1296

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.30, NO.7, JULY 2018

Multi-View Missing Data Completion
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Abstract—A growing number of multi-view data arises naturally in many scenarios, including medical diagnosis, webpage
classification, and multimedia analysis. A challenge in learning from multi-view data is that not all instances are fully represented in all
views, resulting in missing view data. In this paper, we focus on feature-level completion for missing view of multi-view data. Aiming at
capturing both semantic complementarity and identical distribution among different views, an Isomorphic Linear Correlation Analysis

(ILCA) method is proposed to linearly map multi-view data to a feature-isomorphic subspace through learning a set of excellent
isomorphic features, thereby unfolding the shared information from different views. Meanwhile, we assume that missing view obeys
normal distribution. Then, the missing view data matrix can be modeled as a low-rank component plus a sparse contribution. Thus, to
accomplish missing view completion, an Identical Distribution Pursuit Completion (IDPC) model based on the learned features is
proposed, in which the identical distribution constraint of missing view to the other available one in the feature-isomorphic subspace
is fully exploited. Comprehensive experiments on several multi-view datasets demonstrate that our proposed framework yields

promising results.

Index Terms—Multi-view learning, missing view, feature-level completion, sparse learning, trace norm, optimization

1 INTRODUCTION

ITH the increase of data modality in representing real-

world objects, more and more multi-view data
become available in various fields, including medical diag-
nosis, webpage classification, and multimedia analysis.
These data have multiple views that generally correspond
to distinct sets of feature representations for the same set of
underlying objects. A challenge in learning from multi-view
data is that not all instances are fully represented in all
views, resulting in missing view data. The missing view
problem in multi-view learning is different from the miss-
ing data problem in mono-view learning, as the missing of a
view results in the missing of all attributes in the same
view. For example, in the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [1] database, many data only have
Magnetic Resonance Imaging (MRI) measurement, yet lack
Positron Emission Tomography (PET) scan, resulting in a
scenario shown in Fig. 1.
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More notably, since each view of multi-view data may
contain some common and consistent information, multi-
view learning can be employed to reduce the noise, as well
as to learn the correlations between different views to obtain
higher-level information [2], [3], [4], [5], [6], [7]. Neverthe-
less, missing view data are directly discarded in general,
resulting in a severe loss of available information. Further-
more, to the best of our knowledge, little efforts have
focused on recovering missing view of multi-view data.
Consequently, the above-mentioned applications face great
challenge in the real world. To bridge this gap, our work
aims to develop an effective feature-level completion
method for missing view of multi-view data.

Nevertheless, missing view completion of multi-view
data is highly challenging. First of all, since different views
(forms, modalities, or sources) span heterogeneous low-
level feature spaces, there is no explicit correspondence
among the heterogeneous representations from different
views. For example, as shown in Fig. 2, the co-occurring
image and text in a web page convey the same semantic
concept from the perspectives of vision and writing, respec-
tively, so it is not straightforward to directly measure the
relationship between heterogeneous representations. Thus,
there is a need to build a feature-isomorphic subspace to
capture the semantic complementarity among different
views. Note that the feature-isomorphic subspace refers to
the mappings of heterogeneous representations from differ-
ent views into a common feature space, in which the same
dimension and attributes are used to represent the same
semantic concept.

Meanwhile, for the multi-view data in the feature-
isomorphic subspace, it can be assumed as illustrated in
Fig. 3 that they are under both semantic complementarity
and identical distribution constraints. The complementarity
constraint refers to the semantic complementarity among
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Fig. 1. Missing view and incomplete data. Large chunks of missing view
data are marked by the orange dotted line in Fig. 1a. The hollow red
solid-line wireframes represent the location of the missing values in the
incomplete data in the mono-view setting in Fig. 1b.

different views that makes much more the consistent infor-
mation from different views fully contained in the isomor-
phic representations of multi-view data. Note that the
consistent information is the commonality among the het-
erogeneous representations from different views. Unlike
the semantic complementarity constraint, the identical dis-
tribution constraint takes high distributive similarity among
different views which can group the samples of the same
class from the same view together while keeping the instan-
ces from different categories away from each other simulta-
neously. Hence, another issue we need further to deal with
for completing missing view of multi-view data is to recover
missing view under both semantic complementarity and
identical distribution constraints.

1.1 Main Contributions

In this work, we develop a set of methods and algorithms to
address the above challenges. The key contributions of this
work are highlighted as follows:

e A general feature-level framework for completing
missing view to obtain the complex representations
for multi-view data is proposed. In this framework,
a feature-isomorphic subspace is learned to build a
bridge between multiple heterogeneous low-level
feature spaces.
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(a) The digit 7 in different forms.

(b) The co-occurring text and image modalities.

)

(c) The MRI measurement and PET scan of brain.

Fig. 2. The cases of multi-view data.

e To build a feature-isomorphic subspace to capture
both semantic complementarity and identical dis-
tribution among different views, we propose a novel
Isomorphic Linear Correlation Analysis (ILCA) model
with maximum neighbourhood criterion and orthogo-
nal constraints, unfolding the shared information
from different views. The maximum neighbourhood
criterion in ILCA takes charge of highly correlating
the learned features with the class, and the correla-
tions among the features can be removed by the
orthogonal constraints. Thus, multiple heterogeneous
low-level feature spaces are linearly projected into a
feature-isomorphic subspace through a set of learned
excellent isomorphic features.

e A new Identical Distribution Pursuit Completion
(IDPC) method based on the learned features is pro-
posed to recover missing view of multi-view data, in
which the identical distribution constraint of missing
view to the other available one in the feature-isomor-
phic subspace is fully exploited. Consequently, the fea-
ture-level completion of missing view is accomplished
while noisy information is repressed in the recovered
missing view representations of multi-view data.
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Fig. 3. Semantic complementarity and identical distribution restraints on multi-view data.
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Fig. 4. The proposed framework for completing missing view of multi-view data.

e Extensive experiments on four multi-view datasets
are conducted to demonstrate the effectiveness of
the proposed framework.

1.2 Organization

The remainder of this paper is organized as follows: We
present a general feature-level framework for completing
missing view to obtain the integrated representations for
multi-view data in Section 2.1. In Section 2.2, a novel Iso-
morphic Linear Correlation Analysis model is developed
for correlating different views through learning a set of
excellent isomorphic features. We build a new Identical Dis-
tribution Pursuit Completion model to recover missing
view of multi-view data under both semantic complemen-
tarity and identical distribution restraints in Section 2.3. Fur-
thermore, Section 3 provides an efficient algorithm to solve
the proposed framework and analyzes the computational
complexities and convergence rates of the proposed algo-
rithms. Section 4 gives a broad overview of some related
work. Experimental results and analyses are reported in
Section 5. Section 6 concludes this paper.

1.3 Notations
Here we establish some notations to be used throughout
this paper. Assume V, and V, are two different views. Let
the data matrices Xp = [z, .. .,xm]T € RM*dr and Yy =
(Y1, U] € R™*% be two sets of existing heterogeneous
representations from the V, and V|, respectively, where
z; € R% is the ith sample from V,, y; € R% is the ith sample
from V), n; is the number of available samples, and d, and
d, are the dimensionalities of the heterogeneous low-level
feature spaces V, and V). Note that for i =1,...,ny, (z;, ;)
represents the ith couple of heterogeneous representations.
We assume that both {z;}1, and {y;};}, are centered, i.e.,
Sz =0 and >, y; = 0. Let the data matrix X =
[Tny 1, ,:L',L1+,L2]T € R™*% be a set of missing representa-
tions from the V, and the data matrix Yy = [yn,41,---,
Yny1ny] € R™%% be a set of existing heterogeneous repre-
sentations from the V), corresponding to the missing repre-
sentations X ;.

We use ||4]|, =>_,0; to denote the trace (nuclear)
norm of a matrix A = [a;;] € RP*?, where r=rank(A)
denotes the rank of A and {o;};_, is the set of singular val-

» ¢ 2
i=1 2j=1 Aij

ues of A in a non-increasing order. ||A||, =

is the Frobenius norm of A. If A is a square matrix, then let
tr(A) =>""  a; be the trace of A. For two matrices A and
B, (A, B) = tr(A” B) denotes the matrix inner product. For a
vector b € R?, let ||b]|, = ?_, b? be the fo-norm of b.

Additionally, let | H| be the number of elements in the set
H; vf(C) denotes the gradient of any smooth function f(-)
at the point C; for w € R?, we denote by diag(w) the diago-
nal matrix having the components of the vector w on the
diagonal; let D be a set of representations, mean(D) denotes
the average value of D. I;; € R is an identity matrix.

2 THE PROPOSED FORMULATION

We propose a general feature-level framework to complete
missing view of multi-view data. A graphical illustration of
the proposed formulation is given in Fig. 4 to facilitate the
understanding the proposed formulations and algorithms
significantly.

2.1 Overview of the Proposed Formulations

We provide an overview of the proposed formulations by
using the example in Fig. 4. In this example, a set of multi-
view data consists of the views MRI and PET. However, the
MRI view is missing, such as all attributes in the representa-
tions x5, x¢, ©7, and g are totally absent.

To recover missing view of multi-view data, a feature-
isomorphic subspace is learned by ILCA model to build a
bridge between multiple heterogeneous low-level feature
spaces in the proposed framework, in which the same
dimension and attributes are used to represent the same
semantic concept. Specifically, to fully exploit both semantic
complementarity and similar distributions among different
views as shown in Fig. 3, multiple linear transformations A
and B are learned using the existing multi-view data Xp
and Yy to eliminate the heterogeneity across them. Thus, a
feature-isomorphic subspace is obtained by a set of learned
excellent isomorphic features, in which the correlated repre-
sentations from different views are coupled together to
capture the commonality among the heterogeneous repre-
sentations from different views. Consequently, some maxi-
mum neighbourhoods are established among different
categories, such as the maximum neighbourhoods of Class
1 and Class 2 in Fig. 4. We can measure the correlation
among the multi-view data in the feature-isomorphic
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subspace directly. For example, the second co-occurring
samples z; and y, are projected to the feature-isomorphic
subspace to eliminate the heterogeneity across them
through the linear transformations A and B. In addition, the
samples of the same class from the same view can be
grouped together while keeping the instances from different
categories away from each other simultaneously in the
feature-isomorphic subspace. For instance, the heteroge-
neous representations of the co-occurring samples (z1,y1)
and (3, y3) take high distributive similarity.

Furthermore, we assume that missing view representa-
tions obey normal distribution. Then, the expectation natu-
rally corresponds to between-class differences, and the
variance represents within-class differences. The rank is
used to capture the between-class differences, and the spar-
sity to mine the within-class differences. Consequently, the
missing view matrix X, is composed of a low-rank matrix
Ly and a sparse matrix Sy;. According to this completion
assumption, the missing view of multi-view data X, is
recovered by IDPC model through exploiting both semantic
complementarity and similar distributions among different
views learned by ILCA model.

Moreover, some noisy information is inevitably involved
in the recovered missing view representations in the process
of completion. These factors may seriously affect the perfor-
mance of the recovered representations. To eliminate the
noises effectively, a data distribution constraint induced by
a mean matrix H is introduced to push the recovered repre-
sentations into the neighbourhood centered on the mean of
the samples of the same class. The i-the row vector of H is
the mean values of the existing samples Y with the same
class label. For instance, the mean of the representations y;
and y; forms the row vector h; because y; and y; belong to
Class 1. Meanwhile, the recovered representation x5 and 7
from the missing view MRI are pushed into the neighbour-
hood centered on the mean h; of the samples of the same
class from the view PET, and coupled together with the cor-
responding representation y; and y; from the view PET in
the feature-isomorphic subspace.

With the complementary information from the feature-
isomorphic subspace, the recovered representations of dif-
ferent classes as displayed in Fig. 4 will be more likely to be
linearly separable in the feature-isomorphic subspace.

2.2 Isomorphic Linear Correlation Analysis

In the following, a novel ILCA model is developed for cap-
turing both semantic complementarity and identical distri-
bution among different views through learning a set of
excellent isomorphic features. Our work is motivated by a
few prior studies. Recently, Hall [8] have pointed out that
discriminative feature set contains features that are highly
correlated with the class, yet uncorrelated to each other.
Furthermore, Jin et al [9] have shown that the orthogonal
constraints on a matrix can be used to effectively remove
the correlations among different features. Following the
above-mentioned theoretical results [8], [9], we propose a
novel ILCA model with maximum neighbourhood criterion
and orthogonal constraints to linearly map multiple hetero-
geneous low-level feature spaces to a feature-isomorphic
subspace. Meanwhile, the correlated representations from
different views are coupled together to capture both
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semantic complementarity and identical distribution among
different views.

Specifically, let Sx and Sy be the sets of sample pairs
from the same class in views V, and V), respectively, and
Dyx and Dy are the sets of sample pairs from different cate-
gories in views V, and V,, respectively. Then the within-
class scatter matrices can be expressed as follows:

Js= Y (w—z)(w— ), o))
V(zj,ai)eSx

Rs= > (wi—-u)w—u) ()
Y(yiy;)ESy

Meanwhile, the between-class scatter matrices are defined
as follows:

JD = Z (fEi — ZL'})(lt — .CL'J')T, (3)
V(z;,7;)€Dx

Rp = (= )i —vy)" @)
Y(vi,yj)€Dy

Based on the above definitions, we propose the following
optimization problem:

min | XpA - YpB |2 —a(tr(AT JpA) + tr(B" RpB))

Vit L p(tr(ATJsA) + tr(BT RsB)) ®)
st. ATA=1, and B'B=1,

where AeR%**  BeRW** ke {1,...,min(d,,d,)} is
the dimensionality of the feature-isomorphic subspace,
tr(AT JpA) +tr(B"RpB) is a between-class penalty, and
tr(ATJsA) + tr(BT RsB) is a within-class compactness, and
o and B are two trade-off parameters. The motivation of
introducing the orthogonal constraints in Eq. (5) is to effec-
tively remove the correlations among different features in
the same view. Additionally, a maximum neighbourhood
criterion is added into the model ¥y to learn the identical
distribution among different views. The maximum neigh-
bourhood criterion refers to the trace difference consisting
of within-class compactness and between-class penalty. It
can be used to group the samples of the same class from the
same view together while keeping the instances from differ-
ent categories away from each other simultaneously. Conse-
quently, a maximum neighbourhood is established between
different categories.

Furthermore, Yang et al. have pointed out in [10] through
extensive experiments that the classification accuracy is
increased significantly by the complex vectors induced by
Parallel Feature Fusion Strategy (PFFS) and also demon-
strate that the complex vectors are more effective than the
union vectors induced by classical Serial Feature Fusion
Strategy (SFFS). On the other hand, since the increase of
dimension is avoided in PFFS, much computational time is
saved. Moreover, it has been proved in [11] that the recogni-
tion rate of feature fusion representations is far higher than
that of each single feature representations. Therefore, based
on above-mentioned theoretical supports [10], [11], the
PFES is utilized to establish the common representations.
The details are as follows: for the ith pair of heterogeneous
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Fig. 5. Parallel and serial feature fusion strategy.

representations (x;,y;), we can obtain their own Isomorphic
Correlated Representations (ICR) with the optimal A* and
B* by

w, = ATz and My, = BTy, (6)

Consequently, we can obtain a Complex Representations
(CR) p; in the feature-isomorphic subspace based on p,,
and s,

As shown in Fig. 5, the union vectors are always high
dimensional and contain much redundant information and
some conflicting information which are unfavorable for rec-
ognition. However, the favorable discriminatory information
is retained and at the same time the unfavorable redundant
or conflicting information is eliminated in the CR.

In Section 3.1, an efficient algorithm is proposed to solve
the problem ¥;.

2.3 Identical Distribution Pursuit Completion

In this section, we propose a new feature-level missing view
completion method, known as IDPC model, to recover miss-
ing view of multi-view data. Our method is built on the
basis of both semantic complementarity and identical distri-
bution among different views learned in the proposed
model ¥;. Some previous studies inspire our work. Follow-
ing the idea behind the robust PCA, we assume that missing
view obeys normal distribution. Then, the expectation natu-
rally corresponds to between-class differences, and the vari-
ance represents within-class differences. In [12], [13], it has
been justified that the rank is a powerful tool to capture
between-class differences information in the matrix case. In
addition, it has been proved in [14] that the sparse represen-
tations can effectively uncover the within-class differences
of data. Therefore, we suppose that the missing view data
can be represented as in Fig. 6, where the matrix X, in the
view V,, can be modeled as a low-rank part L), plus a sparse
contribution Sj;. Then the low-rank component Lj;; natu-
rally corresponds to the between-class differences, and the
sparse component Sy, captures the within-class differences.
Thus, to recover missing view of multi-view data, it is
essential to impose the low-rank and sparse constraints on
the recovered missing view representations.

Recently, Candes and Recht [15], Recht et al [16], and
Candes and Tao [17] have shown that the trace norm of a
matrix can be used to approximate the rank of the matrix. In
addition, Wright et al. [14] have shown that the sparse rep-
resentations computed by ¢;-minimization can effectively

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.30, NO.7, JULY 2018
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Fig. 6. The composition of missing view data.

uncover the identifying characteristics of data. Moreover,
some noisy information is usually included in the recovered
missing view representations when capturing underlying
information. These factors may seriously affect the perfor-
mance of the representations. Therefore, it is necessary to
eliminate the noisy components in the recovered missing
view representations. Recently, Weinberger et al [18] have
shown that the data distribution induced by distance metric
can eliminate noise to a large extent.

In view of the above-mentioned theoretical results [12],
[13], [14], [15], [16], [17], [18], we propose a novel IDPC
method that incorporates trace norm constraint, ¢;-norm
regularization, and data distribution constraint. By exploit-
ing both semantic complementarity and identical distribu-
tion among different views, missing view of multi-view
data are recovered by the proposed IDPC method while
noisy information is effectively suppressed.

Specifically, we have built a feature-isomorphic subspace
to capture both semantic complementarity and identical dis-
tribution among different views through learning a set of
excellent isomorphic features. Let (A*, B*) be the optimal
solutions of the problem W;. Then the proposed approach
can be formulated as follows:

min || (Lar + Su) A" = YuB* |5 +vlI1Sully
Lr,Su
g (Lar+ Si)A — HB > <n and ~ ®

1 Larll, < e,

where L), and S); denote the between-class and within-
class differences of the missing view representations X,
respectively, y is a trade off, 7 is a distance metric parame-
ter, and ¢ is a pre-specified positive parameter to control the
amount of information carried by the recovered missing
view representations. The matrix H =[hy,..., th]T €
R™*% imposes a data distribution constraint in order to
ensure the recovered missing view representations L+
Sy = Xy having identical distribution with the existing
view representations Y, thereby eliminating noise to a
large extent. Let the nearest neighbor v of the ith sample
from the Y); be contained in the Yz. Each row hZ.T in the
matrix H consists of the mean values of the existing samples
Yy with the same class label corresponding to the i, Spe-
cifically, let C; and C} be the sample sets of tth class from
the view V, and V, respectively. We define

Dy = {y;ly; € Ye Ay; € Cy Ayyy € Cy ), ©)
D' = U D, (10)
h; = mean(D"), (11)
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where D' is the sample sets of the same class as the v, in
the YE.

The motivation of introducing the first item in the objec-
tive function in Eq. (8) is to make the recovered representa-
tions carrying much more semantically complementary
information by the learned linear transformations by ILCA
model. In addition, the trace norm constraint imposed on
the between-class differences L, will bring about the recov-
ered representations linear separable as much as possible in
the feature-isomorphic subspace. Moreover, much more
identifying characteristics are involved in the recovered rep-
resentations by adding the ¢;-norm regularization on the
within-class differences S);. Furthermore, to eliminate the
noises at the greatest extent involved in the recovered repre-
sentations, the data distribution constraint (the first
constraint in Eq. (8)) composed of the maximum neighbour-
hood criterion learned by ILCA is introduced to pull the
recovered representations into the neighbourhood of the
mean value of the samples of the same class as the center.
Thereby, the distribution of the recovered representations is
identical with the instances of the same category in the
feature-isomorphic subspace.

Thus, the proposed IDPC model is different from the
existing matrix completion methods because of the full con-
sideration of both semantic complementarity and identical
distribution among different views. To the best of our
knowledge, no existing efforts have focused on this type of
completion.

Note that solving the problem ; in Eq. (8) directly is a
challenging task for two main reasons. First, it is difficult to
seek the solution that satisfies the data distribution con-
straint. Second, the trace norm constraints are not smooth,
which makes it even more difficult to compute the opti-
mum. Thus, we propose to use Lagrangian duality to aug-
ment the objective function with a weighted sum of the data
distribution constraint to obtain a solvable convex problem
Qs as follows:

min || (Lar + i) A" = YurB* [ +v[1Sull;
LS

e + n(ll(Las + San)A* — HB' |2 —m)  (12)
s.t. HLIUH* S E.

Section 3.2 presents an efficient algorithm to compute the
optimum for the problem ().

3 EFFICIENT ALGORITHMS FOR THE PROPOSED
FORMULATIONS

In this section, we develop efficient algorithms to solve the
proposed formulations. Specifically, an iterative algorithm
for solving the ILCA model ¥, in Section 2.2 is presented in
the Section 3.1. Additionally, we show in Section 3.2 how to
solve the IDPC model ), proposed in Section 2.3. Further-
more, the computational complexities of the proposed algo-
rithms are analyzed in Section 3.3.

3.1 An Efficient Solver for ¥,
For notational simplicity, we denote the optimization prob-
lem ¥, by

(13)

1301

where f(-) =] - ||% — atr(-) + Btr(-) is a smooth objective
function, Z = [A B represents the optimization variables,
and C is a closed domain set with respect to each variable A
and B

C={z|ATA=1,B"B=1,}. (14)

Obviously, the non-convex optimization problem in
Eq. (13) is generally difficult to optimize due to the orthogo-
nal constraints. However, Guo and Xiao have pointed out in
[19] that Gradient Descent Method with Curvilinear Search
(GDMCS) in [20] can effectively solve non-convex optimiza-
tion problem for a local optimal solution as long as the
Armijo-Wolfe conditions are satisfied.

Furthermore, since the objective function in Eq. (13) is
smooth, the gradient of the objective function with respect
to A, B can be easily computed, respectively. Accordingly, it
is appropriate to use the gradient descent method to solve
the problem ¥, in Eq. (13).

Algorithm 1. Isomorphic Linear Correlation Analysis
(ILCA)

Input: f(-), Z=[A Bl,e > 0,0 < u <1,0< p <py <1
Output: Z*.

1: Compute [A] = Schmidt(A).

2: Compute [B] = Schmidt(B).

3: fori=1tom

4. Compute G and G according to Egs. (15), (16).
5: if |[G1||% + [|Gal% < e then stop and exit.
6: Compute F; and F5 using Eqgs. (17), (18).
7: Compute ﬂ(Ql(O), Q2(0)) via Eq. (24).
8: Sett=1.
9: for step = 1 to max — step
10: Compute Q1 (7) and Q1 (7) using Egs. (19), (20).
11: Compute f.(Q1(t), Q(1)) via Eq. (23).
12: if Armijo-Wolfe conditions in Egs. (21), (22) are
satisfied then break.
13: Set 1= ut.
14: end-for
15: if step > max — step then stop and exit.
16: Update A = Q(7) and B = Q»(7).
17: end-for

18: Set Z* = [A B].

In each iteration of the gradient descent procedure, given
the current feasible point (A, B), the gradients can be com-
puted as follows:

Gy = vaf(A, B) =2X.Xp — 2X,YpB

(15)
—a(Jp+Jp)A+ B(Js + J5)A,

Gy = vpf(A,B) = 2Y} Yy — 2YL XpA 16

—a(Rp + Rp)B + B(Rs + R%)B.

We then compute two skew-symmetric matrices
F =G AT — AGT, 1)
Fy = GyB" — BGY. (18)
It is easy to see F| = —F, and F] = —F,. The next new

point can be searched as a curvilinear function of a step size
variable 7, such that
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Qi(r) = (T +tF/2) (1 —tF /2)A, (19)

Qs(7) = (I +tF>/2) (1 — tF,/2)B.

It is easy to verify that Q1) Qi(x) = Tand Qo(2) Qa(7) = 1
for all 7 € R. Thus we can stay in the feasible region along
the curve defined by 7. Moreover, dQ:(0)/dt and dQ2(0)/dz
are equal to the projections of (—G,) and (—G:) onto
the tangent space C at the current point (A, B). Hence
{@1(7), @2(7)} (15 is a descent path in the close neighbor-
hood of the current point. We thus apply a similar strategy
as the standard backtracking line search to find a proper
step size t using curvilinear search, while guaranteeing the
iterations to converge to a stationary point. We determine a
proper step size t as one satisfying the following Armijo-
Wolfe conditions [20]

(20)

F(@1(2), Q7)) < F(Q1(0),@2(0)) + p17£,(Q1(0),Q:(0)), (21)

FA(Q1(2),Q2(7)) = pofa(Q1(0), Q(0)). (22)

Here f;(Ql (1), Q2(7)) is the derivative of f with respect to 7,

£1(Q1(7),Q2(1)) =

— (74 (Qu(7), Qo) (T + gpl)*ﬂ (A%W)
(7@, Q) (T+35) B (B%QU)
Therefore, (23)
1(Q1(0), @2(0)) = ~tr(GT (G1AT — AG])A)

—tr(G3(GoB" = BGy)B) (9

2 2
IElE _ 1 F2llr

o 2 2

The overall algorithm is given in Algorithm 1, where the
function Schmidt(-) [21] denotes the GramSchmidt process.

3.2 An Efficient Solver for (),

This section provides an efficient algorithm to solve the
model (), proposed in Section 2.3. Similarly, the optimiza-
tion problem (), can be simplified as

min  F(0) = w(0) + yg(0), (25)
0cQ
where w(:) = || - ||% is a smooth function, g(-) = || - ||, is an

undifferentiable function, ® = [Lg Sg| represents the opti-
mization variables, and Q is a closed and convex domain
set defined as

Q={0][|Lell, < ¢}. (26)

Obviously, the optimization problem in Eq. (25) is non-
convex. However, Ando and Zhang have testified in [22]
that the alternating optimization method can effectively
solve non-convex problem. They have also pointed out that
this method usually did not lead to serious problems since
given the local optimal solution of one variable, the solution
of other variables would still be globally optimal.
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Additionally, the problem in Eq. (25) is separately convex
with respect to Lg and S¢. Furthermore, as w(-) is continu-
ously differentiable with Lipschitz continuous gradient [23]
with respect to Lg and Sg, respectively. Thus, through com-
bining Accelerated Projected Gradient (APG) [23] method
and alternating optimization approach [22], the problem in
Eq. (25) can be effectively solved.

Algorithm 2. Identical Distribution Pursuit Completion
(IDPC)

Input: F(), w(), 9(), Oy —
71 >0,n >0,t=1,q9g=1.
Output: O".

1: Set L®1 = LO and S@l = S@U.

2: fori=1,2,---,mdo

3: Fix S and approximately solve for L.

4: Define F‘[‘Lp (L@) = w(Lp) + <V’LU(L1J)7 L@) — LP>

+7l|Le — Lpl|7/2 + y9(Le).

5: forj=1,2,---,h; do
6: Seto; = (t—1)/t.
7.
8

[LO S@)O]/ Y, € > O/N- > 0/10 > 0/

Compute Lp = (1 + a.i)L(“)i - ()le(.‘)Fl .
Compute vz, w(Lp).

9: While (true)A
10: Compute Lp = Lp — v, w(Lp)/7;.
11: Compute [Lg,,,] = EPTNC(Lp,¢).
12: if F(Le,,,) < Fy, 1p(Le,,,), then break;
13: else Update 7; = 7; x 2.
14: end-if
15: end-while
16: Updatet: (1+\/1+4t2)/2, Titl = Tj.
17: end-for
18: Fix L and approximately solve for S.
19: Define Fr,Sp (S@) = ’LU(SP) + (vw(Sp), Se — SP>
+nlSe — Spll3/2 + vg(Se).
20: fork=1,2,---, hy do
21: SetB.=(¢—1)/q.
22: Compute Sp = (1 + B,) Lo, — B1.50, ,-
23: Compute vg,w(Sp).
24: While (true)
25: Compute Sp = Sp — vs,w(Sp)/n;.
26: Compute [Se,,,] = .S'IO(:?;,,U,,,O).
27: if F(Se,,,) < F,5,(Se,,,), then break;
28: else Update n; = n, x 2.
29: end-if
30: end-while
31: Update ¢ = (14 \/1+4¢%)/2, nip1 = ;.
32: end-for
33: end-for

34: Set ®" = [L@)Hl SGHI]'

APG belongs to the first-order gradient schemes and its
global convergence rate is optimal among all first-order
methods [24], [25], which will construct a searching point
sequence {S;} to update a solution point sequence {Z;}.
Note that, in the APG algorithm, the Euclidean projection of
a given point p onto the convex set G = {0]||6||, < m} can be
defined by: ,

projg(s) = arg min 16 — sl|l7/2, (27
where m is a pre-specified positive constant. The projection
procedure can be solved efficiently via Efficient Projection
on Trace Norm Constraints (EPTNC) [26].
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TABLE 1
Computational Complexity

Method Computational Complexity
ILCA O((4k* X271 d;) xm)
IDPC O((dyn2hy + d,ynihs) *m)

EPTNC is an efficient gradient-related projection method
which can formulate the problem in Eq. (27) as a simple sin-
gular optimization by projecting a vector onto a simplex. It
is widely applied in approaching a sparse solution in sparse
feature learning when the number of examples and the
dimension are large. Then we can use the EPTNC algorithm
to solve Eq. (27). The details of this procedure are given
in the supplementary material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2018.2791607.

In the APG algorithm, the unconstrained optimization
associated with the non-differentiable function g(-) can be
defined as

(28)

6. =arg min ol + pll6 sl

where p and p are two pre-specified positive parameters.

Soft thresholding Operator (STO) [27] is a very popular
tool to solve a non-smooth regular convex function. This
operator is a proximal mapping of the /;-norm to yield
sparse representations. Since the ¢;-norm is separable, the
operator exerts influence on each element separately in a
vector or matrix when it is used in a vector or matrix.
Because of the widespread application of ¢, penalties, the
property of soft thresholding operator to efficiently find the
sparse solution to the problem in Eq. (28) becomes very use-
ful. Then we can use the STO algorithm to solve Eq. (28),
and the details are given in the supplementary material,
available online.

Finally, when applying the APG method for solving the
problem in Eq. (25), the Euclidean projection ©® = [Lg Se)]
of a given point P = [Lp Sp] onto the set Q is defined by

projo(P) = arg min ||© — P||3/2. (29)
0cQ

By combining APG, EPTNC, and STO, we can solve the
problem in Eq. (25), and the details are given in Algorithm 2.

3.3 Analysis of Computational Complexity
In this section, we will discuss the Computational Complex-
ities (CC) of the proposed ILCA and IDPC algorithms.
Obviously, because k € {1,...,min(d,,...,d;)} (d; denotes
the dimensionalities of the view V;), the computational cost
O((1+ k)k/2) of the function Schmidt(-) [21] is relatively
small. Consequently, the computational cost of ILCA algo-
rithm depends mostly on the cost for computing the value of
the algorithm GDMCS. Wen and Yin have proved in [20] the
computational complexity of GDMCS as O(4dk?) where d
and k are the dimensionalities of the low-level feature space
and feature-isomorphic subspace, respectively. Thus, the
dominating computational complexity of ILCA algorithm is
O((4k*>70_, d;) * m) (v is the number of views, and m is the
number of iteration).
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Additionally, as shown in Algorithm 2, the main compu-
tational complexity for IDPC is involved with the solving of
the functions EPTNC(-) [26] and STO(-) [27], respectively.
These two functions will consume most computational time
to calculate the Singular Value Decomposition (SVD) [28] of
approximate solution. Accordingly, the computational com-
plexities of EPTNC and STO are O(d,n3). Therefore, IDPC
has the computational complexity of O((d,n2hy + dyn3ho)*
m) (hy and hy are the number of iteration).

The dominating CCs of the proposed ILCA and IDPC
algorithms are listed in the Table 1.

We can see from Table 1 that the computational cost of
ILCA largely depends the dimensionalities of the low-level
feature spaces, since the dimensionality k of the feature-
isomorphic subspace is usually small. Besides, with the
increase in the number of missing multi-view data, the
computational time of IDPC will rise continuously.

4 RELATED WORK

Our proposed work is related to some prior methods for
mining the correlation between different views in multi-
view learning and some matrix completion methods for
mono-view data completion.

4.1 Existing Isomorphic Methods

To eliminate the heterogeneity across different views,
many techniques have been proposed recently, including
dimensionality reduction [29], [30], kernel methods [31],
[32], and subspace learning [19], [33], [34].

4.1.1 Dimensionality Reduction

CCA (Canonical Correlation Analysis) [29], [35], [36] and
OPLS (Orthogonal Partial Least Squares) [30] are two classi-
cal statistical analysis techniques for modeling correlation
between sets of observed variables. They both compute
low-dimensional embedding of sets of variables simulta-
neously. The main difference of them is that CCA maxi-
mizes the correlation between variables in the embedded
space, while OPLS maximizes their covariance. When one
of views is the predictors induced from class label, it
has been shown that CCA is equivalent to Linear Discrimi-
nant Analysis (LDA) [29]. Additionally, Multi-view CCA
(MCCA) (> 2 views) [37] is also a classical algorithm, which
the label representation is used as the third view. However,
Bach and Jordan [38] also have proved that that LDA is only
equivalent to CCA in the two-variable case on the condition
that their own generalized eigenvalue problems are equiva-
lent. Therefore, three-view CCA or MCCA (> 2 views) is
not equivalent to LDA.

4.1.2 Kernel Methods

Kernel CCA (KCCA) offers an alternative solution for CCA
by implicitly mapping multi-view data into a feature-iso-
morphic subspace. Recently, Hardoon et al. [31] proposed a
general method using KCCA to learn a semantic representa-
tion of web images and their associated texts. Moreover,
Andrew et al. presented a Deep CCA (DCCA) in [32] to
learn complex nonlinear transformations of two associated
views. Unlike KCCA, DCCA does not require an inner
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product, which provides a flexible nonlinear alternative to
KCCA.

4.1.3 Subspace Learning

Recently, some subspace learning methods have been pro-
posed for multi-view classification. Guo [33] developed a
convex subspace representation learning approach for gen-
eral multi-view clustering. In [34], a large margin classifier
was constructed by integrating the nature of the multi-view
setting into the transfer learning framework and imposing
the consistencies among multiple views. A subspace co-
regularized multi-view learning method was presented in
[19] to project input data into a low-dimensional subspace.

4.2 Matrix Completion Methods

The completion of missing data in the mono-view setting
can generally be formulated as a matrix completion prob-
lem. A number of studies have introduced various Matrix
Completion (MC) algorithms to complete the matrix with
incomplete data. The existing MC methods involve nuclear
norm [27], [39], [40], [41], [42], [43], [44], statistical analysis
[45], K-nearest neighbor [46], and Singular Value Decompo-
sition [28], which have gained promising performance in
some applications.

4.2.1  Nuclear Norm

Most of the existing MC approaches are based on the
nuclear norm. Cai et al. [27] introduces a Singular Value
Thresholding (SVT) algorithm to approximate the incom-
plete data matrix with a matrix with minimum nuclear
norm among all matrices obeying a set of convex con-
straints. In [39], Toh and Yun proposed a Nuclear Norm-
regularized Least Squares (NNLS) method to solve an
unconstrained nonsmooth convex optimization problem. A
MC algorithm, called Truncated Nuclear Norm Regulariza-
tion (TNNR) was developed in [40] by minimizing the trun-
cated nuclear norm. Marjanovic and Solo constructed a ¢,
penalized least squares problem for MC in [41]. They used
the I, Accelerated Projected Gradient (£/,APG) [23] algo-
rithm to solve the problem. Robust Principal Component
Analysis (RPCA) [42] completed matrix by minimizing a
weighted combination of the nuclear norm and the ¢; norm.
Xiao and Guo [43] proposed a cross-language MC method
to produce a complete parallel document-term matrix for
all documents in two languages. A robust transfer PCA
method was presented in [44] for recovering low-rank
matrix from a heavily corrupted observation matrix by
leveraging related uncorrupted auxiliary data.

4.2.2 Other Related Approaches

In [45], Schneider proposed a statistical analysis algorithm,
called Expectation Maximization (EM), to impute missing
values by estimating the mean and the covariance matrix of
an incomplete dataset. Based on the Euclidean distance
between samples, K-Nearest Neighbor [46] method can
be used to impute missing value by replacing the missing
value in the data matrix with the corresponding value from
the nearest column. SVD [28] is a standard MC method based
on low-rank approximation. It first provide some initial
guesses (such as 0) to the missing data values, and then
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decompose the filled-in matrix to obtain a low-rank appr-
oximation. Next, it update the missing values as their
corresponding values in the low-rank estimation until con-
vergence. In [47], [48], Xiang et al. proposed a incomplete
Source and Feature Selection (iSFS) model to complete the
block-wise missing data in multi-source problem. Srivastava
and Salakhutdinov [49] proposed a Multimodal Deep Boltz-
mann Machines (MDBM) model to fill in missing modalities
by sampling from the conditional distributions over them
given the observed ones.

5 EXPERIMENTAL STUDY

In this section, we evaluate and analyze the effectiveness of
the proposed formulations and algorithms for missing view
completion of multi-view data.

5.1 Datasets

Our experiments are conducted on five publicly available
multi-view datasets, namely, UCI Multiple Features (UCI
MFeat) [50], Alzheimer’s Disease Neuroimaging Initiative
[1], Wikipedia [3], Corel 5K [51], and MIR Flickr [52]. Due to
limited space, the details of the datasets are provided in the
supplementary material, available online.

5.2 Experimental Setup
Note that all the data are normalized to unit length. Each
dataset is randomly separated into a training set and a test
set. The training samples account for 80 percent of each
original dataset, and the remaining ones act as the test data.
Such a partition of each dataset is repeated five times and
the average performance is reported. In the training set and
test set, 10 percent of multi-view data have missing view.
Some key parameters of all the methods in our experi-
ments are tuned using the 5-fold cross-validation based on
the AUC (area under the receiver operating characteristic
curve) on the training set. For each time, one-fold data set is
used for testing while the other folds are used for training.
The training set can be split further into training part and val-
idation part for parameter tuning. The final classification
accuracy is the average of the accuracies across all 5 cross-
validation folds. Particularly, the LIBSVM classifier serves as
the benchmark for the tasks of classification in the experiments.
We use the AUC and Mean Reconstruction Error (MRE)
score to evaluate the proposed framework. The MRE is
defined as 3;||z; — «}||/n (¢ is the recovered multi-view
instance), which is a commonly used criterion in matrix
completion.

5.3 Evaluation on Single and Integrated View

To evaluate the ability of the proposed ILCA model for cap-
turing both semantic complementarity and identical distri-
bution among different views, we compare the complex
representations p as given in Eq. (7) with the original
expressions of either single view.

For the proposed ILCA model, the dimensionality % of
the feature-isomorphic subspace is specified by min(d,, d,)
and the trade-off parameters « and $ are tuned on the sets
{10°)i = —2,-1,0,1,2}.

Clearly, it can be observed from Table 2 that the CR u as
given in Eq. (7) outperforms the original expressions of
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TABLE 2
Classification Performance of Single and Integrated
Views in Terms of AUC

Dataset Representations

UCI MFeat 0.f900115 0.9285 0.(92536
ADNI 01.\3141{912 02%33 0%{13
Wikipedia 3?,2%2 O?SXZtZ 0.5554

either single view. This observation verifies the effective-
ness of ILCA for capturing the semantic complementarity
among different views.

5.4 Comparison of CCA, OPLS, LDA, and ILCA

The purpose of comparing the proposed ILCA model and
CCA [29], OPLS [30], and LDA [53] is to show the impor-
tance of mining the identical distribution among different
views. Here, the dimensionality & of the feature-isomorphic
subspace is specified by min(d,,d,) for both OPLS and
CCA. For LDA, we set the dimensionality & of the low-
dimensional subspace to the number of class labels.

Due to their inherent limitations, OPLS and CCA can
only project the multi-view data into a low-dimensional
space according to Eq. (7) without the full consideration of
identical distribution among different views. Therefore, the
feature-isomorphic spaces learned by OPLS and CCA may
contain much more noise, which groups the instances from
different categories together while keeping the samples of
the same

class away from each other simultaneously. Addition-
ally, since LDA is originally developed for handling mono-
view problems, it can only learn some limited distributional
information among different views.

The proposed ILCA model linearly maps multiple het-
erogeneous low-level feature spaces to a feature-isomorphic
one using orthogonal constraints and maximum neighbour-
hood criterion. As shown in Table 3, the superiority of ILCA
over CCA, OPLS, and LDA in the classification performance
is quite clear. For example, nearly 20 percent gain is
achieved for the ADNI dataset. It means that ILCA can learn
the identical distribution among different views more effec-
tively than CCA, OPLS, and LDA.

5.5 Analysis of Explicit and Implicit Projection
Here we analyze the explicit and implicit projections. As
mentioned above, CCA may not extract useful descriptors

TABLE 3
Classification Performance of CCA, OPLS, LDA,
and ILCA in Terms of AUC

Method
Dataset
CCA OPLS LDA ILCA
UCI MFeat 0.9314 09026 0.9229 0.9536
ADNI 0.4590 0.5574 0.6380 0.7213
Wikipedia 0.7158 0.7144 0.7646  0.8339

1305

TABLE 4
Classification Performance of MCCA, KCCA, DCCA,
and ILCA in Terms of AUC

Method
Dataset
MCCA KCCA DCCA ILCA
UCIMFeat 0.6187  0.6371 0.8494 0.9536
ADNI 0.5451 0.5738  0.5393 0.7213
Wikipedia 0.6482 0.8096 0.8196 0.8339

of data due to its inherent limitation [31]. KCCA [31] and
DCCA [32] offer an alternative solution by nonlinearly map-
ping the multi-view data into a feature-isomorphic sub-
space. However, unlike KCCA and DCCA, our proposed
ILCA model adopts explicit projecting method with orthog-
onal constraints and maximum neighbourhood criterion.
Thus, ILCA could potentially learn better linear feature set
than KCCA and DCCA. Although MCCA [37] uses label
information as the third view, it computes low-dimensional
embedding (p < min(d,,dy,q), q is the number of class
label.) of sets of variables simultaneously in the same way
as CCA. Obviously, because q is relatively small, ie.,
q < d,,dy,, the dimensionality of the shared feature space
obtained by MCCA is much smaller than one of the feature-
homogeneous space learned by CCA, leading to the loss of
a great deal of information.

To confirm this viewpoint, ILCA, MCCA, KCCA, and
DCCA are compared in classification performance. For
MCCA, p = min(d,,d,, q) (¢ is the number of class label).
For KCCA [31] and DCCA [32], we tune the dimensionality
k of the feature-isomorphic subspace on the candidate set
{i x 200]s =1,2,3,...,10}, and Gaussian kernel is used in
KCCA.

We can see from Table 4 that it is very difficult for KCCA
and DCCA to capture much complementary information
without orthogonal constraints and maximum neighbour-
hood criterion as in ILCA, although they all can map the
multi-view data into a feature-isomorphic subspace. This
observation indicates that the linear features learned by
ILCA are superior to the nonlinear features obtained by
KCCA and DCCA.

Moreover, as shown in Table 4, it is very difficult
for MCCA to capture much complementary information,
although the label representations are used as the third
view. This observation indicates that it is not very helpful to
using directly the label information as a single view in
MCCA.

5.6 Comparison of Completion Algorithms

Similar to SVT [27], NNLS [39], TNNR [40], ¢,APG [41],
RPCA [42], the proposed IDPC model is also a completion
method based on the trace norm. But the major difference of
IDPC with the other models lies in that it fully takes into
account the identical distribution among different views. In
addition, though kNN [46] and EM [45] use the mean value
to replace missing value, some complementary information
will be lost due to the lack of consideration of the semantic
complementarity among different views. Moreover, though
iSFS [47], [48] handles both feature-level and source-level
analysis and MDBM [49] can be used to fill-in missing
modalities given the observed onmes, they still does not
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TABLE 5
Classification Performance of Completion Algorithms in Terms of AUC
Method
Dataset -
SVT RPCA kNN EM TNNR NNLS 0,APG iSFS MDBM IDPC
UCI MFeat 0.9067 0.9161 0.9147 0.9044 0.8896 0.9161 0.8998 0.9234 0.9128 0.9456
ADNI 0.6721 0.6823 0.6393 0.6885 0.6557 0.6691 0.7049 0.6829 0.7259 0.7526
Wikipedia 0.7675 0.7148 0.7916 0.7905 0.7148 0.7984 0.7246 0.8019 0.7998 0.8218
MIR Flickr 0.7538 0.7412 0.7765 0.8005 0.7368 0.7927 0.7385 0.8187 0.8360 0.8558

address the identical distribution among different views. So
the proposed IDPC model might be more favorable to com-
plete missing view than the compared methods.

To validate this point, we first use the existing multi-
view data to construct an incomplete matrix, in which the
missing values refer to missing view of multi-view data and
then apply SVT, NNLS, TNNR, /,APG, RPCA, iSFS,
MDBM, kNN, and EM to complete missing view. Then
DCCA is applied to project the recovered multi-view data
into a feature-isomorphic subspace to obtain the CR u
according to Eq. (7).

For our proposed framework, ILCA is performed first
before IDPC is carried out. For the proposed IDPC model,
the distance metric parameter x is set to the number of miss-
ing data, the trade off y and the nonnegative constraint
parameter ¢ are selected from the set {10°i = —2,—1,0,1,
2}. The parameter settings in the compared methods are the
same as in their original literatures. The dimension % of the
feature-isomorphic subspace in DCCA and ILCA are speci-
fied by the best values selected out by the experiment in
Section 5.5.

It can be observed from Table 5 that IDPC shows an obvi-
ous advantage over the other methods. This comparison
shows that, in contrast to the compared approaches, IDPC
is highly effective on recovering missing view of multi-view
data because it fully exploits both semantic complementar-
ity and identical distribution among different views.

5.7 Comparison in Different Missing Rates

To test the performance of the proposed IDPC in different
missing rates, we further compare the classification per-
formances and reconstruction errors of IDPC with other
completion methods such as iSFS [47], [48], RPCA [42],
kNN [46], and MDBM [49] in the larger MIR Flickr dataset.
We tune the missing rates on the set {10%, 15%, 20%, 25%}.
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AUC

0.6

0.55

We can see from Fig. 7a that IDPC is superior to other
completion methods in classification performance. This
observation further confirms that IDPC can effectively
recover the missing view of multi-view data. Nevertheless,
with the increasing of missing rate, the performance of
IDPC will degrade. Thus, IDPC also has some limitations
that it need a certain number of existing samples to com-
plete missing view.

Moreover, it can be observed from Fig. 7b that the recon-
struction effect of IDPC is better than other completion
methods. This is a strong proof that some complementary
information will be lost for other completion methods due
to the lack of consideration of the semantic complementarity
among different views. However, with the increasing in
missing rate, IDPC takes less obvious advantage over other
completion methods. This once again shows that IDPC is
based on a certain number of existing samples.

5.8 Analysis of Convergence Rate
In order to investigate the convergence behaviors of the pro-
posed ILCA and IDPC, we plot the objective values of these
two methods in different iterations on the UCI MFeat,
ADNI, and Wikipedia datasets in Fig. 8.

We can observe that ILCA and IDPC converge very fast,
especially at early iterations. This is consistent with our the-
oretical results in Section 3.3 and confirms that the proposed
methods in Algorithms 1 and 2 can reach the local optimal
objective value rapidly.

5.9 Evaluation of Multi-Pass Performance

The so-called multi-pass performance refers to the repetitive
and alternate performing of ILCA and IDPC to improve the
performance of multi-view learning. To verify the effect of
multi-pass ILCA+IDPC, we compare the classification per-
formance of ILCA, IDPC, and CCA in different times of
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Fig. 7. Comparison in different missing rates.
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Fig. 8. Analysis of convergence rate.

repetition. The experiment is performed on the COREL 5K
dataset, in which the dataset is separated into a training set
(50 percent of COREL 5K data), a validation set (30 percent
of COREL 5K data), and a test set (20 percent of COREL 5K
data). All the multi-view data in the validation set
completely lack the representations from the DenseHue
view, and 10 percent of multi-view data have missing Den-
seHue view in the test set.

The training samples are used by the ILCA model in
Eq. (5) first to learn two optimal linear transformations A*
and B*. Then the missing DenseHue view in the validation
set is recovered by IDPC model in Eq. (8) based the learned
linear transformations A* and B*. Furthermore, the training
set and validation set are incorporated into a bigger set to
train the ILCA model once again, and then the learned
results are used to validate the classification performances
of ILCA and IDPC in the test set. This process will be
repeated six times. For CCA, the classification performance
is verified in the completed test set recovered by IDPC in
each repetition.

It can be shown from Fig. 9 that the classification perfor-
mance of CCA rises up constantly with the increase of the
number of repetition. This indicates that the recovered miss-
ing view in turn indeed improve the performance of multi-
view learning, since the proposed framework enhances the
qualities multi-view representations and increases the num-
ber of multi-view samples. Additionally, we also see from
Fig. 9 that ILCA and IDPC can benefit from each other
through multiple repetitive and alternate learning, and the
procedure converges to a good level. Therefore, this proce-
dure can be utilized to obtain better recovered results.
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Fig. 9. Comparison of multi-pass performance.
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5.10 Parameter Sensitivity of ILCA and IDPC
Due to limited space, the details are given in the supple-
mentary material, available online.

6 CONCLUSION

In this paper, we have investigated the missing view prob-
lem in multi-view data. We developed a general feature-
level framework to recover missing view to obtain CR for
multi-view data. Within this framework, a feature-isomor-
phic subspace is learned by the proposed ILCA model to
unfold the shared information from different views. We
assume that missing view obeys normal distribution. Then,
the expectation naturally corresponds to between-class
differences, and the variance represents within-class differ-
ences. Therefore, the missing view data matrix can be mod-
eled as a low-rank component plus a sparse contribution.
Furthermore, we also proposed a IDPC model to recover
missing view of multi-view data on the basis of the identical
distribution constraint of missing view to the other available
one in the feature-isomorphic subspace. Practically, the pro-
posed ILCA and IDPC in our framework can be easily
extended to multi-view cases. In addition, they are so flexi-
ble that either algorithm combined with other existing algo-
rithms can be applied to solve the missing view problem in
multi-view data.
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