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Experimental methods must be adopted to characterize the dynamic properties of elas-
tomeric isolators, especially their multi-dimension elastic and dissipative properties. To
facilitate a tractable problem statement a rigid body isolation system (under a weight-
type preload) is proposed and reduced to a planar problem with 3 degrees of freedom that
can be replicated in any vertical plane. First, this article employs modal methods in tandem
with analytical, lumped-parameter models to experimentally characterize the dynamic
stiffness matrix, including off-diagonal terms. Fundamental stiffness properties are identi-
fied about the elastic center, facilitating a clear relationship between component- and
system-level dynamics. Dissipative properties are analyzed in terms of global, structural
type and mode-dependent viscous type damping formulations. Modal decomposition is
employed to demonstrate the effectiveness of the dissipative models for both coupled
and uncoupled motions. The proposed characterization method is validated by comparing
predicted dynamic properties of a multi-isolator system with measured responses in mul-
tiple directions. Finally, physical insight into the underlying behavior of elastomeric inter-
facial elements is sought by highlighting the role of the elastic center, comparing structural
loss factor and viscous damping matrix models, identifying the correlation between surface
hardness and Young’s Modulus, and briefly comparing non-resonant and resonant meth-
ods. Several annular or cylindrical elastomeric devices with varying size and material
demonstrate the proposed method’s breadth of application; subsequently, two production
mounts are utilized for validation purposes. Various identification issues such as unique-
ness of the identified stiffness, damping and elastic center properties are discussed
throughout the article.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Natural and synthetic elastomeric materials are employed for a broad range of vibration isolation systems. Such devices
exhibit amplitude and frequency dependent stiffness and damping properties which pose difficulties in the dynamic char-
acterization. Furthermore, these materials are often sensitive to manufacturing processes, and may be non-homogenous and
anisotropic; therefore, experimental methods must be adopted [1].
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Methods of characterizing the dynamic properties of elastomeric isolators may be broadly categorized into resonant or
non-resonant approaches. Non-resonant methods typically use uniaxial, sinusoidal excitation using an electro-hydraulic sys-
tem [2-7] or electro-dynamic shaker [8-11]. This method applies the dynamic displacement while the specimen is under a
mean load, and the force transmitted to the rigid base is analyzed at the excitation frequency to yield the dynamic stiffness of
the device. With a visco-elastic model, the stiffness modulus and loss factor may be mapped over a range of frequencies,
amplitudes, and mean loads. However, only diagonal stiffness matrix elements (such as compression and shear) may be
measured in this manner, and isolator fixtures are often required which may introduce additional dynamics that distort
some results.

Resonant (modal) methods generally rely on a system perspective and thus isolators are in a mechanical or structural sys-
tem, and dynamic mobilities are measured using impulse hammer or shaker tests. The component-level property is then
inferred from the system-level vibration response [10-13]. For example, Lin et al. [10] and Ooi et al. [11] characterized
the vertical dynamic stiffness of an isolator in a simple uniaxial system using the frequency response from an impulse ham-
mer test and validated their results through comparison with a non-resonant test. However, neither took into account addi-
tional degrees of freedom. Kim and Singh [12] placed the isolator between two compact, identical masses and conducted
cross-point measurements, using a mobility method to indirectly identify the multi-axis stiffness of the interfacial element,
but no mean load was applied in their experiments. Meggitt et al. [13] used a procedure similar to Kim and Singh’s, and
extended the mobility method to include an isolator placed between two flexible elements to simulate an in situ measure-
ment. While both studies showed reasonable accuracy over a wide range of frequencies and considered several isolator
geometries, the mobility method is inherently prone to the accumulation of numerical error since the solution is found
through matrix inversion. Noll et al. [4] investigated the relationship between the dynamics of an isolated elastic beam struc-
ture and the isolator stiffness matrix of dimension 3, including limited off-diagonal terms. A modal approach (but without a
mean load) was taken to analyze the system, and the inferred isolator stiffness values were validated by non-resonant mea-
surements. The importance of system-component interactions is highlighted by [4], suggesting that proper characterization
of boundary conditions is critical for any indirect characterization method. Further, Joodi et al. [5] have shown the numerical
errors that can result from such an indirect method. Finally, while resonant and non-resonant methods are distinct, elements
of each may be combined to form a hybrid procedure. For instance, Thompson et al. used a non-resonant measurement, but
focused on the resonance behavior of the resulting frequency response functions to indirectly identify the uniaxial stiffness
of a rail pad [9].

The concept of elastic center has occasionally been used in the study of mechanical systems [14,15], but to the authors’
knowledge, the utility of this physical characteristic has not been applied in the identification of elastomeric interfacial
devices. The center of elasticity is a location about which pure translational forces yield pure displacements and pure
moments produce rotations only; in short, the component stiffness matrix will be diagonal if and only if the coordinate sys-
tem’s origin is coincident with the elastic center. Locating this point offers great clarity vis-a-vis off-diagonal stiffness terms
since these depend on the coordinate system. This article seeks to develop a simplified, experimental identification proce-
dure based on locating and using the elastic center for interfacial connections. The proposed modal analysis based approach,
while relying on key knowledge elements from prior literature, aims to offer multi-axis dynamic stiffness (including off-
diagonal terms) and damping characterization, as well as insights into component and isolation system level behavior.

2. Problem formulation
To facilitate a tractable problem statement, the full 6 degree of freedom isolation system is reduced to a planar, 3 degree
of freedom problem that can be replicated in any vertical plane. A modal approach is employed with a frequency range of

interest up to 200 Hz. Several annular or cylindrical elastomeric devices with geometry depicted in Fig. 1(a) and with differ-
ent sizes and materials demonstrate the proposed method’s breadth of application. Subsequently, several production mounts
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Fig. 1. Geometry of (a) laboratory isolators, (b) production isolator V, and (c) the finite element model of the isolator V. Here, L is the length, D; is the inner
diameter, and D, is the outer diameter of the lab isolators, and P is the central point of the mating surface in (a), representing the location of physical
connection to the supported structure.



698 RS. Ramesh et al./ Mechanical Systems and Signal Processing 118 (2019) 696-715

as shown in Fig. 1(b) are utilized for validation purposes. The designation and physical parameters of each laboratory isolator
are given in Table 1. The production mounts (designated V) are comprised of ethylene propylene diene monomer rubber
(EPDM) and are evaluated for a Shore A hardness (S, ASTM: D2240) of 41, 49, 59, and 68. Isolator V also contains a metal
insert as seen in Fig. 1(b). Three experimental configurations as displayed in Fig. 2 are employed for identification and val-
idation. In test configuration T-A, a single isolator supports a 0.7 kg mass on a grounded plate, and modal tests are under-
taken for system characterization. Test configuration T-B has a 12.4 kg thick steel plate supported by four identical
isolators near the corners. This setup serves as experimental validation, where the system dynamics are compared with pre-
dictions made by using the component stiffness matrix from configuration T-A. Finally, test configuration T-C serves as a
more realistic validation by combining two pairs of dissimilar production mounts in a physical system that mimics the
in situ isolation application. In this case, a vertically oriented, 6.7 kg thick steel plate is placed on two relatively stiff isolators
with much more compliant mounts near the top of the plate, constraining out-of-plane motion. Each configuration’s mass is
selected to provide appropriate pre-load, stability, and dynamic scaling. The mass provides the only source of pre-load, so it
must be tuned to achieve a reasonable operating point and ensure linear system type behavior. For stability, it must also be
light enough so that small placement eccentricities do not tend to make the experiment tip over. To provide appropriate
dynamic scaling, the geometry of the mass is selected to (together with the combined mount stiffness properties) keep
the natural frequency sequence and values similar to the in situ application.

The objectives of this article are to (1) experimentally characterize the dynamic stiffness matrix (including off-diagonal
terms) and damping properties of a compliant elastomeric mount with particular focus on the center of elasticity, (2) exper-
imentally validate the characterization method by comparing predicted dynamic properties of a multi-isolator system with
measurements, and (3) obtain physical insight into the underlying behavior of elastomeric interfacial elements by highlight-
ing the role of the elastic center, comparing damping models, and identifying the correlation between surface hardness S and
Young’s Modulus E. Analytical (lumped-parameter) models will be used to guide the experimental work, and computational,
finite element models will be employed alongside these in both the identification and validation steps. Unlike some prior
methods, this work utilizes modal methods with rigid body isolation to limit the number of modes in consideration and
to achieve good coupling between multi-dimensional motions. This should allow the isolator properties to be extracted from
system-level measurements, with the intent to achieve demonstrably unique solutions. The unique solution approach should
also circumvent the numerical conditioning problems which are inherent to frequency response function based methods
[5,12]. Both structural and viscous damping models will be considered to capture the global or mode-dependent dissipative
behavior of various materials.

Since the focus of this article is the multi-axis, dynamic, elastic and dissipative characterization of elastomeric isolators,
many other factors must be ignored to facilitate a tractable problem. These include hyperelasticity, thermal effects, and
material damage or aging. Inclusion of these factors into the proposed identification procedures is thus left to future work.

The scope of this study is thus limited to linear time-invariant system theory, which assumes small displacements about
an operating point; this is consistent with prior mobility methods [12,13]. The associated mass-loading of additional preload
may be easily accounted for in the model, so the proposed identification method may be applied under various pre-loads as
long as the operating point is in a relatively linear regime of the force deflection curve. Force deflection curves for isolators I-
IV are shown in Fig. 3, demonstrating nearly linear stiffness regimes over significant ranges of displacement. However, a
treatment of amplitude or frequency dependence (typical of non-resonant methods [5,6]) is beyond the scope of this work.
Real-valued eigenvalue analysis is used throughout this article, so estimation of damping properties is treated separately
from the stiffness identification; complex eigensolutions are left to future work.

3. Procedure for identifying elastic properties
3.1. Determination of elastic center

To locate the elastic center, O, of an isolator, a finite element model of the device is employed (as seen in Fig. 1(c) for Iso-
lator V, for the sake of illustration). Estimated values of E may be obtained from S using the empirical relations proposed in
[16], while other properties such as p and v may be assumed directly based on the material composition. Interfacial surfaces
are selected based on the mounting configuration of the isolator, and all nodes on each surface are kinematically linked. In
the case of the laboratory isolators I to IV, the top and bottom surfaces are selected, and the bottom surface is given a fixed
boundary condition. Next, two points, P and Q, are defined forming a vector which is coincident with the specified hard point

Table 1
Geometric parameters and material properties of laboratory isolators in Fig. 1(a).
Isolator Designation Material L (mm) D; (mm) D, (mm) S v p (kg/m?) &, (mm)
I Polyurethane 33.6 38.1 51.3 40 0.49 1252 16.8
il Polyurethane 353 38.1 50.9 60 0.49 1266 17.6
111 Silicone 343 23.6 38.1 60 0.49 1535 171

v EPDM 30.7 0 49.8 60 0.49 1187 153
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Fig. 2. System configurations used for experimental identification and validation: (a) single-mount configuration T-A used to characterize an isolator; (b) 4-
mount horizontal configuration T-B is used to validate laboratory isolators I to IV, and (c¢) 4-mount vertical configuration T-C utilizes two pairs of dissimilar,
production isolators to mimic in situ application and provide more realistic validation. Photographs are also given for configurations (d) T-A, (e) T-B, and (f)
T-C. Here, m,, mg, and mc represent the mass of the inertial element in each configuration.
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Fig. 3. Measured static load-deflection curve in the axial (z) direction for (a) isolator IV, measured by a dynamic elastomer test machine [2] over a wide
range of mean loads and (b) isolators I, I and III from static displacements (under known weights) over a narrow range of mean loads. A nearly linear
stiffness regime is found in all cases. Key: —&— - Isolator [; - ... — Isolator II; ---@- — Isolator IIl; —— - Isolator IV. Here, F,; is the static load acting on the
isolator in the z direction and u, is the static, translational displacement in the z direction.

(P) and collinear with the geometric central axis of the mount as shown in Fig. 4(a)—the length of PQ is unimportant. The
distance between O and P in each direction is defined as &, &, and &,. A moment is applied about an axis perpendicular
to PQ (the positive x-axis in this case), which moves PQ to P'Q.. Since a pure moment was applied, O will be the center of
rotation for this displacement, and may be located by finding the intersection of the perpendicular bisectors of PP’ and
QQ’ using a vector loop. However, this method is very sensitive to changes in the length of PQ, so some conditioning is nec-
essary in practice to avoid significant numerical error. For symmetric isolators, the assumption that O lies on the axis of sym-
metry (& = &, = 0) indeed simplifies the procedure, as shown in Fig. 4(b). In this case, O is also located at the intersection of PQ
and P'Q, and the calculation procedure is much less sensitive to small numerical errors. The resulting value of ¢, for each
laboratory isolator is given in Table 1. The values are found to be close to L/2 where L is the length of the annular or cylin-
drical isolator.

The proposed procedure could be reproduced physically to measure the location of O, but precise static or dynamic
forces/moments and multi-dimensional motion measurements would be required at multiple locations, turning a relatively
simple computational procedure into a potentially impractical experiment. All analytical models in this article are dependent
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Fig. 4. Elastic center geometry (a) for the general planar problem and (b) assuming that O lies on the central axis. Here, PQ is collinear with the isolator’s
geometric central axis and kinematically linked to the contact surface while P'Q’ is the deformed location of PQ under a purely rotational load which is
orthogonal to PQ. In general, the elastic center lies on the intersection of the perpendicular bisectors of PP’ and QQ’; however, if the elastic center resides on
the central axis of the isolator, then it will also lie on the intersection of PQ and P'Q’.

on accurate knowledge of the O location; therefore, these calculations are implicitly validated by the modal experiments dis-
cussed hereafter.

3.2. Modal experiments

Configuration T-A is employed first to characterize the stiffness matrix of each mount. These include the laboratory iso-
lators I through IV (with properties given in Table 1), and a production isolator V with S values of 41, 49, 59, and 68. Although
this configuration is relatively robust to characterize a wide array of different vibration isolator designs and materials, it is
limited by its relative instability under a large preload (especially for mounts with lower S). A more robust discussion of pre-
load issues will be given later; nevertheless, under limited preload, both driving-point and cross-point accelerance measure-
ments may be taken in multiple directions to fully capture six rigid body modes of the system.

To guide the experimental procedure, a finite element model similar to the one shown in Fig. 1(c) is first analyzed to iden-
tify the six natural frequencies and modeshapes of the system corresponding to rigid body motion of the inertial element.
Although dependent on the estimated value of E, these demonstrate appropriate excitation and sensor locations and esti-
mate the necessary frequency resolution and range. The applied force and acceleration measurements are taken, averaged

in the frequency domain, and then used to obtain particular driving- and cross-point accelerance terms, A (), which are use-
ful to identify the natural frequencies, w,. Here, the tilde represents a complex-valued quantity. Specifically, a driving point
measurement is taken with the excitation force (Fz) acting at the center of the top surface of the mass, such that the force’s

line of action passes through the CG, yielding ;\zz(w) = —w?u,/F,|,, where o is the frequency in rad/s and u, is the displace-
ment of the mass in z direction. Similarly, a second measurement is taken laterally such that the line of action passes through

the CG and on to the accelerometer yielding A,,(w) = —w?u, /F, |, for a coordinate system centered at the CG. As expected,
each experimental configuration has one uncoupled bounce mode along the z direction, one uncoupled torsional mode along
0,, coupled shear and rocking modes along the y and 0, directions respectively, and another pair of coupled shear and rocking
modes along the x and 0, directions respectively. Due to the geometric symmetry of configuration T-A, excitations in the x
and y directions yield identical results (indicating symmetric modes, i.e. w,=w3 and w4=ws), so only the results for excitation
in the y and z directions are given. The true natural frequencies of the system are estimated from the measured accelerance
A ()

magnitude spectra, {w,} = {18 Hz, 46 Hz, 64 Hz} for Isolator I, corresponding to the shear, rocking, and bounce

modes, respectively. The natural frequencies for Isolators II and III are {w,}= {26 Hz, 65 Hz, 90 Hz} and
{w,} = {23 Hz, 67 Hz, 98 Hz}, in the same order. More details on the estimation procedure are given in Section 5. These
may be used to update the value of E in the finite element model if needed.

The instrumentation used for modal measurements includes an accelerometer (PCB model A353B66), impulse hammer
(PCB model 086C03), single module carrier (NI USB-9162) and vibration input module (NI, model 9234) for the data acqui-
sition system. The post-processing is performed using NI LabVIEW SignalExpress and MATLAB. A sampling frequency of
1000 Hz with a frequency resolution of 0.8 Hz is used for signal processing, and three samples at each location are averaged
to minimize the random error in the accelerance measurements (with root-mean-square averaging in frequency domain).
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3.3. Development of analytical models

The full 6 degree-of-freedom (DOF) problem for configuration T-A is reduced to a more tractable 3 mode problem by
ensuring that planes of symmetry may be defined containing both the elastic center and the center of mass. A 3-DOF ana-
lytical model can then be used to describe the behavior of the system in any of these planes independently. For simplicity,
only one such vertical plane (y-z) is considered in this section. Since the torsional mode is uncoupled, a single degree of free-
dom system could be defined for the 6, direction, although this is trivial and thus not developed here. In this manner, the
complete stiffness matrix of dimension 6 can be constructed about the elastic center O using this analytical framework.

To identify the stiffness property and ensure that the analytical model has similar dynamic behavior to the physical
device, three steps are performed: (i) analytically relate the eigensolution to the stiffness matrix about O ([K],) which
may be considered the fundamental stiffness property of the device, (ii) populate [K], from the measured natural frequen-
cies, and (iii) verify the analytical model for configuration T-A in terms of the eigensolution using the finite element model.
Additionally, such analytical models may aid in the interpretation of the experimental measurements and computational
exercises.

The 3-DOF analytical model used in this study is depicted in Fig. 5. The stiffness matrix about O is, by definition, a diag-
onal matrix, but for coordinate systems located another point (such as the “hard point” P or center of gravity (CG) G of the
mass) the matrix will contain off-diagonal terms. Both ¢, &,#0 are allowed in the model for generality, and the distance from
P to G is given by a. Three distinct springs, ky, k;, and k, support O from the ground in the y, z, and rotational directions,
respectively, corresponding to diagonal [K],. Since a rigid kinematic link between O and P rigidly attaches the mass, all stiff-
ness elements are considered to be acting at O. The governing equation for the undamped system displayed in Fig. 5(a) (from
the static equilibrium under a given preload) is given below where the generalized displacement vector

{q(t)} = {uy(t),u(t), Hx(t)}T is given in a right-handed coordinate system center at G, {F(t)} is the dynamic (external) force
vector, [M] = diag[ma, ma,J,xa] is the mass matrix, and [K]; is the system stiffness matrix about G:

M{q()} + [Kc[{q(t)} = {F(t)}. (1)

Here, [K]. is related to [K], through kinematic transformation. Fig. 5(b) depicts a generalized rigid body where {R} = {R,,R;}
is a vector from the CG to an attachment point (O) so labelled because it coincides with the isolator elastic center in this case.
The transformation matrix is defined,

1 0 0
[T(Ry,Rz)}O = 0 1 0], (2)
—Rzo Ry.O 1

which allows conversion of forces and displacements from a coordinate system at O to one at G,
{F}¢ = [Mo{F}o, 3)

Fig. 5. (a) Analytical 3-DOF model for the isolation system configuration T-A of Fig. 2(a). Here, ky, k;, and k, are the diagonal stiffness elements acting at the
elastic center O, m, is the mass supported by the isolator, ¢, and ¢, are the vertical and lateral distances from the hard point to the elastic center,
respectively, and a is the distance from G to the hard point; (b) Generalized rigid body system, where {R}, = {R,0,R;0} is a vector from the center of gravity
G to an attachment point O, which at this point is the isolator’s elastic center. Forces and displacements applied to the body at O may be transformed to
effective quantities at G using the transformation matrix [T (Ry,R;)],.
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{a}o = [To{a}e- )
Applying this equation to the example system by using Egs. (3) and (4) with (1) for the static case (w = 0) leads to
{F}c = [Tlo[K]o[Tlo{q}c- Thus,
ky 0 ky(a + &)
K¢ = [Tl Kol [Tlo = 0 ke eyk; _ )
ky(a+e) ek: k2 +ky(a+e) +k

The elastic coupling between the y and 6y directions is proportional to (a + &,), while the z - 6, coupling is proportional to
&y. No coupling is present between the shear and bounce directions, and since &, = 0 for the axisymmetric isolator being
examined, the z (bounce) direction becomes entirely uncoupled. The system'’s rotational stiffness at G is affected by all three
spring constants, though the effect of k, may be overshadowed by the other two terms, depending on the geometry. Thus the
physical systems designed for identification purposes should seek to limit ¢, and &, (where possible) to ensure that k, plays a
distinct role and may be determined. Prior literature [15] has ignored the k, term, assuming it to have negligible effect com-
pared to the k, and k, terms, whereas the proposed method allows for a quantitative evaluation of this hypothesis. Later it
will be seen that the k, term is quite large for some of the example cases.

3.4. Eigensolution and extraction of stiffness terms

Natural frequencies () for the 3-DOF undamped system are related to the stiffness matrix in terms of the characteristic
equation,

|[K]¢ — w;[M]| =0, (6)
and the eigenvectors {¢,} are given in terms of the eigenvalue problem,

([K]g — M) {¢,} = {0}. (7)
Typically, eigenvectors are normalized such that [¢]'[Kl;[¢] = [A] and [¢]'[M][¢] =[], where [A]= diag[w?] and
[¢] =[--{,} -], though alternative normalization schemes may be used. If {¢,} are precisely known, then a unique solu-

tion for ky, k., and k, may be obtained from Eq. (7). First, since (7) is valid for each modal index n, they may be combined into
matrix form to yield the following,

[Kl[o] = M][@][A]. 8)

Using Egs. (5) and (8) yields an explicit, unique solution for the fundamental stiffness values as,

Klo = [Tl,' MI#liAllg) " (ITT3) 9)

However, this calculation is relatively sensitive to error in an estimated modal matrix since accurate eigenvectors are nec-
essary to directly use equation (9). Further, since only one accelerometer is used in the modal experiments, measured rota-
tions (6(t) in this case) are not available and so neither are experimental modeshapes. The above mentioned shortcoming
may be addressed in one of three ways. First, enhancing the experimental procedure to include additional sensors to capture
all relevant displacements and rotations would allow for the direct estimation of eigenvectors but could increase the chances
of experimental complications; however, this is left for future work. Second, eigenvectors may be estimated from the finite

element model ([¢>D and substituted into Eq. (9) to estimate [K], as diag {Iiy, ks, IQO}, where the hat symbol indicates an esti-

mated value. This solution is perhaps the simplest, but it does rely upon accurate finite element models of the elastomeric
mount. The third approach is to use the Eq. (6) instead of (7) as the basis for stifness estimation. The equation is reduced to
dimension 2 by removing the z direction (assuming &, = 0, as before) to reduce the algebraic complexity, and then solving

the characteristic polynomial for IQy and k,,
k, — w?m k,(a+e,
o Ol Y(z + &) —0; n=1,3. (10)
ky(a+e) ky(a+e) +kj— 0
This leads to eight possible solution sets for l§y and ky, but for all example cases in this study, only one is physically realizable
with both I}y7 ky > 0. The third stiffness term is easily calculated from the uncoupled mode,

k,— @?my =0; n=2 (11)

This third solution is tractable for a simple system such as configuration T-A, especially where the equations can be
decoupled to a maximum of 2-DOF. For a more complicated system, however, the estimation could become unwieldy. It
is also possible that some parameter sets may yield non-unique, physically realizable solutions.
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4. Discussion of stiffness results

4.1. Application of proposed identification procedure

The two stiffness extraction solution methods (as discussed in the previous section) converge to the same k values, which

are given in Table 2 for each laboratory isolator. Although the relative value of k, compared to IQy or k, is difficult to directly
evaluate since the units are different, comparison of the terms of the (3,3) element of [K]; in Eq. (5) allows for comparison in
the same units. Here, it is found that k, is between about 3 and 8 times ky(a+ &,)? for each isolator, suggesting that the ke
term is not generally negligible; this contradicts the usual assumption made in prior work [15]. Further, roughly a 50%
increase is observed in the vertical/lateral stiffness ratio, which influenced dynamic scaling when it comes to damping—this
will be discussed further in the next section.

The stiffness solutions can be verified by calculating the analytical eigenvectors by solving Eqs. (7) using (5) and the val-

ues of ky, k,, and k,. (For this example case, each method converges to the same solution.) These analytical eigenvectors ({¢})
are compared with the finite element eigenvectors {(b,.,} using the modal assurance criterion (MAC) [17],

N 2
At ({0 }] 12

(1o ) ({8} {.})

The resulting modal matrices for Isolator I (in SI units) are normalized again for clarity and compared,

1 00 1 00
=0 o0 1], [és]: 0 o0 1], (13a,b)
-85 1 0 -152 1 0

with MAC values in excess of 99% for all three modes, indicating an accurate estimation of the stiffness matrix for Isolator I.
The same process is repeated for all of the other isolators in this study, and similar results are obtained.

4.2. Determination of Young’s modulus (E)

The E value associated with each isolator may be estimated using finite element models of each modal test configuration
(T-A, T-B or T-C). The E parameter in the model is tuned by comparing finite element estimations of natural frequencies {c,}
with measured natural frequencies {w, }, recognizing that w, « VE; if {®,} ~ {w,}, then E ~ E. These E are compiled in Fig. 6
for different system configurations and isolators, showing an overall trend between E and S, where E, is a reference value
used for normalization. Similarly, the stiffness values of Isolator V roughly follow the relation, ky, k,, ky  E, although not per-
fectly. This may be due to the composite effect of the metal insert as shown in Fig. 1.

It is seen that somewhat higher estimated variation (around 6.3%) exists at 68 S than for lower S values. There may be
several contributing factors causing this variation in E. First, the higher slope of the E vs. S curve at the higher hardness values
indicates increased sensitivity to S, so even a small change in the material properties may produce significant variation in E.
Second, different values of S and different system masses both lead to different system natural frequencies. The true dynamic

stiffness of any rubber material is likely frequency dependent, so k ~ k(coy). If the dynamic stiffness spectrum is not rela-
tively uniform in the frequency range of interest, different k and subsequently E values may be obtained. Finally, the different
system masses in the various configurations may be introducing a preload effect, but since the operating point was chosen in
a relatively linear regime, this should not cause significant variation in E estimation.

A curve fit is applied to the data points in Fig. 6 using the following rational function, where y and 1 are the coefficients
used in the numerator and denominator:

3 i
. > .S
E(Sy) = Zi0liS (14)
1
Zi:O %S
Table 2 o X o
Estimated diagonal stiffness elements (k,, k;, and k,) and k;/k, ratios for four laboratory isolators.
Isolator Designation Material S ky (N/mm) k, (N/mm) ko (kKN-mm/rad) kz[ky
I Polyurethane 40 12 115 40 9.6
1l Polyurethane 60 28 224 72 8
11 Silicone 60 18 267 94 14.8

v EPDM 60 101 1453 630 14.4
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10

E/E,

Fig. 6. Comparison of computed Young’s modulus (E) as a function of Shore A durometer (S) across all three configurations using both laboratory and
production isolators. Key: # - Configuration T-A with isolator V; A - Configuration T-B with isolator V; [J - Configuration T-C with isolator V; [ -
Configuration T-A with isolator I; ) - Configuration T-A with isolator IV; s - Curve fit using all data points. Here, E, is a reference value used for the
normalization.

Eq. (14) is proposed here since it is sufficiently general to capture both the new data from this study and approximate his-
torical relationships between E and S [16,18]. The values of y and 4 obtained for the new data shown in Fig. 6 are
{V0s V15 V2+ V35 20, 21, A2, A3} = {489.9, 8642, —1857, 41.43, 1579, 11330, —210.5, 1}; for the relationship reported in [16] they
are {290.7, 6090, 801.8, —4.30, 220.2, 19360, —293.6, 1}; and for the relationship in [18]: {-167.5, —3490, 403.6, —3.63,
621.3, 11380, —213.8, 1}. The trend of the curve in Fig. 6 is qualitatively similar to that reported in the literature [16,18]
but quantitatively, the expressions obtained from the literature deviate substantially from our results. This suggests that
the E vs. S relationship may be more tenuous than previously suggested [16,18], especially where complex geometry may
exacerbate non-uniform material properties due to molding, curing, etc. Further attention to this issue is needed in future
work.

5. Identification of dissipation properties
5.1. Structural damping formulation

The real-valued eigensolution basis that is employed for stiffness identification inherently ignores the internal damping

of the isolator(s). Therefore, measured A (w) spectra from configuration T-A, as illustrated in Fig. 7, are utilized to assess
material damping (only within the isolators) in terms of several well-known formulations. Frequency invariant structural
damping is one common model which applies a single, global value in the following form, where # is the mode-
independent loss factor, and tilde implies a complex-valued quantity in the frequency domain,

10 w w w 10

@ S

0,
g . g
3 3
< 2 <
-30F
40— ! . . . . . . . . . . .
1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 25 3 35
0] @
Fig. 7. Measured ‘;\ (w)‘ magnitude spectra for three annular laboratory isolators under configuration T-A, including (a) ;‘zz(w) and (b) ;\yy(w) , where o is

the normalized frequency. Key: - Isolator I; sssseess - Isolator II; - Isolator III.
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[K]O = [Ko(1 +in). (15)

The half-power bandwidth method [19] is employed to estimate the value of 7 from ;\u(w) = —w?u,/F,|, and
;\yy(w) = —w?uy/F,|, spectra obtained from modal experiments for all laboratory isolators in test configuration T-A. Mea-

sured values of # (determined from the uncoupled mode in the ;\H(a)) spectra) for the isolators used in this study range from
11% to 19% with an arithmetic mean of 12.5%. This is close to values reported in the literature [20]. Coupled rocking type

modes are not used to estimate # since the ;\yy(w) spectrum has two closely spaced resonant peaks and the half-power
method assumes a single, distinct peak. Further, an anti-resonance is very close to the coupled rocking mode in ;\yy(w), dis-
torting the frequency response curve and thereby slanting the 7 estimation. Accordingly, the mean # adopted from ;\zz(a)) is
used as the global value. The damped analytical model is then characterized in terms of the accelerance matrix,
) Ay(@) 0 Au(®)
A =] 0 Auw o |- K im) (16)
Ay(@) 0 Agy(w)

and the resulting ;\yy(w) and /N\zz(a)) spectra may be directly compared with the measured accelerance spectra as shown in

spectra for three laboratory isolators, but the

Fig. 8. Good agreement is achieved between estimated and measured ’;\H(w)

estimated ‘Ayy(w) spectra agree with measurements primarily only in terms of the resonant peak frequencies and not the

peak amplitude, particularly for the second mode. To address this discrepancy, mode-dependent damping is considered
using a viscous damping formulation.

5.2. Identification of viscous damping matrix

Since the T-A system has distinct physical stiffness and mass elements, proportional damping is assumed with the Ray-
leigh damping approximation. This model expresses the damping matrix [C]; as a linear combination of the mass and stiff-
ness matrices: [C]; = fy[M] + B¢ [K]; where 8y and fi are the proportionality constants. Since the mass element is rigid and
made of virtually undamped metal, g, is assumed to be zero. Thus gy is estimated at a given mode n, and indeed there are

10 10
0 A (a) 0 (b)
o
g -0 -10)
=
= . R
3 20 20
11“ -30, -30
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05 1 15 2 25 3 35 05 1 15 2 25 3 35
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Fig. 8. Comparison of estimated and measured A ()| magnitude spectra for three annular laboratory isolators under configuration T-A given global, mode-
independent loss factor, #= 12.5%: (a) ;\ZZ((U)‘ for Isolator I, (b) ;\ZZ((U)‘ for Isolator II, (c) ;\ZZ(w) for Isolator III, (d) ;\yy(w) for Isolator I, (e) ;\yy(w) for

Isolator I, (f) ;\yy(w) for Isolator IIl. Key: === — Measurement; ====: — Analytical model.
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three possible values for By that can be obtained from the modal domain relation given by {, = fxw,/2, where {, are the

modal damping ratios. Now, damping estimates include the coupled modes in the ;\yy(w) spectrum as well. The three solu-
tions of the Rayleigh formulation yield inconsistent values of [C]. elements with no suggestion of which to choose, and thus
its utility is severely limited.

More generally, the viscous damping matrix [C]; may be constructed using the orthogonality of modes, where [(}5] is the
normalized modal matrix and ¢, are the measured damping ratios:

Cy Gz Cp i

Ce=|Cy Cu Cu :<[¢] )71diag[2wng“n}[</>] . (17)
Coy Coz Cop

The [C]; calculated by this method may require conditioning since arbitrary modal damping values may introduce physically
unrealizable damping terms. For the case of configuration T-A, any C, Co,#0 or Cyy, C,;, Cyy < O terms are set to zero. After

the conditioning process, the resulting modal damping ratios ¢, are calculated from the conditioned damping matrix [C} ¢
. Ts . 1911714 12
dign] = g 5, | [9]'[d] ] 18)

and it may be determined whether the conditioning has introduced unacceptable discrepancy between £, and ¢,. However,
for laboratory isolators I, II, and III, conditioning of [C]. has not been found to be necessary.

For the sake of illustration, the calculated viscous damping matrix for isolator I is found to be as follows with pertinent
units,

0.0176 N - s/mm 0 —0.260 N - s/rad
[Cile = 0 0.0340 N - s/mm 0 . (19)
—0.260N-s 0 39.9 N- mm/rad

The damping matrices for isolators II and IIl are normalized element-wise by [C¢,] as expressed above for the sake of
comparison,

i 12 0 05] 07 0 04
[c,,] =0 19 o {c,,,] =0 15 o (20-a, b)
05 0 07 04 0 07

Interestingly, all three isolators have relatively similar damping matrices despite differences in material, durometer, and
geometry; however, a qualitative difference exists between these [C]. matrices and [K], since the off-diagonal damping ele-
ments are negative. This suggests an alternate coupling mechanism other than the kinematic coupling which produces the
off-diagonal stiffness elements. Further, it was previously seen in Eq. (5) that transforming the coordinate system to O would
diagonalize [K]., but it is now observed that this is not the case for [C].,

0.0176 N -s/mm 0 —0.779 N -s/rad
[Cllo = 0 0.0340 N - s/mm 0 . (21)
-0.779 N -s 0 69.9 N-s-mm/rad

This suggests that there may exist a “dissipative center” which is distinct from the elastic center and has no physical cou-
pling from the damping perspective. The physical significance of this should be investigated in further studies.
The system response under the viscous damping formulation is defined in terms of the accelerance matrix,

[N <w>} - (M) +i(Cl; + Kl) (22)

Viscously damped ‘;\yy(w)‘ spectra are compared with measurement in Fig. 9. Discussion of the Azz(w)

comparisons is

ignored here for brevity, since the analysis for the uncoupled mode is trivial, and good accuracy is achieved without diffi-
culty. In the y direction, however, the expected boost in accuracy from the inclusion of a mode-dependent damping formu-
lation is not achieved. In particular, the second mode shows less agreement with mode-dependent viscous damping than

with global structural damping due, in part, to distorted estimation of {, from the coupled modes in ;\yy(w). Some insight
into this discrepancy is available through a more rigorous modal analysis in the next section.
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Fig. 9. Measured

;\yy(w)‘ spectra for (a) Isolator Il and (b) Isolator III isolators under configuration T-A compared with analytical estimates using the viscous

damping formulation. Isolator I behaves similar to II so these spectra are not shown. Key: === — Measurement; ====: — Analytical model.

5.3. Examination of damping model using modal decomposition

In Fig. 9, the analytical model’s response ostensibly shows excessive damping in the second coupled mode when com-
pared with the measurement. However, the underlying cause stems primarily not from the damping model, but from a rel-
atively lower contribution of the second mode that is essentially masked by the first mode. This explanation is verified by
inspecting the response of the system in the modal domain, and then comparing model with measurement. Since rotational
motion was not measured in the proposed identification method, 0x(w) is estimated from the measured u,(w) by assuming

modal decomposition where &, () is the response of the nth mode, and h, is an amplitude coefficient which corrects for arbi-
trary normalization of [¢],

{”y(w) } _ { $1161(0) + ¢ 18 (W) }

23

Ox() $1281(0) + ¢216 (W) @3)
hy

(@) = W: — ? + 2wwnl, @)

Eigenvectors are taken from the finite element model, a curve fit is applied to identify the optimal h,, w,, and ¢, for both
modes, and these are used to estimate 60(w) from Eq. (23). The modal decomposition of u,(w) is shown in terms of accel-
erance in Fig. 10. If additional sensors may be deployed to measure the rotation directly during the experimental procedure
described in Section 3.2, the preceding steps could be skipped. It is readily apparent from Fig. 10 that estimations for the
damping of the first mode will not be affected by using the modal decomposition; however, both the apparent natural fre-
quency and damping ratio are changed for the second mode. Enhanced accuracy for both stiffness and damping identifica-
tion is obtained through modal decomposition, so it is employed in both w, and {, estimation throughout this study.
The modal domain response is then calculated from the familiar equation,

4, ()] (dB)

S50 S 1

60 : L L L n L L L
20 40 60 80 100 120 140

o (Hz)

Fig. 10. The modal decomposition of u, () for isolator III in terms of

;\yy(w)‘. Key: mmm= — Measurement; == == — Shear mode; =s=s= - Rocking mode.
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Fig. 11. Comparison of estimated and measured &(w) magnitude spectra for isolator Il under configuration T-A. Modal decomposition is carried out to
evaluate damping characterization. The measured response of all three modes is normalized and compared with the analytical model in the modal domain,
using the structural and viscous damping. Key: - Measurement; == == .- Analytical model ([C]); ==+ss==+. — Analytical model ([#]).

& =191"'{q}. (25)

and each mode may then be treated separately. The measured response of all three modes is normalized and compared with
the analytical model in the modal domain in Fig. 11 for isolator III, using both structural and viscous damping formulations,
showing that either damping formulation adequately captures the measured dissipative property for this device. Estimated
modal damping ratios are given for isolators I, II, and IIl in Table 3 and used to estimate [C]; in the analytical model using Eq.

(17) for each case. The ;\yy(w) spectra is calculated for Isolator II using both structural and viscous damping formulations

and compared with measurements in the physical domain in Fig. 12. Overall, reasonable damping estimation is achieved, as
well as resolution of the difficulties associated with direct estimation of modal damping ratios.

While both damping formulations used in this article offer a reasonable estimation of the isolators’ dissipative properties,
some predictions show a small shift in resonant and anti-resonant frequencies when compared to measurements. This is
especially true for the anti-resonances depicted in Fig. 8 and may be due to frequency dependent characteristics, [C(w)],
which are not captured by the Kelvin-Voigt model used here. Alternative viscoelastic models such as the Maxwell, Standard
or other models [21] may better capture frequency dependence of the dissipative elements, but this effort is left for future
investigations.

6. Experimental validation of identification process
6.1. Identification process for laboratory isolators under configuration T-B

Fig. 13 depicts the analytical system model for the configuration T-B (of Fig. 2(b)) that supports a horizontal thick plate on
4 identical isolators. This setup is used to validate the proposed identification process based on configuration T-A to obtain
[K], (of dimension 3), first for the laboratory isolators. The isolator properties, namely [K], and the location of O (with
eccentrics ¢, and ¢,) identified as previously using configuration T-A, are used in the analytical model for each isolator of con-
figuration T-B. Each stiffness block (with 3 diagonal elements and a kinematic link) is used to represent two identical isola-
tors in Fig. 13. The analytical model again captures the in-plane dynamics of T-B in the y-z plane assuming physical
symmetry; this representation may be used for the x-z plane as well though this is not described here.

The governing equations for the undamped isolation system (from the static equilibrium under a given preload) for

Fig. 13 follow the same form as Eq. (1), where the generalized displacement {q(t)} = [u,(f) u.(t) 60x(t)]" is used as before

Table 3

Estimated modal damping ratios ({,) of configuration T-A using modal decomposition in shear (n = 1), rocking (n =2) and bounce (n = 3) modes.
Isolator Designation Material S {1 (%) (o (%) {3 (%)
I Polyurethane 40 8.0 5.9 6.7
Il Polyurethane 60 7.3 71 7.5

U Silicone 60 6.7 5.8 6.1
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Fig. 12. Comparison of estimated and measured |A,,(w)| spectra for isolator II under excitation of configuration T-A in the y direction. Key: me= —
Experiment; Analytical model (mode-independent 7); - Analytical model ([C]; from modal decomposition).
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R K]
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2K, 2K,

Fig. 13. Analytical 3-DOF model for the 4-mount isolation system under configuration T-B of Fig. 2(b). The block on the right indicates the sub-system
model which is contained within a single [K;] element (for isolator I as shown), k,, k, and k, are the diagonal stiffness elements acting at the isolator’s elastic
center. Here, €, and €, are the vertical and lateral elastic center coordinates, m is the rigid mass, and by, b, locate the isolator hard points from the center of
gravity.

for a coordinate system centered at G, {F} is the dynamic (external) force vector acting at G. The mass matrix is given by [M]
= diag[mp, mg, Jxxg], and the system stiffness matrix [K]; (about G) is defined as,

[Klg = 2[T(=by + &y1, —b; — &.1) | [Ki] [T (—by + &4, —bz — 82,,,)]T +2[T(by + &4, —b; — &.1) ] [Ki] [T (by + &4, —b; — 82,,)]T
4k, 0 4ky (b, + &;)
- 0 4k, 4k, ) (26)
4ky(b; + &) Aeyk; Ak (D) + €2) + 4ky (b, + &) + 4k,

An interaction between isolators is observed which, in some ways, mimics configuration T-A. The lateral placement of iso-
lators (by) does not affect any coupling terms since the generated moments cancel each other as long as symmetry exists
about G. The rotational stiffness element, however, is affected.

The eigenvalue problem for the above model is solved and the estimated values of w, (in Hz) for isolator I from the 3-DOF
analytical system model are w, = 10, 31, and 35 Hz. The corresponding measured values of w, obtained using the exper-
imental system are found to be 12, 28, and 34 Hz, suggesting reasonable prediction accuracy, and validation for the stiffness
terms as given previously in Table 3. Some prediction error may be observed between analytical and experimental w, values
from configuration T-B for isolators I, II, and III, and these are compared in Table 4. Overall, the errors are small, but the first
two modes with isolator IIl show a substantial error. This is likely due to a more nonlinear static force-deflection curve such

that the additional preload under configuration T-B has shifted the operating point, introducing error to [k]o. Accelerance
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Table 4
Measured and predicted natural frequencies (w,) for shear (n = 1), bounce (n = 2) and rocking (n = 3) modes under configuration T-B natural with laboratory
isolators.

Isolator Designation Material S Measured (Hz) Predicted (Hz)

o w3 w3 w1 W, w3
I Polyurethane 40 12 28 34 10 31 35
11 Polyurethane 60 17 40 47 15 43 48
111 Silicone 60 19 43 50 12 47 52

o
o
2
g
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-60 -60 -60
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spectra for three annular laboratory isolators under configuration T-B. (a)

':lyy(w)

Fig. 14. Comparison of measured and predicted ‘;\ () ;\ZZ((U)' for Isolator I,
(B) |Az() Acr()

Measurement; ==== — Analytical model.

for Isolator II, (c) for Isolator IIL. (d) for Isolator II, (f)

;\yy(w)‘ for Isolator I, (e)

;lyy(w)‘ for Isolator IIl. Key: s —

magnitude spectra ;\Zz(a)) and ;\yy(w) are obtained for configuration T-B using the component-level viscous damping for-

mulation of Eq. (17) from configuration T-A. These are compared with measurements in Fig. 14 for isolators I, II, and III. For

the ;\H(w) spectra, the analytical model slightly over-predicts the natural frequency. This is likely due to the assumption of

plate rigidity—a flexible plate softens the system, decreasing the natural frequency. Only one strong resonant peak is visible

in the

Ayy(w)’ spectra for all example cases, whereas two are present for configuration T-A as discussed previously in Sec-

tion 5. This is because the distribution of elastic properties to four isolators allows them to work in tandem, stabilizing the
system and reducing the inherent coupling between shear and rocking motions. In fact, more coupling would be induced
between the z and 0, directions if a force, F,, were to be applied offset from the CG; indeed, very small peaks are visible

in the ’;\ZZ(Q)) spectra. Finally, good agreement is achieved in the ;\yy(w) spectra for both polyurethane isolators, but the

model substantially under-predicts the natural frequency for the silicone mount. This is likely attributable to the significant
nonlinearity of many silicone rubbers which may be in play even at small amplitudes [22].

6.2. Identification of production isolators under configuration T-B

Similar steps are carried out using a production isolator (V) shown in Fig. 1(b) which is tested for four S values (41, 49, 59

and 68). Fig. 15 shows the comparison of the measured and estimated A (w)| spectra for isolator V under configuration T-A,

indicating good characterization of the device. Fig. 16 shows the comparison of measured and predicted ';\ (a))‘ magnitude
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Fig. 15. Comparison of estimated and measured A (w)| spectra for the production isolator (V) under configuration T-A, in particular: (a) ;\ZZ((U) (b) ;\yy(w)‘,

where o is the normalized frequency. Key; ==== — Measurement; ====: — Analytical model.
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Fig. 16. Comparison of measured and predicted

,:lyy(w)Lspectra for the production isolator (V) with 49 S under configuration T-B, where « is the
normalized frequency. Key: === — Measurement; ==s=: —

nalytical model.

spectra for isolator V under configuration T-B under excitation in the y direction. Similar to the laboratory isolators it is
observed that there is some deviation in the natural frequencies, once again likely due to a change in operating point due
to additional preload. Otherwise, satisfactory accuracy is again achieved. Finally, Table 5 compares the bounce stiffness
(k;) values for isolator V obtained from modal experiment configuration T-A with measurements made using a non-
resonant method under 0.1 mm peak-to-peak sinusoidal displacement excitation and a 60 N preload [2]. Each value is nor-
malized by the k, value of isolator V at 41 S. These show good agreement between methods except for the very high durom-
eter (S=68) materials, where significant deviation between the two methods begins to occur. This may be due to an
inadequate value of E used (as evident from the discrepancy seen in Fig. 6) or the material non-uniformity associated with

such hard samples.

6.3. Identification of production isolators under configuration T-C

The configuration T-C of Fig. 2(c) is schematically displayed in Fig. 17. It employs 2 pairs of different production isolators
(V and VI), and the properties of each, namely [K], and the location of O (with eccentricities ¢, and ¢;) are identified, as before,
with configuration T-A. The analytical model captures the in-plane dynamics of T-C in the y-z plane assuming physical sym-
metry; this representation may be reproduced for the x-z plan (with ¢, — 0) though details are not given here. While the

Table 5

Validation of stiffness k, values for the production isolator (V) where the modal experimental
values are under configuration T-A and the non-resonant values are under low-amplitude (0.1 mm
peak-to-peak) sinusoidal excitations and 60 N preload in the z-direction. Each value is normalized
by the k, value of isolator V at 41 S.

Nominal § ﬁz from modal experiment (N/mm) l;z from non-resonant test (N/mm)

41 1.00 1.17
49 2.11 1.70
59 2.67 2.75

68 8.86 6.70
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[Ku] [Ku]

Fig. 17. Analytical 3-DOF model for the isolation system under configuration T-C of Fig. 2(c). Here, all of the stiffness properties for production isolators (V

and VI) are lumped into two stiffness matrices, namely [Ky] and [Ky], as in Fig. 13. Additionally, mc is the rigid mass, and c,, c,, dy, and d, are geometric
parameters which locate the isolator hard points from the CG.

production isolator VI (with a hardness of 40 S though other details are not provided in this article) is very compliant com-
pared to isolator V, the relative inertia of the vertical plate is much less stable given its vertical orientation. Therefore these
isolators (VI) play a significant role in limiting the out-of-plane dynamics. The governing equations for the isolation system
in Fig. 17 (from the static equilibrium under a given preload) are found in the same manner as with the other configurations.

The system stiffness matrix [K]. (at the CG) is defined as follows where all the symbols (as defined in Fig. 17) retain their
typical meaning,

Klg = [T(=¢y + &, —C — &) | [Kv][T(—Cy + &y, —C2 — sz,v)}T + [T(cy + &y, —€z — &) | [KV][T(cy + &y, —C; — sz,v)]r
+ [T(*dy + &y, d; + Sz‘w)} (Kvi] [T(*dy + &y, d; + Sz‘w)} Ty [T(dy +éyu,d; + i‘iz,w)] [Kwi] [T (dy + &y, d; + Ez.w)] !

ky.V + ky.Vl 0 ky,v(Cz +&v) — ky.w(dz + &)
kz,V + kz,VI kz,vﬁy,v + kz,Vlgy,Vl
=2 ) kzvi (di + gg.w) + kywi(d; + &)’ + ko : (27)
Symmetric X
ke (€2 + 2y) + kya (€ + 820)’ + Ky
g 2
3 S
Z
ZEN NJ_A
-60 _ -60 R
0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5
@ (Hz) @ (Hz)

Fig. 18. Comparison of measured and predicted(J/Ni ()
Key: === — Measurement; ====: — Analytical model.

spectra for configuration T-C using isolator V of 68 S and isolator VI of 40 S: (a)

Mw)], (b)

Ay () ‘
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Measured and estimated ‘Aa(w) and ;\yy(w)

spectra are compared in Fig. 18, showing good accuracy except for a fre-

quency shift which is likely due to out-of-plane dynamics and a significant change in the preload.

7. Conclusion

In this article, rigid body isolation and modal analysis principles are combined to extract the elastic and dissipative prop-
erties of vibration isolators. Component-level attributes are related to system-level stiffness and damping matrices, leading
to demonstrably unique solutions. Three experimental configurations are employed for modal experiments and system char-
acterization, covering a broad range of isolators in terms of materials as well as laboratory and production level isolators,
unlike prior identification methods which focused on one main device under virtually zero mean load. The mass in each
experimental configuration is selected to provide appropriate pre-load, stability, and dynamic scaling. In particular, two con-
figurations, with four identical or dissimilar isolators simulating in situ isolation application, have yielded the experimental
validation. The chief contributions of this article are as follows. First, the proposed identification procedure highlights the
role of the elastic center as an intrinsic component-level property where the diagonal stiffness matrix becomes diagonal.
Only then can the system stiffness be properly formulated, since off-diagonal stiffness terms depend on the hard-point loca-
tion; this issue seems to have been largely ignored in the prior literature. The proposed procedure also facilitates the devel-
opment of analytical models in the context of a physically symmetric problem (of dimension 3), which simplifies the
identification process while guiding experimental and computational studies. Second, the system stiffness matrices (includ-
ing the off-diagonal terms) of several elastomeric mounts have been developed, computationally verified and experimentally
validated. Third, alternate damping formulations are investigated, including mode-independent loss factor, Rayleigh viscous
damping, and—more broadly—proportional damping matrices (of dimension 3) for each isolator. The viscous damping matri-
ces seem to yield the best frequency response curves when addressing coupled rocking-shear modes where the frequency
spacing between resonances and anti-resonances is rather narrow.

Finally, the identification procedure of this article (based on a combination of lumped-parameter analytical and finite ele-
ment models that are well supported by modal experiments) provide improved physical insight into the underlying behavior
of elastomeric interfacial elements by highlighting the role of the elastic center, structural or viscous damping models, and
identifying the correlation between surface hardness and Young’s Modulus in the context of dynamic loading. The main lim-
itations of the proposed process are due to the assumptions made, namely the linear time-invariant system theory, propor-
tional damping, homogenous materials and the like; such necessary assumptions have also been made by prior researchers.

Acknowledgements
The authors would like to thank the member organizations of the Smart Vehicles Concepts Center (www.SmartVehi-
cleCenter.org), the National Science Foundation Industry University Cooperative Research Centers program (www.nsf.gov/

iip/iucrc) and the Ford Motor Company (with contributions from Y. Zhang, L. Liang, Y. Miao, and D. Prajapati) for supporting
this work.

Appendix A: List of symbols

accelerance
,b,c,d geometric parameters for experimental configurations
viscous damping matrix
diameter
Young’s modulus
generalized force
center of gravity location
amplitude coefficient
identity matrix
mass moment of inertia
stiffness matrix
spring constant
length
mass matrix
mass
modal index
elastic center location
hard point location
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Appendix A (continued)

2T NTNS>SIINORLTZXEX E T 4 0na O

Subscripts
L 11, 11, IV, V, VI
0

reference point
generalized displacement
Shore A durometer
transformation matrix
time

translational displacements
cartesian coordinates
proportionality constant for Rayleigh damping
empirical coefficient
elastic center coordinate
damping ratio

loss factor

rotational displacements
eigenvalue matrix
empirical coefficient
Poisson’s ratio

modal displacement
density

eigenvector, modal matrix
circular frequency, rad/s

isolator designation
operating point

r reference value

S static

Superscripts

- normalized value

~ complex valued

" estimated/conditioned value

Abbreviations

CG center of gravity

diag diagonal matrix

DOF degrees of freedom

MAC modal assurance criterion

Designations

I 1L, 100, IV, V, VI isolators used in the study

T-A, T-B, T-C test (modal) experiment configurations
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