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Abstract

Hydraulic bushings are typically characterized in terms of sinusoidal dynamic stiffness at lower frequencies over a range
of excitation amplitudes. However, in practice they are also exposed to severe transient loads in conjunction with sinu-
soidal excitations. Three improved nonlinear, lumped parameter models for hydraulic bushings are developed with the
goal of concurrently predicting amplitude-sensitive dynamic responses to both sinusoidal and step-like excitations using a
common dynamic model with the same parameters. First, a fluid resistance element is introduced which extends previ-
ous formulations by relaxing the assumption of fully developed turbulent flow, and capturing the transition from laminar
flow to turbulence. Second, a bleed orifice element between the two compliance chambers is incorporated to simulate
leakage observed in laboratory testing. The sensitivity of the dynamic responses to linearized model parameters is used
to guide the parameter identification procedure. Measured dynamic stiffness spectra and step-like responses provide
experimental validation of the proposed formulations. The new formulations achieve improved predictions of dynamic
stiffness or force using exactly the same set of model parameters at several excitation amplitudes in both time and fre-
quency domains.
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Introduction and realistic transient excitations; they did not, however,
use the same model to examine the frequency-domain
responses over a range of excitation amplitudes. Of par-
ticular interest, Chai et al.® developed separate non-
linear models of hydraulic bushing concepts which were
used to predict responses to steady-state sinusoidal or
transient excitation profiles. These studies were underta-

Vibration isolators are typically characterized using
frequency-domain dynamic stiffness based on non-
resonant sinusoidal tests."? In particular, hydraulic
bushings exhibit substantial sensitivity to the nature
and amplitude of dynamic loading.>” However, limited
treatment is given in the literature or in practice to non- ken on a laboratory device, and assumed fully devel-
linear design features that might cause or influence ’

) i ) oped turbulent flow in long inertia tracks as well as in
amplitude-dependent behavior, although several inves- h
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Figure 1. Lumped parameter model of the hydraulic bushing.
Here, the spring constant (k,) and damping coefficient (c,)
describe the behavior of the structural (rubber path) subsystem.
The fluid system state includes the pressure in each chamber
(p/, p2) and the volumetric flow in the inertia track (g;) and
leakage paths (q,). Additional model parameters include the
effective pumping area of the inner sleeve (A,), the fluid
compliance of each fluid chamber (C,, C;), the fluid inertance in
the inertia track (I}), and the fluid resistances of the inertia track
and leakage paths (R; and R, respectively).

production hydraulic bushing, which improved the
amplitude dependent dynamic stiffness predictions in
the frequency domain. However, amplitude dependent
transient responses are yet to be properly studied. As
such, the effects of nonlinear, time-varying model para-
meters on displacement amplitude sensitive responses in
both the time and frequency domains must be better
understood. Therefore, the goal of this paper is to intro-
duce new nonlinear elements to better describe the
amplitude sensitive dynamic behavior of a hydraulic
bushing in response to steady-state harmonic or transi-
ent excitations. The intent here is to develop a common
formulation (similar to those employed by Chai et al.®
or Fredette et al.®”) that would consistently work in
both domains given the exact same dynamic system
parameters, and thereby overcome the limitations of
our prior work.®

Problem formulation

This article seeks to extend the recent article by Chai
et al.® by improving the damping formulations while
including other relevant nonlinear elements®’ into a
single dynamic system model which is able to predict
the dynamic response of a hydraulic bushing in both
time and frequency domains with a unified set of para-
meters. The scope is limited to the development of min-
imal order, feature-based hydraulic bushing models
which would predict amplitude-sensitive dynamic
responses to both steady-state harmonic and step-like
transient excitations. A production grade hydraulic
bushing is used as the main example case for this study
(unlike the laboratory device employed by Chai et al.®),
with features depicted in the system model of Figure 1,
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Figure 2. Small amplitude (0. mm) “step-like” displacement
excitation profile that is generated by the non-resonant test
machine. Key: ——: measured; curve-fit.

with relevant parameters. The device is excited by a
dynamic displacement of the inner sleeve, x(¢), under a
given mean load. The dynamic loads transmitted
through the device to the rigid base are divided into
two key load paths through the elastomeric structure
(F,) and through the fluid subsystem (). The steady-
state harmonic and transient excitation functions are
chosen to coincide with the measured dynamic displa-

cement profiles of an elastomeric test machine,” and
are respectively given as follows
Xa .
x55(t) = 78111(27791) (1)
xu (1) = xa(l — e"/T) (2)

where Q is the steady-state excitation frequency (in Hz),
T is the transient excitation time constant (a property
of the test machine), and x, is the excitation amplitude
in terms of either peak-to-peak for sinusoidal input
(equation (1)) or step height for transient input (equa-
tion (2)). Although sinusoidal testing of elastomeric
devices is commonly employed, the “step-like” charac-
terization is rare. A correlation between the theoretical
(as given in equation (2)) and measured displacement
signals is given in Figure 2 for a 0.1 mm step height.
With this small excitation amplitude, a high-frequency
dithering signal adds a substantial amount of noise to
the displacement, so a low-pass filter is applied to the
signal prior to curve-fitting. This effect is substantially
reduced for larger excitation amplitudes, where the
signal-to-noise ratio would be much higher.

For the sake of illustration, measured dynamic
properties of the example hydraulic bushing are given
in terms of dynamic stiffness magnitude (K,,), loss
angle (¢,,), and transient responses in Figures 3 and 4,
respectively, for three excitation amplitudes. Here, & is
the static stiffness of the bushing. The scope is limited
to uniaxial motion, component-level characterization
at 0.1, 1.0, and 2.0 mm excitation amplitudes (in terms
of peak-to-peak or step height) and a frequency range
of up to 50 Hz (for the sinusoidal test). Specific objec-
tives include: (1) developing a quasi-linear model (using
the transfer function method in the Laplace domain)
which should describe amplitude sensitivity essentially
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Figure 3. Effect of the sinusoidal excitation amplitude on

the measured (a) stiffness magnitude and (b) loss angle.

Key: ——:0.] mm peak-to-peak; === 1.0 mm peak-to-peak;
------ 2.0 mm peak-to-peak.
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Figure 4. Effect of the step excitation amplitude on measured
step responses of a hydraulic bushing. (a) “Step-like” excitation
signals and (b) normalized transmitted force responses.

Key: = 0.1 mm step height; === 1.0 mm step height; ------
2.0 mm step height.

in the frequency domain, and (2) development of two
improved nonlinear fluid damping models to capture
amplitude sensitive responses to both steady-state sinu-
soidal and transient, “step-like” displacement excita-
tions. An overview of the models utilized or developed
in this paper is given in Table 1. Figure 5 displays

frequency and time domain responses of the baseline’
(Model 0) which was recently developed, highlights the
insufficiency of the damping characterization.

Quasi-linear model (1)

The quasi-linear modeling approach is based on an
adaptation of the linear time-invariant system theory to
capture amplitude sensitivity. Each parameter of the
quasi-linear model assumes a value which may vary
with the excitation amplitude. The governing equations
of the linear system of Figure 1 are defined as

Cipr = ApX —qi — qo (3a)
Copy = — Apx +qi + qo (3b)
Ligi = pr — p2 — Rigi (3¢)
p1—p2 = Roqo, (3d)
Fy=A4,(p1 — p2) (3¢)
F.=kx+c¢x (3)

Taking the Laplace transform of these equations and
consolidating gives the dynamic stiffness transfer
function

a3s3 + azs2 + ais + ay

2 + ass + ay

where
ay = 2k, % -
wohe (? : RfC) ’ 2_21; (5¢)
o (5d)
" % (5e)
-2

Since this approach is very similar to the prior work,*’
details of parameter estimation are not given here.

The dynamic stiffness spectra of Model I are com-
pared with measurements in terms of magnitude and
phase in Figure 6 for all three excitation amplitudes,
showing good agreement. The quasi-linear model from

Table I. Overview of nonlinear and quasi-linear models of hydraulic bushing.

Model Type Method or feature

0 NL Baseline’

I QL With curve-fit coefficients from dynamic stiffness measurement (in Laplace domain)
I NL Transitional flow in the inertia track

i NL Transitional flow in the inertia track and leakage path

NL: nonlinear; QL: quasi-linear.
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Figure 5. State of the art for nonlinear, lumped-parameter
hydraulic bushing formulations (Model 0 as described in Table I)
in the (a) frequency and (b) time domains, showing moderate
agreement with measurement. Note, in particular, that the
formulation has insufficient fidelity to capture the decay of
oscillations in the transient response. Key: —— measurement;
=== model 0.

Q (Hz)

Figure 6. Results of the quasi-linear formulation (Model I) in
terms of the dynamic stiffness magnitude and loss angle spectra
when compared with measurements at multiple amplitudes: (a)
0.1 mm peak-to-peak; (b) 1.0 mm peak-to-peak; (c) 2.0 mm
peak-to-peak. Key: —— Model I; === Model | with R, — %;

® measurement.

Fredette et al.” (which is equivalent to model I as
R, — ) is also compared. However, it may not be

Table 2. Quantification of error associated with the quasi-
linear formulation (Model I) when compared with the dynamic
stiffness measurement.

Excitation RMS error, g RMS error for Model |
amplitude (mm) for Model | when R, — ®

0.1 0.0252 0.0469

1.0 0.0198 0.0394

2.0 0.0167 0.0478

RMS: root mean squared.

clear from the plot whether the inclusion of the R, ele-
ment provides any improvement. A root-mean-squared
(RMS) error definition quantifies the error for this
model, where k&, is the static stiffness,

1 . -2
& = N—/C§2|KI_KM| (6)

Table 2 contains the RMS error of each model at all
three amplitudes. Observe that the error of Model I is
reduced with a finite value of R,.

Although Model I captures the dynamic stiffness
behavior of hydraulic bushings with relatively high
accuracy (compared with measurements), its effective-
ness is largely confined to the frequency domain. This
is demonstrated by calculating the response of Model I
to a step-like input. The excitation of equation (2) may
be expressed in the Laplace domain

X
o) = D)

(7)
yielding the following transmitted force

Fy(1) = L7HKi(5)Xu(5)} (8)

where the inverse Laplace transform is defined as

L7X(s)} = ZLm r " X(s)ds 9)

as long as all singular points of X(s) have negative
real parts. For the sake of brevity, F;(¢)is plotted in
Figure 7 rather than explicitly defining the analytical
expression. It is immediately clear that Model I does
not capture the salient physics of the hydraulic bushing
under transient excitation.

Nonlinear fluid system elements
Nonlinear fluid compliance

The fluid compliance of the pumping chambers
employs the nonlinear formulation used in the prior lit-
erature®’ for this device

C(1) = Bop*(1) + Bup(1) + Bo.

where p(f) is the dynamic pressure in the chamber and
the B coefficients are experimentally obtained. This

(10)
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- Ap(t) = 1 +0.0434—R;(t (¢ 12
RN i) = 2 LRO)a() (12
< D e
O] ‘,' v where R; is the Reynolds number in the inertia track, p
. A v is the fluid density, and A is the pipe’s cross-sectional

0 0.1 02 03 (hydraulic) area
s 2 (b)
=
< /’\\ D il
< e Rilt) = pDilqi(1)] (13)
S 0 :I' /“LAI
= v
- 0 01 0.2 0.3 When the Reynolds number increases beyond a certain
threshold, R, the flow condition transitions to turbu-
=S 2 (0 lent flow. For a smooth pipe, this transition occurs
fe 1 ; & around R; r = 2000 — 4000, but this number may be
S0 v lower for a rougher pipe wall or when the pipe geome-
& .
-1 try is more complex. The pressure drop due to the
0 0.1t © 0.2 03 developed turbulent flow is given by'°

Figure 7. Time domain responses of quasi-linear formulation
(Model I) to “step-like” excitations of multiple amplitudes: (a)
0.1 mm step height; (b) 1.0 mm step height; (c) 2.0 mm step
height. Key: —— measurement; ==~ Model I.

element enhances the characterization of the structural-
fluid interaction in the example, particularly given its
sensitivity to the excitation amplitude.

Transitional flow in the inertia track
(models Il and Ill)

In the prior literature, characterization of the fluid
resistance in the inertia track of a hydraulic bushing
has assumed classical flow conditions, such as the fully
developed laminar flow in a capillary tube' > or turbu-
lent flow in a long duct.®® While these provide a base-
line to approximate the flow condition in the inertia
track of a hydraulic bushing, the combination of com-
plex geometry and dynamic excitation suggest that an
improved fluid resistance model would be necessary to
adequately describe the physics of both the sinusoidal
and transient excitations.

For a steady flow at low velocities in a long pipe
(with L >> D), Newtonian fluids tend to follow the
well-known Hagen—Poiseuille law'®

_128uL
wD?*

Ap(t) q(1) (11)
Where Ap(¢) is the dynamic pressure difference between
the two fluid chambers, w is the dynamic viscosity of
the fluid, L and D are the length and hydraulic diameter
of the pipe, respectively, and ¢ is the dynamic volu-
metric flow rate. This formulation can be improved by
the addition of another term which includes the losses
due to sharp-edged entrance/exit effects, as well as the
effect of accelerating fluid while the velocity profile is
developing'

0.25 0.75Li
Ap(t) = 0.242%(1}‘75(1)

1

(14)

for Reynolds numbers in excess of the transitional
value.

Under dynamic excitation, the exact flow condition
would be very difficult to ascertain, so approximations
must be made using engineering assumptions. For
dynamic flow which spans the laminar, transitional,
and turbulent regimes, all regimes must be included in
the model to improve fluid damping predictions. This is
accomplished by using equation (10) for low Reynolds
numbers, equation (12) for high Reynolds numbers,
and a smoothened switching function near the transi-
tion. Pressure drop in the inertia track is defined by

Ap(1) = Ri(qi(1))qi(1) (15)
where R;(¢) is the transitional, nonlinear fluid
resistance:

128&,’1,U,L,' D
Ri(t)= ———— 1 + 0.0434—=R,(¢
(0 = Fon( L)
0.25 ,0.75
0242010 f Lilgi(0)*7 (16)
— Banli (1 1 0.04342R,(1))
u(lqi(0)], gi.1> 071)
using the smooth switching function
1 + tanh(o(g — qr
ulg.gr.) = (ta — ar) (17)

Here, the «; coefficients are the well-known correction
factors to account for additional losses (1<a;<1.5)
and o; is an empirical smoothing factor which controls
the width of the transition region between the laminar
and turbulent flow conditions. Figure 8 depicts the
fluid resistance over a range of applicable Reynolds
numbers in all three flow regimes.
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Figure 8. lllustration of proposed nonlinear fluid resistance
model of the inertia track that captures laminar, transitional, and
turbulent flow regimes. Here, R; is the Reynolds number. Key:
—— modified laminar flow formulation; === turbulent flow
formulation; = w m transitional flow formulation.

Leakage path (model Ill)

Some hydraulic bushings have an intentional design
feature which opens a bleed (or unintentional leakage)
path between the two pumping chambers when a suffi-
ciently large pressure differential builds up. This would
allow fluid to bypass the tuned dynamics of the inertia
track. In the example of hydraulic bushing used in this
paper, a thin rubber wall separates the two chambers,
and it may bend over and allow flow to pass by if the
relative pressure difference between the chambers
exceeds (say) 200 kPa quasi-statically. Under dynamic
loading conditions, this value might be lower. Since the
leakage path resembles a thin crack as the seal between
the two chambers begins to fail, the leakage path is
assumed to be a slit-like orifice of rectangular cross-sec-
tion. The cross-sectional dimensions of this slit are
assumed to be 300 times smaller than the inertia track
to simulate the leakage path. Since this path is a very
short, inertial effects are negligible. Kim and Singh''
have experimentally and computationally examined the
parallel leakage paths in hydraulic engine mounts and
thus their significance in influencing the frequency
domain properties is somewhat understood in the con-
text of an engine mounting system.

The fluid resistance of the leakage path within the
bushing, like that of the inertia track, depends on
whether the flow regime is laminar, turbulent, or in the
transition. The flow condition in the orifice (given by

subscript o) is determined by the value of the Reynolds
number

_ pDo|q,(1)]

o (18)

Ro(t)
where D, is the hydraulic diameter of the leakage path,
and A, is its cross-sectional area. The transitional
Reynolds number for an orifice is'°

0.611\°
e (45

where & is called the laminar flow coefficient; typically,
6 =0.16 for a sharp-edged slit-like orifice. Figure 9
depicts the nature of the laminar and turbulent flow
through an orifice. The pressure drop due to the lami-
nar flow is given by

"
Ap(1) = mqo(l)

(19)

(20)

while the pressure drop due to the turbulent flow is
defined by

p(m+2)7° ,

M) = P2 gk (1)
Combining these with the smoothed switching function
(where o, is the transition smoothing coefficient for the
leakage path), the fluid resistance for transitional flow

in the leakage path is formulated as follows

v
Ru )= ——
(1) 28°D, A,
(m +2)° ®
+ A 1 40 ()t T T 0[) 0. bl [
(p 2 g0 ()] DA u(qo(t)s Go. 7, 05)

(22)

Figure 10 contains a plot of leakage path resistance ver-
sus Reynolds number, comparing laminar, turbulent,
and transitional flow models.

Nonlinear simulation in time and
frequency domains
The governing equations (3a, b, c, d, e) for the fluid

subsystem of the hydraulic bushing are numerically
integrated in the time domain using a Runge-Kutta

o m

@

No
>

I

(b)

Figure 9. Qualitative representation of (a) laminar and (b) turbulent flow through the leakage path.
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Figure 10. Proposed nonlinear fluid resistance model of the
leakage path that captures laminar, transitional, and turbulent
flow regimes. Key: —— modified laminar flow formulation;
=== turbulent flow formulation; = = » transitional flow
formulation.

solver in Matlab.'> Model II modifies equation (3c)
to include the transitional flow resistance model
R; = Ri(q;), and equation (3d) such that R, — o°.
Model IIT also includes the transitional flow in the
leakage path. Accordingly, the effects of each nonlinear
dissipative element may be studied as well as interac-
tions among them.

Both the steady-state harmonic and transient (step
response) simulations use the same equations, model
parameters, and integration method. For the sinusoidal
excitation, 40 periods are simulated at each frequency
to allow the steady state to emerge. Then a sine wave
(represented in the complex domain as Fy(Q)) is curve-
fit to the integrated signal to remove any harmonic
distortion from the nonlinear model. The forces trans-
mitted through both paths are combined, and the
complex-valued dynamic stiffness at any frequency is
calculated

co) - Q)+ F(Q)
k(@) = = (23)
The final state after each frequency is used as the ini-
tial condition for the next frequency. This way, a true
stepped frequency sweep over the desired bandwidth
(in this case, up to 50 Hz) is simulated in an efficient
manner. For the transient excitation, no post-
processing is necessary, and thus the simulation out-
puts the transmitted force in the time domain as,
F(1) = F (1) + Ffa).

The dynamic simulation results for Model III are
compared with measurements and the results of prior
lumped-parameter models (via Model 0) are shown in
Figure 11 for both large and small amplitudes of exci-
tation. Model III’s improved damping characteriza-
tion enhances dynamic predictions over the work
reported previously’ in both the time and frequency
domains, bringing a degree of consistency to the mini-
mal order modeling approach. Furthermore, the new
nonlinear model predicts dynamic responses over a

0 . . . 3
-0.1 0 0.1 0.2 0.3 0.4 0.5
1(s)
Figure 1 1. Improved simulation results for (a) 0. mm and (b)

2.0 mm peak-to-peak sinusoidal excitation in the frequency
domain as well as (c) 0.1 mm and (d) 2.0 mm step excitation in
the time domain. Model lll is compared with the prior lumped-
parameter models (Model 0) and measurements, showing a
marked improvement in the damping characterization.

Key: —— measurement; ——-— Model 07; ==+ Model Il

wide range of amplitudes, suggesting that the relevant
physics have been well duplicated from the engineer-
ing design perspective.

Some physical insight may be gained into the func-
tioning of a hydraulic bushing by examining the new
nonlinear elements separately so as to rank-order their
significance. For this example case, one particular non-
linearity tends to dominate the damping effects, as
demonstrated by the comparison of Models 0, 11, and
IIT in Figure 12. Here, the aggregate effect of both the
nonlinear elements (from inertia track and leakage
paths) produces a response which is nearly identical to
the model without a leakage path (Model II). This
effect is consistent across both the time and frequency
domains and at both high and low amplitudes. This
does not imply, however, that the leakage path is negli-
gible. Although the difference between Models II and
III may be subtle, the leakage path has a significant
effect on the amplitude dependence. Figure 13 shows
the effect of adding a transitional flow based leakage
path to Model 0. Although the introduction of a leak-
age path is ineffective at improving low-amplitude
characterization, the high-amplitude predictions are
nearly as accurate as Model III. This suggests that
although the inertia track is the dominant nonlinearity
(particularly at the lower amplitudes), an interaction
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Figure 12. Comparison between the nonlinear models in
terms of dynamic stiffness magnitude for (a) 0. mm and (b) 2.0
mm peak-to-peak excitation amplitudes and in terms of step
response for (c) 0.1 mm and (d) 2.0 mm step height. Key: ===
Model 0’; — Model II; Model III.

exists between the nonlinear features of the device.
Therefore, the leakage path should not be ignored.

Finally, Figure 14 displays the time varying nature
of the fluid resistance of the inertia track R;(¢) and
leakage path R,(7) as they vary across an order of mag-
nitude for a 2.0 mm excitation amplitude; however,
both differ only by about a factor of two for a 0.1 mm
excitation amplitude. It should be noted that in general,
the values of R,(f) are approximately two orders of
magnitude larger than R;(¢). Much lower values of
resistance cause more dynamic or oscillating flow to
occur through the inertia track, offering a further rea-
son why the inertia track resistance is the dominant
nonlinear element.

Conclusion

Prediction of amplitude dependent dynamic behavior
in hydraulic bushings requires significant due diligence,
especially when both the frequency and time domain
responses are of simultaneous interest. This is evident
from certain sensitivities to response under the transient
excitation which may be hidden (or just overlooked) in
frequency domain studies. Capturing amplitude sensi-
tive behavior for both steady-state sinusoidal and tran-
sient excitations requires in-depth characterization of
not only the fluid compliance and inertia track

Figure 13. Result of introducing the nonlinear transitional flow
resistance in the leakage path element in the absence of more
dominant nonlinear features. This demonstrates a significant,
amplitude-dependent effect in terms of both dynamic stiffness
magnitude at (a) 0.1 mm and (b) 2.0 mm peak-to-peak excitation
amplitudes and transient response for (c) 0.1 mm and (d) 2.0
mm step amplitudes. Key: —— measurement; === baseline
Model 07; Model 0 with new transitional flow leakage path.

properties, but also their resistance characteristics. This
paper investigated two dissipative mechanisms in a
hydraulic bushing, and proposed a new or improved
fluid resistance model based on laminar, turbulent, and
transitional flow in both the inertia track and a leakage
path between the two pumping chambers. A relatively
high degree of accuracy is achieved by a nonlinear,
lumped parameter model which includes both of these
damping mechanisms, and improved insights are
obtained. Although the inertia track resistance remains
the dominant damping feature in hydraulic bushings,
the leakage path is found to contribute to the damping
as well, particularly at the higher amplitudes. Similar
nonlinear analysis could be extended to other hydraulic
devices (such as engine or vehicle body mounts'® and
shock absorbers'*) whose properties would depend on
instantaneous or oscillating flow conditions. Finally,
this article adds to the body of literature on hydraulic
bushing models' **® and in particular extends the
recent work of Chai et al.® Since minimal attention is
given to the role played by rubber path damping in
these publications (including this article), future work
should be directed towards giving a careful examination
of the elastomer characteristics.
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Figure 14. Time varying, nonlinear, transitional flow fluid resistance in the inertia track under (a) transient step and (b) steady-state
sinusoidal excitation and in the leakage path under (c) step and (d) sinusoidal excitation. Key: —— 0. mm excitation amplitude
(peak-to-peak or step height); === 2.0 mm excitation amplitude.
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Appendix |

Notation

0,L 11,111  model designations

A, effective pumping (force) area
a transfer function coefficient
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fluid compliance

viscous damping coefficient
hydraulic diameter
transmitted force
dynamic stiffness

static stiffness

fluid inertance

Laplace transform

length of fluid passage
number of points
pressure

volumetric flow rate

fluid resistance

Reynolds number
Laplace domain variable
time

smoothened step function

Laplace transform of displacement

displacement of inner sleeve
empirical parameters
laminar flow coefficient
error

o0I™E

Subscripts

T N> e 3 e

Abbreviation
RMS

dynamic viscosity

fluid density

time constant

excitation frequency (Hz)

amplitude (peak-to-peak or step height)
fluid path

inertia track

measured

leakage path

rubber path

static

laminar-turbulent transition

transient excitation

root mean squared



