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Abstract

The key idea of variational auto-encoders (VAEs) resembles

that of traditional auto-encoder models in which spatial in-

formation is supposed to be explicitly encoded in the latent

space. However, the latent variables in VAEs are vectors,

which can be interpreted as multiple feature maps of size

1x1. Such representations can only convey spatial informa-

tion implicitly when coupled with powerful decoders. In this

work, we propose spatial VAEs that use feature maps of

larger size as latent variables to explicitly capture spatial in-

formation. This is achieved by allowing the latent variables

to be sampled from matrix-variate normal (MVN) distribu-

tions whose parameters are computed from the encoder net-

work. To increase dependencies among locations on latent

feature maps and reduce the number of parameters, we fur-

ther propose spatial VAEs via low-rank MVN distributions.

Experimental results show that the proposed spatial VAEs

outperform original VAEs in capturing rich structural and

spatial information.
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1 Introduction.

The mathematical and computational modeling of prob-
ability distributions in high-dimensional space and gen-
erating samples from them are highly useful yet very
challenging. With the development of deep learning
methods, deep generative models have been shown to
be effective and scalable [12, 22, 5, 9, 19, 8, 21] in cap-
turing probability distributions over high-dimensional
data spaces and generating samples from them. Among
them, variational auto-encoders (VAEs) [12, 22, 6, 11]
are one of the most promising approaches. In machine
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learning, the auto-encoder architecture is applied to
train scalable models by learning latent representations.
For image modeling tasks, it is preferred to encode spa-
tial information into the latent space explicitly. How-
ever, the latent variables in VAEs are vectors, which
can be interpreted as 1 × 1 feature maps with no ex-
plicit spatial information. While such lack of explicit
spatial information does not lead to major performance
problems on simple tasks such as digit generation from
the MNIST dataset [16], it greatly limits the model’s
abilities when images are more complicated [13, 17].

To overcome this limitation, we propose spatial
VAEs that employ d× d (d > 1) feature maps as latent
representations. Such latent feature maps are generated
from matrix-variate normal (MVN) distributions whose
parameters are computed from the encoder network.
Specifically, MVN distributions are able to generate
feature maps with appropriate dependencies among
locations. To increase dependencies among locations
on latent feature maps and reduce the number of
parameters, we further propose spatial VAEs via low-
rank MVN distributions. In this low-rank formulation,
the mean matrix of MVN distribution is computed
as the outer product of two vectors computed from
the encoder network. Experimental results on image
modeling tasks demonstrate the capabilities of our
spatial VAEs in complicated image generation tasks.

It is worth noting that the original VAEs can be
considered as a special case of spatial VAEs via MVN
distributions. That is, if we set the size of feature
maps generated via MVN distributions to 1× 1, spatial
VAEs via MVN distributions reduce to the original
VAEs. More importantly, when the size of feature
maps is larger than 1 × 1, direct structural ties have
been built into elements of the feature maps via MVN
distributions. Thus, our proposed spatial VAEs are
intrinsically different with the original VAEs when the
size of feature maps is larger than 1×1. Specifically, our
proposed spatial VAEs cannot be obtained by enlarging
the size of the latent representations in the original
VAEs.
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2 Background and Related Work.

In this section, we introduce the architectures of auto-
encoders and variational auto-encoders.

2.1 Auto-Encoder Architectures. Auto-encoder
(AE) is a model architecture used in tasks like image
segmentation [30, 23, 18], machine translation [2, 25]
and denoising reconstruction [28, 29]. It consists of
two parts: an encoder that encodes the input data into
lower-dimensional latent representations and a decoder
that generates outputs by decoding the representations.
Depending on different tasks, the latent representations
will focus on different properties of input data. Never-
theless, these tasks usually require outputs to have simi-
lar or exactly the same structure as inputs. Thus, struc-
tural information is expected to be preserved through
the encoder-decoder process.

In computer vision tasks, structural information
usually means spatial information of images. There are
two main strategies to preserve spatial information in
AE for image tasks. One is to apply very powerful de-
coders, like conditional pixel convolutional neural net-
works (PixelCNNs) [20, 27, 24, 9], that generate out-
put images pixel-by-pixel. In this way, the decoders
can recover spatial information in the form of depen-
dencies among pixels. However, pixel-by-pixel genera-
tion is very slow, resulting in major speed problems in
practice. The other method is to let the latent rep-
resentations explicitly contain spatial information and
apply decoders that can make use of such informa-
tion. To apply this strategy for image tasks, usually
the latent representations are feature maps of size be-
tween the size of a pixel (1 × 1) and that of the input
image, while the decoders are deconvolutional neural
networks (DCNNs) [30]. Since most computer vision
tasks only require high-level spatial information like rel-
ative locations of objects instead of detailed relation-
ships among pixels, preserving only rough spatial infor-
mation is enough, and this strategy is proved effective
and efficient.

2.2 Variational Auto-Encoders. In unsupervised
learning, generative models aim to modeling the under-
lying data distribution. Formally, for data space X , let
ptrue(x) denote the probability density function (PDF)
of the true data distribution for x ∈ X . Given a
dataset D = {x(i)}Ni=1 of i.i.d samples from X , genera-
tive models try to approximate ptrue(x) using a model
distribution pθ(x) where θ represents model parame-
ters. To train the model, maximum likelihood (ML)
inference is performed on θ; that is, parameters are up-
dated to optimize log pθ(D) = log pθ(x

(1), . . . , x(N)) =∑N
i=1 log pθ(x

(i)). The approximation quality of pθ(x)

relies on the generalization ability of the model. In ma-
chine learning, it highly depends on learning latent rep-
resentations which can encode common features among
data samples and disentangle abstract explanatory fac-
tors behind the data [3]. In data generation tasks, we
apply pθ(x) =

∫
pθ(x|z)pθ(z)dz for modeling, where

pθ(z) is the PDF of the distribution of latent repre-
sentations and pθ(x|z) represents a complex mapping
from the latent space to the data space. A major ad-
vantage of using latent representations is dimensionality
reduction of data since they are low-dimensional. The
prior pθ(z) can be simple and easy to model while the
mapping represented by pθ(x|z) can be learned through
complicated deep learning models automatically.

Recently, [12] point out that the above model
has intractability problems and can only be trained
by costly sampling-based methods. To tackle this,
they propose variational auto-encoders (VAEs), which
instead maximize a variational lower bound of the log-
likelihood as

log pθ(x) ≥ LVAE

= Ez∼qφ(z|x)[log pθ(x|z)]
−DKL[qφ(z|x)|pθ(z)],(2.1)

where qφ(z|x) is an approximation model to the in-
tractable pθ(z|x), parameterized by φ, DKL[·] represents
the Kullback-Leibler divergence. In VAEs, pθ(x|z) =
N (x; fθ(z), σ

2I), qφ(z|x) = N (z;µφ(x),Σφ(x)), and
pθ(z) = N (z; 0, I) are modeled as multivariate Gaussian
distributions with diagonal covariance matrices. Here,
fθ(z), µφ(x) and Σφ(x) are computed with deep neu-
ral networks like CNNs. Figure 1 shows the architec-
ture of VAEs. The model parameters θ and φ can be
trained using the reparameterization trick [22], where
the sampling process z ∼ qφ(z|x) = N (z;µφ(x),Σφ(x))
is decomposed into two steps as

ε ∼ N (ε; 0, I),

z = µφ(x) + Σ
1
2

φ (x) ∗ ε.(2.2)

3 Spatial Variational Auto-Encoders.

In this section, we analyze a problem of the original
VAEs and propose spatial VAEs in Section 3.1 to
overcome it. Afterwards, several ways to implement
spatial VAEs are discussed. A näıve implementation
is introduced and analyzed in Section 3.2, followed by
a method that incorporates the use of matrix-variate
normal (MVN) distributions in Section 3.3. Finally,
we propose our final model, spatial VAEs via low-rank
MVN distributions, by applying a low-rank formulation
of MVN distributions in Section 3.4.
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3.1 Overview. Note that pθ(x|z) and qφ(z|x) in
VAEs resemble the encoder and decoder, respectively,
in AE for image reconstruction tasks, where z repre-
sents the latent representations. However, in VAE, z is
commonly a vector, which can be considered as multi-
ple 1× 1 feature maps. While z may implicitly preserve
some spatial information of the input image x, it raises
the requirement for a more complex decoder. Given a
fixed architecture, the hypothesis space of decoder mod-
els is limited. As a result, the optimal decoder may not
lie in the hypothesis space [31]. This problem signif-
icantly hampers the performance of VAEs, especially
when spatial information is important for images in X .

Based on the above analysis, it is beneficial to either
have larger hypothesis space for decoders or let z explic-
itly contain spatial information. Note that these two
methods correspond to the two strategies introduced in
Section 2.1. [9] follow the first strategy and propose Pix-
elVAEs whose decoders are conditional PixelCNNs [27]
instead of simple DCNNs. As conditional PixelCNNs
themselves are also generative models, PixelVAEs can
be considered as conditional PixelCNNs with the condi-
tions replaced by z. In spite of their impressive results,
the performance of PixelVAEs and conditional PixelC-
NNs is similar, which indicates that conditional Pixel-
CNNs are responsible for capturing most properties of
images in X . In this case, z contributes little to the per-
formance. In addition, applying conditional PixelCNNs
leads to very slow generation process in practice. In
this work, the second strategy is explored by construct-
ing spatial latent representations z in the form of feature
maps of size larger than 1 × 1. Such feature maps can
explicitly contain spatial information. We term VAEs
with spatial latent representations as spatial VAEs.

The main distinction between spatial VAEs and the
original VAEs is the size of latent feature maps. By hav-
ing d × d (d > 1) feature maps instead of 1 × 1 ones,
the total dimension of the latent representations z sig-
nificantly increases. However, spatial VAEs are essen-
tially different from the original VAEs with a higher-
dimensional latent vector z. Suppose the vector z is
extended by d2 times in order to match the total di-
mension, the number of hidden nodes in each layer of de-
coders will explode correspondingly. This results in an
explosion in the number of decoders’ parameters, which
slows down the generation process. Whereas in spa-
tial VAEs, decoders becomes even simpler since d × d
is closer to the required size of output images. From
the other side, when using decoders of similar capaci-
ties, spatial VAEs must have higher-dimensional latent
representations than the original VAEs. It is demon-
strated that this only slightly influences the training
process by requiring more outputs from encoders, while

the generation process that only involves decoders re-
mains unaffected. Our experimental results show that
with proper designs, spatial VAEs substantially outper-
form the original VAEs when applying similar decoders.

3.2 Näıve Spatial VAEs. To achieve spatial VAEs,
a direct and näıve way is to simply reshape the orig-
inal vector z into N feature maps of size d × d.
But this näıve way is problematic since the sampling
process does not change. Note that in the origi-
nal VAEs, the vector z is sampled from qφ(z|x) =
N (z;µφ(x),Σφ(x)). The covariance matrix Σφ(x) is di-
agonal, meaning each variable is uncorrelated. In par-
ticular, for multivariate Gaussian distributions, uncor-
relation implies independence. Therefore, z’s compo-
nents are independent random variables and the vari-
ances of their distributions correspond to entries on
the diagonal of Σφ(x). Specifically, suppose z is a C-
dimensional vector, the ith component is a random vari-
able that follows the univariate normal distribution as
zi ∼ N (zi;µφ(x)i,diag(Σφ(x))i), i = 1, . . . , C, where
diag(·) represents the vector consisting of a matrix’s di-
agonal entries. After applying the reparameterization
trick, we can rewrite Equation 2.2 as

εi ∼ N (εi; 0, 1),

zi = µφ(x)i + diag(Σφ(x))
1
2
i ∗ εi, i = 0, . . . , C.(3.3)

To sample N feature maps of size d × d in näıve
spatial VAEs, the above process is followed by a reshape
operation while setting C = d2N .

However, between two different components zi
and zj , the only relationship is that their respec-
tive distribution parameters (µφ(x)i,diag(Σφ(x))i) and
(µφ(x)j ,diag(Σφ(x))j) are both computed from x. Such
dependencies are implicit and weak. It is obvious that
after reshaping, there is no direct relationship among
locations within each feature map, while spatial latent
representations should contain spatial information like
dependencies among locations. To overcome this limita-
tion, we propose spatial VAEs via matrix-variate normal
distributions.

3.3 Spatial VAEs via Matrix-Variate Normal
Distributions. Instead of obtaining N feature maps
of size d × d by first sampling a d2N -dimensional vec-
tor from multivariate normal distributions and then re-
shaping, we propose to directly sample d × d matrices
as feature maps from matrix-variate normal (MVN) dis-
tributions [10], resulting in an improved model known
as spatial VAEs via MVN distributions. Specifically,
we modify qφ(z|x) in the original VAEs and keep other
parts the same. As explained below, MVN distributions
can model dependencies between the rows and columns
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Figure 1: Illustration of the differences between the proposed spatial VAEs via low-rank MVN distributions and
the original VAEs. At the top is the architecture of the original VAEs where the latent z is a vector sampled from
a multivariate Gaussian distribution with a diagonal covariance matrix. Below is the proposed model which is
explained in detail in Section 3.4. Briefly, it modifies the sampling process by incorporating a low-rank formulation
of the MVN distributions and produces latent representations that explicitly retain spatial information.

in a matrix. In this way, dependencies among locations
within a feature map are established. We proceed by
providing the definition of MVN distributions.

Definition: A random matrix A ∈ Rm×n is
said to follow a matrix-variate normal distribution
Nm,n(A;M,Ω ⊗ Ψ) with mean matrix M ∈ Rm×n and
covariance matrix Ω ⊗ Ψ, where Ω ∈ Rm×m > 0,
Ψ ∈ Rn×n > 0, if vec(AT ) follows the multivariate nor-
mal distribution N (vec(AT ); vec(MT ),Ω⊗Ψ). Here, ⊗
denotes the Kronecker product and vec(·) denotes trans-
forming a Rm×n matrix into an mn-dimensional vector
by concatenating the columns.

In MVN distributions, Ω and Ψ capture the rela-
tionships across rows and columns, respectively, of a
matrix. By constructing the covariance matrix through
the Kronecker product of these two matrices, dependen-
cies among values in a matrix can be modeled. In spatial
VAEs, a feature map F can be considered as a Rd×d ma-

trix that follows a MVN distribution Nd,d(F ;M,Ω⊗Ψ),
where Ω ∈ Rd×d and Ψ ∈ Rd×d are diagonal matrices.
Although within F the random variables correspond-
ing to each location are still independent since Ω ⊗ Ψ
is diagonal, MVN distributions are able to add direct
structural ties among locations through their variances.
For example, for two locations (i1, j1) and (i2, j2) in F ,

F(i1,j1) ∼ N (F(i1,j1);M(i1,j1),diag(Ω⊗Ψ)i1∗j1),(3.4)

F(i2,j2) ∼ N (F(i2,j2);M(i2,j2),diag(Ω⊗Ψ)i2∗j2).(3.5)

Here, F(i1,j1) and F(i2,j2) are independently sampled
from two univariate Gaussian distributions. However,
the variances diag(Ω ⊗ Ψ)i1∗j1 and diag(Ω ⊗ Ψ)i2∗j2
have built direct interactions through the Kronecker
product. Based on this, we propose spatial VAEs via
MVN distributions, which samples N feature maps of
size d× d from N independent MVN distributions as

Fk ∼ Nd,d(Fk;Mkφ(x),Ωkφ(x)⊗Ψkφ(x)),(3.6)
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k = 0, . . . , N,

where Mkφ(x), Ωkφ(x) and Ψkφ(x) are computed
through the encoder. Here, compared to the original
VAEs, qφ(z|x) is replaced but pθ(z) remains the same.
Since MVN distributions are defined based on multivari-
ate Gaussian distributions, the term DKL[qφ(z|x)|pθ(z)]
in Equation 2.1 can be calculated in a similar way.

To demonstrate the differences with näıve spatial
VAEs, we reexamine the original VAEs. Note that näıve
spatial VAEs have the same sampling process as the
original VAEs. The original VAE samples a C = d2N -
dimensional vector z from qφ(z|x) = N (z;µφ(x),Σφ(x))
where µφ(x) is a C-dimensional vector and Σφ(x) is
a RC×C diagonal matrix. Because Σφ(x) is diagonal,
it can be represented by the C-dimensional vector
diag(Σφ(x)). To summarize, the encoder of the original
VAEs outputs 2C = 2d2N values which are interpreted
as µφ(x) and diag(Σφ(x)).

In spatial VAEs via MVN distributions, according
to Equation 3.6, Mkφ(x) is a Rd×d matrix while Ωkφ(x)
and Ψkφ(x) are Rd×d diagonal matrices that can be
represented by d-dimensional vectors. In this case, the
required number of outputs from the encoder is changed
to (d2 + 2d)N , corresponding to [M1φ(x), . . . ,MNφ(x)],
[diag(Ω1φ(x)), . . . ,diag(ΩNφ(x))] and
[diag(Ψ1φ(x)), . . . ,diag(ΨNφ(x))]. As has been
explained in Section 3.2, since Ωkφ(x)⊗Ψkφ(x) is diag-
onal, sampling the matrix Fk is equivalent to sampling
d× d scalar numbers from d× d independent univariate
normal distributions. So the modified sampling process
with the reparameterization trick is

ε(i,j,k) ∼ N (ε(i,j,k); 0, 1),

z(i,j,k) = µkφ(x)
(i,j)

+diag(Ωkφ(x)⊗Ψkφ(x))
1
2
i∗j ∗ ε(i,j,k),(3.7)

i, j = 0, . . . , d, k = 1, . . . , N,

where

diag(Ωkφ(x)⊗Ψkφ(x))i∗j

= [diag(Ωkφ(x))diagT (Ψkφ(x))](i,j).

Here, we take advantage of the fact that for diagonal
matrices, the Kronecker product is equivalent to the
out-product of vectors. To be specific, suppose D1 and
D2 are two Rd×d diagonal matrices, then d1 = diag(D1)
and d2 = diag(D2) are two d-dimensional vectors and
satisfy

diag(D1 ⊗D2) = vec(d1d
T
2 ).(3.8)

It is worth noting that, compared to näıve spatial
VAEs, the required number of outputs from the encoder

decreases from 2d2N to (d2 + 2d)N . As a result, spatial
VAEs via MVN distributions leads to a simpler model
while adding structural ties among locations. Note that
the original VAEs can be considered as a special case of
the spatial VAEs via MVN distributions. That is, if we
set d = 1, spatial VAEs via MVN distributions reduce
to the original VAEs.

3.4 A Low-Rank Formulation. The use of MVN
distributions makes locations directly related to each
other within a feature map by adding restrictions on
variances. However, in probability theory, variance only
measures the expected distance from the mean. To
have more direct relationships, it is preferred to have
restricted means. In this section, we introduce a low-
rank formulation of MVN distributions [1] for spatial
VAEs.

The low-rank formulation of a MVN distribution
Nm,n(M,Ω⊗Ψ) is denoted as Nm,n(µ, ν,Ω⊗Ψ) where
the mean matrix M is computed by the out-product
µνT instead. Here, µ and ν are m-dimensional and n-
dimensional vectors, respectively. Similar to computing
the covariance matrix through the Kronecker product
of two separate matrices, it explicitly forces structural
interactions among entries of the mean matrix. Apply-
ing this low-rank formulation leads to our final model,
spatial VAEs via low-rank MVN distributions, which
is illustrated in Figure 1. By using two distinct d-
dimensional vectors to construct Miφ(x) ∈ Rd×d, Equa-
tion 3.6 is modified as

Fk ∼ Nd,d(Fk;µkφ(x)νk
T
φ (x),Ωkφ(x)⊗Ψkφ(x)),(3.9)

∀k = 0, . . . , N,

where µkφ(x) and νkφ(x) are d-dimensional vectors.
For the encoder, the number of outputs is further
reduced to 4dN from (d2 + 2d)N , replacing d2N
outputs for (M1φ(x), . . . ,MNφ(x)) with dN outputs
for (µ1φ(x), . . . , µNφ(x)) and another dN outputs for
(ν1φ(x), . . . , νNφ(x)). In contrast to Equation 3.7, the
two-step sampling process can be expressed as

ε(i,j,k) ∼ N (ε(i,j,k); 0, 1),

z(i,j,k) = (µkφ(x)νk
T
φ (x))(i,j)

+diag(Ωkφ(x)⊗Ψkφ(x))
1
2
i∗j ∗ ε(i,j,k),(3.10)

i, j = 0, . . . , d, k = 1, . . . , N,

where

diag(Ωkφ(x)⊗Ψkφ(x))i∗j

= [diag(Ωkφ(x))diagT (Ψkφ(x))](i,j).

As has been demonstrated in Section 3.1, spatial VAEs
require more outputs from encoders than the original
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Figure 2: Sample face images generated by different VAEs when trained on the CelebA dataset. The first and
second rows shows training images and images generated by the original VAEs. The remaining three rows are
the results of näıve spatial VAEs, spatial VAEs via MVN distributions and spatial VAEs via low-rank MVN
distributions, respectively.

VAEs, which slows down the training process. Spatial
VAEs via low-rank MVN distributions properly address
the problem while achieving appropriate spatial latent
representations. According to the experimental results,
they outperform the original VAEs in several image
generation tasks when similar decoders are used.

4 Experimental Studies.

We use the original VAEs as the baseline models in our
experiments, as most recent improvements on VAEs are
derived from the vector latent representations and can
be easily incorporated into our matrix-based models. To
elucidate the performance differences of various spatial
VAEs, we compare the results of three different spatial
VAEs as introduced in Section 3; namely näıve spatial
VAEs, spatial VAEs via MVN distributions and spatial
VAEs via low-rank MVN distributions. We train the
models on the CelebA, CIFAR-10 and MNIST datasets,
and analyze sample images generated from the mod-
els to evaluate the performance. For the same task,
the encoders of all compared models are composed of
the same convolutional neural networks (CNNs) and a
fully-connected output layer [15, 14]. While the fully-
connected layer may differ as required by different num-
bers of output units, it only slightly affects the training
process. As discussed in Section 3.1, it is reasonable

to compare spatial VAEs with the original VAEs in
the case that their decoders have similar architectures
and model capabilities. Therefore, following the orig-
inal VAEs, deconvolutional neural networks (DCNNs)
are used as decoders in spatial VAEs. Meanwhile, the
total number of trainable parameters in the decoders of
all compared models are set to be as similar as possible
while accommodating different input sizes.

4.1 CelebA. The CelebA dataset contains 202, 599
colored face images of size 64 × 64. The generative
models are supposed to generate faces that are similar
but not exactly the same to those in the dataset. For
this task, the CNNs in the encoders have 3 layers while
the decoders are 5 or 6-layer DCNNs corresponding to
spatial VAEs and the original VAEs, respectively. This
difference is caused by the fact that spatial VAEs have
d × d (d > 1) feature maps as latent representations,
which require fewer up-sampling operations to obtain
64 × 64 outputs. We set d = 3 and N = 64, and the
dimension of z in the original VAEs is 81 in order to have
decoders with similar numbers of trainable parameters.

Figure 2 shows sample face images generated by
the original VAEs and three different variants of spa-
tial VAEs. It is clear that spatial VAEs can gener-
ate images with more details than the original VAEs.
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Figure 3: Sample images generated by different VAEs when trained on the CIFAR-10 dataset. From top to
bottom, the five rows are training images and images generated by the original VAEs, näıve spatial VAEs, spatial
VAEs via MVN distributions, spatial VAEs via low-rank MVN distributions, respectively.

Due to the lack of explicit spatial information, the orig-
inal VAEs produce face images with little details like
hair near the borders. While näıve spatial VAEs seem
to address this problem, most faces have only incom-
plete hairs as näıve spatial VAEs cannot capture the
relationships among different locations. Theoretically,
spatial VAEs via MVN distributions are able to incor-
porate interactions among locations. However, the re-
sults are strange faces with some distortions. We believe
the reason is that adding dependencies among locations
through restrictions on distribution variances is not ef-
fective and sufficient. Spatial VAEs via low-rank MVN
distributions that have restricted means tackle this well
and generate faces with appealing visual appearances.

4.2 CIFAR-10. The CIFAR-10 dataset consists of
60, 000 color images of 32 × 32 in 10 classes. VAEs
usually perform poorly in generating photo-realistic im-
ages since there are significant differences among im-
ages in different classes, indicating that the underlying
true distribution of the data is a multi-model. In this
case, VAEs tend to output very blurry images [26, 8, 7].
However, comparison among different models can still
demonstrate the differences in terms of generative capa-
bilities. In this experiment, we set d = 3 and N = 128,
and the dimension of z in the original VAEs is 150. The
encoders have 4 layers while the decoders have 4 or 5
layers.

Some sample images are provided in Figure 3. The
original VAEs only produce images composed of several
colored areas, which is consistent to the results of a
similar model reported in [22]. It is obvious that all
three implementations of spatial VAEs generate images
with more details. However, näıve spatial VAEs still
produce meaningless images as there is no relationship
among different parts. The images generated by spatial
VAEs via MVN distributions look like some distorted

Table 1: Parzen window log-likelihood estimates of
test data on the MNIST dataset. We follow the same
procedure as in [8].

Model Log-Likelihood
Original VAE 297
Näıve SVAE 275
SVAE via MVN 267
SVAE via low-rank MVN 296

objects, which have similar problems to the results of
the CelebA dataset. Again, spatial VAEs via low-
rank MVN distributions outperform the other models,
producing blurry but object-like images.

4.3 MNIST. We perform quantitative analysis on
real-valued MNIST dataset by employing the Parzen
window log-likelihood estimates [4]. This evaluation
method is used for several generative models where
the exact likelihood is not tractable [8, 19]. The
results are reported in Table 1 where SVAE is short
for spatial VAE. Despite of the difference in visual
quality of generated images, spatial VAE via low-rank
MVN distributions shares similar quantitative results
with the original VAE. Note that generative models
for images are supposed to capture the underlying data
distribution by maximizing log-likelihood and generate
images that are similar to real ones. However, it
has been pointed in [26] that these two objectives
are not consistent, and generative models need to be
evaluated directly with respect to the applications for
which they were intended. A model that can generates
samples with good visual appearances may have poor
average log-likelihood on test dataset and vice versa.
Common examples of deep generative models are VAEs
and generative adversarial networks (GANs) [8]. VAEs
usually have higher average log-likelihood while GANs
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Table 2: Training and generation time of different models when trained on the CelebA dataset using a Nvidia
Tesla K40C GPU. The average time for training one epoch and the time for generating 10, 000 images are reported
and compared.

Model Training time Generation time
Original VAE 167.0309s 1.3892s
Näıve SVAE 178.8601s 1.3676s
SVAE via MVN 177.4387s 1.3767s
SVAE via low-rank MVN 172.9639s 1.3686s

can generate more photo-realistic images. This is
basically caused by the different training objectives of
these two models [7]. Currently there is no commonly
accepted standard for evaluating generative models.

4.4 Timing Comparison. To show the influence
of different spatial VAEs to the training process, we
compare the training time on the CelebA dataset.
Theoretically, spatial VAEs slow down training due
to the larger numbers of outputs from encoders. To
keep the number of trainable parameters in decoders
roughly equal, we set the dimension of z in the original
VAEs to be 81 while d = 3 and N = 64 for spatial
VAEs. According to Section 3, the numbers of outputs
from their encoders are 162, 1152, 960, and 768 for
the original VAE, näıve spatial VAE, spatial VAE via
MVN distributions and spatial VAE via low-rank MVN
distributions, respectively. We train our models on a
Nvidia Tesla K40C GPU and report the average time
for training one epoch in Table 2. Comparisons of the
time for generating 10, 000 images are also provided to
show that the increase in the total dimension of latent
representations does not affect the generation process.

The results show consistent relationships between
the training time and the number of outputs from en-
coders; that is, spatial VAEs cost more time than the
original VAE but spatial VAEs via low-rank MVN dis-
tributions can alleviate this problem. Moreover, spatial
VAEs only slightly slow down the training process since
they only affect one single layer in the models.

5 Conclusion.

In this work, we propose spatial VAEs for image genera-
tion tasks, which improve VAEs by requiring the latent
representations to explicitly contain spatial information
of images. Specifically, in spatial VAEs, d × d (d > 1)
feature maps are sampled to serve as spatial latent rep-
resentations in contrast to a vector. This is achieved by
sampling the latent feature maps from MVN distribu-
tions, which can model dependencies between the rows
and columns in a matrix. We further propose to em-
ploy a low-rank formulation of MVN distributions to

establish stronger dependencies. Qualitative results on
different datasets show that spatial VAEs via low-rank
MVN distributions substantially outperform the origi-
nal VAEs.
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