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Abstract

In this note we present a result establishing the existence of a compact CMC Cauchy

surface from a curvature condition related to the strong energy condition.
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1 Introduction

Constant mean curvature (CMC) spacelike hypersurfaces have played an important

role in mathematical general relativity. In particular, as is well-known, the problem

of finding solutions to the Einstein constraint equations is made much simpler by

assuming CMC initial data. There are also many known advantages for solving the

Einstein evolution equations if one works in CMC gauge, which gives rise to a CMC

foliation. Solving the Einstein equations by this approach usually requires, to begin

with, a CMC initial data hypersurface (see e.g. [2,14]).

In the recent paper [7], Dilts and Holst review the issue of the existence of CMC

slices in globally hyperbolic spacetimes with compact Cauchy surfaces. As discussed

in [7], most such existence results ultimately rely on barrier methods. However, a

well-known example of Bartnik [3] shows that not all cosmological spacetimes have

CMC Cauchy surfaces. Vacuum examples were later obtained by Chruściel, Isenberg

and Pollack [6] using gluing methods. These examples share certain properties. By

examining various features of Bartnik’s example, Dilts and Holst formulate several

conjectures concerning the existence of CMC Cauchy surfaces. We do not settle any

of these conjectures here. Nevertheless, motivated by some of their considerations,
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we have obtained a new CMC existence result which relies on a certain spacetime

curvature condition.

Theorem 1 Let (M, g) be a spacetime with compact Cauchy surfaces. Suppose (M, g)

is future timelike geodesically complete and has everywhere nonpositive timelike sec-

tional curvatures, i.e. K ≤ 0 everywhere. Then (M, g) contains a CMC Cauchy

surface.

Some remarks about the curvature assumption are in order. Recall, for any timelike

2-plane, T ⊂ Tp M , the timelike sectional curvature K (T ) is given by

K (T ) = −g
(

R(u, e)e, u
)

= −〈R(u, e)e, u〉, (1.1)

where {u, e} is any basis for T with g(u, u) = −1 and g(e, e) = 1 and R is the Riemann

curvature tensor. In particular, K (T ) is independent of the orthonormal basis chosen.

(Our sign convention for R is that of [4] and opposite that of [12].) Standard analysis

of the Jacobi equation shows that K ≤ 0 physically corresponds to attractive tidal

forces; i.e. it describes gravitational attraction in the strongest sense.

The Ricci tensor evaluated on a unit timelike vector u ∈ Tp M can be expressed as

minus the sum of timelike sectional curvatures. Specifically, let {u, e1, . . . , en} be an

orthonormal basis for Tp M with g(u, u) = −1. Let Ti ⊂ Tp M be the timelike plane

spanned by {u, ei }. Then

Ric(u, u) =

n
∑

i=1

〈R(u, ei )ei , u〉 = −

n
∑

i=1

K (Ti ). (1.2)

In particular the assumption of nonpositive timelike sectional curvatures implies the

strong energy condition, Ric(U , U ) ≥ 0 for all timelike vectors U . As shown in Sect. 3,

for FLRW spacetimes, the assumption of nonpositive timelike sectional curvatures is

equivalent to the strong energy condition. In particular, sufficiently small perturbations

of FLRW spacetimes which obey the strong energy condition strictly will have negative

timelike sectional curvatures.

Since the assumption of nonpositive timelike sectional curvatures implies the strong

energy condition, one is naturally led to formulate the following conjecture.

Conjecture Let (M, g) be a spacetime with compact Cauchy surfaces. If (M, g) is

future timelike geodesically complete and satisfies the strong energy condition, i.e.

Ric(U , U ) ≥ 0 for all timelike U, then (M, g) contains a CMC Cauchy surface.

The conjecture, if correct, is not likely to be easy to prove. In particular, it would

settle the Bartnik splitting conjecture [3, Conjecture 2] in the affirmative; see [3,

Corollary 1, p. 621]. The conjecture above is, in a certain sense, complimentary to

Conjecture 3.5 in [7]. In this context, it would be interesting to resolve the issue of

the timelike completeness/incompleteness of the examples constructed in [6, Section

5.1].
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2 Proof of Theorem 1

In this note we consider globally hyperbolic spacetimes (M, g), dim M ≥ 4, with

compact Cauchy surfaces. Following the convention in O’Neill [12], we define a

Cauchy surface to be a subset S ⊂ M which is met by every inextendible timelike

curve exactly once [12, p. 415].

The key result underlying the proof of Theorem 1 is the following fundamental

CMC existence result of Bartnik [3].

Theorem 2 (Bartnik [3]) Let (M, g) be a globally hyperbolic spacetime with compact

Cauchy surfaces that satisfies the null energy condition. If there is a point p ∈ M such

that M \
(

I +(p) ∪ I −(p)
)

is compact, then there is a regular (C2,α) CMC Cauchy

surface passing through p.

The proof of Theorem 1 also makes use of the notion of the causal boundary of

a spacetime. Let (M, g) be a globally hyperbolic spacetime. A past set P ⊂ M is a

set such that I −(P) = P . A past set P is indecomposable if P cannot be expressed

as the union of two past sets which are proper subsets of P . For any p ∈ M , the set

I −(p) is an indecomposable past set. If P is an indecomposable past set and there is

no p ∈ M such that P = I −(p), then P is called a terminal indecomposable past set

or TIP for short. [11, Proposition 6.8.1] shows that P is a TIP if and only if there is

a future inextendible timelike curve γ such that P = I −(γ ). The set C + of all TIP’s

is called the future causal boundary of M . The past causal boundary C − is defined

time dually.

Tipler [15] made the very nice observation that if the future causal boundary con-

sists of a single point (hence I −(γ ) = M for all future inextendible timelike curves γ )

then the key condition in Bartnik’s theorem is satisfied. In fact, Tipler discusses some-

what more general results, requiring somewhat more involved arguments. For the

convenience of the reader, we give a simple direct proof of the following.

Proposition 3 (Tipler [15]) Let (M, g) be a spacetime with compact Cauchy surfaces.

If C + consists of a single point, then there is a point p ∈ M, sufficiently far to the

future, such that M \
(

I +(p) ∪ I −(p)
)

is compact.

The proof is a consequence of the following two claims.

Claim 1 Let (M, g) be a spacetime with compact Cauchy surfaces. If C + consists of

a single point, then there is a point p ∈ M such that ∂ I −(p) is a Cauchy surface.

Proof Let S be a Cauchy surface and γ : [0,∞) → M a future inextendible timelike

curve to the future of S. Put pt = γ (t). Since C + consists of a single point, we have

M = I −(γ ). Therefore {I −(pt )}t∈[0,∞) is an open cover of S. Since S is compact, there

is a finite subcover {I −(pt1), . . . , I −(ptN
)} with t1 < · · · < tN . Put p = ptN

. Note

that I −(pti ) ⊂ I −(p) for all i = 1, . . . , N . Therefore S ⊂ I −(p). Set B = ∂ I −(p).

Let λ be any inextendible timelike curve. It suffices to show λ intersects B. Since λ

intersects S and S ⊂ I −(p) = I −(B), we know that λ intersects I −(B). Also λ meets

I +(B) because p ∈ M = I −(λ). By the achronality of B, I −(B) ∩ I +(B) = ∅.

Thus, a segment of λ begins in I −(B) and ends outside I −(B). It follows that λ meets
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∂ I −(B) = ∂ I −(p) = B, and only at one point. Hence B = ∂ I −(p) is a Cauchy

surface. 
�

The following claim was first considered in [5] (without proof).

Claim 2 Let (M, g) be a spacetime with compact Cauchy surfaces. If C + consists of

a single point, then ∂ I +(p) is a Cauchy surface for any point p ∈ M.

Proof Let p ∈ M , and put B = ∂ I +(p). Let λ : R → M be an inextendible timelike

curve. Let S be a Cauchy surface through p. Suppose λ meets S at the point q. Then,

by the achronality of S, q /∈ I +(B). However, since C + consists of a single point,

we have p ∈ I −(λ), and so λ meets I +(B). Thus, a segment of λ begins outside of

I +(B) and ends in I +(B). Hence, as in the proof of Claim 1, λ meets B. 
�

Proof of Proposition 3 By Claims 1 and 2, there is a point p ∈ M such that B− :=

∂ I −(p) and B+ := ∂ I +(p) are compact Cauchy surfaces. Then it follows from the

compactness of ‘causal diamonds’ for globally hyperbolic spacetimes that J+(B−)∩

J−(B+) is compact; see the corollary on p. 207 in [11]. Moreover, it can easily be

seen that M \
(

I +(p)∪ I −(p)
)

= J−(B+)∩ J+(B−): The reverse inclusion holds, as

otherwise one would have either I +(p) ∩ ∂ I +(p) �= ∅ or I −(p) ∩ ∂ I −(p) �= ∅. For

the forward inclusion, note that B+ is a Cauchy surface. Therefore it separates M into

I +(B+) = I +(p) and I −(B+). Therefore if q /∈ I +(p), then q ∈ B+ ∪ I −(B+) ⊂

J−(B+). 
�

The role of the curvature assumption in Theorem 1 now enters via the following

proposition, the time-dual of which was recently observed in [9] (cf. Proposition 5.11).

Proposition 4 Let (M, g) be a spacetime with compact Cauchy surfaces and with

everywhere non-positive timelike sectional curvatures, K ≤ 0. If (M, g) is future

timelike geodesically complete then the future causal boundary C + consists of a

single element.

Proof We comment on the proof. If the conclusion did not hold, then there would

exist a future inextendible timelike curve γ such that ∂ I −(γ ) �= ∅. By properties

of achronal boundaries [13], ∂ I −(γ ) is an achronal C0 hypersurface ruled by future

inextendible null geodesics. However, by the time-dual of [8, Theorem 3] (see also

[4, Theorem 14.45]), whose proof ultimately relies on Harris’s Lorentzian triangle

comparison theorem [10], any such null geodesic would enter its own timelike future,

thereby violating the achronality of ∂ I −(γ ). 
�

Theorem 1 now follows from the preceding results:

Proof of Theorem 1 By Proposition 4, the future causal boundary C + consists of a

single point. Hence Proposition 3 shows there is a point p ∈ M such that M \
(

I +(p)∪

I −(p)
)

is compact. Therefore the result follows from Bartnik’s Theorem. 
�

Remark In fact our arguments imply the existence of many CMC Cauchy surfaces.

Let p be the point constructed in the proof of Claim 1. Then for any point q ∈ I +(p),

one has S ⊂ I −(q). It follows that Proposition 3 holds for any q ∈ I +(p). From this

we can conclude that there is a CMC Cauchy surface passing through each q ∈ I +(p).
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3 Timelike sectional curvatures in FLRW spacetimes

As mentioned in Sect. 1, we show that the assumption of nonpositive timelike sectional

curvatures is equivalent to the strong energy condition for FLRW spacetimes. The

result holds for arbitrary dimension, but for simplicity we will work in dimension 4.

For some related results, see [1, Section 7].

Let (M, g) be a 4-dimensional spacetime satisfying the Einstein equations for a

perfect fluid

Rµν −
1

2
Rgµν = 8πTµν = 8π

[

(ρ + p)uµuν + pgµν

]

(3.1)

where u is the future pointing unit timelike vector field whose flow is the integral

curves of the fluid. Tracing the Einstein equation yields −R = 8π(−ρ + 3p). Then

we can rewrite the Einstein equations in terms of the Ricci tensor.

Rµν = 8π
[

(ρ + p)uµuν + pgµν

]

+ 4π(ρ − 3p)gµν . (3.2)

Let {u, e1, e2, e3} be an orthonormal basis of vector fields on M . Then

4π(ρ + 3p) = Ric(u, u) = −K (u, e1) − K (u, e2) − K (u, e3) (3.3)

4π(ρ − p) = Ric(e1, e1) = K (e1, u) + K (e1, e2) + K (e1, e3). (3.4)

Here K (v,w) denotes the sectional curvature of the plane spanned by v and w. Then

substituting (3.3) into 12π(ρ − p) = Ric(e1, e1) + Ric(e2, e2) + Ric(e3, e3) yields

8πρ = K (e1, e2) + K (e1, e3) + K (e2, e3). (3.5)

Now suppose (M, g) is a FLRW spacetime. In this case, the energy-momentum

tensor necessarily takes the form of a perfect fluid (see [12, Theorem 12.11]). Then

the local isotropy of the spatial slices implies

K (u, ei ) = −
4π

3
(ρ + 3p) and K (ei , e j ) =

8π

3
ρ for i �= j . (3.6)

Suppose T = span{u, e1}. Let u′ = αu + βe2 be a unit timelike vector. Then −α2 +

β2 = −1. Let T ′ = span{u′, e1}. By isotropy of the spatial slices, T ′ is completely

general. Let S = span{e1, e2}. Note that K (T ) = K (u, ei ) and K (S) = K (e1, e2).

Then

−K (T ′) = 〈R(u′, e1)e1, u′〉 = 〈R(αu + βe2, e1)e1, αu + βe2〉

= −α2 K (T ) + 2αβ〈R(u, e1)e1, e2〉 + β2 K (S). (3.7)

From formula (4) in [12, Proposition 7.42], we have 〈R(u, e1)e1, e2〉 = 0. Therefore

− K (T ′) = −α2 K (T ) + β2 K (S). (3.8)
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Plugging in our expressions for K (T ) and K (S) yields

−K (T ′) = α2 4π

3
(ρ + 3p) + β2 8π

3
ρ

= α2 4π

3
(ρ + 3p) + (α2 − 1)

8π

3
ρ

=
8π

3

[

α2

(

3ρ

2
+

3p

2

)

− ρ

]

(3.9)

Assume K ≤ 0 everywhere holds. Then using α2 ≥ 1 in (3.9) implies 4π(ρ + 3p) ≥

−K (T ′) ≥ 0. Therefore ρ+3p ≥ 0. Also, since α2 can take on arbitrarily large values,

it follows that ρ + p ≥ 0. Conversely, suppose ρ + p ≥ 0 and ρ + 3p ≥ 0. The

former condition along with α2 ≥ 1 implies −K (T ′) ≥ 4π
3

(ρ + 3p). Hence the latter

condition implies K (T ′) ≤ 0. Since T ′ was arbitrary, we have K ≤ 0 everywhere.

Thus

FLRW models have everywhere nonpositive timelike sectional curvatures (K ≤ 0)

if and only if ρ + p ≥ 0 and ρ + 3p ≥ 0.

It is well known that the condition ρ + p ≥ 0 and ρ + 3p ≥ 0 is equivalent to the

strong energy condition [12, Exercise 12.10]. Therefore the strong energy condition

is equivalent to assuming K ≤ 0 everywhere for FLRW models. Further, we see

from formula (3.9), that if ρ > 0 and p ≥ 0, then the timelike sectional curvatures

are strictly negative. Hence, sufficiently small perturbations of spatially closed future

complete FLRW spacetimes satisfying ρ > 0 and p ≥ 0 will admit CMC Cauchy

surfaces. It is perhaps worth noting in this context a result of Rodnianski and Speck

([14, Proposition 14.4 ]), which establishes the existence of a CMC Cauchy surface

in spacetimes satisfying the Einstein equations with stiff perfect fluid (p = ρ > 0),

and having initial data sufficiently close to that of a T
3-FLRW model with stiff perfect

fluid.
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