The Extension of the Gauss Approach for the Solution of an Overdetermined Set of Algebraic Non-Linear Equations

Newton G. Bretas¹⁰ and Arturo S. Bretas

Abstract-In this brief is presented an extension of the Gauss ² approach for the solution of an overdetermined set of algebraic 3 non-linear equations. Further, it is shown that the measurement 4 error, in the Gauss approach, is in the measurement direction and 5 that error has a unique decomposition: 1) the first component, 6 which is orthogonal to the Jacobian range space, the residual and 7 2) the other which is on the Jacobian range space. The latter is ⁸ hidden in the Jacobian space when one minimizes the residual. 9 The extension of the Gauss approach is then in the sense to min-10 imize the norm of the error. In engineering, the measurements 11 may have gross errors, and then detection, identification, and 12 correction of those errors are necessary. The Largest Normalized 13 Error Test will be developed for that purpose. Considering the 14 cyber-attack possibility, modeled as a malicious data attack, 15 the error correction step is paramount. Applications on power 16 networks will be used to show the hidden error component when 17 using the Gauss minimization, and also to illustrate all the steps 18 of the presented procedure as well as comparison to the current 19 Gauss approach.

Index Terms—Gauss minimization, orthogonal projections,
 recovering errors and composing errors.

I. INTRODUCTION

22

THE CHARACTERISTIC to deal with measurements in engineering and many other science's fields impose 25 a necessity to filter those data, and the Gauss minimization is ²⁶ widely accepted as an appropriate approach. Many versions of 27 the Gauss proposition have appeared and the most known one ²⁸ is the Weighted Least Squares Estimation (WLSE) [1]–[3]. ²⁹ The WLSE has several applications, as filter design [4], [5], 30 cyber-physical security [6] and networks [7]. The Gauss 31 approach proposes to minimize a functional given by the 32 weighted residuals. Higher weights are attributed for the 33 measurements of better qualities. However, if it is assumed 34 the possibility of gross errors on the measurements, how 35 could one attribute the weights to them? A second question 36 that naturally arises is: (i) In case some measurements of 37 the measurement set have gross errors will it be adequate 38 to process them without a previous treatment? The intention 39 of this brief is to provide answers to the previous questions

Manuscript received September 28, 2017; revised November 28, 2017; accepted January 18, 2018. This brief was recommended by Associate Editor H.-T. Zhang. (*Corresponding author: Newton G. Bretas.*)

N. G. Bretas is with the Department of Electrical and Computer Engineering, Engineering School of Sao Carlos, University of Sao Paulo, Sao Carlos 13566-590, Brazil (e-mail: ngbretas@sc.usp.br).

A. S. Bretas is with the Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6130, USA.

Digital Object Identifier 10.1109/TCSII.2018.2796938

and, at same time, propose solutions. In this brief, it will 40 be shown that the error of the measurement equation has 41 a unique decomposition: (i) one component orthogonal to the 42 Jacobian range space and (ii) the other component is in the 43 Jacobian range space. It will be shown also that the Gauss proposition minimizes only the first error component, known as the measurement residual; the other error component is hidden from the Gauss approach. Still, it will be shown how to estimate the other error component and then an extension of the Gauss proposition, where the minimization will be on 49 the norm of error and not the residual. In order to estimate 50 the hidden error component, the Innovation Index (II) will be introduced. The *II* of a measurement is the information it contains but not the other measurements of the measurement 53 set. A two-bus power network will be used to show the hidden 54 error component effect, when using the Gauss minimization, 55 and two other networks will be used to illustrate all the steps 56 of the presented procedure and used as comparison to the 57 Gauss approach.

II. GAUSS APPROACH: THEORETICAL BACKGROUND

Given a set of non-linear equations, as described in the 60 following: 61

$$z = h(x) + e \tag{1}$$

where $z \in \mathbb{R}^m$ is the measurement vector, $x \in \mathbb{R}^N$ is the state variables vector, $h : \mathbb{R}^m \to \mathbb{R}^N$, (m > N) is a continuously non linear differentiable function, $e \in \mathbb{R}^m$ is the measurement error vector assumed having zero mean and Gaussian probability distribution. N = 2n - 1 is the number of unknown state variables to be estimated (*n* is the buses number of the network).

The Gauss approach proposes to minimize the 699 functional [2]: 70

$$J(x) = [z - h(x)]^T W[z - h(x)]$$
(2) 7

where W is a symmetric and positive definite real matrix. At ⁷² this stage of this brief, let us suppose W = I, that is, the ⁷³ weight matrix as being the identity matrix. The functional J ⁷⁴ is a norm in the measurement space R^m induced by the inner ⁷⁵ product $\langle u, v \rangle = u^T v$, that is: ⁷⁶

$$\|e\|^{2} = e^{T}e = \langle z - h(x), z - h(x) \rangle$$
77

$$\|e\|^{2} = [z - h(x)]^{2} [z - h(x)]$$
(3) 7

with $||e||^2$ being the square norm of the vector *e*. The solution of (1), minimizing (3), is the vector \hat{x} obtained iteratively from the solution of the linearized equation:

where $H = \partial h / \partial x$ is the Jacobian of h(x).

$$z = Hx + e \tag{4}$$

59

1549-7747 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

⁸⁴ Let \hat{x} be the estimated state, the solution of that ⁸⁵ minimization problem, then the estimated measurement vector ⁸⁶ will be given by $\hat{z} = h(\hat{x})$. The residual vector will be:

$$r = (z - \hat{z}) \in L(h_i)^{\perp}.$$
(5)

It happens that e, z and $H\hat{x}$ all belong to R^m , but $H\hat{x}$ belongs to the column space of H. That is, the space spanned by the columns h_j of H and is denoted by $L(h_j)$, or a linear combination of the column space of H. R^m can be written as the direct sum:

$$R^m = L(h_j) \oplus L(h_j)^{\perp}.$$
 (6)

⁹⁴ The measurement error, however, has a unique ⁹⁵ decomposition:

96
$$e = e_1 + e_2; e_1 \in L(h_j), e_2 \in L(h_j)^{\perp}.$$
 (7)

Since z is given and $H\hat{x} \in L(H_j)$, the choice of x cannot seaffect e_1 . As a direct conclusion, the least squares solution vector \hat{x} is optimal only for case where $e_1 = 0$. This means to that the projection of z on $L(h_j)$, call it \hat{z} must equal $H\hat{x}$.

The important conclusion of this previous is that the WLSE is optimal only for the case where $e_1 = 0$. However, when one ror component exists, the other one also will exist, then in real life, the measurement vector *z* has always an error vector, $e_1 \neq 0$, they are coupled.

Remark 1: One can induce that in case the measurement ror error *e* is contained inside an acceptable ball of radius *r*, that ros is, less than a threshold predefined value, and only in that ros case, the classical least mean squares will offer a reasonable ros obtained. For the real life situations however, measurements run may have large errors. Then, a generalization of the Least run Squares approximation is required.

113 III. EXTENSION OF THE GAUSS APPROACH

Let us assume the possibility of the measurement error vectis tor e having large magnitudes, that is, beyond a pre-defined acceptable value. If one wants to use the classical solution to the WLSE, one must first apply the Hypothesis Testing to the check if the error vector magnitude is inside a pre-defined acceptable region. In case the answer to this question is yes, acceptable region. In case the answer to this question is yes, presented, although that is not the optimal solution. Otherwise, and the error e larger than a chosen threshold value and then correct them.

To identify such measurements one needs to estimate the measurement error: the estimation of the measurement error can be obtained estimating the measurement residual as well as the hidden measurement error component, which is in the acobian range space. To do this the measurement Innovation measurement (*II*) will be used, as presented in the following.

To estimate the measurement error (*e*), one need to estimate 131 the error components e_1 and e_2 , and then the measurement 132 error will be composed, that is:

$$e^2 = e_1^2 + e_2^2. \tag{8}$$

Let \hat{x} be the estimated state vector, result of the solution 135 of the classical WLSE problem, which minimizes (3), and is 136 given by:

137
$$\hat{x} = (H^T R^{-1} H)^{-1} H^T R^{-1} z = G^{-1} H^T R^{-1} z$$
 (9)

with *R* being the weighting matrix. In this case, the estimated ¹³⁸ measurement vector \hat{z} is given by: ¹³⁹

$$\hat{z} = H\hat{x} = H\left(H^T R^{-1} H\right)^{-1} H^T R^{-1} z$$
 140

$$\hat{z} = HG^{-1}H^T R^{-1} z = Kz$$
 (10) 141

with *G* being equal to $H^T R^{-1} H$. The residual vector *r* is given ¹⁴² by: ¹⁴³

$$r = z - \hat{z} = z - Kz = (I - K)z = Se = e_2.$$
 (11) 144

Since, for the *i*-th measurement, it is assumed $e^i \sim {}^{145} N(0, R_{ii}) = N(0, \sigma^2)$, then:

$$E\{r\} = E\{Se\} = SE\{e\} = 0 \tag{12}$$

$$cov\{r\} = E\{rr^T\} = SE\{ee^T\}S^T = SRS^T = SR = \Omega$$
(13) 14E

where σ is the measurement standard deviation and:

$$\Omega = (I - K)R$$
150

149

152

173

$$\Omega = \begin{bmatrix} (1 - K_{11})\sigma_1^2 & K_{1m}\sigma_m^2 \\ K_{m1}\sigma_1^2 & (1 - K_{mm})\sigma_m^2 \end{bmatrix}.$$
 (14) 151

Consequently, the normalized residual will be:

$$r_{i}^{N} = \frac{|r_{i}|}{\sqrt{\Omega_{ii}}} = \frac{|r_{i}|}{\sqrt{S_{ii}R_{ii}}} = \frac{|r_{i}|}{\sigma_{i}\sqrt{(1-K_{ii})}}$$
¹⁵³

$$r_i^N \sim N(0, 1)$$
 (15) 154

and $e_1^i = Ke^i$ and $e_2^i = (I - K)e^i$, respectively. ¹⁵⁵ To find the masked error component e_1 , let us define the ¹⁵⁶

Innovation Index (II) for the *i*-th measurement as being: 157

$$II_{i} = \frac{\left\|e_{2}^{(i)}\right\|_{R^{-1}}}{\left\|e_{1}^{(i)}\right\|_{R^{-1}}} = \frac{\sqrt{1-K_{ii}}}{\sqrt{K_{ii}}}.$$
(16) 158

Equation (16) is easily derived just using the definition of 159 the norm and making some algebrism.

The *II* of a measurement is the ratio of new information ¹⁶¹ it contains related to the other measurements of the measurement set [9]–[12]. Consequently, knowing the matrix *K*, the ¹⁶³ measurement *II* can be calculated; knowing this index, and ¹⁶⁴ the measurement residual, the e_1^i error component can be also ¹⁶⁵ estimated and the measurement error *e* composed by: ¹⁶⁶

$$\|\hat{e}^{i}\|_{R^{-1}}^{2} = \|e_{2}^{i}\|_{R^{-1}}^{2} + \|e_{1}^{i}\|_{R^{-1}}^{2} = \frac{1}{H_{i}^{2}}\|e_{2}^{i}\|_{R^{-1}}^{2} + \|e_{1}^{i}\|_{R^{-1}}^{2} \qquad {}^{_{167}}$$

$$\|\hat{e}^{i}\|_{R^{-1}}^{2} = \left(1 + \frac{1}{H_{i}^{2}}\right) \|e_{2}^{i}\|_{R^{-1}}^{2} = \left(1 + \frac{1}{H_{i}^{2}}\right) r_{i}^{2}.$$
 (17) 168

Then, in this brief, the proposed Extension to the Gauss 169 methodology is in the sense of by minimizing the error. 170 That is: 171

$$Min_x \sum_{i=1}^m (1 + \frac{1}{H_i^2}) r_i^2$$
 (18) 172

with r_i^2 given by (3).

The measurement error, estimated in this way, is known ¹⁷⁴ as Composed Measurement Error (*CME*). It can be normal- ¹⁷⁵ ized as: ¹⁷⁶

$$CME^{N} = CME/\sigma. \tag{19}$$

87

93

AQ1 Fig. 1. Two-bus power network.

18

¹⁷⁸ One can also obtain the measurement Composed ¹⁷⁹ Normalized Residual, that is, first normalizes the resid-¹⁸⁰ ual and then composes the error; consequently, the *CNE* is in ¹⁸¹ the residual subspace:

$$_{2} \qquad CNE = \left(1 + \frac{1}{H^{2}}\right)r^{N}. \qquad (20)$$

¹⁸³ *Remark 2:* One should be aware that that CME^N and ¹⁸⁴ *CNE* are different quantities, the first pertaining to the error ¹⁸⁵ subspace and the other to the residual subspace.

¹⁸⁶ For the gross error detection the χ^2 Hypothesis testing is ¹⁸⁷ applied to the *CME^N* vector, with the number of measurements ¹⁸⁸ *m* as degree of freedom; the reason for that being the error is ¹⁸⁹ not a correlated quantity.

For the gross error correction, (20) should be used since 190 For the gross error correction, (20) should be used since 191 the CME^N , a vector of dimension m, is generated from the 192 residual; this one being a vector of dimension (m - n); as 193 a consequence, the vector CME^N contains noises.

¹⁹⁴ A two-bus power network will be used to show the appli-¹⁹⁵ cation of the presented Gauss Extension formulation.

Consider the two-bus power network illustrated on Figure 1. ¹⁹⁶ F(A) : 12 = 1.0526 and F(R) = P : 12 = 0.120 p.u. are the ¹⁹⁸ active and reactive power flows measurements, respectively, ¹⁹⁹ and the phase angle difference between the two buses (θ_{12}) ²⁰⁰ is the state variable to be estimated. Starting with an inicial ²⁰¹ phase angle difference estimate, the Jacobian matrix is cal-²⁰² culated considering that state and the minimization of (18) ²⁰³ is performed. The χ^2 Hypothesis testing is applied, and if ²⁰⁴ that results in gross error detection, the Largest Normalized ²⁰⁵ Error test is used to identify the measurement with error; the ²⁰⁶ correction is made through the *CNE*.

²⁰⁷ Consider Figure 2, the plane formed by the F(A) : 12 and ²⁰⁸ θ_{12} is represented.

Figure 2 shows clearly what the Gauss proposition mininizes is the residual, (z - h(x)), although what one needs to minimize is the error, pertaining to the measurement space, and that is the Extension of the Gauss approach this brief presents. The measurement F(R) will form a similar figure in another plane with θ_{12} .

²¹⁵ A. Current Test for Detection and Identification of ²¹⁶ Gross Errors

With the normalized measurement residuals having normal distribution, it is assumed that the index J(x), i.e., the function to be minimized in (3) has a Chi-square distribution (χ^2) with m - N degrees of freedom. Then, choosing a probability 221 "1 – α " of false alarm (being α the significance level of the 222 test), a number "*C*" is obtained (via Chi-square distribution 223 table for $\chi^2_{m-N,\alpha}$) such that, in the presence of gross error: 224 J(x) > C.

Remark 3: The previous assumption has the mistake of assuming the normalized residual as having a normal distrizzr bution. The reason for this affirmative is that m residuals has

Fig. 2. The measurement error estimation.

m-N degrees of freedom and, consequently, cannot be an ²²⁸ uncorrelated variable, contradicting then the assumption. ²²⁹

This χ^2 test applied to the residual, however, is not ade- 230 quately applied. Consequently, the tests results are not going 231 to give the guarantee, with the chosen uncertainty degree, that 232 at least one measurement may have the residual as superior to 233 a chosen threshold value.

In the gross error detection test, this brief proposes to use 235 the new J(x) index with the measurement error and not the 236 residual, as shown in (18). 237

For the purpose of gross error identification, the Largest 238 Normalized Error test should then be used; after normalizing 239 the error *e* it is submitted to the validation test: 240

Conjecture: Let be $e_k^N = |\frac{e_k}{\sigma_k}| \le \lambda$ (threshold value), where ²⁴¹ e_k^N is the largest among all e_i^N , i = 1, ..., m; $\sigma_k = \sqrt{R_{kk}}$ is ²⁴² the *kth* measurement standard deviation, and *R* is the error ²⁴³ covariance matrix. Then if $e_k^N > \lambda$, measurement gross error ²⁴⁴ will be detected. ²⁴⁵

Remark 4: The current gross error detection test is in incorrect because: (i) it uses the residual as a metric for the error; ²⁴⁷ (ii) it assumes a hyper-sphere for the normalized residual probability density function, assuming all the measurements are ²⁴⁹ correct, except one of them, the one having error, what is not ²⁵⁰ a valid real life situation. In what follows, it will be presented ²⁵¹ the property of the Largest Normalized Error Test (*LNET*), in ²⁵² order to detect and identify the measurements with errors as ²⁵³ shown in the previous conjecture. ²⁵⁴

B. Generalization of the Largest Normalized Residual Test: 255 The Largest Normalized Error Test 256

Theorem: Assuming all the measurements of a measurement ²⁵⁷ set with limited random errors, and adding gross error only ²⁵⁸ to one of the measurements, the measurement to which gross ²⁵⁹ error was added will have the largest increment of error among ²⁶⁰ all the measurements. ²⁶¹

Proof: In [8] it was proved that the measurement error in its ²⁶² normalized form (CME^N) and the normalized residuals are formally equal, but numerically different from each other because ²⁶⁴ the projection matrix *K* is different. Also, the measurement ²⁶⁵ error pertains to the measurement sub-space, with *m* degrees ²⁶⁶ of freedom, and the measurement residual pertains to the residual sub-space, of dimension (m - N), and consequently with ²⁶⁸ (m-N) degrees of freedom and any comparison between them ²⁶⁹ is meaningless. ²⁷⁰

Fig. 3. The three-bus network.

²⁷¹ Suppose, now, that the measurements are *perfect*, without ²⁷² any error, the measurement residual will be given by:

$$e_2 = r = (I - K)z = R_r Wz$$
 (21)

²⁷⁴ which in this situation are zeros for all the measurements. Let ²⁷⁵ us suppose now that error is added only to the measurement z_i ²⁷⁶ and, consequently, for this new measurement: $z_i^n = z_i + b_i \sigma_i$, ²⁷⁷ and all the other measurements staying with the same magni-²⁷⁸ tudes, *n* standing for *new* measurement. Following the same ²⁷⁹ standard of demonstration of the classical largest normalized ²⁸⁰ residual test, one obtains:

$$r^n - r = b_i \sigma_i^{-1} R_r u_i \tag{22}$$

²⁸² where $R_r u_i$ is the *i*-th column of the residual covariance matrix ²⁸³ R_r , as in the largest normalized residual test.

²⁸⁴ Consequently, and following the same standard of proof ²⁸⁵ of the classical largest normalized residual test [2], one will ²⁸⁶ obtain:

$$\left| r_{i}^{N,n} - r_{i}^{N} \right| \geq \left| r_{j}^{N,n} - r_{j}^{N} \right| \text{ for all } j \neq i.$$
(23)

288 Transforming the residuals in errors one will get:

289
$$\left| e_{i}^{N,n} - e_{i}^{N} \right| \ge \left| e_{j}^{N,n} - e_{j}^{N} \right|, j = 1, \dots, m$$
 (2)

4

²⁹⁰ because the measurement with error is the one with more new ²⁹¹ information. As a conclusion, the largest error increase will ²⁹² occur on the measurement with error.

If one generalizes the situation so that all measurements may have errors but are inside a ball of radius r and error is added to one measurement only, and using the previous theorem, one error magnitude will exist such that the largest error has to be error in the measurement with error.

OBS: For the previous generalization the Implicit Function Theorem property was used, that is, if a property is valid for an initial condition it will be valid for any other since no bifurcation occurs going from one initial condition to the another. The previous demonstration gives support to use the largest normalized error test as a methodology to detect as well as to identify the measurements containing gross errors.

³⁰⁵ C. The Choice of the Weight Matrix to Detect Measurements ³⁰⁶ With Gross Errors

To detect if there exist measurements containing gross errors, it must be assumed that all measurements may have error. This means one cannot use the measurement qualities at as having effect on the measurement weights at the stage of still gross error detection. To define an appropriate measurement

TABLE I Three Bus Network Simulation

Measurement	II	Added GE	r^N	CME ^N Largest	CNE	
I(A):1 = -1.62	1.03	-5.7σ	-3.04	-4.24	-5.09	
GE identified with LNRT at $I(A):1 \rightarrow LNET$: both correct						
I(A):2 = 2.59	1.88	-3.6σ	-3.04	-3.98	-3.44	
GE identified with LNRT at I(A):2 \rightarrow LNRT: both correct						
F(A):2-1 = 2.03	1.58	-3.7σ	-3.02	-3.25	-3.58	
GE identified with LNRT at I(A):1 with r^{N} = -3.20 \rightarrow failed LNET-Correct						
F(A):1-3 = 0.36	0.76	-5.2σ	-3.06	-3.08	-5.07	
GE identified with LNRT at V:3 with $r^{N} = -3.10 \rightarrow \text{failed}$ LNET-correct						
F(A):2-3 = 0.56	1.71	-3.6σ	-3.06	-4.02	-3.54	
GE identified with LNRT at $F(A):2-3 \rightarrow$ both correct						
I(R):1 = 0.37	0.70	-5.3σ	-3.01 -4.28 -5.22			
GE identified with LNRT at F(A):1-3, $r^N = -3.10 \rightarrow$ failed LNET-correct						
I(R):3 = 0.40	1.49	-3.3σ	-3.02	-3.24	-3.64	
GE identified with LNRT at F(R):3-2, $r^{N} = -3.10 \rightarrow \text{failed}$						
LNET-correct						
F(R):1-2=0.37	0.72	-5.5σ	-3.04	-3.11	-5.21	
GE identified with LNRTat V:3, $r^N = -3.12 \rightarrow \text{failed}$ LNET-correct						
F(R):3-1 = 0.14	0.97	-4.7σ	-3.03	-4.23	-4.35	
GE identified with LNRT at F(R):3-2, $r^N = -3.01 \rightarrow \text{failed}$						
LNET-correct						
F(R):3-2 = 0.26	1.47	-3.9σ	-3.07	-3.58	-3.71	
GE identified with LNRT at $F(R):3-2 \rightarrow LNET$: both correct						

weights at this SE stage let us suppose a simple problem where ³¹² it does exist just one variable to estimate and many related ³¹³ measurements: suppose that all measurements have the same ³¹⁴ quality and do not have gross errors; then as a natural consequence, the weights for the measurements should be all equal. ³¹⁶ For example, the inverse of a fixed percentage of the measurement's magnitude, because in that way the variable estimated ³¹⁸ value will be an average of the measurements values. Suppose ³¹⁹ now a situation where some of the measurements may have ³²⁰ error: if the measurement is such that, with the error, it has ³²¹ a value larger than the correct value, it will have less weight ³²² than a correct measurement and vice versa. ³²³

Conclusion: At the gross error detection stage, the measurement weights should be a fixed percentage of the measurement ³²⁵ magnitude, independently of the measurement quality. At this ³²⁶ stage, the measurement quality cannot be taken in account. ³²⁷ Once the measurements with gross errors are identified and ³²⁸ corrected, the weight matrix is as proposed in the classical ³²⁹ state estimation, that is, the measurement quality should be ³³⁰ now taken in account. ³³¹

In the next section, two power networks will be simulated ³³² to show this brief proposition efficiency for the gross error ³³³ analysis as well the fail of the classical gross error analysis ³³⁴ proposal. ³³⁵

IV. CASE STUDY

Consider Figure 3. Using a three-bus network with the measurements as shown in Figure 3, whose magnitudes are in 338 Table I, after random errors are added to them, a gross error 339 is added, one at a time, until the error is detected. Then 340

Measurement	II	Add	led	r^N	CME^N	CNE	
		GE					
Step 1							
P:2	0.242	3.9	σ	1.946	3.52	4.35	
LNRT	failed			LNE	T correct		
Step 2							
Q:4	0.369	4.5	σ	2.054	4.34	4.51	
LNRT	failed		LNET correct				
Step 3							
Q:3-2	0.628	3.6	σ	2.752	3.27	4.17	
LNRT	failed		LNET correct				
		Ste	p 4				
P:3-4	0.707	3.2	σ	2.402	3.14	3.87	
LNRT	failed		LNET correct				
Step 5							
P:12-13	1.053	3.7	σ	2.845	3.74	3.92	
LNRT failed			LNET correct				
Step 6							
Q:2-5	0.863	3.5	σ	2.152	3.29	3.48	
LNRT failed			LNET correct				
Step 7							
P:6	0.622	4.1	σ	1.690	3.20	3.69	
LNRT failed			LNET correct				
Step 8							
Q:1	1.483	3.3	σ	3.009	3.40	3.61	
LNRT correct			LNET correct				
Step 9							
Q:5	0.175	4.0	σ	1.612	3.54	3.98	
LNRT failed			LNET correct				
Step 10							
P:14-9	1.683	3.4	σ	3.053	3.31	3.60	
LNRT correct				LNE	T correct		

TABLE II IEEE 14 BUS NETWORK SIMULATIONS

³⁴¹ the measurement with error is identified using the current ³⁴² Largest Normalized Residual Test (*LNRT*) and the presented ³⁴³ methodology of this brief, the *LNET*. For this case, the global ³⁴⁴ redundancy level is equal to 2.2 (*GRL* = 2.2). As can be seen, ³⁴⁵ using the classical approach, six wrong gross errors identifica-³⁴⁶ tion have occurred, but using this brief proposition, in all cases ³⁴⁷ the gross error was correctly detected and the measurement ³⁴⁸ which had gross error was correctly identified.

In Table I, the used nomenclature for the measurements are: I(A) : i means active power injection at bus i; F(R) : i-j means i reactive flow at line i - j.

As can be seen on Table I, the gross error detection and identification has worked correctly in all cases when using the *LNET* but in contrary, when using the *LNRT*, many detection and identification flaws have occurred. Another important point is the proximity between the added error and the corresponding *CNE* for the measurement identified as having the see error. Consider now the IEEE14 bus system [4], and the same test conditions as previously applied. Test results are presented on Table II.

As can be seen on Table II, the gross error detection and identification has worked correctly in all simulated cases when using the *LNET* but in contrary, when using the residual *LNRT*, many fails occurred. In general, measurements with low Innovation Index tend to present a hidden error component of large magnitude, consequently leading the LNRT to fail in the reror detection.

V. CONCLUSION

This brief presents an extension of the Gauss approach to 369 solve overdetermined sets of algebraic non linear equations. 370 It was shown that the measurement error is composed of two 371 components: (i) one that is in the Jacobian range space (hid- 372 den component); (ii) other that is orthogonal to that space. The 373 latter component comes out to be the residual. The WLSE 374 should perform the minimization on the measurement error 375 and not on the residual. The gross error detection is per- 376 formed through the application of the χ^2 test on the composed 377 error; the identification is performed using the LNET. In this 378 stage of the SE the measurement weights should be a per- 379 centage of the measurements magnitude. The measurement 380 correction is made using the measurement CNE. After the 381 correction, a new Gauss minimization is performed, now tak- 382 ing in account the measurement quality to define the weights. 383 This brief contribution when estimating the error and then 384 the possibility of correcting the measurement having error is 385 of paramount importance in these days due to cyber-attacks 386 becoming every day more real. Two power networks have 387 been used to show, in detail, each step of this brief proposi- 388 tion and at same time comparing the classical WLS solution. 389 The added error magnitude and the estimated normalized error, 390 CNE, are very close to each other, giving support to the idea of 391 estimating the measurement errors and then correcting those 392 measurements. 393

References

- D. M. Falcao and M. A. Arias, "State estimation and observability analysis based on echelon forms of the linearized measurement models," *IEEE Trans. Power Syst.*, vol. 9, no. 2, pp. 979–987, 397 May 1994.
- [2] A. Monticelli, "Electric power system state estimation," *Proc. IEEE*, 399 vol. 88, no. 2, pp. 262–282, Feb. 2000.
- [3] E. Handschin, F. C. Schweppe, J. Kohlas, and A. Fiechter, "Bad 401 data analysis for power system state estimation," *IEEE Trans. Power* 402 *App. Syst.*, vol. PAS-94, no. 2, pp. 329–337, Mar. 1975.
- [4] A. Jiang, H. K. Kwan, Y. Zhu, N. Xu, and X. Liu, "Efficient WLS 404 design of IIR digital filters using partial second-order factorization," 405 *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 63, no. 7, pp. 703–707, 406 Jul. 2016.
- [5] S. Wang, W. Wang, S. Duan, and L. Wang, "Kernel Recursive least 408 squares with multiple feedback and its convergence analysis," *IEEE* 409 *Trans. Circuits Syst. II, Exp. Briefs*, vol. 64, no. 10, pp. 1237–1241, 410 Oct. 2017.
- [6] S. Zonouz *et al.*, "SCPSE: Security-oriented cyber-physical state estimation for power grid critical infrastructures," *IEEE Trans. Smart Grid*, 413 vol. 3, no. 4, pp. 1790–1799, Dec. 2012.
- [7] B. K. Das, M. Chakraborty, and J. Arenas-García, "Sparse distributed 415 estimation via heterogeneous diffusion adaptive networks," *IEEE Trans.* 416 *Circuits Syst. II, Exp. Briefs*, vol. 63, no. 11, pp. 1079–1083, Nov. 2016. 417
- [8] N. G. Bretas, A. S. Bretas, and S. A. Piereti, "Innovation concept for 418 measurement gross error detection and identification in power system 419 state estimation," *IET Gener. Transm. Distrib.*, vol. 5, no. 6, pp. 603–608, 420 Jun. 2011. 421
- [9] N. G. Bretas, S. A. Piereti, A. S. Bretas, and A. C. P. Martins, "A geometrical view for multiple gross errors detection, identification, and correction in power system state estimation," *IEEE Trans. Power Syst.*, 424 vol. 28, no. 3, pp. 2128–2135, Aug. 2013.
- [10] N. G. Bretas and A. S. Bretas, "A two steps procedure in state estimation gross error detection, identification, and correction," *Int. J. Elect. Power Lenergy Syst.*, vol. 73, pp. 484–490, Dec. 2015.
- [11] A. S. Bretas, N. G. Bretas, B. Carvalho, E. Bayens, and 429 P. P. Khargonekar, "Smart grids cyber-physical security as a malicious 430 data attack: An innovation approach," *Elect. Power Syst. Res.*, vol. 149, 431 pp. 210–219, Aug. 2017. 432
- [12] A. S. Bretas, N. G. Bretas, S. H. Braunstein, A. Rossoni, and 433
 R. D. Trevizan, "Multiple gross errors detection, identification and 434
 correction in three-phase distribution systems WLS State estimation: 435
 A per-phase measurement error approach," *Elect. Power Syst. Res.*, 436
 vol. 151, pp. 174–185, Oct. 2017. 437

368

AUTHOR QUERIES AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ1: Please provide the better quality image for all the figures.

The Extension of the Gauss Approach for the Solution of an Overdetermined Set of Algebraic Non Linear Equations

Newton G. Bretas^(D) and Arturo S. Bretas

Abstract-In this brief is presented an extension of the Gauss ² approach for the solution of an overdetermined set of algebraic 3 non linear equations. Further, it is shown that the measurement ⁴ error, in the Gauss approach, is in the measurement direction and 5 that error has a unique decomposition: 1) the first component, 6 which is orthogonal to the Jacobian range space, the residual and 7 2) the other which is on the Jacobian range space. The latter is ⁸ hidden in the Jacobian space when one minimizes the residual. 9 The extension of the Gauss approach is then in the sense to min-10 imize the norm of the error. In engineering, the measurements 11 may have gross errors, and then detection, identification, and 12 correction of those errors are necessary. The Largest Normalized 13 Error Test will be developed for that purpose. Considering the 14 cyber-attack possibility, modeled as a malicious data attack, 15 the error correction step is paramount. Applications on power 16 networks will be used to show the hidden error component when 17 using the Gauss minimization, and also to illustrate all the steps 18 of the presented procedure as well as comparison to the current 19 Gauss approach.

Index Terms—Gauss minimization, orthogonal projections,
 recovering errors and composing errors.

I. INTRODUCTION

22

THE CHARACTERISTIC to deal with measurements in engineering and many other science's fields impose 25 a necessity to filter those data, and the Gauss minimization is ²⁶ widely accepted as an appropriate approach. Many versions of 27 the Gauss proposition have appeared and the most known one ²⁸ is the Weighted Least Squares Estimation (WLSE) [1]–[3]. ²⁹ The WLSE has several applications, as filter design [4], [5], 30 cyber-physical security [6] and networks [7]. The Gauss 31 approach proposes to minimize a functional given by the 32 weighted residuals. Higher weights are attributed for the 33 measurements of better qualities. However, if it is assumed 34 the possibility of gross errors on the measurements, how 35 could one attribute the weights to them? A second question 36 that naturally arises is: (i) In case some measurements of 37 the measurement set have gross errors will it be adequate 38 to process them without a previous treatment? The intention 39 of this brief is to provide answers to the previous questions

Manuscript received September 28, 2017; revised November 28, 2017; accepted January 18, 2018. This brief was recommended by Associate Editor H.-T. Zhang. (*Corresponding author: Newton G. Bretas.*)

N. G. Bretas is with the Department of Electrical and Computer Engineering, Engineering School of Sao Carlos, University of Sao Paulo, Sao Carlos 13566-590, Brazil (e-mail: ngbretas@sc.usp.br).

A. S. Bretas is with the Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6130, USA.

Digital Object Identifier 10.1109/TCSII.2018.2796938

and, at same time, propose solutions. In this brief, it will 40 be shown that the error of the measurement equation has 41 a unique decomposition: (i) one component orthogonal to the 42 Jacobian range space and (ii) the other component is in the 43 Jacobian range space. It will be shown also that the Gauss proposition minimizes only the first error component, known as the measurement residual; the other error component is hidden from the Gauss approach. Still, it will be shown how to estimate the other error component and then an extension of the Gauss proposition, where the minimization will be on 49 the norm of error and not the residual. In order to estimate 50 the hidden error component, the Innovation Index (II) will be introduced. The *II* of a measurement is the information it contains but not the other measurements of the measurement 53 set. A two-bus power network will be used to show the hidden 54 error component effect, when using the Gauss minimization, 55 and two other networks will be used to illustrate all the steps 56 of the presented procedure and used as comparison to the 57 Gauss approach.

II. GAUSS APPROACH: THEORETICAL BACKGROUND

Given a set of non-linear equations, as described in the 60 following:

$$z = h(x) + e \tag{1}$$

where $z \in \mathbb{R}^m$ is the measurement vector, $x \in \mathbb{R}^N$ is the state variables vector, $h: \mathbb{R}^m \to \mathbb{R}^N$, (m > N) is a continuously non linear differentiable function, $e \in \mathbb{R}^m$ is the measurement error vector assumed having zero mean and Gaussian probability distribution. N = 2n - 1 is the number of unknown state variables to be estimated (*n* is the buses number of the network).

The Gauss approach proposes to minimize the 69 functional [2]: 70

$$J(x) = [z - h(x)]^T W[z - h(x)]$$
(2) 7

where W is a symmetric and positive definite real matrix. At ⁷² this stage of this brief, let us suppose W = I, that is, the ⁷³ weight matrix as being the identity matrix. The functional J ⁷⁴ is a norm in the measurement space R^m induced by the inner ⁷⁵ product $\langle u, v \rangle = u^T v$, that is: ⁷⁶

$$\|e\|^{2} = [z - h(x)]^{2} [z - h(x)]$$
(3) 7

with $||e||^2$ being the square norm of the vector *e*. The solution of (1), minimizing (3), is the vector \hat{x} obtained iteratively from the solution of the linearized equation:

$$z = Hx + e \tag{4}$$

59

where $H = \partial h / \partial x$ is the Jacobian of h(x).

1549-7747 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

⁸⁴ Let \hat{x} be the estimated state, the solution of that ⁸⁵ minimization problem, then the estimated measurement vector ⁸⁶ will be given by $\hat{z} = h(\hat{x})$. The residual vector will be:

$$r = (z - \hat{z}) \in L(h_i)^{\perp}.$$
(5)

It happens that e, z and $H\hat{x}$ all belong to R^m , but $H\hat{x}$ belongs to the column space of H. That is, the space spanned by the columns h_j of H and is denoted by $L(h_j)$, or a linear combination of the column space of H. R^m can be written as the direct sum:

$$R^m = L(h_j) \oplus L(h_j)^{\perp}.$$
 (6)

⁹⁴ The measurement error, however, has a unique ⁹⁵ decomposition:

96
$$e = e_1 + e_2; e_1 \in L(h_j), e_2 \in L(h_j)^{\perp}.$$
 (7)

Since z is given and $H\hat{x} \in L(H_j)$, the choice of x cannot affect e_1 . As a direct conclusion, the least squares solution vector \hat{x} is optimal only for case where $e_1 = 0$. This means that the projection of z on $L(h_j)$, call it \hat{z} must equal $H\hat{x}$.

The important conclusion of this previous is that the WLSE is optimal only for the case where $e_1 = 0$. However, when one ror component exists, the other one also will exist, then in tot real life, the measurement vector *z* has always an error vector, $e_1 \neq 0$, they are coupled.

Remark 1: One can induce that in case the measurement ror error *e* is contained inside an acceptable ball of radius *r*, that ros is, less than a threshold predefined value, and only in that ros case, the classical least mean squares will offer a reasonable ros obtained. For the real life situations however, measurements run may have large errors. Then, a generalization of the Least run Squares approximation is required.

113 III. EXTENSION OF THE GAUSS APPROACH

Let us assume the possibility of the measurement error vectis tor e having large magnitudes, that is, beyond a pre-defined acceptable value. If one wants to use the classical solution to the WLSE, one must first apply the Hypothesis Testing to the check if the error vector magnitude is inside a pre-defined acceptable region. In case the answer to this question is yes, acceptable region. In case the answer to this question is yes, presented, although that is not the optimal solution. Otherwise, and the error e larger than a chosen threshold value and then correct them.

To identify such measurements one needs to estimate the measurement error: the estimation of the measurement error can be obtained estimating the measurement residual as well as the hidden measurement error component, which is in the acobian range space. To do this the measurement Innovation measurement (*II*) will be used, as presented in the following.

To estimate the measurement error (*e*), one need to estimate 131 the error components e_1 and e_2 , and then the measurement 132 error will be composed, that is:

$$e^2 = e_1^2 + e_2^2. \tag{8}$$

Let \hat{x} be the estimated state vector, result of the solution 135 of the classical WLSE problem, which minimizes (3), and is 136 given by:

137
$$\hat{x} = (H^T R^{-1} H)^{-1} H^T R^{-1} z = G^{-1} H^T R^{-1} z$$
 (9)

with *R* being the weighting matrix. In this case, the estimated ¹³⁸ measurement vector \hat{z} is given by: ¹³⁹

$$\hat{z} = H\hat{x} = H\left(H^T R^{-1} H\right)^{-1} H^T R^{-1} z$$
 140

$$\hat{z} = HG^{-1}H^T R^{-1} z = Kz$$
 (10) 141

with *G* being equal to $H^T R^{-1} H$. The residual vector *r* is given ¹⁴² by: ¹⁴³

$$r = z - \hat{z} = z - Kz = (I - K)z = Se = e_2.$$
 (11) 144

Since, for the *i*-th measurement, it is assumed $e^i \sim {}^{145} N(0, R_{ii}) = N(0, \sigma^2)$, then:

$$E\{r\} = E\{Se\} = SE\{e\} = 0 \tag{12}$$

$$cov\{r\} = E\{rr^T\} = SE\{ee^T\}S^T = SRS^T = SR = \Omega$$
(13) 14E

where σ is the measurement standard deviation and:

$$\Omega = (I - K)R$$
150

149

152

173

$$\Omega = \begin{bmatrix} (1 - K_{11})\sigma_1^2 & K_{1m}\sigma_m^2 \\ K_{m1}\sigma_1^2 & (1 - K_{mm})\sigma_m^2 \end{bmatrix}.$$
 (14) 151

Consequently, the normalized residual will be:

$$r_{i}^{N} = \frac{|r_{i}|}{\sqrt{\Omega_{ii}}} = \frac{|r_{i}|}{\sqrt{S_{ii}R_{ii}}} = \frac{|r_{i}|}{\sigma_{i}\sqrt{(1-K_{ii})}}$$
¹⁵³

$$r_i^N \sim N(0, 1)$$
 (15) 154

and $e_1^i = Ke^i$ and $e_2^i = (I - K)e^i$, respectively. ¹⁵⁵ To find the masked error component e_1 , let us define the ¹⁵⁶

Innovation Index (II) for the *i*-th measurement as being: 157

$$II_{i} = \frac{\left\|e_{2}^{(i)}\right\|_{R^{-1}}}{\left\|e_{1}^{(i)}\right\|_{R^{-1}}} = \frac{\sqrt{1-K_{ii}}}{\sqrt{K_{ii}}}.$$
(16) 158

Equation (16) is easily derived just using the definition of 159 the norm and making some algebrism.

The *II* of a measurement is the ratio of new information ¹⁶¹ it contains related to the other measurements of the measurement set [9]–[12]. Consequently, knowing the matrix *K*, the ¹⁶³ measurement *II* can be calculated; knowing this index, and ¹⁶⁴ the measurement residual, the e_1^i error component can be also ¹⁶⁵ estimated and the measurement error *e* composed by: ¹⁶⁶

$$\|\hat{e}^{i}\|_{R^{-1}}^{2} = \|e_{2}^{i}\|_{R^{-1}}^{2} + \|e_{1}^{i}\|_{R^{-1}}^{2} = \frac{1}{H_{i}^{2}}\|e_{2}^{i}\|_{R^{-1}}^{2} + \|e_{1}^{i}\|_{R^{-1}}^{2} \qquad {}^{_{167}}$$

$$\|\hat{e}^{i}\|_{R^{-1}}^{2} = \left(1 + \frac{1}{H_{i}^{2}}\right) \|e_{2}^{i}\|_{R^{-1}}^{2} = \left(1 + \frac{1}{H_{i}^{2}}\right) r_{i}^{2}.$$
 (17) 168

Then, in this brief, the proposed Extension to the Gauss 169 methodology is in the sense of by minimizing the error. 170 That is: 171

$$Min_x \sum_{i=1}^m (1 + \frac{1}{II_i^2})r_i^2$$
(18) 172

with r_i^2 given by (3).

The measurement error, estimated in this way, is known ¹⁷⁴ as Composed Measurement Error (*CME*). It can be normal- ¹⁷⁵ ized as: ¹⁷⁶

$$CME^{N} = CME/\sigma. \tag{19}$$

87

93

AQ1 Fig. 1. Two-bus power network.

18

¹⁷⁸ One can also obtain the measurement Composed ¹⁷⁹ Normalized Residual, that is, first normalizes the resid-¹⁸⁰ ual and then composes the error; consequently, the *CNE* is in ¹⁸¹ the residual subspace:

$$_{2} \qquad CNE = \left(1 + \frac{1}{H^{2}}\right)r^{N}. \qquad (20)$$

¹⁸³ *Remark 2:* One should be aware that that CME^N and ¹⁸⁴ *CNE* are different quantities, the first pertaining to the error ¹⁸⁵ subspace and the other to the residual subspace.

¹⁸⁶ For the gross error detection the χ^2 Hypothesis testing is ¹⁸⁷ applied to the *CME^N* vector, with the number of measurements ¹⁸⁸ *m* as degree of freedom; the reason for that being the error is ¹⁸⁹ not a correlated quantity.

For the gross error correction, (20) should be used since 190 For the gross error correction, (20) should be used since 191 the CME^N , a vector of dimension m, is generated from the 192 residual; this one being a vector of dimension (m - n); as 193 a consequence, the vector CME^N contains noises.

¹⁹⁴ A two-bus power network will be used to show the appli-¹⁹⁵ cation of the presented Gauss Extension formulation.

Consider the two-bus power network illustrated on Figure 1. ¹⁹⁶ F(A) : 12 = 1.0526 and F(R) = P : 12 = 0.120 p.u. are the ¹⁹⁸ active and reactive power flows measurements, respectively, ¹⁹⁹ and the phase angle difference between the two buses (θ_{12}) ²⁰⁰ is the state variable to be estimated. Starting with an inicial ²⁰¹ phase angle difference estimate, the Jacobian matrix is cal-²⁰² culated considering that state and the minimization of (18) ²⁰³ is performed. The χ^2 Hypothesis testing is applied, and if ²⁰⁴ that results in gross error detection, the Largest Normalized ²⁰⁵ Error test is used to identify the measurement with error; the ²⁰⁶ correction is made through the *CNE*.

²⁰⁷ Consider Figure 2, the plane formed by the F(A) : 12 and ²⁰⁸ θ_{12} is represented.

Figure 2 shows clearly what the Gauss proposition mininizes is the residual, (z - h(x)), although what one needs to minimize is the error, pertaining to the measurement space, and that is the Extension of the Gauss approach this brief presents. The measurement F(R) will form a similar figure in another plane with θ_{12} .

²¹⁵ A. Current Test for Detection and Identification of ²¹⁶ Gross Errors

With the normalized measurement residuals having normal distribution, it is assumed that the index J(x), i.e., the function to be minimized in (3) has a Chi-square distribution (χ^2) with m - N degrees of freedom. Then, choosing a probability 221 "1 – α " of false alarm (being α the significance level of the 222 test), a number "*C*" is obtained (via Chi-square distribution 223 table for $\chi^2_{m-N,\alpha}$) such that, in the presence of gross error: 224 J(x) > C.

Remark 3: The previous assumption has the mistake of assuming the normalized residual as having a normal distrizzr bution. The reason for this affirmative is that m residuals has

Fig. 2. The measurement error estimation.

m - N degrees of freedom and, consequently, cannot be an 228 uncorrelated variable, contradicting then the assumption. 229

This χ^2 test applied to the residual, however, is not ade- 230 quately applied. Consequently, the tests results are not going 231 to give the guarantee, with the chosen uncertainty degree, that 232 at least one measurement may have the residual as superior to 233 a chosen threshold value.

In the gross error detection test, this brief proposes to use 235 the new J(x) index with the measurement error and not the 236 residual, as shown in (18). 237

For the purpose of gross error identification, the Largest 238 Normalized Error test should then be used; after normalizing 239 the error *e* it is submitted to the validation test: 240

Conjecture: Let be $e_k^N = |\frac{e_k}{\sigma_k}| \le \lambda$ (threshold value), where ²⁴¹ e_k^N is the largest among all e_i^N , i = 1, ..., m; $\sigma_k = \sqrt{R_{kk}}$ is ²⁴² the *kth* measurement standard deviation, and *R* is the error ²⁴³ covariance matrix. Then if $e_k^N > \lambda$, measurement gross error ²⁴⁴ will be detected. ²⁴⁵

Remark 4: The current gross error detection test is in incorrect because: (i) it uses the residual as a metric for the error; ²⁴⁷ (ii) it assumes a hyper-sphere for the normalized residual probability density function, assuming all the measurements are ²⁴⁹ correct, except one of them, the one having error, what is not ²⁵⁰ a valid real life situation. In what follows, it will be presented ²⁵¹ the property of the Largest Normalized Error Test (*LNET*), in ²⁵² order to detect and identify the measurements with errors as ²⁵³ shown in the previous conjecture. ²⁵⁴

B. Generalization of the Largest Normalized Residual Test: 255 The Largest Normalized Error Test 256

Theorem: Assuming all the measurements of a measurement ²⁵⁷ set with limited random errors, and adding gross error only ²⁵⁸ to one of the measurements, the measurement to which gross ²⁵⁹ error was added will have the largest increment of error among ²⁶⁰ all the measurements. ²⁶¹

Proof: In [8] it was proved that the measurement error in its ²⁶² normalized form (CME^N) and the normalized residuals are formally equal, but numerically different from each other because ²⁶⁴ the projection matrix *K* is different. Also, the measurement ²⁶⁵ error pertains to the measurement sub-space, with *m* degrees ²⁶⁶ of freedom, and the measurement residual pertains to the residual sub-space, of dimension (m - N), and consequently with ²⁶⁸ (m-N) degrees of freedom and any comparison between them ²⁶⁹ is meaningless. ²⁷⁰

Fig. 3. The three-bus network.

²⁷¹ Suppose, now, that the measurements are *perfect*, without ²⁷² any error, the measurement residual will be given by:

$$e_2 = r = (I - K)z = R_r Wz$$
 (21)

²⁷⁴ which in this situation are zeros for all the measurements. Let ²⁷⁵ us suppose now that error is added only to the measurement z_i ²⁷⁶ and, consequently, for this new measurement: $z_i^n = z_i + b_i \sigma_i$, ²⁷⁷ and all the other measurements staying with the same magni-²⁷⁸ tudes, *n* standing for *new* measurement. Following the same ²⁷⁹ standard of demonstration of the classical largest normalized ²⁸⁰ residual test, one obtains:

$$r^{n} - r = b_{i}\sigma_{i}^{-1}R_{r}u_{i}$$
(22)

²⁸² where $R_r u_i$ is the *i*-th column of the residual covariance matrix ²⁸³ R_r , as in the largest normalized residual test.

²⁸⁴ Consequently, and following the same standard of proof ²⁸⁵ of the classical largest normalized residual test [2], one will ²⁸⁶ obtain:

$$\left| r_{i}^{N,n} - r_{i}^{N} \right| \geq \left| r_{j}^{N,n} - r_{j}^{N} \right| \text{ for all } j \neq i.$$
(23)

288 Transforming the residuals in errors one will get:

289
$$\left| e_{i}^{N,n} - e_{i}^{N} \right| \ge \left| e_{j}^{N,n} - e_{j}^{N} \right|, j = 1, \dots, m$$
 (2)

4

²⁹⁰ because the measurement with error is the one with more new ²⁹¹ information. As a conclusion, the largest error increase will ²⁹² occur on the measurement with error.

If one generalizes the situation so that all measurements may have errors but are inside a ball of radius r and error is added to one measurement only, and using the previous theorem, one error magnitude will exist such that the largest error has to be error in the measurement with error.

OBS: For the previous generalization the Implicit Function Theorem property was used, that is, if a property is valid for an initial condition it will be valid for any other since no bifurcation occurs going from one initial condition to the another. The previous demonstration gives support to use the largest normalized error test as a methodology to detect as well as to identify the measurements containing gross errors.

³⁰⁵ C. The Choice of the Weight Matrix to Detect Measurements ³⁰⁶ With Gross Errors

To detect if there exist measurements containing gross errors, it must be assumed that all measurements may have error. This means one cannot use the measurement qualities at as having effect on the measurement weights at the stage of att gross error detection. To define an appropriate measurement

TABLE I Three Bus Network Simulation

Measurement	II	Added GE	r ^N	CME ^N Largest	CNE	
I(A):1 = -1.62	1.03	-5.7σ	-3.04	-4.24	-5.09	
GE identified with LNRT at $I(A):1 \rightarrow LNET$: both correct						
I(A):2 = 2.59	1.88	-3.6σ	-3.04	-3.98	-3.44	
GE identified with LNRT at I(A):2 \rightarrow LNRT: both correct						
F(A):2-1 = 2.03	1.58	-3.7σ	-3.02	-3.25	-3.58	
GE identified with LNRT at I(A):1 with $r^{N} = -3.20 \rightarrow$ failed						
$F(A) \cdot 1 - 3 = 0.36$	0.76	-5.2g	-3.06	-3.08	-5.07	
$\frac{\Gamma(A).\Gamma-S-0.50}{\text{GE identified with I NRT at V:3 with } r^N = -3.10 \rightarrow \text{failed}$						
LNET-correct						
F(A):2-3 = 0.56	1.71	-3.6σ	-3.06	-4.02	-3.54	
GE identified with LNRT at $F(A):2-3 \rightarrow$ both correct						
I(R):1 = 0.37	0.70	-5.3σ	-3.01	-4.28	-5.22	
GE identified with LNRT at F(A):1-3, $r^N = -3.10 \rightarrow$ failed						
I(R):3 = 0.40	1.49	-3.3σ	-3.02	-3.24	-3.64	
GE identified with LNRT at F(R):3-2, $r^N = -3.10 \rightarrow$ failed						
LNET-correct						
F(R):1-2=0.37	0.72	-5.5σ	-3.04	-3.11	-5.21	
GE identified with LNRTat V:3, $r^N = -3.12 \rightarrow \text{failed}$						
LNET-correct						
F(R):3-1 = 0.14	0.97	-4.7σ	-3.03	-4.23	-4.35	
GE identified with LNRT at F(R):3-2, $r^N = -3.01 \rightarrow$ failed						
LNET-correct						
F(R):3-2 = 0.26	1.47	-3.9σ	-3.07	-3.58	-3.71	
GE identified with LNRT at $F(R):3-2 \rightarrow LNET$: both correct						

weights at this SE stage let us suppose a simple problem where ³¹² it does exist just one variable to estimate and many related ³¹³ measurements: suppose that all measurements have the same ³¹⁴ quality and do not have gross errors; then as a natural consequence, the weights for the measurements should be all equal. ³¹⁶ For example, the inverse of a fixed percentage of the measurement's magnitude, because in that way the variable estimated ³¹⁸ value will be an average of the measurements values. Suppose ³¹⁹ now a situation where some of the measurements may have ³²⁰ error: if the measurement is such that, with the error, it has ³²¹ a value larger than the correct value, it will have less weight ³²² than a correct measurement and vice versa. ³²³

Conclusion: At the gross error detection stage, the measurement weights should be a fixed percentage of the measurement ³²⁵ magnitude, independently of the measurement quality. At this ³²⁶ stage, the measurement quality cannot be taken in account. ³²⁷ Once the measurements with gross errors are identified and ³²⁸ corrected, the weight matrix is as proposed in the classical ³²⁹ state estimation, that is, the measurement quality should be ³³⁰ now taken in account. ³³¹

In the next section, two power networks will be simulated ³³² to show this brief proposition efficiency for the gross error ³³³ analysis as well the fail of the classical gross error analysis ³³⁴ proposal. ³³⁵

IV. CASE STUDY

Consider Figure 3. Using a three-bus network with the measurements as shown in Figure 3, whose magnitudes are in 338 Table I, after random errors are added to them, a gross error 339 is added, one at a time, until the error is detected. Then 340

Measurement	II	Added GE		r ^N	CME^N	CNE	
Step 1							
P:2	0.242	3.9	σ	1.946	3.52	4.35	
LNRT	failed			LNE	T correct		
Step 2							
Q:4	0.369	4.5	σ	2.054	4.34	4.51	
LNRT	failed		LNET correct				
Step 3							
Q:3-2	0.628	3.6	σ	2.752	3.27	4.17	
LNRT	failed		LNET correct				
		Ste	p 4				
P:3-4	0.707	3.2	σ	2.402	3.14	3.87	
LNRT	failed		LNET correct				
Step 5							
P:12-13	1.053	3.7	σ	2.845	3.74	3.92	
LNRT failed			LNET correct				
Step 6							
Q:2-5	0.863	3.5	σ	2.152	3.29	3.48	
LNRT failed			LNET correct				
Step 7							
P:6	0.622	4.1	σ	1.690	3.20	3.69	
LNRT failed			LNET correct				
Step 8							
Q:1	1.483	3.3	σ	3.009	3.40	3.61	
LNRT correct			LNET correct				
		Ste	p 9				
Q:5	0.175	4.0	σ	1.612	3.54	3.98	
LNRT failed			LNET correct				
Step 10							
P:14-9	1.683	3.4	σ	3.053	3.31	3.60	
LNRT correct				LNE	T correct		

TABLE II IEEE 14 BUS NETWORK SIMULATIONS

³⁴¹ the measurement with error is identified using the current ³⁴² Largest Normalized Residual Test (*LNRT*) and the presented ³⁴³ methodology of this brief, the *LNET*. For this case, the global ³⁴⁴ redundancy level is equal to 2.2 (*GRL* = 2.2). As can be seen, ³⁴⁵ using the classical approach, six wrong gross errors identifica-³⁴⁶ tion have occurred, but using this brief proposition, in all cases ³⁴⁷ the gross error was correctly detected and the measurement ³⁴⁸ which had gross error was correctly identified.

In Table I, the used nomenclature for the measurements are: I(A) : i means active power injection at bus i; F(R) : i-j means i reactive flow at line i - j.

As can be seen on Table I, the gross error detection and identification has worked correctly in all cases when using the *LNET* but in contrary, when using the *LNRT*, many detection and identification flaws have occurred. Another important point is the proximity between the added error and the corresponding *CNE* for the measurement identified as having the see error. Consider now the IEEE14 bus system [4], and the same test conditions as previously applied. Test results are presented on Table II.

As can be seen on Table II, the gross error detection and identification has worked correctly in all simulated cases when using the *LNET* but in contrary, when using the residual *LNRT*, many fails occurred. In general, measurements with low Innovation Index tend to present a hidden error component of large magnitude, consequently leading the LNRT to fail in the reror detection.

V. CONCLUSION

This brief presents an extension of the Gauss approach to 369 solve overdetermined sets of algebraic non linear equations. 370 It was shown that the measurement error is composed of two 371 components: (i) one that is in the Jacobian range space (hid- 372 den component); (ii) other that is orthogonal to that space. The 373 latter component comes out to be the residual. The WLSE 374 should perform the minimization on the measurement error 375 and not on the residual. The gross error detection is per- 376 formed through the application of the χ^2 test on the composed 377 error; the identification is performed using the LNET. In this 378 stage of the SE the measurement weights should be a per- 379 centage of the measurements magnitude. The measurement 380 correction is made using the measurement CNE. After the 381 correction, a new Gauss minimization is performed, now tak- 382 ing in account the measurement quality to define the weights. 383 This brief contribution when estimating the error and then 384 the possibility of correcting the measurement having error is 385 of paramount importance in these days due to cyber-attacks 386 becoming every day more real. Two power networks have 387 been used to show, in detail, each step of this brief proposi- 388 tion and at same time comparing the classical WLS solution. 389 The added error magnitude and the estimated normalized error, 390 CNE, are very close to each other, giving support to the idea of 391 estimating the measurement errors and then correcting those 392 measurements. 393

References

- D. M. Falcao and M. A. Arias, "State estimation and observability analysis based on echelon forms of the linearized measurement models," *IEEE Trans. Power Syst.*, vol. 9, no. 2, pp. 979–987, 397 May 1994.
- [2] A. Monticelli, "Electric power system state estimation," *Proc. IEEE*, 399 vol. 88, no. 2, pp. 262–282, Feb. 2000.
- [3] E. Handschin, F. C. Schweppe, J. Kohlas, and A. Fiechter, "Bad 401 data analysis for power system state estimation," *IEEE Trans. Power* 402 *App. Syst.*, vol. PAS-94, no. 2, pp. 329–337, Mar. 1975.
- [4] A. Jiang, H. K. Kwan, Y. Zhu, N. Xu, and X. Liu, "Efficient WLS 404 design of IIR digital filters using partial second-order factorization," 405 *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 63, no. 7, pp. 703–707, 406 Jul. 2016.
- [5] S. Wang, W. Wang, S. Duan, and L. Wang, "Kernel Recursive least 408 squares with multiple feedback and its convergence analysis," *IEEE* 409 *Trans. Circuits Syst. II, Exp. Briefs*, vol. 64, no. 10, pp. 1237–1241, 410 Oct. 2017.
- [6] S. Zonouz *et al.*, "SCPSE: Security-oriented cyber-physical state estimation for power grid critical infrastructures," *IEEE Trans. Smart Grid*, 413 vol. 3, no. 4, pp. 1790–1799, Dec. 2012.
- [7] B. K. Das, M. Chakraborty, and J. Arenas-García, "Sparse distributed 415 estimation via heterogeneous diffusion adaptive networks," *IEEE Trans.* 416 *Circuits Syst. II, Exp. Briefs*, vol. 63, no. 11, pp. 1079–1083, Nov. 2016. 417
- [8] N. G. Bretas, A. S. Bretas, and S. A. Piereti, "Innovation concept for 418 measurement gross error detection and identification in power system 419 state estimation," *IET Gener. Transm. Distrib.*, vol. 5, no. 6, pp. 603–608, 420 Jun. 2011. 421
- [9] N. G. Bretas, S. A. Piereti, A. S. Bretas, and A. C. P. Martins, "A geometrical view for multiple gross errors detection, identification, and correction in power system state estimation," *IEEE Trans. Power Syst.*, 424 vol. 28, no. 3, pp. 2128–2135, Aug. 2013.
- [10] N. G. Bretas and A. S. Bretas, "A two steps procedure in state estimation gross error detection, identification, and correction," *Int. J. Elect. Power Lenergy Syst.*, vol. 73, pp. 484–490, Dec. 2015.
- [11] A. S. Bretas, N. G. Bretas, B. Carvalho, E. Bayens, and 429 P. P. Khargonekar, "Smart grids cyber-physical security as a malicious 430 data attack: An innovation approach," *Elect. Power Syst. Res.*, vol. 149, 431 pp. 210–219, Aug. 2017. 432
- [12] A. S. Bretas, N. G. Bretas, S. H. Braunstein, A. Rossoni, and 433
 R. D. Trevizan, "Multiple gross errors detection, identification and 434
 correction in three-phase distribution systems WLS State estimation: 435
 A per-phase measurement error approach," *Elect. Power Syst. Res.*, 436
 vol. 151, pp. 174–185, Oct. 2017. 437

368

AUTHOR QUERIES AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ1: Please provide the better quality image for all the figures.