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Abstract

We introduce a new dataset for joint reason-
ing about natural language and images, with a
focus on semantic diversity, compositionality,
and visual reasoning challenges. The data con-
tains 107,292 examples of English sentences
paired with web photographs. The task is
to determine whether a natural language cap-
tion is true about a pair of photographs. We
crowdsource the data using sets of visually
rich images and a compare-and-contrast task
to elicit linguistically diverse language. Quali-
tative analysis shows the data requires compo-
sitional joint reasoning, including about quan-
tities, comparisons, and relations. Evaluation
using state-of-the-art visual reasoning meth-
ods shows the data presents a strong challenge.

1 Introduction

Visual reasoning with natural language is a
promising avenue to study compositional seman-
tics by grounding words, phrases, and complete
sentences to objects, their properties, and rela-
tions in images. This type of linguistic reason-
ing is critical for interactions grounded in visually
complex environments, such as in robotic appli-
cations. However, commonly used resources for
language and vision (e.g., Antol et al., 2015; Chen
et al., 2016) focus mostly on identification of ob-
ject properties and few spatial relations (Section 4;
Ferraro et al., 2015; Alikhani and Stone, 2019).
This relatively simple reasoning, together with bi-
ases in the data, removes much of the need to
consider language compositionality (Goyal et al.,
2017). This motivated the design of datasets that
require compositional1 visual reasoning, including

∗Contributed equally.
† Work done as an undergraduate at Cornell University.

1In parts of this paper, we use the term compositional dif-
ferently than it is commonly used in linguistics to refer to
reasoning that requires composition. This type of reasoning
often manifests itself in highly compositional language.

The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing.

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

Figure 1: Two examples from NLVR2. Each caption
is paired with two images.2 The task is to predict if
the caption is True or False. The examples require
addressing challenging semantic phenomena, includ-
ing resolving twice . . . as to counting and comparison
of objects, and composing cardinality constraints, such
as at least two dogs in total and exactly two.3

NLVR (Suhr et al., 2017) and CLEVR (Johnson
et al., 2017a,b). These datasets use synthetic im-
ages, synthetic language, or both. The result is
a limited representation of linguistic challenges:
synthetic languages are inherently of bounded ex-
pressivity, and synthetic visual input entails lim-
ited lexical and semantic diversity.

We address these limitations with Natural Lan-
guage Visual Reasoning for Real (NLVR2), a new
dataset for reasoning about natural language de-
scriptions of photos. The task is to determine if a
caption is true with regard to a pair of images. Fig-
ure 1 shows examples from NLVR2. We use im-

2Appendix G contains license information for all pho-
tographs used in this paper.

3The top example is True, while the bottom is False.



ages with rich visual content and a data collection
process designed to emphasize semantic diversity,
compositionality, and visual reasoning challenges.
Our process reduces the chance of unintentional
linguistic biases in the dataset, and therefore the
ability of expressive models to take advantage of
them to solve the task. Analysis of the data shows
that the rich visual input supports diverse lan-
guage, and that the task requires joint reasoning
over the two inputs, including about sets, counts,
comparisons, and spatial relations.

Scalable curation of semantically-diverse sen-
tences that describe images requires addressing
two key challenges. First, we must identify images
that are visually diverse enough to support the type
of language desired. For example, a photo of a
single beetle with a uniform background (Table 2,
bottom left) is likely to elicit only relatively sim-
ple sentences about the existence of the beetle and
its properties. Second, we need a scalable process
to collect a large set of captions that demonstrate
diverse semantics and visual reasoning.

We use a search engine with queries designed
to yield sets of similar, visually complex pho-
tographs, including of sets of objects and activi-
ties, which display real-world scenes. We anno-
tate the data through a sequence of crowdsourcing
tasks, including filtering for interesting images,
writing captions, and validating their truth values.
To elicit interesting captions, rather than present-
ing workers with single images, we ask workers
for descriptions that compare and contrast four
pairs of similar images. The description must be
True for two pairs, and False for the other two
pairs. Using pairs of images encourages language
that composes properties shared between or con-
trasted among the two images. The four pairs are
used to create four examples, each comprising an
image pair and the description. This setup ensures
that each sentence appears multiple times with
both labels, resulting in a balanced dataset robust
to linguistic biases, where a sentence’s truth value
cannot be determined from the sentence alone,
and generalization can be measured using multi-
ple image-pair examples.

This paper includes four main contributions:
(1) a procedure for collecting visually rich im-
ages paired with semantically-diverse language
descriptions; (2) NLVR2, which contains 107,292
examples of captions and image pairs, includ-
ing 29,680 unique sentences and 127,502 im-

ages; (3) a qualitative linguistically-driven data
analysis showing that our process achieves a
broader representation of linguistic phenomena
compared to other resources; and (4) an evalu-
ation with several baselines and state-of-the-art
visual reasoning methods on NLVR2. The rel-
atively low performance we observe shows that
NLVR2 presents a significant challenge, even
for methods that perform well on existing vi-
sual reasoning tasks. NLVR2 is available at
http://lil.nlp.cornell.edu/nlvr/.

2 Related Work and Datasets

Language understanding in the context of im-
ages has been studied within various tasks, includ-
ing visual question answering (e.g., Zitnick and
Parikh, 2013; Antol et al., 2015), caption gener-
ation (Chen et al., 2016), referring expression res-
olution (e.g., Mitchell et al., 2010; Kazemzadeh
et al., 2014; Mao et al., 2016), visual entail-
ment (Xie et al., 2019), and binary image selec-
tion (Hu et al., 2019). Recently, the relatively sim-
ple language and reasoning in existing resources
motivated datasets that focus on compositional
language, mostly using synthetic data for language
and vision (Andreas et al., 2016; Johnson et al.,
2017a; Kuhnle and Copestake, 2017; Kahou et al.,
2018; Yang et al., 2018).4 Three exceptions are
CLEVR-Humans (Johnson et al., 2017b), which
includes human-written paraphrases of generated
questions for synthetic images; NLVR (Suhr et al.,
2017), which uses human-written captions that
compare and contrast sets of synthetic images; and
GQA (Hudson and Manning, 2019), which uses
synthetic language grounded in real-world pho-
tographs. In contrast, we focus on both human-
written language and web photographs.

Several methods have been proposed for com-
positional visual reasoning, including modular
neural networks (e.g., Andreas et al., 2016; John-
son et al., 2017b; Perez et al., 2018; Hu et al.,
2017; Suarez et al., 2018; Hu et al., 2018; Yao
et al., 2018; Yi et al., 2018) and attention- or
memory-based methods (e.g., Santoro et al., 2017;
Hudson and Manning, 2018; Tan and Bansal,
2018). We use FiLM (Perez et al., 2018),
N2NMN (Hu et al., 2017), and MAC (Hudson
and Manning, 2018) for our empirical analysis.

In our data, we use each sentence in multiple

4A tabular summary of the comparison of NLVR2 to ex-
isting resources is available in Table 7, Appendix A.

http://lil.nlp.cornell.edu/nlvr/


examples, but with different labels. This is re-
lated to recent visual question answering datasets
that aim to require models to consider both im-
age and question to perform well (Zhang et al.,
2016; Goyal et al., 2017; Li et al., 2017; Agrawal
et al., 2017, 2018). Our approach is inspired by the
collection of NLVR, where workers were shown
a set of similar images and asked to write a sen-
tence True for some images, but False for the
others (Suhr et al., 2017). We adapt this method
to web photos, including introducing a process to
identify images that support complex reasoning
and designing incentives for the more challenging
writing task.

3 Data Collection

Each example in NLVR2 includes a pair of im-
ages and a natural language sentence. The task
is to determine whether the sentence is True or
False about the pair of images. Our goal is to
collect a large corpus of grounded semantically-
rich descriptions that require diverse types of rea-
soning, including about sets, counts, and compar-
isons. We design a process to identify images that
enable such types of reasoning, collect grounded
natural language descriptions, and label them as
True or False. While we use image pairs, we do
not explicitly set the task of describing the differ-
ences between the images or identifying which im-
age matches the sentence better (Hu et al., 2019).
We use pairs to enable comparisons and set rea-
soning between the objects that appear in the two
images. Figure 2 illustrates our data collection
procedure. For further discussion on the design
decisions for our task and data collection imple-
mentation, please see appendices A and B.

3.1 Image Collection

We require sets of images where the images in
each set are detailed but similar enough such that
comparison will require use of a diverse set of
reasoning skills, more than just object or prop-
erty identification. Because existing image re-
sources, such as ImageNet (Russakovsky et al.,
2015) or COCO (Lin et al., 2014), do not pro-
vide such grouping and mostly include relatively
simple object-focused scenes, we collect a new set
of images. We retrieve sets of images with sim-
ilar content using search queries generated from
synsets from the ILSVRC2014 ImageNet chal-
lenge (Russakovsky et al., 2015). This correspon-

dence to ImageNet synsets allows researchers to
use pre-trained image featurization models, and
focuses the challenges of the task not on object de-
tection, but compositional reasoning challenges.

ImageNet Synsets Correspondence We iden-
tify a subset of the 1,000 synsets in ILSVRC2014
that often appear in rich contexts. For example,
an acorn often appears in images with other
acorns, while a seawall almost always ap-
pears alone. For each synset, we issue five queries
to the Google Images search engine5 using query
expansion heuristics. The heuristics are designed
to retrieve images that support complex reasoning,
including images with groups of entities, rich en-
vironments, or entities participating in activities.
For example, the expansions for the synset acorn
will include two acorns and acorn fruit.
The heuristics are specified in Table 1. For each
query, we use the Google similar images tool for
each of the first five images to retrieve the seven
non-duplicate most similar images. This results
in five sets of eight similar images per query,6 25
sets in total. If at least half of the images in a set
were labeled as interesting according to the cri-
teria in Table 2, the synset is awarded one point.
We choose the 124 synsets with the most points.7

The 124 synsets are distributed evenly among an-
imals and objects. This annotation was performed
by the first two authors and student volunteers, is
only used for identifying synsets, and is separate
from the image search described below.

Image Search We use the Google Images search
engine to find sets of similar images (Figure 2a).
We apply the query generation heuristics to the
124 synsets. We use all synonyms in each
synset (Deng et al., 2014; Russakovsky et al.,
2015). For example, for the synset timber
wolf, we use the synonym set {timber wolf,
grey wolf, gray wolf, canis lupus }.
For each generated query, we download sets con-
taining at most 16 related images.

Image Pruning We use two crowdsourcing
tasks to (1) prune the sets of images, and (2) con-
struct sets of eight images to use in the sentence-
writing phase. In the first task, we remove low-

5https://images.google.com/
6At the time of publication, the similar images tool is

available at the “View more” link in the list of related images
after expanding the results for each image. Images are ranked
by similarity, where more similar images appear higher.

7We pick 125 and remove one set due to high image prun-
ing rate in later stages.

https://images.google.com/


(a) Find Sets of Images: The query two acorns is issued to the search engine. The leftmost image appears in the list of
results. The Similar Images tool is used to find a set of images, shown on the right, similar to this image.

🔍 two acorns        

✔

✔

One image shows exactly two 
brown acorns in back-to-back 
caps on green foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘

Not Interesting

✘

Reordered
Images

Not Interesting Not Interesting

(b) Image Pruning: Crowdworkers are given the synset name and identify low-quality images to be removed. In this example,
one image is removed because it does not show an instance of the synset acorn.

🔍 two acorns        

✔

✔

One image shows exactly two 
brown acorns in back-to-back 
caps on green foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘

Not Interesting

✘

Reordered
Images

Not Interesting Not Interesting(c) Set Construction: Crowdworkers decide whether each of the remaining images is interesting. In this example, three images
are marked as non-interesting (top row) because they contain only a single instance of the synset. The images are re-ordered
(bottom row) so that interesting images appear before non-interesting images, and the top eight images are used to form the set.
In this example, the set is formed using the leftmost eight images.

🔍 two acorns        

✔

✔

One image shows exactly two 
brown acorns in back-to-back 
caps on green foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘

Not Interesting

✘

Reordered
Images

Not Interesting Not Interesting

🔍 two acorns        

✔

✔

One image shows exactly two 
brown acorns in back-to-back 
caps on green foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘

Not Interesting

✘

Reordered
Images

Not Interesting Not Interesting

(d) Sentence Writing: The images in the set are randomly paired and shown to the worker. The worker selects two pairs, and
writes a sentence that is True for the two selected pairs but False for the other two pairs.

🔍 two acorns        

✔

✔

One image shows exactly two 
brown acorns in back-to-back 
caps on green foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘

Not Interesting

✘

Reordered
Images

Not Interesting Not Interesting

(e) Validation: Each pair forms an example with the written sentence. Each example is shown to a worker to re-label.

🔍 two acorns        

✔

✔

One image shows exactly two 
brown acorns in back-to-back 
caps on green foliage.

One image shows exactly 
two brown acorns in back-to-
back caps on green foliage. ✔

True 
False

✘

Not Interesting

✘

Reordered
Images

Not Interesting Not Interesting

Figure 2: Diagram of the data collection process, showing how a single example from the training set is constructed.
Steps (a)–(c) are described in Section 3.1; step (d) in Section 3.2; and step (e) in Section 3.3.

quality images from each downloaded set of sim-
ilar images (Figure 2b). We display the image set
and the synset name, and ask a worker to remove
any images that do not load correctly; images that
contain inappropriate content, non-realistic art-
work, or collages; or images that do not contain
an instance of the corresponding synset. This re-
sults in sets of sixteen or fewer similar images. We
discard all sets with fewer than eight images.

The second task further prunes these sets
by removing duplicates and down-ranking non-
interesting images (Figure 2c). The goal of this
stage is to collect sets that contain enough inter-
esting images. Workers are asked to remove du-
plicate images, and mark images that are not in-

teresting. An image is interesting if it fits any
of the criteria in Table 2. We ask workers not to
mark an image if they consider it interesting for
any other reason. We discard sets with fewer than
three interesting images. We sort the images in de-
scending order according to first interestingness,
and second similarity, and keep the top eight.

3.2 Sentence Writing

Each set of eight images is used for a sentence-
writing task. We randomly split the set into four
pairs of images. Using pairs encourages compar-
ison and set reasoning within the pairs. Workers
are asked to select two of the four pairs and write
a sentence that is True for the selected pairs, but



Heuristic Examples
(synset synonym→ query)

Description

Quantities cup→ group of cups Add numerical phrases or manually-identified collective nouns to
the synonym. These queries result in images containing multiple
examples of the synset.

Hypernyms flute→ flute woodwind Add direct or indirect hypernyms from WordNet (Miller, 1993).
Applied only to the non-animal synsets. This heuristic increases
the diversity of images retrieved for the synset (Deng et al., 2014).

Similar words banana→ banana pear Add concrete nouns whose cosine similarity with the synonym
is greater than 0.35 in the embedding space of Google News
word2vec embeddings (Mikolov et al., 2013). Applied only to non-
animal synsets. These queries result in images containing a variety
of different but related object types.

Activities beagle→ beagles eating Add manually-identified verbs describing common activities of an-
imal synsets. Applied only to animal synsets. This heuristic results
in images of animals participating in activities, which encourages
captions with a diversity of entity properties.

Table 1: The four heuristics used to generate search queries from synsets.

Positive Examples and Criteria

Contains more than one in-
stance of the synset.

Shows an instance of the synset
interacting with other objects.

Shows an instance of the synset
performing an activity.

Displays a set of diverse objects
or features.

Negative Examples

Table 2: Positive and negative examples of interesting
images.

False for the unselected pairs. Allowing work-
ers to select pairs themselves makes the sentence-
writing task easier than with random selection,
which may create tasks that are impossible to com-
plete. Writing requires finding similarities and
differences between the pairs, which encourages
compositional language (Suhr et al., 2017).

In contrast to the collection process of NLVR,
using real images does not allow for as much con-
trol over their content, in some cases permitting
workers to write simple sentences. For example, a
worker could write a sentence stating the existence

of a single object if it was only present in both se-
lected pairs, which is avoided in NLVR by con-
trolling for the objects in the images. Instead, we
define more specific guidelines for the workers for
writing sentences, including asking to avoid sub-
jective opinions, discussion of properties of pho-
tograph, mentions of text, and simple object iden-
tification. We include more details and examples
of these guidelines in Appendix B.

3.3 Validation

We split each sentence-writing task into four ex-
amples, where the sentence is paired with each
pair of images. Validation ensures that the selec-
tion of each image pair reflects its truth value. We
show each example independently to a worker, and
ask them to label it as True or False. The worker
may also report the sentence as nonsensical. We
keep all non-reported examples where the valida-
tion label is the same as the initial label indicated
by the sentence-writer’s selection. For example, if
the image pair is initially selected during sentence-
writing, the sentence-writer intends the sentence
to be True for the pair, so if the validation label is
False, this example is removed.

3.4 Splitting the Dataset

We assign a random 20% of the examples pass-
ing validation to development and testing, ensur-
ing that examples from the same initial set of eight
images do not appear across the split. For these ex-
amples, we collect four additional validation judg-
ments to estimate agreement and human perfor-
mance. We remove from this set examples where
two or more of the extra judgments disagreed with
the existing label (Section 3.3). Finally, we create



True

False

One image contains a single vulture
in a standing pose with its head and
body facing leftward, and the other
image contains a group of at least
eight vultures.

There are two trains in total traveling
in the same direction.

There are more birds in the image
on the left than in the image on the
right.

Table 3: Six examples with three different sentences from NLVR2. For each sentence, we show two examples
using different image-pairs, each with a different label.

equal-sized splits for a development set and two
test sets, ensuring that original image sets do not
appear in multiple splits of the data (Table 4).

3.5 Data Collection Management

We use a tiered system with bonuses to encourage
workers to write linguistically diverse sentences.
After every round of annotation, we sample exam-
ples for each worker and give bonuses to work-
ers that follow our writing guidelines well. Once
workers perform at a sufficient level, we allow
them access to a larger pool of tasks. We also use
qualification tasks to train workers. The mean cost
per unique sentence in our dataset is $0.65; the
mean cost per example is $0.18. Appendix B pro-
vides additional details about our bonus system,
qualification tasks, and costs.

3.6 Collection Statistics

We collect 27,678 sets of related images and a to-
tal of 387,426 images (Section 3.1). Pruning low-
quality images leaves 19,500 sets and 250,862 im-
ages. Most images are removed for not containing
an instance of the corresponding synset or for be-
ing non-realistic artwork or a collage of images.
We construct 17,685 sets of eight images each.

We crowdsource 31,418 sentences (Sec-
tion 3.2). We create two writing tasks for each
set of eight images. Workers may flag sets of
images if they should have been removed in
earlier stages; for example, if they contain dupli-
cate images. Sentence-writing tasks that remain
without annotation after three days are removed.

During validation, 1,875 sentences are reported
as nonsensical. 108,516 examples pass validation;
i.e., the validation label matches the initial selec-

Unique sentences Examples
Train 23,671 86,373
Development 2,018 6,982
Test-P 1,995 6,967
Test-U 1,996 6,970
Total 29,680 107,292

Table 4: NLVR2 data splits.

tion for the pair of images (Section 3.3). Remov-
ing low-agreement examples in the development
and test sets yields a dataset of 107,292 examples,
127,502 unique images, and 29,680 unique sen-
tences. Each unique sentence is paired with an av-
erage of 3.6 pairs of images. Table 3 shows exam-
ples of three unique sentences from NLVR2. Ta-
ble 4 shows the sizes of the data splits, including
train, development, a public test set (Test-P), and
an unreleased test set (Test-U).

4 Data Analysis

We perform quantitative and qualitative analysis
using the training and development sets.

Agreement Following validation, 8.5% of the
examples not reported during validation are re-
moved due to disagreement between the valida-
tor’s label and the initial selection of the image
pair (Section 3.3).8 We use the five validation la-
bels we collect for the development and test sets to
compute Krippendorff’s α and Fleiss’ κ to mea-
sure agreement (Cocos et al., 2015; Suhr et al.,
2017). Before removing low-agreement examples

8The validator is the same worker as the sentence-writer
for 11.5% of examples. In these cases, the validator agrees
with themselves 96.7% of the time. For examples where the
sentence-writer and validator were not the same person, they
agree in 90.8% of examples.
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(Section 3.4), α = 0.906 and κ = 0.814. After
removal, α = 0.912 and κ = 0.889, indicating al-
most perfect agreement (Landis and Koch, 1977).

Synsets Each synset is associated with µ =
752.9 ± 205.7 examples. The five most common
synsets are gorilla, bookcase, bookshop,
pug, and water buffalo. The five least com-
mon synsets are orange, acorn, ox, dining
table, and skunk. Synsets appear in equal pro-
portions across the four splits.

Language NLVR2’s vocabulary contains 7,457
word types, significantly larger than NLVR, which
has 262 word types. Sentences in NLVR2 are
on average 14.8 tokens long, whereas NLVR
has a mean sentence length of 11.2. Figure 3
shows the distribution of sentence lengths com-
pared to related corpora. NLVR2 shows a simi-
lar distribution to NLVR, but with a longer tail.
NLVR2 contains longer sentences than the ques-
tions of VQA (Antol et al., 2015), GQA (Hudson
and Manning, 2019), and CLEVR-Humans (John-
son et al., 2017b). Its distribution is similar to
MSCOCO (Chen et al., 2015), which also contains
captions, and CLEVR (Johnson et al., 2017a),
where the language is synthetically generated.

We analyze 800 sentences from the develop-
ment set for occurrences of semantic and syntactic
phenomena (Table 5). We compare with the 200-
example analysis of VQA and NLVR from Suhr
et al. (2017), and 200 examples from the balanced
split of GQA. Generally, NLVR2 has similar lin-
guistic diversity to NLVR, showing broader repre-
sentation of linguistic phenomena than VQA and
GQA. One noticeable difference from NLVR is
less use of hard cardinality. This is possibly due
to how NLVR is designed to use a very limited set

of object attributes, which encourages writers to
rely on accurate counting for discrimination more
often. We include further analysis in Appendix C.

5 Estimating Human Performance

We use the additional labels of the development
and test examples to estimate human performance.
We group these labels according to workers. We
do not consider cases where the worker labels a
sentence written by themselves. For each worker,
we measure their performance as the proportion of
their judgements that matches the gold-standard
label, which is the original validation label. We
compute the average and standard deviation per-
formance over workers with at least 100 such ad-
ditional validation judgments, a total of 68 unique
workers. Before pruning low-agreement exam-
ples (Section 3.4), the average performance over
workers in the development and both test sets is
93.1±3.1. After pruning, it increases to 96.1±2.6.
Table 6 shows human performance for each data
split that has extra validations. Because this pro-
cess does not include the full dataset for each
worker, it is not fully comparable to our evalua-
tion results. However, it provides an estimate by
balancing between averaging over many workers
and having enough samples for each worker.

6 Evaluation Systems

We evaluate several baselines and existing visual
reasoning approaches using NLVR2. For all sys-
tems, we optimize for example-level accuracy.9

We measure the biases in the data using three
baselines: (a) MAJORITY: assign the most com-
mon label (True) to each example; (b) TEXT:
encode the caption using a recurrent neural net-
work (RNN; Elman, 1990), and use a multilayer
perceptron to predict the truth value; and (c) IM-
AGE: encode the pair of images using a convolu-
tional neural network (CNN), and use a multilayer
perceptron to predict the truth value. The latter
two estimate the potential of solving the task us-
ing only one of the two modalities.

We use two baselines that consider both lan-
guage and vision inputs. The CNN+RNN base-
line concatenates the encoding of the text and im-
ages, computed similar to the TEXT and IMAGE

baselines, and applies a multilayer perceptron to
predict a truth value. The MAXENT baseline com-
putes features from the sentence and objects de-

9System and learning details are available in Appendix E.



VQA GQA NLVR NLVR2 Example from NLVR2
(real) % % % %

Semantics

Cardinality (hard) 11.5 0 66 41.1
Six rolls of paper towels are enclosed in a plastic package
with the brand name on it.

Cardinality (soft) 1 0 23.6 22.5 No more than two cheetahs are present.
Existential 11.5 16.5 88 23.6 There are at most 3 water buffalos in the image pair.

Universal 1 4.5 7.5 16.8
In one image there is a line of fence posts with one large
darkly colored bird on top of each post.

Coordination 5 21.5 17 33.3
Each image contains only one wolf, and all images include
snowy backdrops.

Coreference 6.5 0.5 3 14.6
there are four or more animals very close to each other on
the grass in the image to the left.

Spatial Relations 42.5 43 66 49 A stylus is near a laptop in one of the images.

Comparative 1 2 3 8
There are more birds in the image on the right than in the
image on the left.

Presupposition 80 79 19.5 20.6 A cookie sits in the dessert in the image on the left.

Negation 1 2.5 9.5 9.6
The front paws of the dog in the image on the left are not
touching the ground.

Syntactic Ambiguity

CC Attachment 0 2.5 4.5 3.8
The left image shows a cream-layered dessert in a footed
clear glass which includes sliced peanut butter cups and
brownie chunks.

PP Attachment 3 6.5 23 11.5
At least one panda is sitting near a fallen branch on the
ground.

SBAR
Attachment 0 5 2 1.9

Balloons float in a blue sky with dappled clouds on strings
that angle rightward, in the right image.

Table 5: Linguistic analysis of sentences from NLVR2, GQA, VQA, and NLVR. We analyze 800 development sen-
tences from NLVR2 and 200 from each of the other datasets for the presence of semantic and syntactic phenomena
described in Suhr et al. (2017). We report the proportion of examples containing each phenomenon.

tected in the paired images. We detect the objects
in the images using a Mask R-CNN model (He
et al., 2017; Girshick et al., 2018) pre-trained on
the COCO detection task (Lin et al., 2014). We
use a detection threshold of 0.5. For each n-gram
with a numerical phrase in the caption and object
class detected in the images, we compute features
based on the number present in the n-gram and the
detected object count. We create features for each
image and for both together, and use these features
in a maximum entropy classifier.

Several recent approaches to visual reason-
ing make use of modular networks (Section 2).
Broadly speaking, these approaches predict a neu-
ral network layout from the input sentence by us-
ing a set of modules. The network is used to rea-
son about the image and text. The layout pre-
dictor may be trained: (a) using the formal pro-
grams used to generate synthetic sentences (e.g.,
in CLEVR), (b) using heuristically generated lay-
outs from syntactic structures, or (c) jointly with
the neural modules with latent layouts. Because
sentences in NLVR2 are human-written, no su-
pervised formal programs are available at train-
ing time. We use two methods that do not require

such formal programs: end-to-end neural module
networks (N2NMN; Hu et al., 2017) and feature-
wise linear modulation (FiLM; Perez et al., 2018).
For N2NMN, we evaluate three learning methods:
(a) N2NMN-CLONING: using supervised learn-
ing with gold layouts; (b) N2NMN-TUNE: using
policy search after cloning; and (c) N2NMN-RL:
using policy search from scratch. For N2NMN-
CLONING, we construct layouts from constituency
trees (Cirik et al., 2018). Finally, we eval-
uate the Memory, Attention, and Composition
approach (MAC; Hudson and Manning, 2018),
which uses a sequence of attention-based steps.
We modify N2NMN, FiLM, and MAC to process
a pair of images by extracting image features from
the concatenation of the pair.

7 Experiments and Results

We use two metrics: accuracy and consistency.
Accuracy measures the per-example prediction ac-
curacy. Consistency measures the proportion of
unique sentences for which predictions are cor-
rect for all paired images (Goldman et al., 2018).
For training and development results, we report
mean and standard deviation of accuracy and con-



Train Dev Test-P Test-U
MAJORITY (assign True) 50.8/2.1 50.9/3.9 51.1/4.2 51.4/4.6
TEXT 50.8±0.0/2.1±0.0 50.9±0.0/3.9±0.0 51.1/4.2 51.4/4.6
IMAGE 60.1±2.9/14.2±4.2 51.6±0.2/8.4±0.8 51.9/7.4 51.9/7.1
CNN+RNN 94.3±3.3/84.5±10.2 53.4±0.4/12.2±0.7 52.4/11.0 53.2/11.2
MAXENT 89.4/73.4 54.1/11.4 54.8/11.5 53.5/12.0

N2NMN (Hu et al., 2017):
N2NMN-CLONING 65.7±25.8/30.8±49.7 50.2±1.0/5.7±3.1 – –
N2NMN-TUNE 96.5±1.6/94.9±0.4 50.0±0.7/9.8±0.5 – –
N2NMN-RL 50.8±0.3/2.3±0.3 51.0±0.1/4.1±0.3 51.1/5.0 51.5/5.0
FiLM (Perez et al., 2018) 69.0±16.9/32.4±29.6 51.0±0.4/10.3±1.0 52.1/9.8 53.0/10.6
MAC

87.4±0.8/64.0±1.7 50.8±0.6/11.0±0.2 51.4/11.4 51.2/11.2(Hudson and Manning, 2018)
HUMAN – 96.2±2.1/– 96.3±2.9/– 96.1±3.1/–

Table 6: Performance (accuracy/consistency) on NLVR2.

sistency over three trials as µacc±σacc/µcons±σcons.
The results on the test sets are generated by evalu-
ating the model that achieved the highest accuracy
on the development set. For the N2NMN methods,
we report test results only for the best of the three
variants on the development set.10

Table 6 shows results for NLVR2. MAJORITY

results demonstrate the data is fairly balanced. The
results are slightly higher than perfect balance due
to pruning (Sections 3.3 and 3.4). The TEXT and
IMAGE baselines perform similar to MAJORITY,
showing that both modalities are required to solve
the task. TEXT shows identical performance to
MAJORITY because of how the data is balanced.
The best performing system is the feature-based
MAXENT with the highest accuracy and consis-
tency. FiLM performs best of the visual reasoning
methods. Both FiLM and MAC show relatively
high consistency. While almost all visual reason-
ing methods are able to fit the data, an indica-
tion of their high learning capacity, all generalize
poorly. An exception is N2NMN-RL, which fails
to fit the data, most likely due to the difficult task
of policy learning from scratch. We also exper-
imented with recent contextualized word embed-
dings to study the potential of stronger language
models. We used a 12-layer uncased pre-trained
BERT model (Devlin et al., 2019) with FiLM. We
observed BERT provides no benefit, and therefore
use the default embedding method for each model.

8 Conclusion

We introduce the NLVR2 corpus for study-
ing semantically-rich joint reasoning about pho-
tographs and natural language captions. Our fo-

10For reference, we also provide NLVR results in Table 11,
Appendix D.

cus on visually complex, natural photographs and
human-written captions aims to reflect the chal-
lenges of compositional visual reasoning better
than existing corpora. Our analysis shows that the
language contains a wide range of linguistic phe-
nomena including numerical expressions, quan-
tifiers, coreference, and negation. This demon-
strates how our focus on complex visual stim-
uli and data collection procedure result in com-
positional and diverse language. We experiment
with baseline approaches and several methods for
visual reasoning, which result in relatively low
performance on NLVR2. These results and our
analysis exemplify the challenge that NLVR2 in-
troduces to methods for visual reasoning. We
release training, development, and public test
sets, and provide scripts to break down perfor-
mance on the 800 examples we manually ana-
lyzed (Section 4) according to the analysis cat-
egories. Procedures for evaluating on the unre-
leased test set and a leaderboard are available at
http://lic.nlp.cornell.edu/nlvr/.
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A Frequently Asked Questions

In what applications do you expect to see
the kind of language NLVR2 allows to study?
Composition of reasoning skills including count-
ing, comparing, and reasoning about sets is critical
for robotic agents following natural language in-
structions. Consider a robot on a factory floor or in
a cluttered workshop following the instruction get
the two largest hammers from the toolbox at the
end of the shelf. Correctly following this instruc-
tion requires reasoning compositionally about ob-
ject properties, comparisons between these prop-
erties, counts of objects, and spatial relations be-
tween observed objects. The language in NLVR2
reflects this type of linguistic reasoning. While the
task we define does not use this kind of application
directly, our data enables studying models that can
understand this type of language.
How can I use NLVR2 to build an end applica-
tion? The task and data are not intended to di-
rectly develop an end application. Our focus is on
developing a task that drives research in vision and
language understanding towards handling diverse
set of reasoning skills. It is critical to keep in mind
that this dataset was not analyzed for social biases.
Researchers who wish to apply this work to an end
product should take great care in considering what
biases may exist.
Doesn’t using a binary prediction task limit
the ability to gain insight into model perfor-
mance? Because our dataset contains both pos-
itive and negative image pairs for each sentence,
we can measure consistency (Goldman et al.,
2018), which requires a model to predict each la-
bel correctly for each use of the sentence. This
metric requires generalization across at most four
image pair contexts.
Why collect a new set of images rather than
use existing ones like COCO (Lin et al., 2014)?
Our goal was to achieve similar semantic diver-
sity to NLVR, but using real images. Like NLVR,
we use a sentence-writing task where sets of sim-
ilar images are compared and contrasted. How-
ever, unlike NLVR, we do not have control over
the image content, so cannot guarantee image sets
where the content is similar enough (e.g., where
the only difference is the direction in which the
same animal is facing) such that the written sen-
tence does not describe trivial image differences
(e.g., the types of objects present). In addition
to image similarity within sets, we also prioritize

image interestingness, for example images with
many instances of an object. Existing corpora, in-
cluding like COCO and ImageNet (Russakovsky
et al., 2015), were not constructed to prioritize
interestingness as we define it, and are not com-
prised of sets of eight very similar images as re-
quired for our task.

1. We select a set of 124 ImageNet synsets
which often appear in visually rich images.

2. We generate search queries which result in
visually rich images, e.g., containing multi-
ple instances of a synset.

3. We use a similar images tool to acquire sets
of images with similar image content, for ex-
ample containing the same objects in differ-
ent relative orientations.

4. We prune images which do not contain an ex-
ample of the synset it was derived from.

5. We apply a re-ranking and pruning procedure
that prioritizes visually rich and interesting
images, and prunes set which do not have
enough interesting images.

These steps result in a total of 17,685 sets of
eight similar, visually rich images.

Why use pairs of images instead of single im-
ages? We use pairs of images to elicit descrip-
tions that reason over the pair of images in addi-
tion to the content within each image. This setup
supports, for example, comparing the two images,
requiring that a condition holds in both images or
in one but not the other, and performing set reason-
ing about the objects present in each image. This
is analogous to the three-box setup in NLVR.

Why allow workers to select the pairs them-
selves during sentence writing? We found that
for some image pair selections, it was too diffi-
cult for workers to write a sentence which distin-
guishes the pairs. Allowing the workers to choose
the pairs avoids this feasiblity issue.

Why get multiple validations for development
and test splits? This ensures the test splits are
of the highest quality and have minimal noise, as
required for reliable measure of task performance.
The additional annotatiosn also allow us to mea-
sure agreement and estimate human performance.



How does the NLVR2 data compares to the
NLVR data? NLVR and NLVR2 share the task
of determining whether a sentence is true in a
given visual context. In NLVR, the visual input
is synthetic and includes a handful of shapes and
properties. In NLVR2, each visual context is a
pair of real photographs obtained from the web.
Grounding sentences in image pairs rather than
single images is related to NLVR’s use of three
boxes per image.
How does the NLVR2 data collection pro-
cess compare to NLVR? We adapt the NLVR
sentence-writing and validation tasks. However,
rather than using four related synthetic images for
writing, we use four pairs of real images. The pair-
ing of images encourages set comparison. This
was accomplished in NLVR through careful con-
trol of the generated image content, something that
is not possible with real images. The NLVR image
generation process is also controlled for the type
of differences possible between images and the vi-
sual complexity, by ensuring the objects present in
the selected and unselected images were the same.
This guarantees that the only differences are in
the object configurations and distribution among
the three boxes in each image. Neither form of
control is possible with real images. Instead, we
rewrite the guidelines and develop a process to
educate workers to follow them. In our process,
we use the similar images tool to identify images
that require linguistically-rich descriptions to dis-
tinguish. While using the similar images tool does
not guarantee that the objects in the selected im-
ages are also present in the unselected images, our
process successfully avoids this issue; in practice,
only around 13% of examples take advantage of
this by mentioning objects only present in the se-
lected images.
Can you summarize the key linguistic dif-
ferences between NLVR2 and NLVR? NLVR
contains significantly11 more examples of hard
cardinality, existential quantifiers, spatial rela-
tions, and prepositional attachment ambiguity.
NLVR2 contains significantly11 more examples
of universal quantifiers, coordination, coreference,
and comparatives. NLVR2’s descriptions are
longer on average than NLVR (14.8 vs. 11.2 to-
kens), and the vocabulary is much larger (7,457
vs. 262 word types). This demonstrates both the
lexical diversity and challenges of understanding a

11Using a χ2 test with p < 0.05.

wide range of image content in NLVR2 that are not
present in NLVR. However, NLVR allows study-
ing compositionality in isolation from lexical di-
versity, an intended feature of the dataset’s design.
NLVR has also been used as a semantic parsing
task, where images are represented as structured
representations (Goldman et al., 2018), a use case
that is not possible with NLVR2. NLVR remains
a challenging dataset for visual reasoning; recent
approaches have shown moderate improvements
over the initial baseline performance, yet remain
far from human accuracy, which we compute in
Table 11.

How does NLVR2 compare to existing visual
reasoning datasets? Table 7 compares NLVR2
with several existing, related corpora. In the
last several years there has been an increase in
the number of datasets released for vision and
language research. One trend includes build-
ing datasets for compositional visual reason-
ing (SHAPES, CLEVR, CLEVR-Humans, Shape-
World, NLVR, FigureQA, COG, and GQA), all of
which use synthetic data either for at least one of
the inputs. While NLVR2 requires related visual
reasoning skills, it uses both real natural language
and real visual inputs.

How does NLVR2 compare to recent attempts
to avoid biases in vision and language datasets?
Recently, several approaches were proposed to
identify unintended biases present in vision-and-
language tasks, such as the ability to answer a
question without using the paired image (Zhang
et al., 2016; Goyal et al., 2017; Li et al., 2017;
Agrawal et al., 2017, 2018). The data collec-
tion process of NLVR2 is designed to automati-
cally pair each sentence with both labels in dif-
ferent visual contexts. This makes NLVR2 ro-
bust to implicit linguistic biases. This is illustrated
by our initial experiments with BERT, which have
been shown to be extremely effective at capturing
language patterns for various tasks (Devlin et al.,
2019). With our balanced data, using BERT does
not help identifying and using language biases.

Are the differences in the linguistic analysis
between the datasets significant? We measure
significance using a χ2 test with p < 0.05.
Our qualitative linguistic analysis shows several
differences from VQA (Antol et al., 2015) and
GQA (Hudson and Manning, 2019). NLVR2 con-
tains significantly more examples of hard cardi-
nality, soft cardinality, existential quantifiers, uni-



versal quantifiers, coordination, coreference, spa-
tial relations, comparatives, negation, and prepo-
sition attachment ambiguity than both GQA and
VQA. However, VQA and GQA both contain sig-
nificantly more examples of presupposition than
NLVR2.

Given your linguistic analysis, how does GQA
compare to VQA? We found that the distri-
bution of phenomena in VQA and GQA are
roughly similar, with notable differences being
significantly11 more examples of hard cardinal-
ity and coreference in VQA, and significantly11

more examples of universal quantifiers, coordina-
tion, and coordination and subordinating conjunc-
tion attachment ambiguity in GQA.

B Data Collection Details

Image Collection We consider the images of
each search query in the order of the search results.
For each result associated with a set of similar im-
ages, we save the URL of the result image and the
URLs of the fifteen most similar images, giving us
a set of sixteen images. We skip and ignore URLs
from a hand-crafted list of stock photo domains;
images from these domains include large, distract-
ing watermarks. We stop after observing 60 result
images, saving 30 sets of image URLs, or observ-
ing five consecutive results that do not have similar
images.12

After downloading a set of 16 URLs of re-
lated images (Section 3.1), we automatically prune
the images. We remove any broken URLs or
any URLS that appeared in other previously-
downloaded sets from the same search query. We
remove downloaded images smaller than 200 ×
200 pixels. We apply basic duplicate removal by
removing any images which are exact duplicates
of a previously-downloaded image in the set. This
automatic pruning may result in image sets con-
sisting of fewer than 16 images. We discard any
sets after this stage with fewer than 8 images.

Sentence Writing Table 8 shows the types of
sentences we ask workers to avoid in their writ-
ing. Analysis of 100 sentences from the devel-
opment set shows that almost all sentences follow
our guidelines, only 13% violate our guidelines.
The most common violation was mentioning an
object not present in the unselected images. Such

12For collective nouns and the numerical phrase two
<synset>, we instead observe at most 100 top images or
save at most 60 sets.

sentences can trivially be labeled as False in the
context of the unselected pairs, as the mentioned
object will not be present. In the context of the se-
lected pairs, however, a model must still perform
compositional joint reasoning about the sentence
and the image pair to determine whether the la-
bel should be True at test time. This is because
the sentence often includes additional constraints.
The bottom example in Table 12 illustrates this vi-
olation. A system may easily determine that be-
cause neither a hole nor a golf flagpole are present
in either image, the sentence is False. However, if
these objects were present, the system must reason
about counts and spatial relations of the mentioned
objects to verify that the sentence is True.

Data Collection Management We use two
qualification tasks. For the set construction and
sentence writing tasks, we qualify workers by first
showing six tutorial questions about the guidelines
and task. We then ask them to validate guide-
lines for nineteen sentences across two sets of four
pre-selected image pairs, and to complete a sin-
gle sentence-writing task for pre-selected image
pairs. We validate the written sentence by hand.
We qualify workers for validation with eight pre-
selected validation tasks.

We use a bonus system to encourage workers
to write linguistically diverse sentences. We con-
duct sentence writing in rounds. After each round,
we sample twenty sentences for each worker from
that round. If at least 75% of these sentences fol-
low the guidelines, they receive a bonus for each
sentence written during the last round. If between
50% and 75% follow our guidelines, they receive
a slightly lower bonus. This encourages workers
to follow the guidelines more closely. In addition,
each worker initially only has access to a limited
pool of sentence-writing tasks. Once they success-
fully complete an evaluation round where at least
75% of their sentences followed the guidelines,
they get access to the entire pool of tasks.

Table 9 shows the costs and number of workers
per task. The final cost per unique sentence in our
dataset is $0.65; the cost per example is $0.18.

C Additional Data Analysis

Synsets Figure 4 shows the counts of examples
per synset in the training and development sets.

Image Pair Reasoning We use a 200-sentence
subset of the sentences analyzed in Table 5 to ana-
lyze what types of reasoning are required over the



Dataset Task Prevalent Linguistic Natural Natural
Phenomena Language? Images?

NLVR2 Binary Sentence Classification

(1) Hard and (2) soft car-
dinality; (3) existential
and (4) universal quan-
tifiers; (5) coordination;
(6) coreference; (7) spa-
tial relations; (8) presup-
position; (9) preposition
attachment ambiguity

✔ ✔

VQA1.0 (Antol et al., 2015),
VQA-CP (Agrawal et al.,
2017), VQA2.0 (Goyal
et al., 2017)

Visual Question Answering

(1) Hard cardinality; (2)
existential quantifiers;
(3) spatial relations; (4)
presupposition

✔ ✔

NLVR (Suhr et al., 2017) Binary Sentence Classification

(1) Hard and (2) soft
cardinality; (3) existen-
tial quantifiers; (4) coor-
dination; (5) spatial re-
lations; (6) presupposi-
tion; (7) preposition at-
tachment ambiguity

✔

GQA (Hudson and Man-
ning, 2019) Visual Question Answering

(1) Existential quanti-
fiers; (2) coordination;
(3) spatial relations; (4)
presupposition

✔

Dataset Task Natural Natural
Language? Images?

SAIL (MacMahon et al., 2006) Instruction Following ✔
Mitchell et al. (2010) Referring Expression Resolution ✔
Matuszek et al. (2012) Referring Expression Resolution ✔
FitzGerald et al. (2013) Referring Expression Generation ✔
VQA (Abstract) (Zitnick and Parikh, 2013) Visual Question Answering ✔
ReferItGame (Kazemzadeh et al., 2014) Referring Expression Resolution ✔ ✔
SHAPES (Andreas et al., 2016) Visual Question Answering
Bisk et al. (2016) Instruction Following ✔
MSCOCO (Chen et al., 2016) Caption Generation ✔ ✔
Google RefExp (Mao et al., 2016) Referring Expression Resolution ✔ ✔
ROOM-TO-ROOM (Anderson et al., 2018) Instruction Following ✔ ✔
Visual Dialog (Das et al., 2017) Dialogue Visual Question Answering ✔ ✔
CLEVR (Johnson et al., 2017a) Visual Question Answering
CLEVR-Humans (Johnson et al., 2017b) Visual Question Answering ✔
TDIUC (Kafle and Kanan, 2017) Visual Question Answering ✔ ✔
ShapeWorld (Kuhnle and Copestake, 2017) Binary Sentence Classification
FigureQA (Kahou et al., 2018) Visual Question Answering
TVQA (Lei et al., 2018) Video Question Answering ✔ ✔
LANI & CHAI (Misra et al., 2018) Instruction Following ✔ ✔
Talk the Walk (de Vries et al., 2018) Dialogue Instruction Following ✔ ✔

COG (Yang et al., 2018) Visual Question Answering;
Instruction Following

VCR (Zellers et al., 2019) Visual Question Answering ✔ ✔
TallyQA (Acharya et al., 2019) Visual Question Answering ✔ ✔

TOUCHDOWN (Chen et al., 2019) Instruction Following;
✔ ✔Spatial Description Resolution

COCO-BISON (Hu et al., 2019) Binary Image Selection ✔ ✔
SNLI-VE (Xie et al., 2019) Visual Entailment ✔ ✔

Table 7: Comparison between NLVR2 and existing datasets for language and vision research. The top table details
prevalent linguistic phenomena in some of the most related datasets according to our analysis, listing each linguistic
phenomenon with at least 10% representation as prevalent. For each dataset, we count the number of prevalent
phenomena. NLVR2 has the broadest representation. The bottom table lists other tasks in language and vision.



What to avoid Example of erroneous sentence
Subjective opinions The dog’s fur has a nice color pattern.
Discussing properties of the photograph In both images, the cat’s paw is cropped out of the photo.
Mentioning text in the photograph Both trains are numbered 72.
Mentioned object not present in unselected
pairs

There is a cup on top of a chair. – for a set of images where the selected
pairs contain a chair, but the unselected pairs do not.

Mentioning the presence of a single object There is a hammer.
Disjunction on images in the pair The left image contains a penguin, and the right image contains a rock.

Table 8: Types of sentences workers are discouraged from writing. The bottom two are permissible as long as the
sentence includes other kinds of reasoning.

Cost Unique Workers
Image Pruning $1,310.76 53
Set Construction $1,798.84 46
Sentence Writing $9,570.46 99
Validation $6,452.93 125
Total $19,132.99 167

Table 9: Cost and worker statistics.
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Figure 4: Number of examples per synset, sorted by
number of examples in each synset.

two images (Table 10). We observe that sentences
commonly use the pair structure used to display
the images: 11% of sentences require that a prop-
erty to hold in both images, 19% simply require
that a property holds in at least one image, and
26.5% of sentences require a property to be true
in the left or right images specifically. The pair
is also used for comparison, with 6% of sentences
requiring comparing properties of the two images.
Finally, 39.5% of sentences simply state a prop-
erty that must be true across the image pair, e.g.,
One sliding door is closed.

D Results on NLVR

Table 11 shows previously published results us-
ing raw images in NLVR from Suhr et al. (2017)
and more recent approaches.13 We also report re-
sults for visual reasoning systems originally de-
veloped for CLEVR. We compute human perfor-
mance for each split of the data using the proce-
dure described in Section 5; a threshold of 100
covers 100% of annotators. NMN (Andreas et al.,

13Not all previously evaluated methods report consistency.

2016), N2NMN, and FiLM achieve the best re-
sults for methods that were not developed using
NLVR. However, both perform worse than CNN-
BIATT (Tan and Bansal, 2018) and CMM (Yao
et al., 2018), which were developed originally us-
ing NLVR.14

E Implementation Details

For the TEXT, IMAGE, and CNN+RNN base-
lines, we first compute a representation of the in-
put(s). We then process this representation us-
ing a multilayer perceptron (MLP). The MLP’s
output is used to predict a distribution over the
two labels using a softmax. The MLP includes
learned bias terms and ReLu nonlinearities on
the output of each layer, except the last one. In
all cases, the layer sizes of the MLP follow the
series [8192, 4096, 2048, 1024, 512, 256, 128, 64,
32, 16, 2].

E.1 Single Modality
TEXT The caption’s representation is computed
using an RNN encoder. We use 300-dimensional
GloVe vectors trained on Common Crawl as word
embeddings (Pennington et al., 2014). We en-
code the caption using a single-layer long short-
term memory (LSTM, Hochreiter and Schmidhu-
ber, 1997) RNN of size 4096. The hidden states
of the caption are averaged and processed with the
MLP described above to predict the truth value.
IMAGE The image pair’s representation is com-
puted by extracting features from a pre-trained
model. We resize and pad each image with whites-
pace to a size of 530 × 416 pixels, which is the
size of the image displayed to the workers during
sentence-writing. Each padded image is resized to
224 × 224 and passed through a ResNet-152 pre-
trained model (He et al., 2016). The features from
the final layer before classification are extracted

14Consistency for CNN-BIATT was taken from the NLVR
leaderboard.



Required Reasoning % Example from NLVR2
Exactly one image 3 Only one image shows warthogs butting heads.
Existential quantification 19 In one image, hyenas fight with a big cat.
Universal quantification 11 There are people walking in both images.
Explicit reference to left and/or right image 26.5 The left image contains exactly two dogs.
Comparison between images 6 There are more mammals in the image on the right.

Table 10: Types of reasoning over the pair of images required in NLVR2, including the proportion of examples
requiring each type and an example.

Train Dev Test-P Test-U
MAJORITY (assign True) 56.4/– 55.3/– 56.2/– 55.4/–
TEXT 58.4±0.6/– 56.6±0.5/– 57.2±0.6/– 56.2±0.4/–
IMAGE 56.8±1.3/– 55.4±0.1/– 56.1±0.3/– 55.3±0.3/–
CNN+RNN 58.9±0.2/– 56.6±0.3/– 58.0±0.3/– 56.3±0.6 /–
NMN 98.4±0.6/– 63.1±0.1/– 66.1±0.4/– 62.0±0.8/–
CNN-BIATT – 66.9/– 69.7/– 66.1/28.9(Tan and Bansal, 2018)
W-MEMNN (Pavez et al., 2018) – 65.6/– 65.8/– –
CMM (Yao et al., 2018) – 68.0/– 69.9/– –
N2NMN (Hu et al., 2017):
N2NMN-CLONING 95.6±1.3/79.9±4.7 57.9±1.1/9.7±0.8 – –
N2NMN-TUNING 97.5±0.4/92.7±2.6 58.7±1.4/11.6±0.8 – –
N2NMN-RL 95.4±2.4/81.2±10.6 65.3±0.4/16.2±1.5 69.1/20.7 66.0/17.7
FiLM (Perez et al., 2018) 95.5±0.4/84.6±2.7 60.1±1.2/14.6±1.3 62.2/18.4 61.2/18.1
MAC

64.2±4.7/12.6±0.2 55.4±0.5/7.4±0.6 57.6/11.7 54.3/8.6(Hudson and Manning, 2018)
HUMAN (approximation) – 94.6±3.5/– 95.4±3.4/– 94.9±3.6/–

Table 11: Performance (accuracy/consistency) on NLVR.

for each image and concatenated. This representa-
tion is processed with the MLP described above to
predict a truth value.

E.2 Image and Text Baselines

CNN+RNN The caption and image pair are en-
coded as described in Appendix E.1, then con-
catenated and passed through the MLP described
above to predict a truth value.

MAXENT We use n-grams where 2 ≤ n ≤ 6.
We train a maximum entropy classifier with
Megam.15

E.3 Module Networks

End-to-End Neural Module Networks We use
the publicly available implementation.16 The
model parameters used for NLVR2 are the same
as those used for the original experiments on
VQA. We use GloVe vectors of size 300 to em-
bed words (Pennington et al., 2014). The model
parameters used for NLVR are the same as those
used for the original N2NMN experiments on
CLEVR. This includes learning word embeddings

15https://www.umiacs.umd.edu/~hal/megam
16https://github.com/ronghanghu/n2nmn

from scratch and embedding images using the
pool5 layer of VGG-16 trained on ImageNet (Si-
monyan and Zisserman, 2014; Hu et al., 2017).
The two paired images are resized and padded
with white space to size 530× 416, then concate-
nated horizontally and resized to a single image of
448 × 448 pixels. The resulting image is embed-
ded using the res5c layer of ResNet-152 trained on
ImageNet (He et al., 2016; Hu et al., 2017).

FiLM We use the publicly available implemen-
tation.17 For NLVR2, we first resize and pad
both images with whitespace to images of size
530×416. The two images are concatenated hori-
zontally and resized to a single image of 224×224
pixels. This image is passed through a ResNet-101
pretrained model and the features from the conv4
layer are extracted (He et al., 2016; Perez et al.,
2018). For NLVR, we resize images to 224× 224
and use the raw pixels directly. The parameters of
the models are the same as described in Perez et
al. (2018)’s experiments on featurized images, ex-
cept for the following: RNN hidden size of 1096,
classifier projection dimension of size 256, final
MLP hidden size of 512, and 28 feature maps. Us-

17https://github.com/ethanjperez/film

https://www.umiacs.umd.edu/~hal/megam
https://github.com/ronghanghu/n2nmn
https://github.com/ethanjperez/film


ing the original parameters did not result in signif-
icant differences in accuracy, while updates using
our parameters were computed faster and the com-
putation graph used less memory.

E.4 MAC

We use the implementation provided online.18 For
experiments on NLVR2, we adapt the image pro-
cessing procedure. Both images are resized and
padded with white space to images of size 530 ×
416, then concatenated horizontally and resized to
224 × 224 pixels. We use the same image fea-
turization approach used in Hudson and Manning
(2018). For experiments on NLVR, we use the
NLVR configuration provided in the repository.

E.5 Training

For the TEXT, IMAGE, and CNN+RNN meth-
ods on NLVR2, we perform updates using
ADAM (Kingma and Ba, 2014) with a global
learning rate of 0.0001. The weights and bi-
ases are initialized by sampling uniformly from
[−0.1, 0.1]. All fully-connected and output lay-
ers use a learned bias term. For MAC, we use the
same training setup as described in Hudson and
Manning (2018), stopping early based on perfor-
mance over the development set. For all other ex-
periments, we use early stopping with patience,
where patience is initially set to a constant and
multiplied 1.01 at each epoch the validation ac-
curacy improves over a global maximum. We use
5% of the training data as a validation set, which is
not used to update model parameters. We choose
a validation set such that unique sentences do not
appear in both the validation and training sets. For
FiLM and N2NMN, we set the initial patience to
30. For TEXT, IMAGE and CNN+RNN baselines,
initial patience was set to 10. For MAXENT, we
use at most 100 epochs.

F Additional Examples

Table 12 includes additional examples sampled
from the training and development sets of NLVR2,
as well as license information for each image. All
images in this paper were sampled from websites
known for hosting non-copyrighted images, for
example Wikimedia.

18https://github.com/stanfordnlp/
mac-network

G Lisence Information

Tables 13, 14, 15, and 15 detail license and attri-
bution information for the images included in the
main paper.

https://github.com/stanfordnlp/mac-network
https://github.com/stanfordnlp/mac-network


Image Pair Sentence Label

Kropsoq (CC BY-SA 3.0); subhv150 (Pixabay)

Two hot air balloons are predominantly
red and have baskets for passengers. True

babasteve (CC BY 2.0); Yathin S Krishnappa (CC BY-SA 3.0)

All elephants have ivory tusks. False

NatashaG (Pixabay); Photoman (Pixabay)

There are entirely green apples among
the fruit in the right image. True

Pedi68 (Pixabay); Andrea Schafthuizen (PDP)

The animal in the image on the right is
standing on its hind legs. False

Ben & Katherine Sinclair (CC BY 2.0); Zhangzhugang (CC BY-SA 3.0)

One of the images contains one baby
water buffalo. True

Pelikana (CC BY-SA 3.0); violetta (Pixabay)

The sled in the image on the left is un-
occupied. False

Frans de Waal (CC BY 2.5); Adam Jones (CC BY-SA 3.0)

Each image shows two animals inter-
acting, and one image shows a monkey
grooming the animal next to it.

True

Burtonpe (CC BY-SA 3.0); Ville de Montréal (CC BY-SA 3.0)

In 1 of the images, the oars are kicking
up spray. False

Sarah and Jason (CC BY-SA 2.0); Sarah and Jason (CC BY-SA 2.0)

In one image, a person is standing in
front of a roofed and screened cage
area with three different colored parrots
perched them.

True

Petey21 (CC0); Santeri Viinamäki (CC BY-SA 4.0)

In one of the images there are at least
two golf balls positioned near a hole
with a golf flagpole inserted in it.

False

Table 12: Additional examples from the training and development sets of NLVR2, including license information
for each photograph beneath the pair and the label of the example.



Image Attribution and License

MemoryCatcher
(CC0)

Calabash13
(CC BY-SA 3.0)

Charles Rondeau
(CC0)

Andale
(CC0)

Table 13: License information for the images in Fig-
ure 1.

Image Attribution and License

Hagerty Ryan, USFWS
(CC0)

Charles Rondeau
(CC0)

Peter Griffin
(CC0)

Petr Kratochvil
(CC0)

George Hodan
(CC0)

Charles Rondeau
(CC0)

Andale
(CC0)

Maksym Pyrizhok
(PDP)

Sheila Brown
(CC0)

ulleo
(CC0)

Table 14: License information for the images in Fig-
ure 2.



Image Attribution and License

JerryFriedman
(CC0)

Eric Kilby
(CC BY-SA 2.0)

Angie Garrett
(CC BY 2.0)

Ben HaTeva
(CC BY-SA 2.5)

Manfred Kopka
(CC BY-SA 4.0)

Aubrey Dale
(CC BY-SA 2.0)

Albert Bridge
(CC BY-SA 2.0)

Randwick
(CC BY-SA 3.0)

Alexas_Fotos
(Pixabay)

Alexas_Fotos
(Pixabay)

Ralph Daily
(CC BY 2.0)

hobbyknipse
(Pixabay)

Table 15: License information for the images in Ta-
ble 3.

Image Attribution and License

Nedih Limani
(CC BY-SA 3.0)

Jean-Pol GRANDMONT
(CC BY-SA 3.0)

Scott Robinson
(CC BY 2.0)

Tokumeigakarinoaoshima
(CC0 1.0)

CSIRO
(CC BY 3.0)

Dan90266
(CC BY-SA 2.0)

Raimond Spekking
(CC BY-SA 4.0)

SamHolt6
(CC BY-SA 4.0)

Table 16: License information for the images in Ta-
ble 2.


