Gauss approach proposes to minimize the 69

functional [2]: 70

J(x) = [z−h(x)]TW[z−h(x)] (2) 71

where W is a symmetric and positive definite real matrix. At 72

this stage of this brief, let us suppose W = I, that is, the 73

weight matrix as being the identity matrix. The functional J 74

is a norm in the measurement space Rm induced by the inner 75

product ⟨u, v⟩ = uTv, that is: 76

∥e∥2 = eTe = ⟨z−h(x), z−h(x)⟩ 77

∥e∥2 = [z−h(x)]T [z−h(x)] (3) 78

with ∥e∥2 being the square norm of the vector e. 79

The solution of (1), minimizing (3), is the vector x̂ obtained 80

iteratively from the solution of the linearized equation: 81

z = Hx + e (4) 82

where H = ∂h/∂x is the Jacobian of h(x). 83
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Let x̂ be the estimated state, the solution of that84

minimization problem, then the estimated measurement vector85

will be given by ẑ = h(x̂). The residual vector will be:86

r =
!
z−ẑ

"
∈ L
!
hj
"⊥

. (5)87

It happens that e, z and Hx̂ all belong to Rm, but Hx̂ belongs88

to the column space of H. That is, the space spanned by the89

columns hj of H and is denoted by L(hj), or a linear combina-90

tion of the column space of H. Rm can be written as the direct91

sum:92

Rm = L
!
hj
"
⊕ L
!
hj
"⊥

. (6)93

The measurement error, however, has a unique94

decomposition:95

e = e1 + e2; e1 ∈ L
!
hj
"
, e2 ∈ L

!
hj
"⊥

. (7)96

Since z is given and Hx̂ ∈ L(Hj), the choice of x cannot97

affect e1. As a direct conclusion, the least squares solution98

vector x̂ is optimal only for case where e1 = 0. This means99

that the projection of z on L(hj), call it ẑ must equal Hx̂.100

The important conclusion of this previous is that the WLSE101

is optimal only for the case where e1 = 0. However, when one102

error component exists, the other one also will exist, then in103

real life, the measurement vector z has always an error vector,104

e1 ̸= 0, they are coupled.105

Remark 1: One can induce that in case the measurement106

error e is contained inside an acceptable ball of radius r, that107

is, less than a threshold predefined value, and only in that108

case, the classical least mean squares will offer a reasonable109

solution. For the real life situations however, measurements110

may have large errors. Then, a generalization of the Least111

Squares approximation is required.112

III. EXTENSION OF THE GAUSS APPROACH113

Let us assume the possibility of the measurement error vec-114

tor e having large magnitudes, that is, beyond a pre-defined115

acceptable value. If one wants to use the classical solution116

of the WLSE, one must first apply the Hypothesis Testing to117

check if the error vector magnitude is inside a pre-defined118

acceptable region. In case the answer to this question is yes,119

one could apply the classical WLS solution as previously120

presented, although that is not the optimal solution. Otherwise,121

one should identify the measurements having the error e larger122

than a chosen threshold value and then correct them.123

To identify such measurements one needs to estimate the124

measurement error: the estimation of the measurement error125

can be obtained estimating the measurement residual as well126

as the hidden measurement error component, which is in the127

Jacobian range space. To do this the measurement Innovation128

Index (II) will be used, as presented in the following.129

To estimate the measurement error (e), one need to estimate130

the error components e1 and e2, and then the measurement131

error will be composed, that is:132

e2 = e2
1 + e2

2. (8)133

Let x̂ be the estimated state vector, result of the solution134

of the classical WLSE problem, which minimizes (3), and is135

given by:136

x̂ =
#

HTR−1H
$−1

HTR−1z = G−1HTR−1z (9)137

with R being the weighting matrix. In this case, the estimated 138

measurement vector ẑ is given by: 139

ẑ = Hx̂ = H
#

HTR−1H
$−1

HTR−1z 140

ẑ = HG−1HTR−1z = Kz (10) 141

with G being equal to HTR−1H. The residual vector r is given 142

by: 143

r = z−ẑ = z−Kz = (I −K)z = Se = e2. (11) 144

Since, for the i-th measurement, it is assumed ei ∼ 145

N(0, Rii) = N(0, σ 2), then: 146

E{r} = E{Se} = SE{e} = 0 (12) 147

cov{r} = E
%
rrT& = SE

%
eeT&ST = SRST = SR = # (13) 148

where σ is the measurement standard deviation and: 149

# = (I −K)R 150

# =
'

(1−K11)σ
2
1 K1mσ 2

m
Km1σ

2
1 (1−Kmm)σ 2

m

(
. (14) 151

Consequently, the normalized residual will be: 152

rN
i = |ri|√

#ii
= |ri|√

SiiRii
= |ri|

σi
√

(1−Kii)
153

rN
i ∼ N(0, 1) (15) 154

and ei
1 = Kei and ei

2 = (I −K)ei, respectively. 155

To find the masked error component e1, let us define the 156

Innovation Index (II) for the i-th measurement as being: 157

IIi =

)))e(i)
2

)))
R−1)))e(i)

1

)))
R−1

=
√

1−Kii√
Kii

. (16) 158

Equation (16) is easily derived just using the definition of 159

the norm and making some algebrism. 160

The II of a measurement is the ratio of new information 161

it contains related to the other measurements of the measure- 162

ment set [9]–[12]. Consequently, knowing the matrix K, the 163

measurement II can be calculated; knowing this index, and 164

the measurement residual, the ei
1 error component can be also 165

estimated and the measurement error e composed by: 166

∥êi∥2
R−1 = ∥ei

2∥2
R−1 + ∥ei

1∥2
R−1 = 1

II2
i
∥ei

2∥2
R−1 + ∥ei

1∥2
R−1 167

∥êi∥2
R−1 =

*

1 + 1

II2
i

+

∥ei
2∥2

R−1 =
*

1 + 1

II2
i

+

r2
i . (17) 168

Then, in this brief, the proposed Extension to the Gauss 169

methodology is in the sense of by minimizing the error. 170

That is: 171

Minx

m,

i=1

(1 + 1

II2
i
)r2

i (18) 172

with r2
i given by (3). 173

The measurement error, estimated in this way, is known 174

as Composed Measurement Error (CME). It can be normal- 175

ized as: 176

CMEN = CME/σ. (19) 177



IEE
E P

ro
of

BRETAS AND BRETAS: EXTENSION OF GAUSS APPROACH FOR SOLUTION OF OVERDETERMINED SET OF ALGEBRAIC NON LINEAR EQUATIONS 3

Fig. 1. Two-bus power network.AQ1

One can also obtain the measurement Composed178

Normalized Residual, that is, first normalizes the resid-179

ual and then composes the error; consequently, the CNE is in180

the residual subspace:181

CNE =
-

1 + 1
II2

.
rN . (20)182

Remark 2: One should be aware that that CMEN and183

CNE are different quantities, the first pertaining to the error184

subspace and the other to the residual subspace.185

For the gross error detection the χ2 Hypothesis testing is186

applied to the CMEN vector, with the number of measurements187

m as degree of freedom; the reason for that being the error is188

not a correlated quantity.189

For the gross error correction, (20) should be used since190

the CMEN , a vector of dimension m, is generated from the191

residual; this one being a vector of dimension (m −n); as192

a consequence, the vector CMEN contains noises.193

A two-bus power network will be used to show the appli-194

cation of the presented Gauss Extension formulation.195

Consider the two-bus power network illustrated on Figure 1.196

F(A) : 12 = 1.0526 and F(R) = P : 12 = 0.120 p.u. are the197

active and reactive power flows measurements, respectively,198

and the phase angle difference between the two buses (θ12)199

is the state variable to be estimated. Starting with an inicial200

phase angle difference estimate, the Jacobian matrix is cal-201

culated considering that state and the minimization of (18)202

is performed. The χ2 Hypothesis testing is applied, and if203

that results in gross error detection, the Largest Normalized204

Error test is used to identify the measurement with error; the205

correction is made through the CNE.206

Consider Figure 2, the plane formed by the F(A) : 12 and207

θ12 is represented.208

Figure 2 shows clearly what the Gauss proposition mini-209

mizes is the residual, (z−h(x)), although what one needs to210

minimize is the error, pertaining to the measurement space,211

and that is the Extension of the Gauss approach this brief212

presents. The measurement F(R) will form a similar figure in213

another plane with θ12.214

A. Current Test for Detection and Identification of215

Gross Errors216

With the normalized measurement residuals having normal217

distribution, it is assumed that the index J(x), i.e., the func-218

tion to be minimized in (3) has a Chi-square distribution (χ2)219

with m−N degrees of freedom. Then, choosing a probability220

“1−α” of false alarm (being α the significance level of the221

test), a number “C” is obtained (via Chi-square distribution222

table for χ2
m−N,α) such that, in the presence of gross error:223

J(x) > C.224

Remark 3: The previous assumption has the mistake of225

assuming the normalized residual as having a normal distri-226

bution. The reason for this affirmative is that m residuals has227

Fig. 2. The measurement error estimation.

m −N degrees of freedom and, consequently, cannot be an 228

uncorrelated variable, contradicting then the assumption. 229

This χ2 test applied to the residual, however, is not ade- 230

quately applied. Consequently, the tests results are not going 231

to give the guarantee, with the chosen uncertainty degree, that 232

at least one measurement may have the residual as superior to 233

a chosen threshold value. 234

In the gross error detection test, this brief proposes to use 235

the new J(x) index with the measurement error and not the 236

residual, as shown in (18). 237

For the purpose of gross error identification, the Largest 238

Normalized Error test should then be used; after normalizing 239

the error e it is submitted to the validation test: 240

Conjecture: Let be eN
k = | ek

σk
| ≤ λ (threshold value), where 241

eN
k is the largest among all eN

i , i = 1, . . . , m; σk = √
Rkk is 242

the kth measurement standard deviation, and R is the error 243

covariance matrix. Then if eN
k > λ, measurement gross error 244

will be detected. 245

Remark 4: The current gross error detection test is in incor- 246

rect because: (i) it uses the residual as a metric for the error; 247

(ii) it assumes a hyper-sphere for the normalized residual prob- 248

ability density function, assuming all the measurements are 249

correct, except one of them, the one having error, what is not 250

a valid real life situation. In what follows, it will be presented 251

the property of the Largest Normalized Error Test (LNET), in 252

order to detect and identify the measurements with errors as 253

shown in the previous conjecture. 254

B. Generalization of the Largest Normalized Residual Test: 255

The Largest Normalized Error Test 256

Theorem: Assuming all the measurements of a measurement 257

set with limited random errors, and adding gross error only 258

to one of the measurements, the measurement to which gross 259

error was added will have the largest increment of error among 260

all the measurements. 261

Proof: In [8] it was proved that the measurement error in its 262

normalized form (CMEN) and the normalized residuals are for- 263

mally equal, but numerically different from each other because 264

the projection matrix K is different. Also, the measurement 265

error pertains to the measurement sub-space, with m degrees 266

of freedom, and the measurement residual pertains to the resid- 267

ual sub-space, of dimension (m−N), and consequently with 268

(m−N) degrees of freedom and any comparison between them 269

is meaningless. 270
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Fig. 3. The three-bus network.

Suppose, now, that the measurements are perfect, without271

any error, the measurement residual will be given by:272

e2 = r = (I −K)z = RrWz (21)273

which in this situation are zeros for all the measurements. Let274

us suppose now that error is added only to the measurement zi275

and, consequently, for this new measurement: zn
i = zi + biσi,276

and all the other measurements staying with the same magni-277

tudes, n standing for new measurement. Following the same278

standard of demonstration of the classical largest normalized279

residual test, one obtains:280

rn −r = biσ
−1
i Rrui (22)281

where Rrui is the i-th column of the residual covariance matrix282

Rr, as in the largest normalized residual test.283

Consequently, and following the same standard of proof284

of the classical largest normalized residual test [2], one will285

obtain:286 ///rN,n
i −rN

i

/// ≥
///rN,n

j −rN
j

/// for all j ̸= i. (23)287

Transforming the residuals in errors one will get:288

///eN,n
i −eN

i

/// ≥
///eN,n

j −eN
j

///, j = 1, . . . , m (24)289

because the measurement with error is the one with more new290

information. As a conclusion, the largest error increase will291

occur on the measurement with error.292

If one generalizes the situation so that all measurements may293

have errors but are inside a ball of radius r and error is added294

to one measurement only, and using the previous theorem, one295

error magnitude will exist such that the largest error has to be296

in the measurement with error.297

OBS: For the previous generalization the Implicit Function298

Theorem property was used, that is, if a property is valid for299

an initial condition it will be valid for any other since no bifur-300

cation occurs going from one initial condition to the another.301

The previous demonstration gives support to use the largest302

normalized error test as a methodology to detect as well as to303

identify the measurements containing gross errors.304

C. The Choice of the Weight Matrix to Detect Measurements305

With Gross Errors306

To detect if there exist measurements containing gross307

errors, it must be assumed that all measurements may have308

error. This means one cannot use the measurement qualities309

as having effect on the measurement weights at the stage of310

gross error detection. To define an appropriate measurement311

TABLE I
THREE BUS NETWORK SIMULATION

weights at this SE stage let us suppose a simple problem where 312

it does exist just one variable to estimate and many related 313

measurements: suppose that all measurements have the same 314

quality and do not have gross errors; then as a natural conse- 315

quence, the weights for the measurements should be all equal. 316

For example, the inverse of a fixed percentage of the measure- 317

ment’s magnitude, because in that way the variable estimated 318

value will be an average of the measurements values. Suppose 319

now a situation where some of the measurements may have 320

error: if the measurement is such that, with the error, it has 321

a value larger than the correct value, it will have less weight 322

than a correct measurement and vice versa. 323

Conclusion: At the gross error detection stage, the measure- 324

ment weights should be a fixed percentage of the measurement 325

magnitude, independently of the measurement quality. At this 326

stage, the measurement quality cannot be taken in account. 327

Once the measurements with gross errors are identified and 328

corrected, the weight matrix is as proposed in the classical 329

state estimation, that is, the measurement quality should be 330

now taken in account. 331

In the next section, two power networks will be simulated 332

to show this brief proposition efficiency for the gross error 333

analysis as well the fail of the classical gross error analysis 334

proposal. 335

IV. CASE STUDY 336

Consider Figure 3. Using a three-bus network with the mea- 337

surements as shown in Figure 3, whose magnitudes are in 338

Table I, after random errors are added to them, a gross error 339

is added, one at a time, until the error is detected. Then 340
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TABLE II
IEEE 14 BUS NETWORK SIMULATIONS

the measurement with error is identified using the current341

Largest Normalized Residual Test (LNRT) and the presented342

methodology of this brief, the LNET. For this case, the global343

redundancy level is equal to 2.2 (GRL = 2.2). As can be seen,344

using the classical approach, six wrong gross errors identifica-345

tion have occurred, but using this brief proposition, in all cases346

the gross error was correctly detected and the measurement347

which had gross error was correctly identified.348

In Table I, the used nomenclature for the measurements are:349

I(A) : i means active power injection at bus i; F(R) : i−j means350

reactive flow at line i−j.351

As can be seen on Table I, the gross error detection and352

identification has worked correctly in all cases when using353

the LNET but in contrary, when using the LNRT, many detec-354

tion and identification flaws have occurred. Another important355

point is the proximity between the added error and the corre-356

sponding CNE for the measurement identified as having the357

error. Consider now the IEEE14 bus system [4], and the same358

test conditions as previously applied. Test results are presented359

on Table II.360

As can be seen on Table II, the gross error detection and361

identification has worked correctly in all simulated cases when362

using the LNET but in contrary, when using the residual363

LNRT, many fails occurred. In general, measurements with low364

Innovation Index tend to present a hidden error component of365

large magnitude, consequently leading the LNRT to fail in the366

error detection.367

V. CONCLUSION 368

This brief presents an extension of the Gauss approach to 369

solve overdetermined sets of algebraic non linear equations. 370

It was shown that the measurement error is composed of two 371

components: (i) one that is in the Jacobian range space (hid- 372

den component); (ii) other that is orthogonal to that space. The 373

latter component comes out to be the residual. The WLSE 374

should perform the minimization on the measurement error 375

and not on the residual. The gross error detection is per- 376

formed through the application of the χ2 test on the composed 377

error; the identification is performed using the LNET. In this 378

stage of the SE the measurement weights should be a per- 379

centage of the measurements magnitude. The measurement 380

correction is made using the measurement CNE. After the 381

correction, a new Gauss minimization is performed, now tak- 382

ing in account the measurement quality to define the weights. 383

This brief contribution when estimating the error and then 384

the possibility of correcting the measurement having error is 385

of paramount importance in these days due to cyber-attacks 386

becoming every day more real. Two power networks have 387

been used to show, in detail, each step of this brief proposi- 388

tion and at same time comparing the classical WLS solution. 389

The added error magnitude and the estimated normalized error, 390

CNE, are very close to each other, giving support to the idea of 391

estimating the measurement errors and then correcting those 392

measurements. 393
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