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Walk Proximal Gradient: An Energy-Efficient
Algorithm for Consensus Optimization

Xianghui Mao, Graduate Student Member, IEEE, Yuantao Gu

Abstract—Decentralized computing is widely used for
multiagent systems since it works without a central computing
node. In this paper, we develop a first-order algorithm for decen-
tralized consensus optimization that is more energy efficient than
the current state-of-the-art. Our algorithm is suitable for applica-
tion scenarios such as networks of wireless sensors and Internet
of Things, where some agents have limited (battery) energy. We
call our algorithm walk proximal gradient (WPG), which passes
a token through a walk (a succession of nodes) in the graph.
The agents that are visited during the walk compute the gradi-
ents of their private functions and update the token. We analyze
WPG where the walk is the repetition of a Hamiltonian cycle and
show that the token converges to the consensual solution faster
(in terms of energy consumption) than existing gradient-based
decentralized methods. We also generalize the analysis to the
non-Hamiltonian graphs. Numerical experiments are presented
to validate the energy efficiency of our algorithm.

Index Terms—Consensus optimization, decentralized computa-
tion, deterministic routing, energy efficiency, Hamiltonian cycle.

I. INTRODUCTION

ONSIDER a network G = (V,&) where V =
{vi,.... v} is the set of agents and & is the set of m
edges. We aim to solve the consensus optimization

1 n
. _ 1
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where each local function f; is privately known to the cor-
responding agent v; and x is a p-dimensional optimization
variable.
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Fig. 1. Smart home system composed of light, air conditioner, curtain, fan,
TV, and freezers. Each device is capable of sensing some local environmental
parameters, including lightness, humidity, and temperature. The devices are
also equipped with communication capabilities (indicated by the connections),
which allow the agents to share information with their neighboring device.

A. Motivation and Background

Consensus optimization is broadly applied to model prob-
lems over networks, including network routing [1], cooperative
control [2], data collection [3], and smart grid [4]. The network
utility optimization problem [5] is an application with the util-
ity function of each agent j corresponds to the local function
fj(-) in problem (1). A special case is the average consensus
problem, which calculates the average of n distributedly stored
numbers. Problems such as network synchronization [6], dis-
tributed coordination of mobile autonomous agents [7], and
load balancing [8] can be formulated as consensus problems.

We study decentralized algorithms, which use the local com-
putation at each agent and perform communications between
one-hop neighbors. There is no central server to collect data
or perform computation. The existing decentralized algorithms
for (1) will be briefly reviewed in Section II.

In many multiagent systems, not having a central server
leads advantages on data privacy, resilience, communication
mode and cost, and so on. The architecture of the smart
home system as shown in Fig. 1 is an example of decentral-
ized multiagent system, where we can utilize a decentralized
algorithm for problem (1) to maximize the comfort level. In
this application, x is a common control variable, and —f;(x),
j = 1,...,n, are local comfort levels sensed by agent j.
By solvmg problem (1), we find the optimal variable that
maximizes the overall comfort level of the smart home.

How to communicate is an important aspect of decentral-
ized computation. Deterministic routing tables are prevalently
utilized to define the communication paths among the network
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of agents. When the network is strongly connected, the sim-
ple way of relaying packets along paths to destinations can
deliver information between any pair of agents in the network.
The network routing strategies can be based on Hamiltonian
cycle [9], [10], the shortest path [11], [12], and so on.

Agents in wireless networks, including but not limited to
wireless sensor networks and Internet of Things (IoT), are
typically driven by energy limited power sources, e.g., batter-
ies. In order for them to function properly in their lifetime,
energy efficiency has been a major issue to address [13], [14].
In the literature, main approaches to reduce energy con-
sumption include: 1) reducing the amount or frequency of
information collection and processing and putting idle agents
into their sleeping mode in effective scheduling schemes [15]
and 2) improving routing and MAC protocols in communica-
tion [16]. The above solutions are proposed in the presence
of a central computing server. The study of energy effi-
ciency for decentralized optimization is limited but exists.
Ling and Tian [3] investigated energy-efficient computing
strategy for sparse signal recovery, in which the vertices are
allowed to enter their sleeping mode in a random manner.
Apart from [3], it seems little has been done.

B. Contributions and Organizations

This papers proposes the following decentralized algorithm
to solve problem (1). Introduce the local variable z; for each

agent j, j = 1,...,n. Create a token with initial value 0=
(1/m) 30 zj(.) (we can simply set x* = ¥ = ... = 20 = 0).
The token travels through a walk i;, t =0, 1,2, ..., which is a

succession of agents with every (i;, iz+1) being an edge. When
the token arrives at agent i;, it become active and computes

+1 {x’ —aVf;, (xl), active agent j = i
Z: =

J Z}, inactive agents j # i;

M =24 %(Zf,“ - Z§,>

and then passes x**! to the next agent. We call this algorithm
walk proximal gradient (WPG). Later in this paper, we derive
it by modifying the proximal gradient algorithm, where the
modification is inspired by our previous work W-ADMM [17].
However, [17] uses a random walk and solves a subproblem at
each agent instead of computing the gradient. The determin-
istic walk is suitable to utility optimization and smart control
of IoT, which uses deterministic routing.

For the ease of derivation, we first introduce the WPG
method on a Hamiltonian network, and then generalize it to
suit the non-Hamiltonian networks by occasionally activating
an agent if it is repeatedly visited in a routing path.

We prove the linear convergence of WPG under strong-
convexity assumptions. The energy efficiency of WPG is
verified both theoretically and numerically. Consumption of
energy includes computation and communication. As a first-
order algorithm, the computation of WPG is dominated by
gradient evaluation. The communication in WPG is spent on
passing the token x among the agents. Assume each gradi-
ent evaluation and each token passing take O(1). Then, if a
Hamiltonian cycle of the network is known a priori, to get a
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solution x within € to the optimal one, WPG needs O(In(1/¢)-
(n(k2+2k))) iterations or units of energy, where « is the con-
dition number of the local functions. If the Hamiltonian cycle
is not provided, O(In(1/¢) - (n(/c2 + 2k))A) units of energy is
required, where A denotes the diameter of the network.

When we apply WPG to solve the average consensus
problem, it converges after the walk covers all the agents, that
is a finite number of iterations. We also discuss how to adapt
WPG to dynamic network topologies.

C. Organization

The rest of this paper is organized as follows. In Section II,
we briefly review relevant decentralized optimization algo-
rithms. In Section III, we give the preliminaries on
Hamiltonian cycle and proximal gradient method. Then, WPG
is derived Section IV and analyzed in Section V. The energy
consumptions of WPG and alternative algorithms are com-
pared in Section VI. Extensions of WPG are discussed in
Section VII, and numerical experiments are presented in
Section VIIL! Finally, Section IX concludes this paper.

II. RELATED WORK

Most of the existing decentralized algorithms belong to
either the incremental type or the gossip type.

Incremental decentralized algorithms activate one agent and
one edge in each step, keeping all the other agents and edges
idle. The ordering of activation can be deterministic or random.

Among the deterministic incremental algorithms, [18]
assumes the network G is a Hamiltonian network, which leads
to the periodic activation of agents. The first incremental gra-
dient method (IG) was proposed in [19], where gradients of
local functions are computed in a cyclic order. To converge to
the exact solution, IG must use diminishing step sizes, which
leads to a sublinear convergence rate. The incremental aggre-
gated gradient method (IAG) proposed in [20] maintains an
aggregated gradient while updating the optimization variable,
and both quantities are communicated when the method is
implemented in a network of agents. In spite of the doubled
amount of communication per step, IAG can converge lin-
early when the objective function is strongly convex [21]. In
the setting, WPG converges linearly yet uses half of the IAG
communication per step.

Random (walk) incremental algorithms activate the agents
successively following a random walk over the network. To
guarantee convergence to the exact solution of (1), the algo-
rithms in [22]-[24] use diminishing step sizes, which lead
to sublinear convergence rates. W-ADMM [17] manages to
achieve the same with a constant step size, which improves
the convergence speed. A linear rate of convergence was estab-
lished for decentralized least squares. As mentioned above,
W-ADMM solves a subproblem at each step instead of using
a gradient, which is typically cheaper to compute.

Unlike incremental decentralized algorithms, gossip-
based algorithms such as ADMM (D-ADMM) [25], [26],

ISimulation codes are provided to reproduce the results presented in this
paper: http://gu.ee.tsinghua.edu.cn/publications. Supplemental material for the
reader can be downloaded online at http://ieeexplore.ieee.org/
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EXTRA [27], and exact diffusion [28] activate multiple agents
in parallel and let them communicate with some or all of their
neighbors in each iteration. They use more communication
at each iteration and tend to require fewer total number of
iterations. These algorithms are roughly derived as follows.
First, problem (1) is formulated as a constrained optimization
problem by introducing auxiliary variables, then a primal-dual
method is applied to solve it. In [26], D-ADMM was proved
to converge linearly when all the local functions are strongly
convex. EXTRA [27] and then exact diffusion [28] were
shown to converge linearly when the sum of local convex
functions is strongly convex. The main computation of these
first-order algorithms is evaluating the gradients of local
functions or their proximal mappings. Scaman et al. [29]
proposed SSDA and MSDA, which calculate the gradients of
each local functions’ convex conjugates. Mokhtari et al. [30]
proposed a second-order gossip-based method, network
Newton, to improve convergence speed when the Hessian of
local functions are available.

III. PRELIMINARIES

We recall the definition of Hamiltonian cycle.

Definition 1 (Hamiltonian Cycle [18]): A Hamiltonian
cycle is a cycle on the graph that visits each vertex exactly
once.

A graph that contains a Hamiltonian cycle is called a
Hamiltonian graph. Many graphs, including complete graphs,
ring graphs, and 4-connected planar graph have been proven
to be Hamiltonian graphs. Ore’s theorem [31] shows that any
simple graph with n > 3 vertices is Hamiltonian if, for every
pair of nonadjacent vertices, the sum of their degrees is no
less than n. There are also many existing works studying how
to find a Hamiltonian cycle in a graph [32], [33].

Proximal gradient method tackles the optimization problem

minimize F(y) 4 r(y) (2)
y

where F(-) is a differentiable function and r(-) has a simple
proximal mapping. In the rth iteration of the proximal gradient
method, with a positive step size «, the variable is updated
according to

Yy = prox,,. (' — aVF(y')) 3)

where the proximal mapping prox,, is defined as
) 1
prox,, (i) := arg min r(x) + — [lx — u||>. 4)
x 200

When both F and r are convex, under mild conditions on the
smoothness of function F, the sequence (y'*!);>0 converges
to the solution of (2).

IV. WALK PROXIMAL GRADIENT

In this section, we derive the WPG algorithm.

By introducing auxiliary variables, the consensus
optimization problem (1) can be rewritten as problem (2) with
variable y := col(xq, ..., x,) with col stacking the arguments
into a long vector and each x;, i € {l,...,N}, being a
p-dimensional vector, objective functions F(y) = 27: i)
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and an indicator function r(y) = &y =..=x, (). Here,
r(y) =0if x; =--- = x;, and = oo otherwise. With

1 n
prox,,.(u) =1, ® (Z Z u,-)

i=1
where 1,, denotes the all 1 vector of size n and ® denotes the

Kronecker Product, we apply the proximal gradient method (3)
to get the iteration

Y =10 % Xn:(x; —avfi(«)) |- 5)

J=1

We have in y', x| = --- = x, for all + > 0. Hence, we
introduce a p-dimensional vector x' = x| = .- = x, to
simplify our algorithm. Remember, we have introduced the
local variables ztl, R zfl € R”, one for each agent. With them,
we can equivalently rewrite (5) as

2 =¥ —aVf(¥), Vie(l,....n) ©)
1 n
+1_ L +1
A=)y @)
=1

Since (6) evaluates the gradients of all the n local functions
and (7) collects information from all the agents, they are not
decentralized yet.

To get a decentralized algorithm, we change (6) so that only
z;, of the active agent i; gets updated, keeping all the other
zj(j # i;) unchanged. This leads to the iteration

S+ X —aVi(x), j=i ®)
7 Zf, J#
1 n
xl+1 — ; ZJT'+1- (9)
j=1

Note that the updates in (8) and (9) are not equivalent to the
proximal gradient updating procedure encoded in (6) and (7).
The difference is how many agents are activated to conduct the
z-update at each iteration. The benefit of activating only one
agent to conduct z-update in (8) and (9) is that the updating
procedure can be decentralized. Next, we show that in each
iteration the x-update in (9) can be accomplished by agent iy
itself under the initialization

1 n
0—_§ 0
x—n Zy.

j=1

Since, in the set {zj}je1,....n}» Only z;, is updated in the rth
iteration, (9) can be rewritten equivalently as

1
A = 4 —(ZE+1 - Zf)
n t 1

which can be computed solely by agent i; since it has both the
token x’ and its local variables zgl‘H, zﬁt. By (10) and induction,
steps (9) and (11) are equivalent.

The implementation of WPG is presented in Algorithm 1.
For simplicity and analysis clarity, we focus only on the case
where the agents are activated in a predefined circulant pat-

tern. The agents are assigned with the numbers following their

(10)

(11)
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Algorithm 1 WPG
Initialization: initialize x° and zjo so that x° = % ]’-Z: ] 2
Repeat for t =0, 1,2, ...
agent iy = mod,(z) + 1 do:
receive token x’;
update local variable zﬁt‘H =x' —aVfi(x');
update token x't1 = x' + %(z;t“ - zf.[);
send token x'*! to agent i,y via edge (iy, i;+1);

agents j # i; do nothing; hence, z}“ = Z]t-;
End
Agents
1 2 J

kn [ z" } 28 ij
kn+1 { Z! } L z¥

2 kn+j-1 {zf"“} Z;WZ} { Zj-m 7 z,

E

2| kn+j { Z J Zi? J 2 el z,"
woont (3] [B9) - [B9) - @ [
(k+1)n Z;OHZ o zj’“-j o

Fig. 2. Visualization of the evolution of {th'}j:l:n in the period of
[kn, (k + 1)n].

activation order. The activated agent in the rth iteration is
iy = mod, (1) + 1.

The evolution of the local variables is visualized in Fig. 2.
Notice that for each agent j, its local variable gets updated
after the iterations (kn +j — 1)i>0, which index the visits of
the token to agent ;.

A. Communication Strategy

Suppose the walk (i;);>0 repeats a Hamiltonian cycle
(1,...,n) in WPG, Algorithm 1. Then, the agents in the fol-
lowing cyclicorder: 1 - 2 - -+ > n—>1—> 2 — ...
An illustration can be found in the upper plot of Fig. 3. For
Hamiltonian networks, such communications can be accom-
plished by a Hamiltonian-cycle-based routing strategy such
as [9] and [10].

WPG can also be applied to non-Hamiltonian networks. For
any strongly connected network, there exists a cycle passing
every agent at least once (but possibly more than once). Our
method still works if the walk repeats this cycle. However, we
only analyze WPG for a Hamiltonian cycle in the next section.
To apply our analysis there to a general cycle that covers every
agent, if a token appears more than once in this cycle, it is only
activated at its first appearance; subsequent visits are passed
over without activation. As shown in Fig. 3, with the connec-
tion between agents 6 and 7 deleted, a Hamiltonian network
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Hamiltonian
Network

O Agent

— Edge

X' Content of token
—> Path of token

Non-Hamiltonian
Network

Fig. 3. Traversing pattern of the token over two different network topologies
of n =7 agents.

becomes a non-Hamiltonian network. To pass the token from
agent 6 to 7, a relay node, agent 2, is required. Hence, in the
cycle, agent 2 is passed twice, but activated only at the first
visit.

For strongly connected networks, there are many rout-
ing strategies to generate such a cycle. Specifically, we can
implement the shortest path routing strategy [11], [12] to the
network, and the shortest paths between any pair of agents
are maintained by the routing tables. A possible cycle could
be the concatenation of the shortest paths from agents 1 to 2,
2t03,...,n—1ton,and n to 1. We name it the shortest path
cycle.

B. Comparison With Similar Works

To better evaluate the novelty of WPG, we explain its

differences from the existing decentralized algorithms.

1) W-ADMM [17]: Both WPG and W-ADMM are based
on passing a token over a walk on network. While
W-ADMM is a primal-dual method, WPG is a primal
method. Their computations in each step are different.
W-ADMM is proven to converge linearly when solving
least squares problem.

2) IAG [20]: One can run IAG over the same walk as WPG.
The updating procedure of IAG is

1

x{;:g = xitag - ag{ag (12)
v ~<x-’ ) =i

e = { ) T (13)
Zj,iag’ ] # It

1
t+1 _ ¢ t+1 t
giag = 8Siag + ;(Zi,,iag - Zi,,iag) (14)

where each Z},iag is kept locally by agent j, and the
variable xfag and the aggregated gradient gif,clg must be
passed around as a token. That doubles the per-step com-
munication of WPG. Both IAG and WPG are primal
methods. IAG is related to variance-reduction stochas-
tic gradient (but IAG follows a deterministic ordering),
and WPG is more related to block coordinate descent
(BCD) (but with differences outline in part 3 below).

Under Lipschitz differentiability and strong convexity
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assumptions, linear convergence of IAG is established
in [21].

3) S-PPG [34]: The similarity between S-PPG and WPG
is that they are both backward-forward splitting meth-
ods using block updates. However, S-PPG chooses the
update blocks in an independent identically distributed
random fashion, and its analysis cannot be adapted to
the cyclic block selection used in WPG. Under certain
smoothness and strong convexity assumptions, S-PPG
also achieves linear convergence. Both the WPG algo-
rithm and its analysis in this paper will connect it to
a circular BCD method. However, WPG is not a direct
application of BCD since, in the BCD literature, the
nonsmooth function r(y) in (2), if present, is always sep-
arable, i.e., taking the form r(y) = ri(x1) +- - -+ rp(x,).
However, our 7(y) = d{x;=...=x,}(y) is nonsmooth, non-
separable. Under Lipschitz differentiability and strong
convexity, BCD is guaranteed to converge linearly.

C. Energy Consumption Per Iteration and Storage
Requirement

There are two types of energy consumption in the network:
1) computation and 2) communication. For first-order algo-
rithms, computation is dominated by gradient evaluation. For
the ease of analysis, we assume that the each gradient eval-
uation takes a constant amount of energy, E;. In real-world
scenario, the communication energy is tightly related to the
distance between the sender and receiver. But for simplicity,
we consider the case that the distances between connected
pairs of agents are approximately the same, and can be upper
bounded by a communication range threshold, which is inde-
pendent of both the numbers of the agents n and the numbers
of edges m. Specifically, we assume that each communi-
cation between a pair of agents (sending a p-dimensional
variable from one to the other) consumes a constant amount
of energy, E>.

Remark 1: For WPG, each agent j only needs to store the
local variable zj’., which requires local storage space O(p). In
each iteration of WPG:

1) computation energy is Ej, spent on one gradient evalu-

ation of a local function;

2) communication energy depends on the traversing pattern

of the token:

a) E> when traversing via Hamiltonian cycle;

b) < AE, when traversing via the shortest path cycle,
where A denotes the diameter of the network,
and defined as A = max,je(1,...n d(i,j) hops,
where d(i, j) denotes the length of the shortest path
between agents i and j.

By Remark 1, the total storage space required for the
network is O(np), which can hardly be further decreased.
The existing incremental and gossip-based methods requires
storage space on the same order.

The computation energy per iteration of WPG is inde-
pendent from the size of the network, n. This property is
shared by the incremental algorithms, including IAG, S-PPG,
W-ADMM, etc. When implementing deterministic incremental
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algorithms, in either traversing pattern, the per iteration com-
munication consumption of WPG is the least one can expect.
Recall the analysis in part 2 of Section IV-B, the per iteration
communication consumption of IAG is doubled.

Noticing that in each iteration of gossip-based algorithms,
all the agents are activated to compute, which involves at least
n times computation consumption of WPG. As for the com-
munication consumption, in gossip algorithms, any pair of
connected agents share their computation results with each
other, which requires 2|€| times communications compared to
WPG.

With Remark 1 analyzing the computation and communi-
cation consumption per iteration of WPG, the total energy
consumption of WPG is postponed to Section VI as it is tightly
related to the convergence rate provided in Section V.

V. CONVERGENCE ANALYSIS

In this section, we establish the linear convergence of
WPG for a Hamiltonian network under smoothness and strong
convexity assumptions of the local functions {fj};c(1,....n}-

Assumption 1: The activation pattern (i;);>0 cyclically
repeats a permutation of the vertex set V.

To be noted, the activation pattern listed in Algorithm 1 sat-
isfies Assumption 1, where (i;);>0 repeats (1,2,...,n). On a
connected network, we will show that it is easy to generate a
sequence of (i;);>o satisfying Assumption 1 by briefly recall-
ing the communication strategy in Section IV-A. When the
network is Hamiltonian connected, an activation pattern satis-
fying Assumption 1 is achieved by letting the token traveling
among the agents following a certain Hamiltonian walk and
the token always activating the visited agent on its arrival.
When the network is not Hamiltonian connected, the token
should walk over all the nodes in the network following a
(shortest path cycle), and on every repeat of the cycle, each
agent is only activated when it is visited for the first time in
each repeat. In other words, some agents may be visited the
second, third, ... times without incurring any computation.

Below we establish convergence based on a new Lyapunov
function. To begin with, we first give the assumptions that
would be applied in the following convergence analysis.

Assumption 2: Each local function fj(-) is convex and
L-Lipschitz differentiable, that is, for any u, v € R”, it holds

Vi) — VW < Lilu—vl, Vjefl,....,n} 15)

Assumption 3: Each local function fj(-) is u-strongly con-
vex, that is, for any u, v € RP, we have

(Vi) = VEO), u—v) > plu—v|? Vjiefl,... n}

(16)
For any optimal solution x* of problem (1), we define
Z;f =x" - onfj(x*) e R? (17)
z* =col(z],....z) e R, (18)
We consider the Lyapunov function
n T»t
=3 2G4 (19)

J=1
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where

! == mod(j — i;) + 1
n

: (20)

is one plus the number of iterations beyond i; when node j
will be visited. The evolution of the local variables in Fig. 2
can provide an intuitive understanding to the parameter rj’ .
Suppose t = kn, iy = 1; then, for j € {l,...,n}, we have
tjt = j being the amount of light red blocks in the jth column.
Note that {rf, o r,ﬁ} is a permutation of {1, ..., n}. For the

ease of deduction, for each r > 0, we stack the local variables

to form a np-dimensional vector 2’ = col(z},...,z},). The
Lyapunov function £’ can be rewritten as

where H' := diag((z]/n), ..., (t;/n)) is a positive definite
diagonal matrix. &’ is a variable measure of the distance
between z' and z*.

Below, we establish the sufficient descent of (§),>¢.

Lemma 1 (Descent Lemma): Under Assumptions 1 and 2,
for any optimal solution x* of problem (1) and 2* and &' as
defined in (18) and (19), respectively, with « < (2/L), for any
k>0,ie{0,...,n— 1}, we have

2
g <g - (Ta - “2) V7 (') = Vi () |

Proof: By Assumption 1 and the definition of rj’ , we learn
that for any j # i;, we have

(22)

t+1 _ l: _1 (23)

)
~

and

! 24)
Notice that zj’. = zjt.“ holds for any j # i;. By the definition of
Sjt in (19) and local update (8), we get

1 n
1 * 12 t
Iz = 2P = = iz
7
n i
1 n
2
— =>4l
] ]
e

t 2
— [Ix* = x|

%-H-l _ é—

*(2
_Zj”

r+1 2
< iz, =z

=z~ —z (25)

where the last equality follows from (9). According to (8) and
the definition of z* as in (17), we have

!
&F

It

= [ —x* — ¥, (¥) + @V, ()
= [ = x*|? + 2| VA, () = Vi ()|
= 2afx = x*, Vf; (') = Vfi, ()
S i R ARl
(26)

*
— Zi;

where the last inequality comes from Baillon-Haddad the-
orem [35]. The proof is completed by substituting (26)
into (25). |
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Lemma 1 shows that the sequence (£),( is a nonincreasing
sequence. Next, we apply the strongly convexity Assumption 3
to get the convergence rate of WPG.

Lemma 2: Under Assumptions 1-3, with o < (2/L), we
have that the sequence (27);>0 generated by WPG converges
linearly to z*. Specifically, for any ¢t > 0, we have

t+n 1 t
Tt 27)
where 6(a) == ([(2a)/L] — &) /(@ + (1/p))*.
Proof: By Lemma 1, we have
t+n—1
g < g — ( ) Z IVi, () = VA, ()P 28)
By Assumption 3, for any A > 0, we have
4t -zl = I - e () - (- e ()
= | =) + o[ V£ () = Vi ()]
— 2a(x' —x*, Vfi, (x") — Vf;, (x¥))
Q1+ an)|w — x|
+ (o + )19 6) = ¥, ()
®) (14 ar
2 (et S )19l - V)
(29)

where (a) follows from Young’s inequality (£2ab < ra* +
2~15%) and (b) follows from Assumption 3. By taking A = pu,
the parenthesis in (29) is minimized, which leads to

2 1\2
=g = (k) 19 - RO co
Substituting (30) into (28) with 0(«) = ([(2a)/L] —ozz)/(ot +
(1/w))2, we have
t+n—1
£ < g — () Z Tz 31)
Remember {i;, ij41,...,04n-1} = {1,2,...,n}. Hence,

from (31), we get

n t no_t
‘L' 2 T; 2
tHn _ % RV | S
Z( +9(a)> H G| = Z 0 HZJ i

j=1 j=1
and, by (t{/n) <1

n

!
> LA +0@)l -
n

n 'L'~[
%12 J oot *)12
ZIP <) 5=
j=1 j=1

With er’" = rj’ and the definition of &', we complete the
proof. |

Lemma 2 indicates that the Lyapunov function & converges
linearly to 0. Recall &' is a distance between the stacked local
variables 2’ and z*. Therefore, Lemma 2 implies that the local
variables converges to Z* in a linear rate. Finally, we give the
rate at which x' converges to x*.
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Theorem 1: Under Assumptions 1-3, with o < (2/L), the
sequence {x'},>( generated by WPG converges to x* at a linear
rate. Specifically,

1 LE]
I =2 < (———=] 12° -z (32)
1+0()
Proof: By Lemma 2, we have
k
Skn < 1 50
“\1+0()
k
0 *12
<|{—- z =z 33
< (1+9(a)) Il Il (33)

We also have

RIS W
=0, 22575
=1

2 1 - t *112 t
<- 2 lg-gI =g
j=1
(34)

Combining (33) and (34) and using the nonincreasing property
of the sequence {&'},>0 complete the proof. |
Next, we optimize the factor [1/(1 + 6(«))] by choosing «.
Corollary 1: Maximizing 6(«) over « yields the optimal
step size
1

= 35
=i (35)

and the corresponding factor

1

=0 = G

(36)
where k := L/u denotes the condition number of the local
functions.

Proof: Differentiate 0 («)

di(@) _ —2(u+Lya+2
do - 1 30
L,U,(Ol+ﬁ>

Notice that with u, L > 0, the parameter 6 («) first increases
then decreases when « increases from O to +00. So, the max-
imal value is achieved with o = o*. It is easy to check that
a* < 2/L, which admits the requirement in Theorem 1. [ |

(37

VI. ENERGY CONSUMPTION ANALYSIS

In this section, we study how much energy the state-of-
the-art consensus optimization algorithms spend on solving
problem (1). We compared those of WPG, gossip-based algo-
rithms, and incremental algorithms. These are gradient-based
algorithms. We skip second-order algorithms (e.g., network
Newton [30]) and those involving local proximal mappings,
such as D-ADMM [25], [26] and W-ADMM [17]. The evalu-
ations of second-order information or proximal mappings can
be more energy-consuming than evaluating gradients.

Be aware that this comparison is based on existing bounds,
some of which may not be tight.

Recall that £y and E, are the amounts of energy spent on
each gradient evaluation and edge activation, respectively.
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A. Energy Consumption of WPG

By Theorem 1 and Corollary 1, with o set as a* given
in (35), to achieve ||x' — x*| < e, it suffices to have

1 L4
12° — 2| <e (38)
1+ 0*
Specifically, with ¢ = kn, if k satisfies
ZO _ z* 2
k> 1n<—” I )/ln(l + 6%) (39)
€

it is guaranteed to have ||x*" — x*||> < €. Note that in each
iteration of WPG, only one gradient evaluation is conducted,
which corresponds to an Ej amount of computation energy
consumption. The per-iteration communication consumption
of WPG depends on the network structure. Recall the com-
munication strategy stated in Section IV-A under Hamiltonian
and non-Hamiltonian networks. When conducting WPG on a
Hamiltonian network, each iteration only activates one edge
communication, and consumes E; amount of energy. With k
satisfying (39), WPG achieves X" — x*||* < € and consumes
the following amount of total energy:

120 — z*||? X
In( ———— ) / In(1 +6%) - (nE| + nEy)
€

= [m(nzo - z*||2> + ln<é>]/1n(1 +6%) - (nE1 + nEy).

(41)

(40)

We consider the asymptotic case that € tends to 0, which cor-
responds to In(1/€) — oo. The energy consumption of WPG
on Hamiltonian network is

0(ln<é)/ln(l +60%) - (nEy ~|—nE2)).

As for a non-Hamiltonian but connected network, to apply
WPQG, the shortest path cycle should be applied, which evokes
no more than A edges in each iteration. Hence, on a non-
Hamiltonian network, WPG consumes the following amount
of total energy:

0(111(%)/111(1 +60%) - (nE; —i—nAEz))

where A is the diameter of the network, defined in Remark 1.

(42)

(43)

B. Energy Comparisons

Next, we list the energy consumptions of some existing
decentralized algorithms for consensus optimization, based
on the reported analyses of convergence rates. Note that the
energy comparison is made in the asymptotic sense, that is, the
amount of agents n tends to infinity and the solution precision
€ tends to zero, whereas the function related parameters L, u
and « are constants. The total energy consumption of IAG [19]
depends on whether the network is Hamiltonian or not. With
a Hamiltonian cycle, IAG consumes

1 2
0<ln<g)/ln<1 + 5mn t Dt TP = 2) (E1 + 2E2)>.
(44)
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Using a shortest path cycle, it consumes

1 2
0<ln<2>/m<l T 2snn+ D+ D2 = 2) R 2AE2))'
(45)

Here, the factor 2 before E; signifies the communication
of both the variable and aggregated gradient in IAG; see
Section IV-C.

In gossip-based algorithms, each agent j keeps a copy of
local variables y;, and shares y; with its neighbors by linear
combination. This combination can be represented by multi-
plying y = [le, o ynT]T with a n-by-n mixing matrix W,
where wj, ;, is positive when agents j; and j, are connected by
an edge, otherwise it takes the value of 0. One choice of W is
a symmetric doubly stochastic matrix, that is, W' = W and
W1 = 1. Existing convergence analyses have shown that the
convergence speed of this type of algorithms depends on the
second largest eigenvalue ):(W) = max{|A;(W)| : ,;(W) #£ 1}.
The energy consumption of EXTRA [27] for reaching an
e-precise solution is

O<1n<l>/ln(2 - ?\(W)) - (nE1 + mE2)>.
€

That of exact diffusion [36] is
1 — A(W)

0<ln<l>/ln(l + A—) - (nEy + mEz)) 47)
€ AW)+C

where C is a constant only depending on (L/u). Turning to
single-step dual accelerated method (SSDA) [29], in each of
its each iteration, the gradient of the conjugate of each f;(-) is
evaluated. We assume it consumes E; energy. Then, the energy
consumption for SSDA is

0(m(§)ﬁ/ﬁ- (nE +mE2))

where k = (L/u) is the condition number of the local func-
tions, y is the normalized spectral gap of a gossip matrix,
which can be taken as I — W. With this gossip matrix,
y>1- A(W), so the energy consumption of SSDA equals

1 N
0(1n<z)\/z/\/ 1 —A(W) - (nE; + mE2)>. (49)

In the same work, another method named MSDA is proposed,
which conducts multiple gossips in each iteration. At the sac-
rifice of increasing the communication cost in each iteration,
the number of iterations for convergence is reduced. It is
also proved in [29] that in the sense of iterations for con-
vergence, MSDA is the optimal algorithm among the class of
gossip-based first-order algorithms. The energy consumption
for MSDA is

(46)

(48)

E ]l (50)

0 1n<1)ﬁ. nE| + —

€ J1 = A(W)
Noticing that a connected graph means m > n, we com-
pare the energy consumption of the above algorithms to find
an e-precise solution in Table I. For the ease of compari-
son, we take x as a constant independent of n, m, and study
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TABLE I .
ENERGY CONSUMPTION OF VARIOUS ALGORITHMS WHEN A(P)
Is CLOSE TO 1 AND n TENDS TO 00

Energy consumption

Algorithm
Hamiltonian cycle shortest path cycle
WPG O(n(L)-n) oOfm(L)- %_’;(w)
1 2 1 n?
1AG[19] O(n(1)-n?) O(In(}) =
1
EXTRA[27] o(n(}) %)
T 1 ]
exact diffusion[28] @] <ln (1) - 175\W(IW))
1 m
SSDA[29] O(ln (€ ) W)
1y . m
MSDA[29] O(In (%) o

the asymptotic case that is n — o0o. Besides, we apply
the approximation In(l 4+ x) &~ x when x is close to 0.
Further, for better comparison between incremental algorithms
and gossip-based algorithms, we apply the approximation

A~ 1/yy) =[1/G/1=AW)] [29], [37].

We observe that WPG is more energy efficient than IAG
under either communication cycle. This indicates that WPG
is more scalable from the perspective of energy consumption.
When the network is sparsely connected, i.e., O(m) = O(n),
the energy consumption of WPG with the shortest path cycle
is in the same order with SSDA and MSDA. In other cases,
WPG with the shortest path cycle is more energy efficient than
the gossip-based algorithms.

Intuitively, incremental algorithms using a Hamiltonian
cycle are more communication efficient and hence more
energy efficient than using the shortest path cycle. Next, we
analyze how much improvement will be achieved by knowing
a Hamiltonian cycle a priori. Specifically, we need to analyze
the relationship between m, 1 — A(W)2 and n. We study two
different graph topologies.

1) In a ring graph where the graph itself is a Hamiltonian
cycle and each agent in the network connects with two
other agents, 1 — A(W) is O(1/n?), and m = n. In such
a case, EXTRA and exact diffusion exhibit energy con-
sumption of O(n?), while SSDA and MSDA consume
O(n?) amount of energy.

2) Consider a complete graph, where each pair of agents is
connected by an edge, which corresponds to m = O(n?)
and 1 — i(W) = 1. Under this setting, EXTRA, exact
diffusion, SSDA, and MSDA all consume O(nz) amount
of energy.

In the above two extreme cases, WPG with a Hamiltonian
cycle is better than all the compared algorithms.

VII. DISCUSSION

In this section, we first analyze a specific application of
WPG on solving the consensus problem, and further show that
WPG converges to the optimal solution after one pass of the

21 — A(W) labels the consensual speed achieved by repeatedly multiplying
the mixing matrix, W.



2056

Algorithm 2 WPG Solving (51) With « = 1

Initialization: initialize x° and z? so that x0 =
holds; ‘
Repeat for t =0, 1,2, ...
agent i; = mod,(f) + 1 do:
receive token x’;
update local variable zﬁtﬂ =yi;

update token x't! = x' + %(zij‘l -7 );

1y 0
n 2aj=1%j

i
send token x't! to agent i,y via edge (i, irp1);
agents j 7 i; do nothing, i.e., z]'-+1 = th»;
End

agents. Next, we discuss the application of WPG to dynamic
topologies.

A. Convergence With One Pass for Consensus Problem

As a special case of consensus optimization problem, the
average consensus problem is

51
xeRP 2n 4 D

n
minimize i Z lx — yj||2
j=1
where each agent j stores a p-dimensional vector y;. The
optimal solution to problem (51) is x* = (Z;':lyj)/n, ie.,
the average of all the locally stored y;’s. Next, we apply WPG
to solve (51) with the step size o« = 1 (see Algorithm 2) and
analyze its finite convergence.
Proposition 1: The sequence (x',z},...,z,)=0 generated
by Algorithm 2 converges after one pass of all the vertices.
Specifically, we have

x’:x*,z/{:yj, Vi>n+1, Yjell,...,n}. (52)

Proof: Intuitively, the updating pattern of Algorithm 2
can be rephrased as follows.

1) Once the token passes agent j, its local variable z]’- is

assigned with the value of y;.
2) The token x' always maintains the average of the all the

n local variables {z]t-}je{l ,,,,, n}-
By point 1, once the token has passed all the n agents,
each local variable zjt- is set as y; and will not be changed,
which proves the convergence of z; Point 2 guarantees the
convergence of the token, x'. |
Remark 2: Note that Proposition 1 is not a simple applica-
tion of Theorem 1. Because to derive Proposition 1, we utilize
the special form of consensus problem and the step size o = 1.
If o # 1, the one pass convergence property is not guaranteed,
but the linear convergence rate given in Theorem 1 still holds.

B. Extension to Dynamic Network

As shown in Section IV-A, the communication strategy
of the proposed WPG method only relies on a cycle of the
network. In each iteration, only one edge on the cycle is acti-
vated for communication. No matter whether the other edges
are capable of communication, the proposed WPG method
works. This property indicates the applicability WPG to some
periodically dynamic network.

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

For a general dynamic network, we have: 1) if the dynamic
network always protects a stable Hamiltonian cycle, then
WPG works and 2) if the dynamic network is possibly non-
Hamiltonian, the routing protocol guarantees that an agent is
able to find the shortest path toward any other agent.

VIII. NUMERICAL EXPERIMENTS

In this section, numerical experiments on three different
consensus optimization problems are conducted, including
least squares problem, logistic regression problem, and con-
sensus problem. To verify the correctness of the proposed
WPG and test its energy efficiency, we compare the proposed
WPG with state-of-the-art consensus optimization methods.
The compared methods are those compared with WPG the-
oretically in Section VI, including the deterministic incremen-
tal method, IAG [19], and gossip-based ones, MSDA [29],
SSDA [29], EXTRA [27], and exact diffusion [28].

As for the incremental algorithms, both Hamiltonian cycle-
based and shortest path cycle-based token traversing pattern
are tested. Correspondingly, we generate two different network
topologies for test, named as Gye(V, Exe) and Ggpe (V, Espe),
respectively.

The possibly non-Hamiltonian topology Ggpe(V, Espe)
is generated from the random geometric graph model.
Specifically, n = 50 agents are placed uniformly at ran-
dom in a 50 x 50 square, an edge is connected between
any pair of agents if their distance is not greater than 15.
Based on Ggpe(V, Espe), we generate a Hamiltonian network
Guc(V, Ene) by first generating a ring graph with the 50
agents, and then taking £y as the union of the edge set of the
ring graph and Egpc.

For the completeness of our experimental results, we also
compared the run times of different first-order decentral-
ized algorithms. Time consumptions of decentralized algo-
rithms depend on multiple factors including both computation
and communication. In real-world networks, communication
makes more contributions to total run time than computation,
and communication is commonly modeled with the exponen-
tial distribution in [38] and [39]. For simplicity, we assume that
each communication requires a time independently following
the exponential distribution with parameter 1. Each iteration of
gossip-based algorithms, such as EXTRA, exact diffusion, and
SSDA, involves one gossip round (all the m edges to commu-
nicate bidirectionally), and thus needs to wait for the slowest
communication (out of the 2m communications) to complete.
This determines the time spent on each round of communi-
cation. In contrast, incremental algorithms including IAG and
WPG only evoke one communication per iteration. There is
no coordination and thus no wait.

For the simplicity of evaluating energy consumption, in each
experiment we assume that the gradient evaluation of each
local function takes E1 = 1 unit of energy, while each com-
munication between a pair of connected agents takes E» = 1
unit of energy.

A. Least Squares

Consider a sensing problem in a network of n agents. Each
agent i € {l,...,n} captures its own linear measurements
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— = exact diffusion

10'

Time Consumption(s)

Fig. 4. Performance of different consensus optimization methods on least
squares on the network Gy (V, Exc)-

= = exact diffusion
T

10! 107
Time Consumption(s)

Fig. 5. Performance of different consensus optimization methods on least
squares on the network Gspe(V, Espe)-

of the unknown signal x € R? by y; = M;x + ¢; , where
the measurement y; € R!, M; € R?*? and ¢; € R¥*! is
unknown noise. To estimate y, the n agents cooperate to solve
minimize lZn:nM-x — il (53)
xeRP n e ! il

In this experiment, we fix d = 1,p = 3, and take
M; ~ N(0,I), y; ~ N(0, 1) as independent Gaussian random
variables.

The experimental result on the network Gyc(V, Exe) is
shown in Fig. 4, while the result on Ggpe(V, Epe) can be
found in Fig. 5. In the upper two subplots of each figure,
we compare the computation energy consumption, communi-
cation energy consumption separately, while the third subplot
compares the time consumption. In both Figs. 4 and 5, it can
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Fig. 6. Performance of different consensus optimization methods on training
logistic classifier on the network Gy (V, Epxe)-

be observed that the incremental algorithms including IAG and
WPG is more energy efficient than the gossip-based ones, and
the proposed WPG is the most energy efficient, no matter when
utilizing Hamiltonian cycle on the network Gy (V, &) or the
shortest path cycle on the network Ggpe(V, Espe). In terms of
time consumption, WPG is more efficient than TAG and the
gossip-based algorithms.

Comparing Figs. 4 and 5, one can observe that the trends
of the curves are very similar. The main difference is the
convergence speed.

1) The convergence speed of the gossip-based algorithms
shown in Fig. 5 are slower than Fig. 4, which is
because the Ggpe (V, € spe) is less densely connected than
Guc(V, Ene), which affects the gossiping speed over the
network.

2) Regarding the incremental algorithms (WPG and IAG),
these two figures share the same computation energy
curves, but communication energy curves and time con-
sumption curves are different. The reason is that the
intrinsic computations of the incremental algorithms on
these two networks coincide with each other, whereas
the communication is different due to the relays involved
in the shortest path cycle.

B. Training Logistic Classifier

With the training data including features and labels stored
distributedly over the network, the decentralized regression
problem refers to learn a classifier x by solving

NV g T )
ml;lelﬁzglze - Z b 21n(1 + exp(—yijvij x)) + Allx]|
]:

=

(54)

where y;; € {—1, 1} denotes the label of the jth sample kept
by the ith agent, v;; € R” represents its feature, and there are
b samples kept by each agent.
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Fig. 7. Performance of different consensus optimization methods on training
logistic classifier on the network Gspe(V, Espe).
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Fig. 8. Performance of different consensus optimization methods on

consensus problem on the network Gyc(V, EHe)-

In this experiment, we fix b = 5,p = 3, and take the
sample features v; ~ N(,1). To generate vij» we first
generate a random vector x° € R3 ~ A(0,I). Then we gen-
erate a uniformly distributed variable z;; ~ (0, 1), and if
zj < 1/[1 + exp(—v; 1), y; is taken as 1; otherwise yj is
set as —1.

The numerical results on the two different topologies are
shown in Figs. 6 and 7. Similar phenomena can be observed
as decentralized least squares experiments. The energy effi-
ciency and time efficiency of the proposed WPG method is
also verified in this experiment.

C. Consensus Problem

In order to test the one pass convergence of the WPG
method on solving consensus problem, in this experiment

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

107 10
Communication Energy

102 10
Time Consumption(s)

Fig. 9. Performance of WPG and IAG on least squares problem on
gspc W, Espc) networks generated with different covering radii r.

on the network Gy.(V, &yc) we implement Algorithm 2, i.e.,
WPG with the optimal step size value ¢ = 1, to solve
problem (51) with p = 1. The locally cached vectors y;’s
are independent identically distributed random variables fol-
lowing the uniform distribution in the range of [0, 1]. Besides,
we test a nonoptimal choice of step size, « = 0.5, and compare
it with the state-of-the-art consensus optimization algorithms.
For the completeness of comparison, we also conduct a method
named randomized gossip [40], which is a random incremen-
tal method specifically designed for consensus problem. The
numerical result is shown in Fig. 8. It can be observed that,
the WPG method with @« = 1 converges after 50 computa-
tions, and 50 communications, which labels one pass of the
50 agents. This coincides with the analysis in Section VII-A.
Even when the step size of WPG is not taken as the optimal
value 1, WPG with o = 0.5 still shows competitive energy
efficiency over the compared methods.

D. Effects of Edge Connection Density

This experiment tests the efficiency of the proposed WPG
under different edge connection densities. To generate network
topologies with different edge connection densities, we vary
the covering radius of each vertex r of the SPC network. The
connecting rule is that any pair of vertices are connected if
their distance is less than r, and not connected otherwise.
Hence, increasing r would increase the edge connection den-
sity. With r taken as 8, 20, and 71 (generating complete graph),
respectively, the compared consensus optimization methods
are applied to solve a same least squares problem. For ease
of display, we compare the proposed WPG with TAG and a
representative of gossip algorithms, EXTRA in Figs. 9 and 10,
respectively.

It can be read from the first subplot of Fig. 9 that the com-
putation energy curves of WPG under different r perfectly
coincide with each other. The reason is that as long as the
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Fig. 10. Performance of WPG and EXTRA on least squares problem on
Gspe(V, Espe) networks generated with different covering radii r.

traversing pattern of the walking token is determined, the com-
puting procedures of incremental algorithms are fixed and not
influenced by the network topology. In the other two subplots,
the gaps among the curves of each algorithm are caused by
the differences of routing path’s length. For both WPG and
IAG, a larger r generates a more densely connected network,
where one could expect that less relay nodes are required when
passing the token from one vertex to another, which results in
less communication consumption and less time consumption.
Fig. 9 also indicates that the proposed WPG outperforms IAG
under different network topologies.

In Fig. 10, the relative positions of the convergence curves
of EXTRA are more complicated. The first subplot verifies the
convergence property of EXTRA as in (46), that is, EXTRA
converges faster on a more densely connected graph. In the
second subplot, one could read that when increasing r, the
communication consumption of EXTRA first decreases then
increases. The reason is that when r increases the number of
iterations for convergence decreases, whereas the per-iteration
communication cost increases. According to the last subplots,
the time efficiency of EXTRA increases with r increasing,
which implies that in the experimental time model, the gain
on convergence rate dominates the increase of per-iteration
time consumption.

Comparing WPG and EXTRA, one could read that under
the tested edge connection densities, WPG outperforms
EXTRA in terms of both energy consumption and time con-
sumption. As for the energy consumption, the computation
energy benefit of WPG is more obvious in a sparsely con-
nected network, whereas the communication energy benefit is
maximized in the most densely connected network (complete
graph).

IX. CONCLUSION

Inspired by the walking token idea and deterministic rout-
ing of the network, based on proximal-gradient algorithm,
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we propose a first-order incremental decentralized consen-
sus optimization method, WPG. Two different communication
strategies, i.e., Hamiltonian cycle and shortest path cycle are
considered. The linear convergence rate is derived under the
strongly convex case, based on which, the energy efficiency of
the proposed method over the existing consensus optimization
methods is theoretically analyzed and numerically testified.
Besides, the one-pass convergence property of WPG in solv-
ing consensus problem is also established, which has not
been found for any existing first-order decentralized consensus
optimization method.
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