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Abstract— Powder bed fusion (PBF) is the additive manufac-
turing (AM) process that has arguably the highest potential for
the elevation of AM from rapid prototyping tools to the use in
the manufacture of final products. The initial success of PBF
has been in spite of the primary mechanism material addition,
directed energy by a laser or electron beam, being controlled
in open-loop using detailed process maps and heuristics. This
manuscript details an exploratory study of one enabling control
tool in the system of tools required for closed-loop control
of directed energy: state-observation for the estimation of
temperature states throughout the part from measurements
of surface temperatures. We pose the fundamental physics of
PBF with the variational calculus of the finite element method
(FEM), and then repose FEM as a state-space model. From the
state-space model, we define a temperature state observer and
corresponding observability criteria. The significant outcomes
of this study are the first definition of a state observer for
PBF temperature fields and the successful estimation of the
temperature evolution of several simulated test parts.

I. INTRODUCTION

Additive Manufacturing (AM) tools are a diverse set of
computer controlled manufacturing systems that selectively
add materials in a layer-by-layer fashion [1]; often described
as freeform, this manufacturing mode enables the fabrica-
tion of complex features such as internal channels [2] and
interconnected porosity [3]. Of the set of AM tools, the
class termed powder bed fusion (PBF) AM [1] has received
particular attention from industry for their ability to meet
or exceed wrought mechanical properties using established
engineering materials, for example metal alloys such as Ti-
6Al-4V [4] and Inconel 718 [5]. PBF tools (Fig. 1a), such
as selective laser sintering, direct metal laser sintering, and
electron beam melting, build three-dimensional parts using
a build cycle of: 1) spread a thin layer (20 - 100 µm) of
powdered feedstock, 2) selectively melt a two-dimensional
pattern using a high-powered laser or electron beam, and
3) index the build platform in the negative z direction to
prepare for the next layer. Unlike many traditional thermal
material forming processes such as casting, in which the
liquid to solid transformation occurs approximately globally
and simultaneously [6], the directed energy to melt the
material is local, where the melt pool surrounding the laser
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Fig. 1. Powder bed fusion (PBF) additive manufacturing. (a) System
schematic demonstrating key components of PBF. (b) Assumed boundary
conditions for the temperature model, Eqn. (2), used here. (c) There are two
common temperature measurement modes: global melting plane temperature
measurement (image sourced from [13]) and local melt pool temperature
measurement (image sourced from [14]).

or electron beam is on the order of 1 mm [7], [8]. Conse-
quently, temperature gradients are extremely large, exceeding
500 K/mm for metal parts [9], [10], yielding differential
thermal contraction and local thermal micro-distortions that
can integrate to yield large, millimeter scale distortions [11],
[12]

Despite PBF itself being a sophisticated, computer-
controlled tool, material deposition feedback is simplistic;
most commercial PBF systems use an open-loop melt-pool
temperature regulation scheme [15]. While the potential
benefits of closed-loop surface temperature regulation are
obvious, the main technical limitation preventing closed-loop
control is inadequate sensing [16]. Temperature sensing must
be remote as a thermocouple cannot be placed on the surface
being built. Most commercial systems have a thermocouple
built in to the build plate for chamber temperature regulation,
but the temperature at the melting plane is hundreds of
degrees Kelvin higher than at the build plate. Some research-
grade PBF tools and some commercial systems, such as the
Concept Laser M2, monitor the melt pool using a digital
camera based pyrometer with an optical path that is con-
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Fig. 2. Idea of a temperature observer for PBF. The main purpose of
the temperature observer is to better estimate actual internal temperatures
during manufacturing.

centric with the laser beam using sophisticated optics [17],
[18] (Fig. 1c melt pool view). Other commercial systems
and a multitude of research PBF tools have used global-view
digital camera based pyrometers to thermally image the top
surface [15], [19], [20] (Fig. 1c global view). Regardless of
temperature sensing mode, thermal sensing is remote and, at
present, there are no ways to measure temperature past the
top layer being built; the sensing limitation is simple, fused
metal is opaque to infrared transmission.

If we had the ability to estimate the temperature his-
tory of the entire part during a build, we would have the
ability to employ a cadre of process validation and quality
control tools. For instance, process faults could be detected
by measuring the difference between estimated temperature
states and predicted temperature states. Temperature history
directly influences metallurgic phase formation [21], that thus
influences mechanical properties and corrosion resistance;
a complete temperature history would enable us to predict
phases composition at all locations in a part. Temperature
history influences the melt pool size [22]; an accurate esti-
mate of the sub-surface temperatures could be integrated into
a feedback control system designed to modulate laser power.

To this end, this manuscript explores the feasibility of
applying the standard idea of a state observer to estimate the
temperature of underlying layers of material. State-observers
are a common control systems tool that merges a model
running along side real-time measurements to estimate un-
measured process states, filter measured signals, or states
without a physical interpretation, for the purposes of control.
However, the PBF process is very different from the standard
state-observer problem: the physical system to observe has
spatiotemporal dynamics, the size of the system, or number
of states, is continually increasing as more material is added,
and both the addressed input channels – location of heat
input – and addressed output channels – location of sensed
temperatures – are continually changing with laser or e-beam
spot location and layer, respectively. Work has been done on
constructing state observers to control melt pool dynamics
[23], whereas this manuscript focuses on state observers that
model the temperature history of the entire part.

This work is a first, exploratory look at the feasibility
of state-observation for the PBF process (Fig. 2). The
spatiotemporal thermal model is developed in Section II,
where we make assumptions that simplify the continually

growing model described in the previous paragraph. This
model sets up the idea of a temperature state-observer for
PBF; we explore observability criteria in Section III. The
paper concludes with a simple PBF simulation study in
Sections IV and V and concluding remarks in Section VI.

Throughout this paper, we will use notation that is com-
mon to the controls community, as opposed to the standard
for the FEM community. Scalars will be denoted by regular
letters, vectors will be denoted by lower-case bold letters
(e.g. v), and matrices denoted by upper-case bold letters (e.g.
A).

II. SPATIOTEMPORAL THERMAL MODEL

A. Definition of Fourier’s Law for PBF

Consider the problem of a heat source, q(v, t), impinging
on a solid material at spatial location v = {x, y, z} ∈ V ,
V ⊆ R3, and time t ∈ R+. The material temperature,
T (v, t), is defined by the heat flux balance

C
∂T

∂t
= q − qcond. − qconv. − qrad. (1)

where heat is transferred by conduction, qcond., convection,
qconv., and radiation, qrad., and C is the capacitance of the
material. This standard heat flux balance is employed by
many PBF temperature prediction packages employing finite
element method (FEM) based solvers, ranging in complexity
from detailed models of the melt pool mechanics to simpli-
fied models for whole part simulation. For the purposes of
a model that can be run alongside an actual experiment, we
will employ common simplifying assumptions.
A1. The Biot number for PBF is approximately Bi = 0.01,

thus qconv. = 0 and qrad. = 0 [24].
A2. Conduction into the unfused powder is negligible as

the loosely packed powder is a poor conductor [25].
This sets up the insulated Neumann boundary condition
at the part periphery, ∇T · n̂ = 0 ∀ v ∈ Γ, where
∇ =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
, · is the vector dot product, Γ is

the periphery and top domain and n̂ is the direction
normal to the domain Γ (Fig. 1b, Neumann boundary
1).

A3. The bottom surface, domain Λ, is isothermal with tem-
perature T0, setting up the Dirichlet boundary condition
T = T0 ∀ v ∈ Λ and t (Fig. 1b, Dirichlet boundary).

A4. The top surface of a given layer, v̄ = {x, y, z̄}, has a
prescribed thermal flux q(v̄, t) from the incident radiant
laser/e-beam source. Similarly, only the temperature of
the top surface can be observed by a thermal sensor,
y = T (v̄, t).

A5. The last, and perhaps most tenuous, assumption is that
the top layer is composed of fully-fused metal with an
equivalent thermal conductivity to the bulk. Of course
this is not true in the actual process, but this assumption
effectively fixes the boundary conditions and retains a
constant model domain.

These assumptions set up the standard partial differential
equation defined by Fourier’s Law
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∂T

∂t
=
K

cρ
∇2T +

q

cρ

T = T0 ∀ v ∈ Λ

∇T · n̂ = 0 ∀ v ∈ Γ

(2)

where K is the thermal conductivity of the material, c the
specific heat, and ρ the material density. The arbitrarily
shaped, thus complex, boundary conditions enabled by PBF
and arbitrary heat flux equation q, in general, assures that
there is not a closed-form solution to (2). As is common in
the PBF research community, a FEM solution is sought. The
FEM solution will leverage the functional, or weak, form of
(2)

π =

∫
V

(
1

2
(∇T )Tκ∇T −QT + ρcṪT

)
dV

−
∫

Γ

(qBT ) dΓ

(3)

where κ ∈ R3×3 is an array that contains directional heat
conductivity properties, and qB specifies the heat flux on
the boundary [26]. To help with reader intuition, the first
integrand captures intra-volume heat transfer, generation, and
storage, and the second integrand inter-volume heat transfer.

B. FEM model

The FEM permits a computational solution to a near
infinite variety of part geometries, boundary conditions, and
load conditions. This sub-section is meant to be a brief
introduction to the FEM; those interested in a complete
description of FEM theory and practice should consult [27].

The FEM heat transfer problem consists of five main steps:
1) Specify the system geometry and material properties.
2) Discretize the system geometry into a collection of ele-

ments, defined by the associated nodes at their vertices,
and specify the boundary and loading conditions of the
system.

3) Construct a set of linear algebraic equations that approx-
imate the temperature distribution within each element,
based on the element boundary conditions and loads on
the element.

4) Assemble these elemental equation systems into a
global system of equations, and solve for the tempera-
ture at all nodes.

5) Interpolate the temperature distribution within each
element by using the temperatures of its bounding
nodes, which approximates the continuous temperature
distribution of the system.

The elemental algebraic equations of Step 3 are derived
from solving the weak form of heat transfer equation, (3).
Nodal temperatures are collected in a column vector te, and
one interpolates T by the equation [26]

T (x, y, z) = n(x, y, z)te. (4)

n is a row vector whose elements are all functions of
space that ensure that the resulting interpolated field satisfies

Fig. 3. Global system construction process, reproduced from [27] with
permission from John Wiley and Sons, Inc.

continuity and boundary conditions. These shape functions
n are what are used in Step 5 to reconstruct the temperature
field from nodal temperature values.
T = nte is substituted into (3), and then the system

potential energy is minimized by setting ∂Π/∂T = 0. This
expression reduces to

Kete + Ceṫe = re (5)

where Ke and Ce are scalar matrices that represent the
thermal conductivity and heat capacitance of the element,
and re is a vector that distributes any volumetric, surface, or
line loads among the nodes of the element for an optimally
accurate approximation [26]. The FEM model is made ready
for solution in Step 4 by assembling the elemental equations,
(5), into the global equation of the form

Mṫ + Kt = r (6)

ṫ ∈ Rn×1 is the vector containing the temperature of
all n nodes in the system. M ∈ Rn×n, K ∈ Rn×n, and
r ∈ Rn×1 are the globally-assembled counterparts of Ce,
Ke, and re, respectively. After the assembly of (3), FEM
software packages would solve the system of equations at
each timestep specified by a variety of ODE approximation
algorithms. Fig. 3 illustrates the construction of a global K
matrix from two elemental matrices. Note that elemental
ordering is not always intuitive; optimization algorithms
organize elements to minimize the band of non-zero elements
in K about the diagonal.

Remark 1: The Fourier heat transfer problem yields matri-
ces M and K that are real-valued, symmetric, and positive-
definite matrices of size n × n [26]. Consequently, M−1

always exists and (6) can be rearranged to isolate ṫ,

ṫ = −M−1Kt + M−1r. (7)

Furthermore, −M−1K is Hurwitz by the properties of the
eigenvalues of the product of symmetric, positive-definite
matrices [28].
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Fig. 4. Nonzero element locations of representative A ∈ Rn×n and C ∈
Rm×n matrices. The red bars on the A matrix indicate the approximate
bounds of the nonzero element band, which is 196 entries wide. Insets
provide a closer view of the pattern of non-zero elements of the matrices.

C. State-Space Representation

Equation (7) is of the standard state-space form

ṫ = At + Bu (8)

where A = −M−1K and Bu = M−1r. Note, that the
thermal loading vector r already specifies the load to be
uniformly applied to only the top-layer, Assumption 4, by
construction of the global matrix from appropriately designed
elemental matrices. The second part of Assumption 4, that
only the top layer temperatures are measurable, is enforced
by proper selection of C ∈ Rm×n,

y = Ct. (9)

where there are m temperature nodes at the top surface.
A is heavily sparse, and symmetric. For ease of visualiza-

tion, the A and C matrices for a typical system are shown
in Fig. 4. The sparseness of Fig. 4A is due to special FEM
routines which optimize the tightness of the nonzero band.
Such sparseness is of critical importance when computing the
dynamics of systems that contain between 1000 and 10,000
states.

III. OBSERVABILITY

As (8) and (9) are in the form of the standard state
space equation, all textbook notions of observability can be
analyzed as per usual. This section highlights useful analysis
tools as they apply to the PBF system defined in Section II.

We use that standard definition of observability detailed
in [29] and others: state equations (8)–(9) are ”said to be
observable if for any unknown initial state” t(0)”, there exists
a finite t1 > 0 such that knowledge of the input u and the
output y over [0, t1] suffices to determine uniquely the initial
state” t(0). All standard checks on the observability of the
pair (A,C) are valid; here we find it convenient to leverage
the rank test of the observability matrix O. As stated in [29],
the pair (A,C) is observable if

O =


C
CA

...
CAn−1

 (10)

has full column rank n. Furthermore, for unobservable (8)–
(9), the number of unobservable modes is n− Rank (O).

Theorem 1: Thermal model (8)–(9) is detectable.
Proof: Detectability follows directly from the statement in

Remark 1 that A = −M−1K is Hurwitz. �

A. Observability with disconnected structures

PBF is particularly adept as making branching structures,
which often results in segments that will be disconnected
at some point in the build. Fig. 5 demonstrates a partially
completed build in which segments of a branched structure
are disconnected at the given layer, but will become con-
nected in a future layer. As seen in the A and C matrices,
the disconnect in segments yields state equations of the form

[
ṫ1

ṫ2

]
=

[
A1 0
0 A2

]
︸ ︷︷ ︸

A

[
t1

t2

]
+

[
B1

0

]
︸ ︷︷ ︸

B

u

y =
[
C1 0 0

]︸ ︷︷ ︸
C

[
t1

t2

]
,

(11)

where the upper-right and lower-left 0 sub-matrices of A
indicate that there is no heat transfer between disconnected
thermal masses: states t1 and t2. None of states correspond-
ing to temperatures t2 are measured, as indicated in Fig. 5
and the right-most 0 sub-matrix of C in (11).

Corollary 1: A thermal model (8)–(9) that can be written
in the form of (11) via row-rearrangement is not observable.

Proof: Corollary 1 is proven via construction of the
observability matrix, O. Given A1 ∈ Rn1×n1 and A2 ∈
Rn2×n2 , n1 + n2 = n, observability matrix O equals

O =


[
C1 0

]
0[

C1 0
]
A1 0

...[
C1 0

]
An−1

1 0

 , (12)
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Fig. 5. Observability of disconnected structures. In the hypothetical
scenario here, the partially-built bridged structure has two legs, one in which
there are observable states and one in which the temperature measurements
are either occluded by infrared opaque powder or out of the field of view
(FOV).

which has a maximum column rank of n1 < n. �

B. ‘Strongly’ and ‘Weakly’ Observable Modes

Standard observability tests for (8)–(9) (e.g. the rank rest)
is of little practical importance as large scale systems (order
of 104 nodes) may contain hundreds of ‘weakly’ observable
modes in which O may barely pass the rank test. Worse yet,
numerical algorithms for computing matrix rank may be sen-
sitive to a user specified tolerance, such as the Matlab rank
and obsvf commands. For systems with non-defective A,
we avoid these issues in detecting unobservable modes by
placing the system in modal canonical form (MCF), and
counting how many columns of the transformed C matrix
contain no nonzero values. In MCF, each zero column of C
corresponds to exactly one unobservable state, as noted in
[30]. This technique cannot be repeated for systems with
defective A, since numerically computing the analogous
Jordan form cannot be done reliably due to the problem
being ill-conditioned [31]. Additionally, we use the Hankel
Singular Values (HSVs) of (8)–(9) to ascertain the relative
observability of system modes. HSVs are described in [29],
[32] and in many other linear systems texts, and are primarily
used for performing a balanced reduction of larger systems.
Here, we use the standard definition of the set of HSVs as

Σ = diag
(
σ1 ≥ σ2 ≥ . . . ≥ σn−Rank(O) > 0

)
(13)

where each σi is
√
λi (WcWo); λi denotes the ith eigen-

value of a matrix, and Wc and Wo are the controllability and
observability grammians, respectively. From this ordered set
of HSVs, an engineering decision can be made to determine
how many states are ‘strongly’ observable and how many are
‘weakly’ observable; similar in spirit to [32], here we define
a ‘strongly’ observable state as one that σi ≥ 10−4σ1 and
a ‘weakly’ observable state as one that σi < 10−4σ1. Note
that the count of the number of HSVs, n − rank (O), will
be dependent on the tolerance of the rank test; regardless,
nearly unobservable states will have a low magnitude σi and
thus be ‘weakly’ observable.

C. Observer design

As diagramed in Fig. 2, our aim is to design a full-state
observer to estimate temperatures of nodes at positions 0 <
z < z̄. As such, we build the standard state-observer [29]

˙̂t = At̂ + Bu+ L(y −Ct̂). (14)

A myriad of observer design algorithms can be used to design
observer gain matrix L. We choose to use a Kalman filter
design [33].

IV. SIMULATION SETUP

In this first exploratory study of temperature observation
in PBF, we perform a simplified simulation study to help
understand the basic properties of the PBF temperature
observer and the effects of part geometry. The temperature
output of a high-fidelity FEM simulation is used as a
surrogate for an actual PBF experiment; the temperature
data provides the ‘true’ temperatures of every node, t. The
temperature observer is built by constructing the A, B, and
C matrices from a lower-fidelity FEM model, which provides
temperature estimates t̂ based on top-surface measurements
y taken from the lower-fidelity simulation. In brief:

1) Matrices K, M, and r for the lower-fidelity observer are
generated by the software ANSYS. These matrices are
exported to Matlab for observer analysis and design.
A, B, and C are constructed from K, M, and r
using Eqn. (7). Additionally, top-surface measurements
y were taken for the purposes of conducting the state
estimation.

2) The high-fidelity FEM simulation in performed in AN-
SYS the ‘true’ temperatures of every node, t.

3) The state estimation, t̂, was interpolated onto the nodes
of the fine mesh. Estimation accuracy was tested by
three metrics:
(a) Estimation error at every state: t̃ = t− t̂.
(b) Maximum error magnitude at every state: t̃max =

maxt |̃t(t)|.
(c) Steady-state error magnitude at every state:

SSE
(
t̃
)

= |̃t(tf )|, where tf is the final time-point
of the simulation.

A. Test Parts

A set of four parts was selected to test different aspects of
the PBF temperature observer. Fig. 6 supplies the geometric
details of the parts used in these simulation studies. A
basic block (Fig. 6a) is the simplest geometry and tests
basic observer functionality. Fig. 6b and Fig. 6c represent
a stress test of observability. The ”spool” presents two large
collections of nodes, connected by a relatively thin filament.
Doing so forces the model to predict the state in the wide
spool lower region, using only the small collection of neck
states as a connector to the output y measured at the top
surface. Fig. 6b is an unsupported spool and Fig. 6c presents
the more realistic situation, in which support material joins
the two ends of the spool; note that the support material
has different thermal properties from the bulk material. Fig.
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Fig. 6. Parts used during simulation study. Red, striped arrows indicate
the surfaces subjected to heat input. All indicated dimensions are in [m] (a)
0.50m x 0.25m x 0.10m block (b) Spool without support material. (c) Spool
with support material, shown in violet. Overall height of spool is 0.20m.
(d) Part used to provoke failure of full state observability, as discussed in
Section III-A. (d) is formed by splitting block from (a) in half and changing
indicated dimensions.

TABLE I
NODE COUNT AND DOWNSAMPLING RATIOS FOR SIMULATION STUDY

part node count downsample ratio
coarse mesh fine mesh

Fig. 6a 1407 41,352 29.4
Fig. 6b 7992 49,175 6.15
Fig. 6c 9635 58,179 6.04
Fig. 6d 1363 46,310 34.0

6d tests the scenario illustrated in Section III-A. The 0.08m
block of Fig. 6d contributes no measurements to the output
vector and has no thermal link to the other block. Given the
analysis in Section III-A, we expect all nodes of the hidden
block to be unobservable. The four parts and the low-fidelity
and high-fidelity node counts are tabulated in Tb. I; the spool
parts required a smaller downsampling ratio to make observer
analysis computationally tractable.

All test parts shared a common material. The material
approximated the thermal properties of aluminum at room
temperature [34]: conductivity k = 250 (W/m2K), density
ρ = 2700 (kg/m3), and specific heat c = 900 (J/kgK). The
support material was assumed to be comprised of air with a
volume fraction of 0.45. Via Ashby’s law [35], the support
material effective conductivity, ks, and density, ρs were

scaled by the volume fraction: ks = 0.45k and ρs = 0.45ρ.
These given material parameters were fed into (3), which
dictated the entries of A and B by the process described in
Section II.

B. Simulated Experiment Parameters

All four tests subjected the part to the same loading
conditions, designed to reflect the assumptions of Section
II-A. The faces indicated by the striped red arrows in Fig.
6 were subjected to a uniform, static heat input of 100
(kW/m2). The constraints in Eqn. (2) were applied with
T0 = 294.15 K. Interpolation was performed using three-
dimensional Gaussian interpolation in the x, y, and z direc-
tions (standard deviation σx,y,z = 0.0167 m for Parts a and
d and 0.005 for parts b and c) and one-dimensional Gaussian
interpolation in the time direction (standard deviation σt =
1.25 sec for parts a and d and 2.00 sec for parts b and c).

C. Observer Design

The Kalman filter was designed with zero-mean, white
process noise w and measurement noise v with covariances
E(wwT ) = 1e5, E(vvT ) = 1e(−6) ∗ Im, and E(wvT ) =
0, which were used as inputs to the MATLAB function
kalman.

V. SIMULATION RESULTS

Table II provides the observability of the four different
thermal systems corresponding to the four different parts. All
four systems produced A matrices will all-distinct eigenval-
ues, so the observability check described in Section III-B was
applied. In relation to statements on observability in Section
III, the disconnected structure in Part (d) produced a larger
number of unobservable states, as predicted. Part (c) had a
minority of unobservable states, although it is unclear if the
states are truly unobservable or if the rank test is sensitive
to a tolerance. By investigating the HSVs, we can see that
only about 10 % of that states for Parts b and c are strongly
observable by evaluation of the HSVs.

The results of the simulation study are collated in Fig.
7 and Table II. It can be seen that the estimations of Parts
(a), (c) and (d) were highly accurate. Fig. 7iiia, Fig. 7iiic
and Fig. 7iiid show that the interpolated SSE for these
simulations was within 5 K for the vast majority of states
in the systems, and the analogous figures in row ii of Fig.
7 shows that the maximum absolute error was similarly
contained. The simulation of Part (b) was less accurate, but
it also represented the unrealistic scenario of the test part
being manufactured without support material.

TABLE II
OBSERVABILITY AND HSV STUDY

Part Unobservable states % strong HSVs
Fig. 6a 0 50.1
Fig. 6b 0 11.2
Fig. 6c 3 11.7
Fig. 6d 511 26.6
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Row ii of Fig. 7 demonstrates a clear relationship between
maximum absolute error and state number. Higher states
showed higher error. As explained in Fig. 7, states were
ordered by increasing z-coordinate. The states closest to the
heat input, being those with large z-coordinates, experienced
the most dramatic temperature fluctuations with time, and
thus thus produced the largest error during estimation. Fig.
7iiib and Fig. 7iiic show that the largest SSE

(
t̃
)

occurred in
the middle of the hourglass-shaped part, which corresponded
to the hourglass neck.

Comparing the data in columns (b) and (c) of Fig. 7 shows
that the simulation belonging to Part (c) was dramatically
more accurate than that of Figure (b). The addition of the
support material is the clear explanation for this result, as
all other parameters of the two simulations were identical.
The proportion of strong HSVs was the same for the two
simulations, which eliminated the explanation used for why
Part (a) and (d) were more accurate than the others. Fig.
7ib and Fig. 7ic show that the better accuracy of the Part
(c) simulation was due the much more rapid convergence of
the error signals with respect to those of Part (b). Simple
investigation of the eigenvalues of A−LC does not explain
the difference in the convergence rate of t̃ between the
two systems; future work will investigate better descriptive
statistics to understand the observer convergence for large-
scale (order of 104 states) systems.

VI. CONCLUSIONS

This paper is a first, exploratory work to study full
state observers to estimate the temperature of defined nodal
states in a PBF manufacturing. The observer is based on
a Finite Element Method thermal model, which provides
unconditional detectability and stability, and allows for ready
construction under a vast array of part geometries and load
conditions. For parts subjected to static heat flux along the
top face, the observer reconstructed the temperature history at
all states within the nodally-discretized part with maximum
and steady-state error on the order of temperature deviation
that is important to metallurgical study.

This exploratory study focused on developing the basic
analysis tools to quantify observability and notions of rel-
ative observability for this application. Several simplifying
assumptions were employed to define these basic tools;
as we transition to a more realistic model, the weakened
assumptions will yield interesting future research questions.
In particular, Assumptions A4 and A5 simplified the heat
source to be distributed across the top surface and the size
of the model to be fixed. However, in practice, the heat input
is a rastered Gaussian source and the model size is mono-
tonically increasing as more powder, which has negligible
conductivity in powder state, is fused and thus increases
the thermal mass and adds new conduction pathways. We
must model this time-varying and order-varying system and
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define the observability of this new system. Additionally,
PBF systems are often equipped with thermal cameras and
can accommodate a multitude of thermocouples; thorough
experiments must be performed to fully test PBF temperature
observer efficacy.
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