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ABSTRACT

Piezoelectric elements serve as a preferred candidate for measuring dynamic pressure owing to their high sensi-
tivity, signal-to-noise ratio, high natural frequency, and suitability for miniaturization. Polyvinylidene fluoride
(PVDF) is a mechanically tough, flexible, low density polymer commercially available as a film. Being mechan-
ically compliant and minimally invasive to the host structure, PVDF can be conformed to a variety of surfaces
using adhesive bonding, thus making it a suitable candidate for surface pressure mapping and acoustic pressure
measurement applications. However, PVDF sensors in compressive mode are insufficient for the low frequency
and high sensitivity requirements of vehicle surface pressure measurements. Under steady flow conditions, can-
tilever and clamped-clamped unimorphs with segmented electrode coverage configurations serve as alternative
candidates for differential pressure measurements. This paper presents an analytical and computational design
framework for optimizing the performance of PVDF unimorphs. Electrode coverage, thickness ratio, and elastic
modulus ratio are optimized for cantilever and clamped-clamped configurations for a given sensor geometry. The
goal of the optimization procedure is to maximize charge sensitivity of the pressure sensor while minimizing de-
flection. A closed-form solution is derived for deflection and charge sensitivity of cantilever and clamped-clamped
configurations based on Euler-Bernoulli beam theory. For a given deflection sensitivity target and sensor geome-
try, the charge sensitivity of the optimized cantilever sensor is three orders of magnitude greater than compressive
(d33 mode) design and 3.15 times higher than the clamped-clamped configuration with segmented electrodes.

Keywords: piezoelectric PVDF, design optimization, surface pressure transducer, multiphysics FEM model

1. INTRODUCTION

In the field of experimental aerodynamics, pressure sensors that can simultaneously exhibit high temporal and
spatial resolution are required. Conventional pressure transducers require time-consuming fixturing which renders
the tested parts unusable after measurements.!® In addition, the measuring holes made for mounting these
transducers contribute to measurement noise. Relatively new measurement techniques, such as pressure-sensitive
paint (PSP) can provide a global map of surface pressure with high spatial resolution.* However, the PSP
technology is limited by its slower response time, low signal-to-noise ratio, and requirement of visual recorders
and image processing systems.

PVDF is a flexible, low density polymer manufactured as thin sheets with thicknesses ranging from 9 pm
to 100 pm. Due to their high piezoelectric constant and possibility to operate without complicated circuitry,
PVDF is a promising alternative to conventional pressure and aeroacoustic transducers. Their relatively low
cost and flexibility facilitate their embedment onto the surface of the structure for flow investigations. Charge
amplifiers are typically used to enable a voltage readout of the charge generated by the sensor in response to
applied pressure. The lower cutoff frequency of the charge amplifier is determined by its feedback capacitance
and resistance. However, for a given lower cutoff frequency, the maximum attainable voltage gain of the charge
amplifier is limited.? Therefore, in order to enable low frequency measurements, the charge sensitivity, defined
as the charge output per unit applied pressure, has to be maximized.
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Figure 1: Schematics of the piezoelectric unimorph( s)ubjected to uniform surface pressure P are shown in (a)
compressive mode, (b) clamped-clamped mode with segmented electrodes, and (c) cantilever bending mode. (d)
Schematic of a piezoelectric PVDF unimorph defined by basic variables: thicknesses of the PVDF layer and
the substrate are tp and tg, respectively, and elastic moduli for the PVDF layer under constant electric field
substrate along direction 1 are Yp and Ys, respectively. The length of the unimorph is g and the electrode is
covered over a length [s — ;. The neutral axis of the structure is located at Stp from the bottom of the substrate.

Piezoelectric sensors respond to applied pressure under compression (dsz3 mode) and bending (d3; mode).
PVDF sensors have been successfully utilized in their ds3 mode as a means of measuring unsteady surface
pressures in aircraft wind tunnels,®” marine applications,® and pressure impulse measurements.” However, the
above applications are largely limited to high frequency measurements (> 50 Hz) and the applied pressures
are on the order of several kilopascals. Automotive aerodynamic measurements require surface pressure sensors
capable of low frequency (<50 Hz) and low differential pressure measurements that range from -2 kPa to 2 kPa
with a minimum response time of 1 millisecond.'? Also, to facilitate improved spatial resolution, the dimension
of the sensor is limited to a size of 5 mm x 5 mm. A PVDF sensor in d33 mode, shown in Figure 1(a), provides
a charge sensitivity of 0.84 fC Pa=! (Qp = dz3A), which is insufficient for low frequency and high sensitivity
requirements. Therefore, other sensor designs are investigated in order to maximize charge sensitivity.

Under steady flow conditions, cantilever!! and clamped-clamped unimorphs with segmented electrode cover-
age'?13 serve as alternative configurations for differential pressure measurements using PVDF. However, piezo-
electric sensors operating in bending mode require a substrate in order to have a non-zero charge output. Figure
1(b) and 1(c) show the schematic of cantilever and clamped-clamped bending unimorphs. The constitutive equa-~
tions for a piezoelectric unimorph under static conditions suggest that there exists a non-monotonic relationship
between thickness and elastic modulus ratios of the PVDF layer to the substrate and charge sensitivity.'* Also,
in order to preserve the noninvasive nature of the pressure sensor, it is required to keep the overall dimensions of
the sensor to a minimum. Therefore, the allowable deflection sensitivity, defined as the deflection per unit pres-
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sure, is limited to 0.5 uwm Pa~! such that at maximum compressive pressure of 2 kPa, the maximum deflection
of the sensor is limited to 1 mm. In this work, we present an analytical and computational design framework for
optimizing the performance of PVDF surface pressure sensors for a given sensor geometry. Electrode coverage,
thickness ratio, and elastic modulus ratio are optimized for cantilever and clamped-clamped configurations and
compared with the compressive mode. A closed-form solution for deflection and charge sensitivity is derived
for deflection and charge sensitivity of the bending modes based on Euler-Bernoulli beam theory. Using the
minimum bending stiffness values required in order to achieve a deflection sensitivity target of 0.5 wm Pa~!, the
optimum elastic modulus and thickness ratio of the substrate for a given sensor dimensions are computed and
compared against COMSOL Multiphysics®simulations.

2. ANALYTICAL MODELING OF PIEZOELECTRIC BENDING UNIMORPHS

Consider a piezoelectric PVDF unimorph beam as shown in Figure 1(a). The overall length and width of the
structure is given by [ and b, respectively. The thickness of the PVDF layer and the substrate is given by tg and
tp, respectively. The elastic modulus in direction 1 for the PVDF layer under constant electric field is Y =
Yp and the elastic modulus of the substrate is Ys. The thickness ratio of the structure is defined as k; = tg/tp
and the elastic modulus ratio of the structure is defined as kp = Ys/Yp. The piezoelectric material is placed on
the substrate such that the polarization due to bending deformation is same as the dielectric polarization. It is
assumed that the charge generated by the piezoelectric layer is predominantly due to longitudinal stress 77 and
the contribution to charge output due to lateral stress Th is neglected due to a smaller dsy coefficient.'® Based on
classical laminate theory, it is further assumed that any line perpendicular to the neutral axis before deformation
remains perpendicular after deformation, resulting in a strain that varies linearly through the thickness of the
beam.'® For planar strain conditions of a piezoelectric PVDF film, the normal strain in direction 3 and the
shear strains in directions 1-3 and 2-3 are zero. Using the above approximations, the piezoelectric constitutive
equations under quasi-static conditions are reduced to

Slp(x,z) = SlElTlp(xvz) +d31E3(.’E,Z), (1)
Ds(x, 2) = d31T1p(w, 2) + e33E3(w, 2), (2)

where Sy, and 711, are the strain and stress in the piezoelectric layer, respectively; E3 and Ds are the electric
field and polarization along direction 3; s} corresponds to the compliance of PVDF along direction 1 and is
given by the inverse of its elastic modulus; d3; is the piezoelectric charge coefficient and el; is the dielectric
constant of PVDF at constant stress.

2.1 Generalized expression for deflection and polarization

While the piezoelectric unimorph beam is subjected to uniform surface pressure P under quasi-static conditions,
the bending moment M about the neutral axis for any given point x along the length of the beam is

0?M (z)

o2 =bP(z), (3)

where b is the width of the unimorph. Typically, for structures where the piezoelectric layer is much thinner
than the substrate, the bending moment is calculated about the neutral axis of the substrate.!'” However, in
this case, the thickness and the bending stiffness of the PVDF layer is not negligible. Therefore, the bending
moment about the neutral axis is given by

ZN z1 Z2

M(x) = —/ 2Ts(x, 2)bdz —/ T sbdz —/ Ty, (x, 2)bdz. (4)
0 ZN z1

The distance from the bottom of the substrate to the neutral axis zp is represented by!®

1 {kka + 2k (1 — Kk3)) + (1 — k3, }

tp = ——
pte 2 kikg + (1 —kZ))
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where k37 is the electromechanical coupling factor of the piezoelectric layer. The effect of elastic modulus of the
substrate Yg on Btp is significant for compliant substrates and approaches the value of -0.5tg with increase in
elastic modulus or thickness of the substrate. For PVDF, the value of k3; could be as large as 0.2 and therefore
not negligible.'® Using Euler-Bernoulli theory, the strain-displacement relations in the piezoelectric layer and
the substrate are expressed as

O?w(x
Sip(x,2) = —2 830(2 ), (6)
O?w(x
Sis(x,2) = —2 81‘(2 ) (7)
Using (6) in (1) and substituting sf4 = 1/Yp one obtains the stress in the piezoelectric layer and the substrate
as
O?w(x
Tip(z,2) = —2Yp (z) _ Ypds1 Es(z, 2), (8)

Ox?

0%w(x)
ox? )

Tis(x,2) = —2Ys

The bending moment about the neutral axis is obtained by using (8) and (9) in (4) and integrating through the
thickness of the structure as

—0%w(z)
M(x) = YT 2=, (10)
where,
—  Ypbt} 313
T="T"P \kpk, (k2 + 38k + 35%) + 0 {( —f) +3(1—k3) (kf+52+26kt+kt+6)}]
31

is the bending stiffness of the piezoelectric unimorph.

The generalized displacement w(z) of the piezoelectric unimorph along the length of the beam is related to
the applied pressure P(z) as
—0%w(x)

YI prra bP(z). (11)
Integrating the above equation, one obtains
bP(z) , ¢ 5 €2 5 C3
wT) = —=2 + -2+ "+ — +ca. 12
)= ST 6 3 z (12)

Using (8) in (2) and neglecting piezoelectric electric coupling, i.e., F3 = 0, one obtains

0%w(x)

Ds(z,z) = —zdlepW.

(13)
The electrodes are equipotential surfaces located at z; and z2 in Figure 1(d). Using (6) in (13) for polarization
along the length of the electrode is obtained by integrating the above equation through the thickness of the
PVDF layer,

0%w(x)
ox2

It can be observed that the polarization is proportional to the average stress along the length of the beam. The
total charge output of the piezoelectric layer with an electrode coverage from Iy to I3 is given by integrating (14))
over the surface area A of the electrode,

Ds(z) = —d31Yptp (; + ke + ﬁ) (14)

0%w(x) 8w(m)}l2 . (15)

1 1
= —ds1Yptp | =+ k dzdy = —dg1bYptp | = + k
Q 31 PP(2+ t+ﬂ>/A g2 vy 31 PP<2+ t+ﬂ>{ or |,

It can be observed from (14) that the polarization is proportional to the average stress along the length of the
beam and the corresponding charge output (15) is proportional to the difference between the slopes at the end
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points of the electrode. Finally, the open circuit voltage of the sensor is given by the charge-voltage relationship
as

Vo =

_dnYpitp (05 + ki + ) [aw@c)} N (16)

633(12 — l1) 31‘ I '
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Figure 2: Normalized deflection, stress distribution, and absolute charge output along the length of the PVDF
sensor in (a) clamped-clamped and (b) cantilever unimorph.

2.2 Clamped-clamped unimorph
Using Dirichlet boundary conditions, the displacement and slope at the clamped ends can be set as w(0) = 0,
w'(0) = 0, w(l) = 0, and w’(l) = 0 in (11) to obtain

b2 (l — x)?
wclamped(x) - 24ﬁ

Thus, the deflection sensitivity dciqmpeqd Of the unimorph given by the maximum displacement per unit applied
pressure as

(17)

5clamped _ Welamped,max _ bl:
P 384YT
Figure 2(a) shows the normalized deflection, slope, and stress profile along the length of the clamped-clamped
beam operating below its fundamental frequency. Since the charge output is proportional to the difference
between the slopes evaluated at the end points of the electrode, if a single electrode covers the entire length of
the PVDF layer, the difference between the slopes evaluated at its end points, w’(l; = 0) — w'(lz = 1) equals
zero. Therefore, the total charge output is also zero. This necessitates segmenting the electrode along the length
of the sensor, such that the charge output is maximized.'® It can be observed that the difference between the
slopes is maximum if the electrodes are segmented from 0 to 0.22], 0.78] to [, and 0.22[ to 0.78]. The above
segments are shown as I, I, and III, respectively in Figure 2(a). The difference between the slopes evaluated at
the end points of segment I and II is positive, while the difference between the slopes evaluated at the end points
of segment III is negative. Thus, reversing the polarity of the electrode in segment III and then assembling the
three charge sources maximizes the net charge output. In other words, the electrodes have to be segmented such
that there is no change in the sign of stress within that segment. In this case, it can be seen that the sensor is
under tensile stress from 0 to 0.22] and from 0.78[ to [, while the longer middle segment from 0.22] to 0.78 is
under compression. Therefore, the net charge output due to the segmented electrodes is given by

0.221 0.781 l
champed = —d31bYptp <; + ky + ﬂ) { |:81§§;’£):| _ [8718}5;’5)] + [a'uafix)] } . (19)
0 0.221 0.781

(18)
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Using equation (17), under quasi-static conditions, the closed-form solution for charge sensitivity of a clamped-
clamped unimorph defined as charge output per unit applied pressure is given by

0.032d5:b%Yptpl® (1
= — —— - . 2
Qp 7 5 +k+ S (20)
104 3 L) " L | L) I v :. 10 L L] L] T
— [ =——k=0.1 o £ ——Cantilever
o~ P = - —_ _ p
c E _ _k =123 o 1 <& sk Clamped-clamped ]
E E E 1""'.- "” 9.. I
£ 102 1 ===k =8.11 ',.-" .1 ©
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(a) (b)
Figure 3: Calculated k; vs YT of the unimorph for different kg values. The arrows indicate the feasible region for
the unimorph configuration for maximizing charge sensitivity, (b) minimum k; for achieving deflection sensitivity
target of 0.5 um Pa~! for different kg values.

2.3 Cantilever unimorph
Using Dirichlet boundary conditions, the displacement and slope at the clamped and free ends can be set as
w(0) = 0, w'(0) =0, w’(I) =0, and w” () = 0 in (11) to obtain

(@) bx? (61 — 4lx + x?)
w ilever (L) = —
cantileve UMY T

(21)

Thus, the deflection sensitivity dciamped of the unimorph given by the maximum displacement per unit applied
pressure as

Weantilever,max bl4

6cantzle7jer P 8W (22)
When the cantilever operates below its first bending mode, the stress is higher near the clamped end and very
low near the free end of the beam and there is no change in direction due to deflection as shown in 2(b) Also,
the slope of the beam increases from zero and it is maximum at the free end. Therefore, electrodes covering
the entire length of the beam would provide the maximum charge output. Utilizing (21) in (12), the net charge
output of a cantilever beam is given by

1 ow(z) :
Qcantile’uer = _dSIbYPtP -+ kt + ﬂ . (23)
2 or |,
Finally, the charge sensitivity of the cantilever unimorph is
0.167d5,b?Yptpl® (1
= — — — k . 24
Qp 7 5+ ket (24)
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From (20) and (24), it can be observed that for small deflections, the deflection sensitivity of the cantilever is 48
times greater than for the clamped-clamped beam, whereas the charge sensitivity of the cantilever is 5.2 times
greater than for the clamped-clamped beam with segmented electrode coverage.

Table 1: PVDF pressure sensor properties. The subscripts S and P refer to substrate and the PVDF sensor,

respectively.
Geometric parameters Material properties of PVDF film
?inf)th x width of the substrate, 5 x 5 [mm?] Young’s modulus of PVDF film, Yp 2.74 [GPa]
}Jinf)ﬂ;( ;( width x thickness of the PVDF film, | 5 5 040 [mm?] | Poisson’s ratio of PVDF film, vp 0.39
L LS
Piezoelectric charge coefficient of PVDF film 23.58 [pC N-1]
Material properties of the substrate in direction 1, d3; e P
.Piez.oele?tric charge coefficient of PVDF film 3.48 [pC N-1]
in direction 1, d3o
. _ Piezoelectric charge coefficient of PVDF film _
3 1
Density of the host structure, Yy 1200 [kg m™?| in direction 1, ds3 -33.8 [pC N71]
Poisson’s ratio of the host structure, vg 0.3 Dlelf%trl.c constant of PVDF film 68.5 [pF m™1]
in direction 3, €33

3. NUMERICAL SIMULATION AND DISCUSSION

Finite element modeling (FEM) of the piezoelectric unimorph is performed using COMSOL Multiphysics to
arrive at optimal substrate properties — thickness and elastic modulus of the substrate for maximum charge
sensitivity for the allowed deflection sensitivity. The contribution of d3s and d33 on charge sensitivity is also
investigated. The geometric and material property values assigned for PVDF and the substrate are given in
Table 1. The substrate material is assumed to be isotropic and electrically non-conductive. In consideration
with material availability and fabrication feasibility, the investigated region for optimization of k; is from 0.3
to 10 and for optimization of kg is from 0.1 to 100. The elastic compliance, permittivity, and the piezoelectric
coupling tensor utilized for PVDF material in the FEM model can be found elsewhere.!?

In order to keep the overall thickness of the sensor at a minimum, the deflection sensitivity of the sensor is
limited to 0.5 pum Pa~! so that a pressure input of 2 kPa would produce a total deflection of 1 mm. Using the
relations (18) and (22) and using the values in Table 1, minimum bending stiffness for clamped-clamped and
cantilever unimorphs are given by

bl*
YInLin,clanzped = m = 0.0163 1\]11111127 and (25)
clampe
YT tover = = 0.7813 Nmm? 26
min,cantilever — S5 il = U. mm-. ( )

Since the bending stiffness of the structure exhibits a coupling of k; and kg, it is solved numerically from a
discrete set of k; and kg values. Figure 3(a) shows the bending stiffness as a function of k; for different kg
values. Within the investigated range, the clamped-clamped configuration meets the bending stiffness target for
all k; and kg values, whereas the cantilever configuration has a minimum k; for each kg. Figure 3(b) shows the
minimum thickness ratio ki, computed for each kg. It can be seen that ki .., decreases almost linearly on a
logarithmic scale with increase in kg. The optimum substrate thickness and elastic modulus ratio for maximum
charge sensitivity should meet these kg and ki pin values.

Figure 4(a) and (c) show the deflected shape and the longitudinal stress distribution across the PVDF layer
for the clamped-clamped structure and cantilever. As described by the analytical model, the clamped-clamped
configuration shows maximum tensile stress at its clamped ends, while its longer middle segment is under
compression. However, with segmented electrode coverage, the magnitude of charge sensitivity is computed for
each of the segment shown by the solid lines and added up. For the cantilever unimorph, PVDF layer is under
tension throughout the length of the beam. Using (20) and (24), the charge sensitivities of the unimorphs are
calculated for the set of k; and kp values that satisfies the bending stiffness target and compared with the FEM.
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Figure 4: (a) FEM results of 77 when the clamped-clamped unimorph is subjected to uniform pressure P = 1 Pa
for kg = 8.11 and k; = 0.32, (b) analytical (solid lines) and FEM (markers) of charge sensitivity as a function of
k; for different kg values for clamped-clamped, (¢) FEM results of T} when the cantilever unimorph is subjected
to uniform pressure P = 1 Pa for kg = 0.81, (d) analytical (solid lines) and FEM (markers) of charge sensitivity
as a function of k; for different kg values for cantilever.

Figure 4(b) and (d) shows that theory generally agrees well with the FEM simulation. It can also be observed
that k; versus @ p exhibits a peak and the corresponding thickness ratio is same for both theory and FEM. The
occurrence of a peak is because, for low thickness ratios, the substrate is unable to effectively deform the PVDF
layer and therefore reduce the charge sensitivity. At higher thickness ratios, most of the deformation is translated
into uniform longitudinal strain and only a little bending of the beam takes place. The same is true in the case of
elastic mismatch.2? For the cases of lower bending stiffness (i.e., for small k; and kg values), the lateral stress T
and compressive stress T3 are non-zero and significant.?! Hence, FEM predicts a higher charge sensitivity value
than theory and as the bending stiffness increase, the error diminishes. However, the optimal k; and kg values
remain unchanged due to this effect. The effect is also reduced when the unimorph configuration is switched with
PVDF layer at the bottom and the substrate at the top. The optimal k; and kg values are computed with the
feasible region defined by the minimum bending stiffness values for the clamped-clamped and cantilever sensors.

Table 2 shows the optimized thickness ratio and elastic modulus ratio for the bending configurations. The
charge sensitivity of cantilever sensor is three orders of magnitude higher than optimum compressive design
and 3.15 times higher than the clamped-clamped configuration with segmented electrodes. The optimum elastic
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modulus ratio is 8.11 same for both the configuration, whereas clamped-clamped design has a lower optimal
thickness ratio for a given deflection sensitivity target. The response time of the sensor is directly related to the
bandwidth and fundamental frequency of the sensor. For the surface pressure transducer to have a response time
of 1 ms, it should have a minimum fundamental frequency of 350 Hz.?2?2 Assuming a mass density of 1200 kg
m~? (for typical polymers) and mass density of PVDF layer as 1880 kg m~2, the fundamental frequency of the
unimorphs is computed using FEM for the optimized structure. Table 2 shows that for the optimized k; and kg
values, all the configurations meet the target fundamental frequency. PVDF sensor in compressive mode is the
fastest design followed by the clamped-clamped configuration owing to their higher bending stiffnesses. Finally,
the above pressure sensors connected to a conventional low frequency charge amplifier with feedback capacitance
1 nF is expected to provide a voltage sensitivity of 86 pV Pa~! for the compressive design, 0.33 mV Pa~! for
the clamped-clamped design, and 1.04 mV Pa~! for the cantilever design.’

Table 2: Optimized values for different configurations.

Charge sensitivity
. Optimum Optimum Natural frequency | Deflection sensitivity Qp
Configuration elastic thickness ratio fi Sp [pC Pa!]
. -1
modulus ratio Kt opt [kHz] [um Pa™1] FEM Theory Error
kg opt (%)
Compressive - - 171 0.0001 6.2x 1071 [86x10~* | -39.1
Clamped-clamped 8.11 0.32 5.33 0.023 0.35 0.34 2.9
Cantilever 8.11 0.81 1.09 0.33 1.07 1.04 2.8

4. CONCLUDING REMARKS

This work utilized a generalized expression for deflection and polarization of piezoelectric bending unimorphs
based on Euler-Bernoulli beam theory in order to arrive at deflection and charge sensitivity of PVDF pressure
sensors. While operating below its first natural frequency, for maximum charge output, the cantilever configura-
tion should have a uniform electrode coverage over the entire length of the PVDF layer, whereas the electrodes
of the clamped-clamped configuration should be segmented in accordance with the stress distribution along the
length of the sensor. A numerical study is performed to arrive at minimum bending stiffness values required in
order to achieve a deflection sensitivity target of 0.5 um Pa~!. It is observed that the clamped-clamped unimorph
meets the target for the investigated range of thickness and elastic modulus ratios of the substrate, whereas the
cantilever has a minimum thickness ratio for a given elastic modulus. The analytical model for charge sensitiv-
ity agrees well with the FEM simulation with the error being higher for designs with lower bending stiffnesses
due to d3o and ds3 effect. There exists a non-monotonic dependence of thickness and elastic modulus ratio on
the charge sensitivity. The charge sensitivity of the optimized cantilever sensor is three orders of magnitude
greater than for compressive (ds3) mode and 3.15 times greater than the clamped-clamped configuration with
segmented electrodes. The optimum elastic modulus ratio is 8.11 for both the bending unimorph configurations.
The clamped-clamped design has an optimum thickness ratio of 0.32, whereas the cantilever design has a higher
optimum thickness ratio of 0.81 due to its lower bending stiffness. Assuming typical polymer density for the
substrate, all the optimized configurations meet the target natural frequency of 350 Hz with compressive sensor
being the fastest design followed by the clamped-clamped configuration.
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