
1

An Exploratory Study on Software-Defined Data Center
Hard Disk Drives

YIN LI, Rensselaer Polytechnic Institute, USA
XUBIN CHEN, Rensselaer Polytechnic Institute, USA
NING ZHENG, Scaleflux, Inc., USA
JINGPENG HAO, Rensselaer Polytechnic Institute, USA
TONG ZHANG, Rensselaer Polytechnic Institute, USA

This paper presents a design framework aiming to reduce mass data storage cost in data centers. Its underlying
principle is simple: Assume one may noticeably reduce the HDD manufacturing cost by significantly (i.e., at
least several orders of magnitude) relaxing raw HDD reliability, we ensure the eventual data storage integrity
via low-cost system-level redundancy. This is called system-assisted HDD bit cost reduction. In order to better
utilize both capacity and random IOPS of HDDs, it is desirable to mix data with complementary requirements
on capacity and random IOPS in each HDD. Nevertheless, different capacity and random IOPS requirements
may demand different raw HDD reliability vs. bit cost trade-offs and hence different forms of system-assisted
bit cost reduction. This paper presents a software-centric design framework to realize data-adaptive system-
assisted bit cost reduction for data center HDDs. Aiming to improve its practical feasibility, its implementation
is solely handled by the filesystem and demands only minor change of the error correction coding (ECC)
module inside HDDs. Hence, it is completely transparent to all the other components in the software stack
(e.g., applications, OS kernel, and drivers) and keeps fundamental HDD design practice (e.g., firmware, media,
head, and servo) intact. We carried out analysis and experiments to evaluate its implementation feasibility
and effectiveness. We integrated the design techniques into ext4 to further quantitatively measure its impact
on system speed performance.
CCS Concepts: • Storage Management → Storage hierarchies;

Additional Key Words and Phrases: Reliability, error-tolerance, filesystem design, local erasure coding
ACM Reference Format:
Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang. 2019. An Exploratory Study on Software-
Defined Data Center Hard Disk Drives. ACM Trans. Storage 1, 1, Article 1 (January 2019), 22 pages. https:
//doi.org/10.1145/3319405

1 INTRODUCTION
This paper focuses on the reducing bit cost of magnetic recording hard disk drives (HDDs) for data
centers. Although flash memory has been rapidly penetrating into data centers, the substantial bit
Authors’ addresses: Yin Li, Rensselaer Polytechnic Institute, Department of Electrical, Computer & Systems Engineering,
110 8th Street, Troy, NY, 12180, USA, liyin1985@gmail.com; Xubin Chen, Rensselaer Polytechnic Institute, Department
of Electrical, Computer & Systems Engineering, 110 8th Street, Troy, NY, 12180, USA, chenx22@rpi.edu; Ning Zheng,
Scaleflux, Inc. 97 East Brokaw Road Suite 260, San Jose, CA, 95112, USA, ningzhengrpi@gmail.com; Jingpeng Hao, Rensselaer
Polytechnic Institute, Department of Electrical, Computer & Systems Engineering, 110 8th Street, Troy, NY, 12180, USA,
haoj@rpi.edu; Tong Zhang, Rensselaer Polytechnic Institute, Department of Electrical, Computer & Systems Engineering,
110 8th Street, Troy, NY, 12180, USA, tzhang@ecse.rpi.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1553-3077/2019/1-ART1 $15.00
https://doi.org/10.1145/3319405

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:2 Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang

cost advantage of HDDs and exploding data storage demands will keep HDDs as the technology of
choice for mass data storage in data centers, at least in the foreseeable future [8]. Over the past
decades, the steady HDD bit cost reduction has been solely enabled by the continuous progress of
underlying device technologies [11, 26], e.g., thinner magnetic media, better and smaller write and
read heads, more powerful read channel signal processing and error correction coding (ECC), and
more accurate head positioning servo. However, as these device-level technologies are approaching
their physical limits, it becomes increasingly difficult for HDD industry to maintain the historical
bit cost reduction trend on its own. Recently, the concept of data center HDDs [8] has been proposed
as an option to continue HDD bit cost reduction for data centers. The key is to re-think the design
and architect of HDDs and I/O software stack by cohesively exploiting the characteristics of data
centers and magnetic recording technology.

One essential aspect of data center HDDs is to exploit the bit cost vs. raw HDD storage reliability
trade-off. In this work, we assume that HDD manufacturers could noticeably reduce HDD bit cost
by significantly (i.e., several orders of magnitude) relaxing its reliability specs (i.e., read retry rate
and sector read failure rate) [3]. By applying certain data redundancy at the system level, data
centers could embrace the orders-of-magnitude per-HDD reliability degradation without sacrificing
the eventual data storage integrity. If the system-level redundancy does not override the per-HDD
cost saving and meanwhile does not cause intolerable system performance impact, it could be a
viable option to complement with HDD technology advancements to push the bit cost reduction
envelope. This is referred to as system-assisted bit cost reduction. A recent study [20] presented
a design technique called local erasure coding to implement system-assisted bit cost reduction at
the filesystem level. Its basic idea is to apply long erasure codes to the data being stored in one
HDD, which tries to fix the sector read failures with existing redundancy instead of immediately
triggering the slow internal read retries inside HDDs.
This paper studies the practical implementation of system-assisted bit cost reduction for data

center HDDs. In order to better utilize both capacity and random IOPS of HDDs, it is desirable to
mix data with complementary requirements on capacity and random IOPS in each HDD. It is not
uncommon that resources (e.g., HDD storage space, CPU, etc.) assigned to dedicated workloads
are underutilized during most of the time. Hence, there is a good potential to improve resource
utilization (and hence reduce overall system cost) by consolidating multiple workloads on fewer
servers. A prior study [10] demonstrated that it is possible to achieve absolute consolidation ratios
ranging between 5.5:1 and 17:1 for some specific workloads. Even when dedicating the entire HDDs
to specific workloads (e.g., HDFS in a large Hadoop cluster), there are still different read request
characteristics (e.g., small request with 64kB vs. large requests with 1MB). Therefore, this work
assumes that it is practically desirable to consolidate workloads with different IO patterns onto the
same HDD. However, it will complicate the realization of system-assisted bit cost reduction because
different types of data may demand different raw HDD reliability vs. bit cost trade-offs. This paper
presents a software-centric design framework to address this challenge. To maximize its practical
feasibility, this design framework has the following properties: (1) Within the software stack, it only
requires modest changes of a filesystem and is completely transparent to all the other components
(e.g., applications, OS kernel, and drivers). (2) Inside HDDs, it only requires minor changes to the
ECC module and is completely transparent to all the other components (e.g., firmware, media,
head, and servo). (3) It is completely transparent to HDD I/O protocols (i.e., it does not require any
changes to the existing I/O protocols).
The proposed design framework is based upon a simple fact: Assume a segment (e.g., 512B)

within one 4kB sector is all-zero, and the ECC module inside HDD can detect the location this
all-zero segment. Then the intra-HDD ECC module could simply force this segment as all-zero
during ECC decoding, which can reduce the decoding failure probability and hence improve the

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Software-Defined Data Center Hard Disk Drives 1:3

storage reliability for this sector. This is referred to as per-sector zero forcing and the length of
the all-zero segment is called the zero forcing number. The basic idea underlying this proposed
design framework is to combine per-sector zero forcing and local erasure coding. By dynamically
configuring the parameters of per-sector zero forcing and local erasure coding, we could achieve
data-adaptive system-assisted bit cost reduction for data with different requirements on capacity
and random IOPS.
To facilitate its practical implementation, we propose to group all the files on each HDD into

three distinct categories: (1) immutable files that are accessed mostly by sequential read (e.g., image
and video), (2) immutable files that are accessed mostly (or at least noticeably) by random read (e.g.,
32kB or 64kB data blocks in BigTable and HBase), and (3) mutable files that essentially include
all the other files. By fixing the parameters of per-sector zero forcing and local erasure coding
for each category, we can largely simplify the process of design parameter configuration. Under
this design framework, one major design challenge is how to practically realize per-sector zero
forcing with minimal changes to the existing software and hardware infrastructure. To address
this challenge, we develop a set of design techniques that only modestly change the filesystem and
intra-HDD ECC module, while keeping everything else across the entire software and hardware
stacks intact. We carried out a variety of analysis and experiments to quantitatively study the
impact of the proposed design framework on system speed performance and overall system-level
redundancy. Our study targets at HDDs whose storage reliability specs are relaxed by 3 4 orders
of magnitude compared with today’s commercial HDDs. To study the impact on system speed
performance, we integrated the proposed design techniques into an ext4 filesystem, and carried out
experiments using synthetic workloads and representative applications including HBase and big
data benchmark suite HiBench 3.0 [2]. Our results show that the proposed design techniques incur
very small speed performance degradation (i.e., 4% and below). Our analysis results further show
that the proposed design framework incurs small system-level redundancy (i.e., less than 9% and as
low as 2%), which most likely could be easily off-set by the HDD manufacturing cost reduction
enabled by the orders-of-magnitude relaxation of raw storage reliability.

2 BACKGROUND AND RATIONALE
2.1 HDD Sector Read Failures
HDDs are fundamentally subject to runtime positional off-set of write/read head, i.e., the position
of write/read head is not well aligned with the center of the target track. Head off-set is mainly
caused by environmental vibration that is particularly severe in data centers. Runtime head off-set
strongly correlates with HDD sector read failures (i.e., HDD internal ECC fails to decode one sector).
During normal operation, once a sector read failure occurs, HDDs switch from the normal mode
into a so-called retry mode. During retry mode, HDDs repeatedly read the failed sector by adjusting
various operational configurations/parameters (in particular the position of write/read head). Read
retry operation continues until the sector has been successfully decoded or a time-out limit has
been reached. In the former case (i.e., read retry success), the host receives the correct data but
suffers from a (much) longer read latency, which could noticeably degrade the HDD random IOPS
and read tail latency; while in the latter case (i.e., read retry failure), HDDs will report a sector
read failure (i.e., a sector data loss) to the host. In this paper, we define soft sector read failure rate
as the probability that HDDs encounter a sector read failure during the normal operation (note
that today’s HDDs switch to the retry mode upon a soft sector read failure), and define hard sector
failure rate as the probability that one sector cannot be successfully recovered even after read
retry. Prior study [33] shows that "high-fly" writes and off-track reads/writes are important factors
causing sector read failures and we have further confirmed with our industrial liaisons that in

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang

today’s commercial HDDs, soft and hard sector failure rates are typically speciied as<106and
<1012, respectively. about this point.

2.2 System-Assisted Bit Cost Reduction

As conventional magnetic recording technology approaches its limit at around 1Tb/in2, the HDD
industry has been exploring several new recording technologies including heat-assisted magnetic
recording (HAMR) [32,36], shingled magnetic recording (SMR) [21,25], and two-dimensional
magnetic recording (TDMR) [17,34,38]. Unfortunately, in spite of signiicant investment over the
years, none of these new recording technologies shows a viable and sustainable path to continue
the historical bit cost reduction trend. This naturally opens the door for more actively involving
computing systems to assist the continuation of HDD bit cost reduction. The basic concept is very
simple: Any storage technology is fundamentally subject to a bit cost vs. reliability trade-of, and
HDDs are of course no exception. It is reasonable to expect that HDD bit cost can be noticeably
reduced if we signiicantly relax HDD sector failure rates (e.g., by at least 3 4 orders of magnitude)
beyond today’s specs. Such cost reduction can be realized in diferent ways, e.g., over-scaling areal
storage density, and relaxing the specs of head/media manufacturing and the requirements of
HDD testing/qualiication. In order not to compromise the data storage integrity, the per-HDD
reliability degradation must be compensated by system-level redundancy. This is referred to as
system-assisted HDD bit cost reduction. Clearly, the extra cost of the system-level redundancy
should not override the cost reduction of HDDs, and the associated system-level operations (e.g.,
erasure code decoding) do not cause an intolerable impact on the system performance.
The authors of [8] pointed out that the existing redundancy distributed within or even across
data centers (e.g., in the form of replica and distributed erasure coding) may be leveraged to
realize system-assisted HDD bit cost reduction. Nevertheless, when using distributed system-level
redundancy to recover per-HDD sector read failures, it incurs extra network traics. As a result, it
may only allow relatively modest per-HDD reliability degradation (e.g., relaxing the soft sector
read failure rate from106to104 105) in order to avoid signiicant network traic overhead.
Aiming to push the limit of system-assisted HDD bit cost reduction, the authors of [20] proposed
a scheme calledlocal erasure coding, which is applicable to systems dominated by large-chunk
sequential HDD write/read operations.

2.3 Local Erasure Coding

As discussed later in Section3, local erasure coding [20] is an integral component in our proposed
design solution. We choose to implement local erasure coding inside ailesystem at the software
level other than inside RAID controller at the hardware level for the following reasons: First,
RAID is being replaced by distributed erasure coding in data centers, thus there may not be a
dedicated hardware RAID controller inside data center servers. Second, given the runtime workload
characteristics, we may need to dynamically adjust the local erasure coding conigurations (i.e.,
the number of sectors being protected by one local erasure coding group, and the number of
redundant sectors in one local erasure coding group). Hence, it is preferred to implement local
erasure coding at the software level. Finally, a recent study [20] has been demonstrated that
software-level implementation of local erasure encoding/decoding could achieve more than 1GB/s
on one CPU core. Hence we expect that software-level implementation may not incur prohibitive
CPU usage overhead.
For the reference of the readers, this sub-section describes its basic design concept. Given an

(l,l) erasure code (e.g., RS code), where each codeword protectsluser data symbols withl
redundant symbols. Theilesystem applies the (l,l) erasure code to protect each group ofl
consecutive user data sectors at the cost oflredundant sectors, where all thel lsectors

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Sotware-Defined Data Center Hard Disk Drives 1:5

in each coding group reside in the same HDD. Upon a sector read failure during normal HDD
operation, theilesystemirst tries to recover the failed sector through erasure code decoding, and
only if the erasure code decoding fails, HDD switches to the retry mode to recover the failed sector.
Letpdenote the sector read failure rate, we can express the erasure code decoding failure rate as

Pl,l,p
m n

m 1

l l

i
p 1 p n m . (1)

A soft sector read failure occurs when an HDD fails to decode one sector during its normal
operation. Such a failure will trigger the HDD switches from the normal operation mode into a
retry mode to repeatedly read the failed sector by adjusting some conigurations and parameters
such as read head position. In today’s commercial HDDs, read retry rate is relatively low (e.g.,106

and below). The probability that one sector cannot be correctly read even after the long-latency
HDD read retry is called hard sector failure rate, which must be extremely low (e.g.,1014and
below). Assume we can noticeably reduce the bit cost of HDDs with the soft sector read failure rate
p>>106and hard sector read failure ratep >>1012. Since each HDD read retry involves few
(and even many) additional disk rotations, it causes a very long read latency overhead (e.g., tens or
hundreds of ms). In comparison, local erasure code decoding has a much less latency overhead,
especially in the case of sequential read requests. The use of (l,l) erasure code can reduce the
HDD read retry rate fromptoPl,l,p, wherePl,l,p can be orders of magnitude lower
thanp. Meanwhile, the hard sector failure rate reduces fromptoPl,l,p . However, local
erasure coding on its own sufers from two problems: (1) In case of sector read failures during
small read, it has to read a large number of extra sectors from HDDs for erasure code decoding.
(2) In case of a small update, it has to carry out read-modify-&-encoding-write operations. Both
scenarios could seriously degrade HDD random IOPS and read tail latency as aggressively relaxing
the reliability specs.

2.4 Mixed Data Storage on HDDs

To minimize the storage system TCO (total cost of ownership), one should fully utilize not only
the per-HDD capacity but also the per-HDD random IOPS. Hence, it is desirable to mix data with
complementary requirements on capacity and random IOPS in each HDD. It is not unusual that
immutable datadominate the capacity of HDD-based storage systems in data centers. Dependent
upon their read access characteristics, immutable data can be categorized as: (1) Immutable data
which are accessed mostly by sequential read (e.g., image and video): They are the most capacity-
demanding but least IOPS-demanding. As pointed out in [8], the exploding volume of video data is
the major driver for HDD capacity in data centers. (2) Immutable data which are accessed mostly
(or at least noticeably) by random read (e.g., 32kB or 64kB data blocks in BigTable and HBase): They
are modestly capacity-demanding and very IOPS-demanding. They become increasingly pervasive
as big data analytics are being widely deployed in data centers. Besides immutable data, HDDs store
a large variety of mutable data, which typically occupy much less storage capacity than mutable
data. Some mutable data could be very IOPS-demanding.
By mixing data with complementary requirements on capacity and random IOPS, we improve the

utilization of both per-HDD capacity and per-HDD random IOPS. Nevertheless, because diferent
data may favor diferent raw HDD reliability vs. cost trade-ofs, it can be diicult to practically
realize system-assisted HDD bit cost reduction. For example, due to the latency overhead induced
by handling sector read failures (especially for small read), data with higher random IOPS demands
cannot tolerate HDDs with high sector read failure rates, while data with lower random IOPS
demands may much more easily tolerate such HDDs. Unfortunately, existing solutions (e.g., the

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang

local erasure coding design technique as discussed above) only gear to a single reliability vs. bit
cost trade-ofpoint and hence may not work well for a mixture of diverse data in the same HDD.

3 PROPOSED DESIGN SOLUTION

To embrace the mixture of diferent types of data in each HDD, this section presents a design strategy
to implement system-assisted HDD bit cost reduction in a data-adaptive manner. To improve its
practical feasibility and adaptability, this design strategy is developed with the following objectives:

Minimal and isolated changes in the software stack: It should constrain all the changes inside
ailesystem (e.g., ext4 and XFS) and leaves all the other components across the OS and I/O
hierarchy software stack completely intact.
Minimal and isolated changes inside HDDs: HDDs should maintain their current homoge-
neous design practice, i.e., all the sectors inside one HDD have the same capacity (e.g., 4kB)
and are protected by the same ECC with the same amount of coding redundancy, and the
zone/track/sector structure across the entire disk is designed solely for maximizing areal
storage density. We should not demand any changes to all the major components inside
HDDs, includingirmware, servo, media, and head, and read channel. As discussed later, we
only require minor changes to the ECC module inside HDDs.
No changes in the I/O protocol: It should not demand any changes to the existing I/O protocol
(e.g., SATA and SAS). In particular, it should not demand any new I/O commands.

Table 1. Mathematical Symbols and Their Definitions.

Symbol Deinition (unit)
P Erasure code decoding failure rate.
p Sector read failure rate.
l No. of consecutive user data sectors in one local erasure coding group.
l No. of consecutive redundant sectors in one local erasure coding group.
n Zero-forcing number (Bytes).
d No. of primary sectors in one zero-forcing group.
f1 The percentage of 1’s within the end length-nsegment on the HDD.

C :C :C The capacity ratio of all the type-A/B immutableiles and mutableiles.
T The latency of serving one request (ms).
fT The probability mass function (PMF) ofT.
l The read request queue depth.
q No. of sectors within each read request.
τ y The average latency to recover one sector during the mechanical read-retry mode.
τ The latency for HDD to read one sector during its normal mode.
τ the average latency to readjust the read head location.

3.1 Basic Design Concept

In current practice, all the 4kB sectors are protected by the sameixed amount of ECC redundancy
inside HDDs. When reading one sector, HDD controller tries to utilize the internal ECC redundancy
to reconstruct the entire 4kB user data. In order to facilitate the presentation, Table.1summarizes
the important symbols and deinitions being used in this paper. The proposed design solution is
based upon the following observation: Assume HDDs internally use an (n,m) ECC code to protect

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Sotware-Defined Data Center Hard Disk Drives 1:7

each sector, wherenandmdenote the amount of user data (e.g., 4kB) and coding redundancy (e.g.,
400B) per sector. If a certain segment within one sector is forced to be all-zeros, Letn(n <n)
denote the length of the all-zero segment, which is referred to asper-sector zero forcing number.As
a result, when reading the sector, HDD controller only needs to reconstruct the remainingn n
amount of true user data (i.e., 4kB-512B=3.5kB) using the internal ECC redundancy, instead of
size-ndata in the whole sector. With the less amount of user data to be reconstructed, the same
amount of ECC redundancy can achieve stronger error correction strength. Therefore the ECC
decoder can leverage this property to reduce the decoding failure probability by forcing zeros on
certain locations during ECC decoding. The per-sector zero-forcing numberncan be used to
conigure the trade-ofbetween bit cost and sector failure rate: Asnincreases, the per-sector user
data storage capacity (i.e.,n n) degrades, while the ECC decoding failure rate reduces and hence
storage reliability improves. It is possible that the zero-forcing space could be used for storing
additional ECC redundancy inside HDDs, which it could achieve even stronger error correction
strength hence further reduce sector failure rate. However, this demands the ECC engine inside
HDDs must be able to support multiple code rates, which could noticeably increase the silicon
implementation cost and power consumption. Hence we choose the simple zero-forcing strategy in
this work.
For the purpose of demonstration, we constructed a rate-0.9 low-density parity-check (LDPC)

code [39]. Code rate is deined as the ratio between the user data length and the codeword length. For
further details about LDPC coding and basic ECC operations, interested readers are referred to [22].
We also note that the proposed per-sector zero forcing is applicable to any linear block codes such
as Red-Solomon code, BCH code, and LDPC code. This work chooses LDPC code simply because
modern HDDs almost pervasively use LDPC codes as ECC. We carried out decoding simulations
under diferent values ofn, including 0, 256B, 512B, and 1kB. Fig.1shows the simulated raw bit
error rate (BER) vs. LDPC code decoding failure rate, assuming that the bit noise follows a white
Gaussian distribution, to obtain each data point, we ran the LDPC decoding until at least 20 sector
decoding failures have occurred. The results clearly show the impact of the zero-forcing number
non the decoding failure rate. As the same ECC redundancy could be used to protect4kB n
user data instead of4kBin one codeword, the decoding failure rate is reduced by several orders of
magnitude.
We further studied the beneit of the zero-forcing approach compared to decreasing the codeword
length in the local erasure coding. Let us consider the zero-forcing case withn=512B,p 103,
and the local erasure coding case withl 7,l 1. According to Eq.1, the local erasure decoding
failure rate is2.2 105, however if zero-forcing is used, based on the LDPC simulation result in
Fig.1, the soft sector read failure rate is far below1 108. As one alternative to the proposed
zero-forcing strategy, we may use the all-zero segment in user data portion to store additional
ECC coding redundancy, which can achieve even higher error correction strength. However, this
approach demands that the ECC engine inside HDDs must be able to support multiple code rates,
which could noticeably increase the silicon implementation cost.
The above observation suggests that we can dynamically conigure the per-sector bit cost vs. raw

HDD reliability trade-ofby adjusting the zero-forcing numbernwithin each sector. Meanwhile,
to maintain the same HDD data storage integrity (e.g., sector loss probability below1012), we
may further apply local erasure coding on top of per-sector zero forcing, as illustrated in Fig.2.
Recall thatlandldenote the number of user data and redundant sectors within one local erasure
coding group. By adjusting the set of design parameters (n,l,l), we could achieve diferent
forms of system-assisted HDD bit cost reduction on the same HDD, geared to data with diferent
demands on storage capacity and random IOPS.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang

Fig. 1. Simulated BER vs. decoding failure rate under four diferent values ofn, where the sector sizenis
4kB

.

. . . 0'sUser data 0'sRedundancy 0'sRedundancy. . .

One (ln, lm) local erasure coding group

ln4kB sectors (user data) lm4kB sectors (redundancy)

0'sUser data

nz

Fig. 2. Illustration of combining zero forcing and local erasure coding, where diferent sets of parameters
(n,l,l) achieve diferent forms of system-assisted HDD bit cost reduction.

One may argue that HDD manufacturers could implement heterogeneous HDDs where diferent
regions on the same disk exhibit diferent bit cost vs. raw reliability trade-ofs. Although it is
theoretically possible, its practical feasibility is very questionable since it demands signiicant
changes on major components inside HDDs (e.g.,irmware, media, and servo). Therefore, this work
assumes that HDD manufacturing cost would be noticeably reduced by allowing all the sectors
are subject to the same soft sector read failure rate ofp>>106and hard sector read failure rate

p >>1012. Given per-sector zero-forcing numbern, letpz andpz denote the corresponding

soft and hard sector read failure rates. Clearly, we havep0 p>>106andp0 p >>1012.
Given the local erasure coding parameters (l,l) and using Eq. (1) in Section2.3, we can calculate

the HDD read retry rate asPl,l,pz , which is the probability that the local erasure code fails to
recover soft sector read failures. Similarly, we can calculate the eventual sector data loss probability

asPl,l,pz , which is the probability that the local erasure code fails to recover hard sector

read failures. In order to ensure the overall storage integrity, we should havePl,l,pz <1012.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Sotware-Defined Data Center Hard Disk Drives 1:9

In this work we assume the sector error rate follows an independent binomial distribution. We
noticed prior work [5,31] has well studied the latent sector errors in HDDs, and tried toit the latent
sector error patterns into certain well-known statistical distributions (e.g., Geometric, Weibull,
Rayleigh, Pareto, and Lognormal). In sharp contrast, this work proposes to largely relax HDD sector
read failure rate by aggressively pushing the areal storage density. As a result, the HDD sector
failures are mostly caused by degraded raw BER inside HDD, other than latent sector failures. Due
to the randomness of raw BER inside HDD, we expect that there will be less spatial correlation
among sector failures. Therefore, for our envisioned future HDDs with signiicantly relaxed raw
BER, random and independent sector errors will be largely dominant over latent sector errors.
The design parameters (n,l,l) directly determine the bit cost vs. IOPS trade-of: As we

increase the per-sector zero-forcing numbernand reduce the codeword lengthl, we could reduce
the occurrence of HDD read retry and reduce the latency incurred by local erasure coding, which
contributes to reducing the impact on random IOPS. Nevertheless, largernand smallerlcome
with more redundancy, leading to higher efective bit cost. Moreover, since local erasure coding
must carry out read-modify-write operations to handle data write, its impact on write requests
tend to be much more signiicant than read requests. In spite of its simple design concept, the
practical implementation of this design strategy is not trivial. Throughout the remainder of this
section, we present design solutions to address the following two major issues: (1) coniguration of
design parameters (n,l,l) on the entire HDD, and (2) modiication of theilesystem and HDD
to support per-sector zero forcing.

4kB sector

zeros

Long-length local erasure coding

Short-length local erasure coding Short-length local erasure coding

One HDD

Ty
pe
-
A

I
m
m
ut
ab
le

Fi
le
s

Ty
pe
-
B

I
m
m
ut
ab
le

Fi
le
s

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.

Mu
ta
bl
e
Fi
le
s

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.
.
 .

.

.

Ef
fe
ct
i
ve

bi
t
co
st

Low

High

Ra
nd
o
m
I
O
P
S

Fig. 3. Illustration of the proposed strategy to simplify the configuration of design parameters (n,l,l)
for all the data on HDDs.

3.2 Configuration of Design Parameters

Following the discussions above in Section2.4, we propose to put all theiles on each HDD into three
diferent categories, where eachile category associates with oneixed set of design parameters
(n,l,l). Theiles could be classiied either statically or dynamically, e.g., dividing the whole
HDD into static partitions for diferent categories. We could also classify theiles dynamically
and use little metadata (e.g., a 2-bitlag inside an inode) to indicate their categories wheniles are

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang

created. As illustrated in Fig.3, the three diferent categories ofiles and the coniguration of their
corresponding design parameters are described as follows:

Type-A immutableiles: They contain only immutable data which are accessed mostly by
sequential read (e.g., image and video). Suchiles tend to dominate the storage capacity usage
and have minimal demands on random IOPS. Therefore, aiming to minimize the efective bit
cost, we simply disable the use of per-sector zero forcing (i.e.,n 0) in order to fully utilize
the 4kB storage capacity in each sector. Hence, we fully rely on the local erasure coding
to compensate for the raw HDD storage reliability. We construct an (l,l) local erasure
code with a suiciently large value ofl(e.g., larger than 1000) so that it could restore the
per-HDD storage integrity (e.g., data loss probability is below1012) with suiciently small
coding redundancyl l(e.g., 3% and below).
Type-B immutableiles: They contain only immutable data which are accessed mostly (or
at least noticeably) by random read (e.g., 32kB or 64kB per read). Theseiles tend to occupy a
noticeable amount of storage capacity and meanwhile have high demands on random IOPS.
To strike a balance between bit cost and random IOPS, we combine per-sector zero forcing
and local erasure coding. Since the local erasure code decoding overhead depends on the
codeword length, we should use a modest codeword length. We propose to setl(much) less
than the number of sectors per track in HDDs, hence local erasure code decoding only incurs
at most one additional disk rotation. In today’s HDDs, the number of sectors per track is
200 300 on average. Accordingly, we set the value of zero-forcing numbernto achieve a

suiciently low soft sector read failure ratepz (e.g., below104), and construct an (l,l)

local erasure code to ensure the HDD retry ratePl,l,pz <106and hard sector failure

ratePl,l,pz <1012.
Mutableiles: To simplify the practical implementation, we treat all the otheriles as mutable
iles with the highest demands on random IOPS. We do not use local erasure coding for
thoseiles, and only rely on per-sector zero forcing to restore their storage reliability, i.e., the

zero-forcing numbernshould be large enough to ensurepz <106andpz <1012.
Logically, we could consider theseiles are being stored on a relatively high-cost HDD with
suiciently high per-sector storage reliability. Apparently, this approach is an over-kill for
some (or even majority)iles in this category. Fortunately, due to their relatively small storage
footprint compared with immutableiles, it is justiiable to trade insigniicant storage capacity
waste for the implementation simplicity.

3.3 Realization of Per-sector Zero Forcing

This sub-section presents techniques to address two main issues of practical implementing per-
sector zero forcing: (1) how to embrace the mismatch between the OS page size (e.g., 4kB) and
HDD per-sector true user data storage capacity (i.e., 3.5kB); and (2) how to detect and leverage the
per-sector zero forcing inside HDDs.

3.3.1 Modification of a Filesystem.As stated above, we aim to constrain all the changes to a
ilesystem and keep the other components in the software stack intact. To simplify the implemen-
tation, we propose to modify the space allocation of ailesystem as follows: Deined z

z
,

wherenis the HDD sector size (e.g., 4kB) andnis the per-sector zero-forcing number (e.g., 256B
or 512B). For each type-B immutableile or mutableile, ailesystem allocates space in the unit of
d 1consecutive sectors, and usesd 1sectors to store the content ofdpages1. As illustrated in

1For the sake of simplicity, we assume the HDD sector size is the same as the OS memory page size (i.e., both are 4kB) in

this paper.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Sotware-Defined Data Center Hard Disk Drives 1:11

Fig.4, for one group ofdpages, letp,r denote the content of one OS page being written to the
HDD, where the size ofpandrisn nandn, respectively. Among thed 1sectors, each one
of theirstdsectors storesp,0and is called aprimarysector, where0denotes a size-nall-zero
vector, and the last sector storesr1,r2, ,r,0and is called acomplementarysector. Upon a read
request, the corresponding complementary sector is always fetched from the HDD together with
the primary sector(s). Since each group ofd 1sectors tend to consecutively reside on the same
track and the value ofdis very small (e.g., 7 or 15), fetching the additional complementary sector
does not incur noticeable HDD read latency overhead. Once both primary and complementary
sectors have been fetched, ailesystem needs to perform a memory copy operation (i.e., copy the
size-ncontentr1from the complementary sector to a primary sector) to construct one entire size-n
OS memory page.

. . .

One page (e.g., 4kB)

d primary sectors
Complementary

sector

0'sp1

nz

0'spd 0'sr1 rd. . .

nz

pi ri

Fig. 4. Proposed the filesystem data placement using primary-complementary sector arrangement.

In the case of reading data from type-B immutableiles, after a complementary sector has been
loaded into one memory page and its content has been used for constructing other memory pages,
ailesystem can simply discard this page. Nevertheless, in the case of accessing mutableiles, since
the data could be modiied and written back to the HDD later on, ailesystem should leave the
complementary sector page in OS page cache. To serve a write request, ailesystem must modify
and write both the primary sector and the corresponding complementary sector. This, however,
could be subject to a reliability risk for update-in-placeilesystems (e.g., ext4) without using full
data journaling. In particular, if an HDD write failure occurs on a complementary sector (e.g. due
to sudden power loss), we will lose ther’s for all the associateddprimary sectors. As a result, an
HDD write failure when updating one page on the HDD may cause the loss of all the otherd 1
pages within the same group.
We propose a simple replica-based method to address this issue. Since a write failure only corrupts

the content of one sector on the HDD, we propose to keep two copies of the complementary sector
for each group. In particular, the HDD usesd 2sectors to store the content ofdpages, where
the other two sectors are complementary sectors storing the same content ofr1,r2, ,r,0.
Ailesystem always updates the content of the two complementary sectors altogether with the
primary sector(s). Upon an HDD write failure on one complementary sector, we can always use
the other one to ensure the storage consistency. To handle the scenarios that the HDD fails to
record multiple consecutive sectors (i.e., an HDD corrupts multiple consecutive sectors), we could
put the two copies of the complementary sectors at the two ends of the sector groups. If the burst
write failure is so severe that it corrupts all the sectors in one sector group, all the content in the
group will be lost, no matter whether we use zero-forcing or not. For example, suppose ailesystem
updates the content of one primary sectorRand its associated complementary sectorsC1andC2:

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang

(1) If a write failure occurs on theirst complementary sectorC1, the content ofC2remains intact
and ensures the consistency of the otherd 1primary sectors, and only the page being written
to the HDD is lost. (2) If a write failure occurs on the second complementary sectorC2, we can
subsequently replicate the content ofC1toC2, and the data is stored in all thedprimary sectors
remain valid. (3) In case power fails during a write toC2, after the system restarts from a crash, the
contents of two complementary sectorsC1andC2should always be re-synced before issuing any
writes. IfC1andC2have diferent content which is caused by a write failure, it will corrupt the
sector ECC and hence makes the sector (C1orC2) unrecoverable, HDDs can always identify which
sector is corrupted. During a re-sync process we copy the correct sector content to the corrupted
sector.
In terms of atomicity, after further consulting with our industry liaison at one major HDD
manufacturer [3], we realized that, to guarantee per-sector write atomicity in the case of sudden
power failure, HDDs rely on residual energy being stored on internal capacitors toinish the write.
Moreover, latest HDDs (including shingled drives) use a small amount of embeddedlash memory
(and new non-volatile memory such as STT-RAM in the future) to further enhance the write
durability. For HDDs that have embedded non-volatile memory, our proposed design strategy will
not degrade the write atomicity. However, if HDDs do not have embedded non-volatile memory,
then we have to rely on intra-HDD capacitors to ensure the write atomicity.

3.3.2 Calculation of System-level Redundancy.Before presenting a solution to address the issue
of how to detect and leverage the per-sector zero forcing inside HDDs, we discuss the calculation
of the overall system-level redundancy on the entire HDD, assuming the use of the above presented
strategy for realizing per-sector zero forcing. LetC :C :C represent the ratio among the

user data capacity of all the type-A/B immutableiles and mutableiles. Letn andn denote
the per-sector zero-forcing number for type-B immutableiles and mutableiles. Recallndenote

the HDD sector size (e.g., 4kB), and deined
B
z
B
z

andd
M
z
M
z

. Let (l ,l) and

(l ,l) denote the local erasure coding parameters for type-A and type-B immutableiles. We
can calculate the overall system-level redundancy as

C
l

l
C

1

d

l

l
C

2

d
. (2)

Section4.1will present redundancy analysis results under a variety of conditions, which shows
that the proposed design framework tends to incur insigniicant extra system-level redundancy.

3.4 Intra-HDD Support of Per-sector Zero Forcing

The proposed design strategy demands that HDDs can leverage per-sector zero forcing to reduce
the intra-HDD ECC decoding failure probability. Aiming to minimize the changes inside HDDs and
keep existing I/O protocol intact, this sub-section presents a design solution to enable intra-HDD
support of per-sector zero forcing by only modestly changing intra-HDD ECC coding module. It
does not require any extra metadata to record whether zero forcing occurs within one sector. The
key idea is illustrated in Fig.5and described as follows:
Given one sector being written to the HDD, letddenote the length of the all-zero segment at

the end of the sector, whered 0,n ,n . Before the ECC module inside HDDs encodes the
data, it applies arandomizationprocess to randomize the data except the length-dall-zero segment.
Data randomization can be done by simply XORing the data with a pre-generated random pattern.
Before the ECC module decodes a sector, the ECC moduleirst gathers the percentage of 1’s within

the length-n segment at the end of the sector and its proceeding length-(n n segment,

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Sotware-Defined Data Center Hard Disk Drives 1:13

All-zero segment
detection

Adaptive data
randomization

ECC encoding

Read channel
signal processing

Zero statistics
collection

Adaptive data
zero forcing

ECC decoding

Storage media
User data
(from host)

User data
(to host)

Intra-HDD
ECC module

Adaptive data
de-randomization

Fig. 5. Modification of the intra-HDD ECC module to support the realization of per-sector zero forcing, where
the shaded blocks represent new functions being added into the ECC module.

denoted asf1 andf1 , respectively. Since the output of the HDD read channel (i.e., the signal
equalization and trellis signal detection [19]) has reasonably low bit error rate (e.g.,3 102and

below), the ECC module could use the statistics informationf1 andf1 to guess the type of this
sector:

f1 0.5, the ECC module predicts that this sector is a normal sector (i.e., the sector belongs
to a type-A immutableile) and hence carries out ECC decoding without any zero forcing;

f1 <<0.5andf1 0.5, the ECC module predicts that this sector has a zero-forcing

number ofn (i.e., the sector belongs to a type-B immutableile). Accordingly, it zero-forces

the length-n segment at the end of the sector during ECC decoding;

Iff1 <<0.5andf1 <<0.5, the ECC module predicts this sector has a zero-forcing

number ofn (i.e., the sector belongs to a mutableile). Accordingly, it zero-forces the

length-n segment at the end of the sector during ECC decoding.

Because of the use of randomization in the ECC encoding process, the prediction should have very
low mis-prediction probability. For example, let us assume the output of the HDD read channel has
a bit error rate of3 102,which follows an independent binomial distribution. Given a type-B

immutableile sector with a zero-forcing number of 256B, the probability thatf1 0.1is as low
as1.3 1047. If extra guarantee is required against mis-prediction, in case of the ECC decoding
failure, the ECC module could try the other two possible scenarios (e.g., if the ECC decoder predicts
a sector belongs to a type-B immutableile but the decoding fails, it could repeat the decoding by
assuming the sector belongs to a type-A immutableile or a mutableile).

4 EVALUATION RESULTS

We carried out a variety of experiments and analysis in order to evaluate the efectiveness of the
proposed design framework and involved trade-ofs. In our study, we assume one could noticeably
reduce the HDD manufacturing cost by relaxing raw soft sector failure rates to1 103 1 102,
which represents at least 3 4 orders of magnitude degradation compared with current practice.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Sotware-Defined Data Center Hard Disk Drives 1:15

overhead. Fig.6shows the calculated system-level redundancy overhead under diferent raw HDD
soft sector failure rates (i.e.,1 103to1 102) with diferent parameter conigurations.
First, to evaluate the impact of data volume ratioC :C :C on the overall redundancy
overhead, we considered three diferentC :C :C ratios:90% : 8% : 2%,70% : 24% : 6%and
50% : 40% : 10%. The percentage of type-A immutableilesC varies from90%to50%, and we keep
the ratioC :C always equals to 4:1. The results show that the overall redundancy overhead is
heavily afected by the data volume ratioC :C :C . As shown in Fig.6, the overall system-level
redundancy overhead could drop by about 4% (e.g., from 7% to 3%) once the percentage of type-A
immutableiles increases from 50% to 90%. This can be easily justiied since type-A immutable
iles only use local erasure coding (i.e.,n 0) with very large codeword length (hence very low
coding redundancy). In comparison, type-B immutableiles and mutableiles demand (much) higher
redundancy overhead because of the use of per-sector zero forcing (and short-length local erasure
coding). Nevertheless, the overall system-level redundancy overhead appears to be reasonably low,
e.g., even when the raw HDD soft sector failure rate is as high as1 102, the overall redundancy
overhead is still (much) less than 9%.
We further investigated the efects of local erasure coding parameters. For type-A immutable
iles, which are accessed mostly by sequential read, they can readily accommodate local erasure
codes with large codeword length. In this study, we considered two diferent codeword length (i.e.,

l l), i.e., 255 and 1023. With the codeword length of 1023, one coding group contains about
4MB, while each access to images/videos tends to be at least a few MBs. For type-B immutableiles,
their random read access nature demands the use of short-length local erasure codes. As discussed
above, we set the codeword length less than the number of sectors per track. Hence, we considered

two diferent codeword length (i.e.,l l) for type-B immutableiles: 63 and 127. The four

sub-igures in Fig.6correspond to the four combinations of diferentl l andl l . The

results suggest that the codeword length for type-A immutableiles (i.e.,l l) has a more
signiicant impact on the overall redundancy. This can be explained as follows: Dependence of
coding redundancy on codeword length is highly related to the raw error rate: The higher the
raw error rate it, the stronger the coding redundancy depends on the codeword length. Compared
with type-B immutableiles, type-A immutableiles does not use per-sector zero forcing hence are
subject to higher raw HDD soft sector failure rates. As a result, the overall coding redundancy is
more noticeably afected by the codeword length for type-A immutableiles.

Fig. 7. HDD random read IOPS degradation when issuing small random reads to type-B immutable files.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Sotware-Defined Data Center Hard Disk Drives 1:17

Table 2. Parameters of RS-based local erasure codes under diferent codeword length and sector failure rates.

p
l l 255 l l 1023 l l 255

l l l l l l
5 103 9 246 19 1004 1 254
8 103 12 243 25 998 2 253
1 102 13 242 28 995 2 253

reduce the system speed performance degradation compared with the case of using local erasure
coding only. The proposed design solution can keep the HBase performance degradation well below
5%.
To measure the speed performance impact on the applications with mutableiles, we carried
out experiments using the following applications from the benchmark suite HiBench 3.0 [2]: (1)
Machine learning benchmarks Bayesian Classiication (bayes) and K-means clustering (kmeans);
(2) Job based micro benchmark WordCount (wordcount), which counts input text data generated
by RandomTextWriter; (3) SQL benchmark hivebench that performs scan, join and aggregate
operations, based upon the workload characteristics presented in [28]; (4) Web search benchmarks
PageRank (pagerank) and Nutchindexing (nutch). As described above, we set the per-sector zero-
forcing number as 512B for mutableiles. Hence, each group of 7 primary sectors shares two
complementary sectors. Fig.9shows the measured throughput degradation normalized against
baseline without using per-sector zero forcing. The results show that the speed performance
degradation is very insigniicant with the average throughput degradation less than 1%.

Fig. 9. Measured throughput degradation of HiBench benchmarks, where the files are treated as mutable
files and protected by using per-sector zero forcing only.

4.3 Tail Latency Estimation

Besides the average throughput, read tail latency is also an important performance metric for data
centers. In this work, we derived mathematical formulations to estimate the read tail latency in case
of random small read requests with diferent queue depth. LetTdenote the latency of serving one
request, andfTdenote its probability mass function (PMF), based upon which we could derive
tail latency. Letpdenote the soft sector failure probability. Letldenote the read request queue
depth, andqdenote the number of sectors within each read request. Letτ ydenote the average

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Software-Defined Data Center Hard Disk Drives 1:19

more likely occurs between type-B immutable files and mutable files. If a type-B immutable file is
mis-categorized as a mutable file, it will induce more redundancy and hence degrade the effective
storage capacity. Meanwhile, the speed performance will improve since mutable files do not use
local erasure coding.
On the other hand, if a mutable file is mis-categorized as a type-B immutable file, non-trivial

storage reliability issue will arise. As discussed above, each group of primary sectors in type-B
immutable files only associate with one complementary sector. If the file contains mutable data, an
in-place data update operation will introduce the risk of data loss in case of the complementary
sector write failure. Prior work [14, 18, 24] studied how to classify file types based on file properties
and mathematical classification models, although they aimed at solving different problems. The
cost of mis-prediction must be paid either by additional hardware resources (i.e. storage space)
and/or performance degradation. In this work, to mitigate the issue of file misclassification, we can
use the simple concept of undo logging: If a file categorized as type-B immutable is being updated,
we first copy the previous version of the sector(s) being updated and associated complementary
sector to a dedicated undo log, and then perform the in-place update. One may argue that the
best solution is to rewrite the entire file according to the correct classification. This nevertheless
can only occur in the background, especially for large files, since the entire file rewrite may take a
relatively long time. The proposed use of undo-log can actually complement with the entire file
rewrite, i.e., we can first use undo-log to absorb update in the foreground, and then rewrite the
entire file according to the correct classification in the background. Fig. 11 shows the measured
IOPS degradation caused by the use of undo logging, where each write request may contain 1, 8,
16, or 32 sectors. The results show that the IOPS degradation remains around 30% and is weakly
dependent on the write size. This is because the latency of additional head seeks in undo logging
tends to dominate the overall latency overhead.

Fig. 11. Measured random data update IOPS degradation due to the use of undo logging in the case of
mis-categorizing mutable files as type-B immutable file.

In addition to the raw HDD IOPS, we also investigated the impact on system-level speed perfor-
mance of such file mis-categorization. In this study, we assume all the files being created by HiBench
benchmarks are categorized as type-B immutable files. Whenever data updates occur, a filesystem
invokes undo logging to ensure the data storage integrity. Fig. 12 shows the normalized throughput
degradation for six different workloads within HiBench benchmark suite. The results show that
the degradation is no more than 17%. Compared with the results shown in Fig. 9, mis-categorizing
mutable files as type-B immutable files tends to worsen the system-level throughput degradation
from about 1% up to 17%.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Yin Li, Xubin Chen, Ning Zheng, Jingpeng Hao, and Tong Zhang

Fig. 12. Measured throughput degradation of HiBench benchmarks, where mutable files are mis-categorized
as type-B immutable files.

5 RELATEDWORK
This work is directly motivated by the collection views on data center HDDs presented in [8],
and is based upon the concept of local erasure coding presented in [20]. As shown in this paper,
local erasure coding on its own is only suitable for files dominated by sequential data access,
hence cannot accommodate the mixed data types per HDD in data centers. The rationale of
applying system-level redundancy to tolerate HDD operational failures is certainly not new, and
extensive prior work has led to the wide real-life adoption of RAID [7, 9, 27] and distributed
erasure coding [12, 15, 16, 30]. Both RAID and distributed erasure coding aim to accommodate
catastrophic HDD failures at relatively very high redundancy (e.g., 20% to 50%). This work focuses
on accommodating unconventionally high per-HDD sector read failures, which is essentially
complementary to RAID and distributed erasure coding.

This work constrains all the software-level modification in filesystems. Prior work also studied
how to enhance filesystems to better handle various HDD reliability issues. Prabhakaran et al. [29]
presented an Internal RObustNess (IRON) filesystem design framework that includes a variety of
HDD failure detection and recovery techniques. In particular, its transaction checksum technique
inspired the implementation of journal checksum in the widely deployed ext4 filesystem.

Prior work developed schemes tomakeHDDsmore reliable through cross-sector error coding [23]
and the use of drive motor to handle power failures [13]. Prior work also developed different
methods to improve the reliability of solid-state drives (SSDs) by changing ECC engine inside the
controllers, e.g., [35] proposed error-prediction low-density parity-check (EP-LDPC) and error-
recovery schemes to design highly reliable SSDs, and [6] studied how to use the rate-adaptive
LDPC codes to maximize the capacity of SSDs.

6 CONCLUSIONS
This paper presents a simple yet effective design framework to realize data-adaptive system-assisted
HDD bit cost reduction. It enables the use of low-cost, low-reliability HDDs to host a variety of
data with distinctively different demands on random IOPS and storage capacity. The key is to
adaptively combine per-sector zero forcing and local erasure coding based upon different data
characteristics. We have developed techniques to implement this design framework, in particular
the practical implementation of per-sector zero forcing. This developed design framework only
requires modest changes of a filesystem and a minor change of the intra-HDD ECC module, while

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

An Exploratory Study on Software-Defined Data Center Hard Disk Drives 1:21

keeping everything else across the entire software/hardware stacks untouched. We carried out
analysis and experiments to evaluate its effectiveness when assuming per-HDD reliability is relaxed
by 3 4 orders of magnitude. Our analysis show that this design framework induces (much) less
than 9% of system-level redundancy overhead. We integrated the design techniques into ext4 to
study its impact on various speed performance metrics, including HDD random IOPS, application
throughput, and read tail latency. Using HBase and HiBench suite as test vehicles, we show that
the proposed design solutions induce very small (e.g., even below 1%) of throughput degradation.
We have further shown that the impact on the HDD random IOPS and tail latency are also small
(i.e., less than 10%).

7 ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation (NSF) under grant CNS-1814890.

REFERENCES
[1] [n. d.]. HBase. https://hbase.apache.org/.
[2] [n. d.]. HiBench 3.0. https://github.com/intel-hadoop/Hi Bench/releases.
[3] [n. d.]. Private communication with engineers of a major HDD manufacturer.
[4] [n. d.]. YCSB. https://github.com/brianfrankcooper/YCSB.
[5] Lakshmi N Bairavasundaram, Garth R Goodson, Shankar Pasupathy, and Jiri Schindler. 2007. An analysis of latent

sector errors in disk drives. In ACM SIGMETRICS Performance Evaluation Review, Vol. 35. ACM, 289–300.
[6] Stephen Bates. 2013. Using rate-adaptive LDPC codes to maximize the capacity of SSDs. In Proc. Flash Memory Summit.

1–12.
[7] M. Blaum, J. Brady, J. Bruck, and J. Menon. 1995. EVENODD: an efficient scheme for tolerating double disk failures in

RAID architectures. IEEE Trans. Comput. 44, 2 (Feb 1995), 192–202.
[8] E. Brewer, L. Ying, L. Greenfield, Robert Cypher, and T. T’so. 2016. Disks for Data Centers. Technical Report. Google.
[9] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson. 1994. RAID: High-performance, Reliable Secondary Storage.

Comput. Surveys 26, 2 (June 1994), 145–185.
[10] Carlo Curino, Evan PC Jones, Samuel Madden, and Hari Balakrishnan. 2011. Workload-aware database monitoring

and consolidation. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. ACM,
313–324.

[11] E. Daniel, C. Mee, and M. Clark. 1999. Magnetic recording: the first 100 years. John Wiley & Sons.
[12] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran. 2010. Network coding for distributed storage

systems. IEEE Transactions on Information Theory 56, 9 (2010), 4539–4551.
[13] Timothy A Ferris and Robert P Ryan. 2015. Disk drive charging capacitor using motor supply voltage during power

failure. (July 28 2015). US Patent 9,093,105.
[14] Gregory R Ganger, John D Strunk, and Andrew J Klosterman. 2003. Self-* storage: Brick-based storage with automated

administration. Technical Report. CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE.
[15] K. Greenan, X. Li, and J. Wylie. 2010. Flat XOR-based erasure codes in storage systems: Constructions, efficient

recovery, and tradeoffs. In IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). 1–14.
[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin. 2012. Erasure coding in windows

azure storage. In Proc. of USENIX Annual Technical Conference (ATC). 15–26.
[17] A. R. Krishnan, R. Radhakrishnan, B. Vasic, A. Kavcic, W. Ryan, and F. Erden. 2009. 2-D Magnetic Recording: Read

Channel Modeling and Detection. IEEE Transactions on Magnetics 45, 10 (Oct 2009), 3830–3836.
[18] TomM Kroeger and Darrell DE Long. 1999. The case for efficient file access pattern modeling. In Hot Topics in Operating

Systems, 1999. Proceedings of the Seventh Workshop on. IEEE, 14–19.
[19] E. Kurtas and B. Vasic. 2005. Coding and signal processing for magnetic recording systems. CRC Press.
[20] Y. Li, H. Wang, X. Zhang, N. Zheng, S. Dahandeh, and T. Zhang. 2017. Facilitating Magnetic Recording Technology

Scaling for Data Center Hard Disk Drives through Filesystem-Level Transparent Local Erasure Coding. In USENIX
Conference on File and Storage Technologies (FAST). 135–148.

[21] F. Lim, B. Wilson, and R. Wood. 2010. Analysis of shingle-write readback using magnetic-force microscopy. IEEE
Transactions on Magnetics 46, 6 (Jun. 2010), 1548–1551.

[22] S. Lin and D. J. Costello. 2004. Error Control Coding: Fundamentals and Applications (2nd Ed.). Prentice Hall.
[23] Jaishankar Moothedath Menon and Krishnakumar Surugucchi. 2014. Method to protect data on a disk drive from

uncorrectable media errors. (Feb. 4 2014). US Patent 8,645,622.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 Y. Li et al.

[24] Michael Mesnier, Eno Thereska, Gregory R Ganger, Daniel Ellard, and Margo Seltzer. 2004. File classification in self-*
storage systems. In null. IEEE, 44–51.

[25] K. Miura, E. Yamamoto, H. Aoi, and H. Muraoka. 2009. Estimation of maximum track density in shingles writing. IEEE
Transactions on Magnetics 45, 10 (Oct. 2009), 3722–3725.

[26] A. Moser, K. Takano, D. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. Fullerton. 2002. Magnetic recording:
advancing into the future. Journal of Physics D: Applied Physics 35, 19 (2002), R157.

[27] D. Patterson, G. Gibson, and R. Katz. 1988. A Case for Redundant Arrays of Inexpensive Disks (RAID). In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD). 109–116.

[28] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, and M. Stonebraker. 2009. A comparison of approaches
to large-scale data analysis. In Proc. of the ACM SIGMOD International Conference on Management of Data. 165–178.

[29] V. Prabhakaran, L. Bairavasundaram, N. Agrawal, H. Gunawi, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. 2005. IRON
File Systems. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP). 206–220.

[30] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. Dimakis, R. Vadali, S. Chen, and D. Borthakur. 2013. Xoring
elephants: Novel erasure codes for big data. In Proc. of the VLDB Endowment, Vol. 6. 325–336.

[31] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. 2010. Understanding latent sector errors and how to protect
against them. ACM Transactions on storage (TOS) 6, 3 (2010), 9.

[32] M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu, K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H.
Zhou, and T. Rausch. 2008. Integrated head assisted magnetic recording head: design and recording demonstration.
IEEE Transactions on Magnetics 44, 1 (Jan. 2008).

[33] Sandeep Shah and Jon G Elerath. 2005. Reliability analysis of disk drive failure mechanisms. In Annual Reliability and
Maintainability Symposium, 2005. Proceedings. IEEE, 226–231.

[34] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, and N. Yoshikawa. 2009. Future
Options for HDD Storage. IEEE Transactions on Magnetics 45, 10 (Oct 2009), 3816–3822.

[35] Shuhei Tanakamaru, Yuki Yanagihara, and Ken Takeuchi. 2013. Error-prediction LDPC and error-recovery schemes
for highly reliable solid-state drives (SSDs). IEEE Journal of Solid-State Circuits 48, 11 (2013), 2920–2933.

[36] D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. Wang, T. Klemmer, G. Ju, and A. Aian. 2014. A HAMR
media technology roadmap to an areal density of 4 Tb/in2. IEEE Transactions on Magnetics 50, 1 (Jan. 2014).

[37] S. B. Wicker and V. K. Bhargava. 1994. Reed-Solomon Codes and Their Applications. IEEE Press.
[38] R. Wood, R. Galbraith, and J. Coker. 2015. 2-D Magnetic Recording: Progress and Evolution. IEEE Transactions on

Magnetics 51, 4 (April 2015), 1–7.
[39] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng. 2013. LDPC-in-SSD: Making Advanced Error Correction

Codes Work Effectively in Solid State Drives. In Proc. of the USENIX Conference on File and Storage Technologies (FAST).
243–256.

ACM Transactions on Storage, Vol. 1, No. 1, Article 1. Publication date: January 2019.

