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ABSTRACT

Bistable composites are attractive for morphing structures because they can hold deformed shapes without actu-
ation and can be driven by compact, embedded smart actuators such as piezoelectric laminae and shape memory
alloys. Mechanically-prestressed bistable composites exhibit weakly-coupled cylindrical shapes when their pre-
stressed laminae are orthogonal to each other. High-order analytical models have been developed to model the
stability and actuation of mechanically-prestressed composites with two sources of residual stress. Based on these
models, this paper presents a study on the effect of planform shape on shape-bifurcation phenomena in bistable
plates. A high-order analytical model is presented and the shapes of composites with linearly-tapered planform
are calculated. Model-based parametric studies are presented to calculate the sensitivity of stable shapes and
actuation forces to variations in planform taper, spatial positions of the prestressed layers, and aspect ratio. The
results guide the selection of geometric parameters for the design of bistable composites.
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1. INTRODUCTION

Laminated composites, with bistability arising from thermal or mechanical prestress, are attractive for shape
morphing because actuation is required only for transition between deformed shapes.1–3 Bistable elements in
a structure enable drastic and rapid changes in shape in an energy-efficient manner. Examples of applications
include air ducts,4 winglets,5 automotive fender skirts,6 and structural load-alleviation devices.7 The deformed
shapes of bistable laminates are a function of their planform geometry, size, and the material properties of the
constituent laminae.8

The morphing characteristics of bistable composites with rectangular planform have been studied through
modeling and experiments. The composites have been modeled as laminated plates and their deformed shapes
have been calculated using strain energy minimization. While the assumption of constant curvature (second-
order displacement polynomial) is sufficient to calculate stable shapes, higher-order polynomials are required
for accurate calculation of actuation loads (known as snap-through).9,10 Several designs of bistable laminates
have been presented based on tailored material properties, ply orientations,11 inclusion of hybrid laminae,12 and
non-square planform shapes.13 However, the effect of planform shapes on the laminates’ domain of bistability
and actuation requirements is yet to be fully understood.

This paper presents a high-order analytical model for bistable composites with non-square geometries.
Mechanically-prestressed laminated composites are considered in the analyses. These composites comprise an
isotropic core material sandwiched between two mechanically-prestressed elastomeric matrix composites (EMC).
The EMCs are slender elastomeric strips reinforced with unidirectional fibers along the width; the reinforcement
enables zero in-plane Poisson’s ratio. Prestress is applied by stretching each strip along its length and laminating
it to the core in the stretched state. When the EMCs are orthogonal to each other, the resulting stable shapes
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are weakly-coupled; a change in prestress in one EMC affects only one shape. Analytical modeling, construc-
tion details, and experimental validation of mechanically-prestressed composites have been discussed by Chillara
and Dapino.3,10 It is expected that an asymmetry in planform geometry alters the composite’s stable shapes
and snap-through loads. The shift in performance is characterized through a sensitivity study and mechanisms
for compensating for the shift, such as changing the relative positions of the EMCs and actuation forces, are
investigated.

2. ANALYTICAL MODEL

A mechanically-prestressed bistable composite is modeled based on the geometry shown in Figure 1. The
core layer has a trapezoidal shape whereas the EMCs are rectangular strips. Prestressed EMCs in X and Y
directions are referred as 0◦ and 90◦ EMCs, respectively. The composite is modeled based on classical laminate
theory in conjunction with von Karman’s hypothesis. Displacements are described using unknown polynomial
functions and strain energy is calculated as a function of displacements. Seventh-order polynomials are chosen
for accurate calculation of transition points related to loss in bistability and snap-through between shapes;
displacement functions and areal dimensions are non-dimensionalized to improve numerical conditioning. Work
done by actuation forces is computed using the variational principle. The net energy is minimized using the
Rayleigh-Ritz technique to calculate stable shapes as a function of actuation forces.
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Figure 1: Schematic representation of a mechanically-prestressed bistable laminate.

The ratio of EMC width to core width is defined as:

α0 =
2Dx

Lx
, α90 =

Cy
Ly
. (1)

The composite, shown in Figure 1, is assumed to be a trapezoid that is symmetric about the X axis. It is
clamped at the midpoint (O) of side AD. The 90◦ EMC is symmetric about the X axis and spans the length
of the core whereas the 0◦ EMC is parallel to the Y axis and spans the width of the core at a given distance D
from the X axis. Taper (ω) is defined as:

ω =
Ly − Lyt

Lx
. (2)

The minimum value of ω is zero, whereas the maximum value is a function of the aspect ratio Ly/Lx.

The strain energy (Φc) of the tapered core ABCD is obtained by subtracting the energy in the triangular
regions ABB′ and DCC ′ from the energy in the rectangle AB′C ′D (Figure 1). It is expressed in terms of
non-dimensionalized coordinates x̃ = x/Lx and ỹ = y/Ly as:

Φc =

( 1∫
0

1∫
−1

φc dỹ dx̃

)
−

( 1∫
0

1∫
1−ωx̃

φc dỹ dx̃

)
−

( 1∫
0

∫ ωx̃−1

−1
φc dỹ dx̃

)
. (3)
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The integrand φc in (3) is defined as:

φc =

h2∫
h1
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where Qij , {i, j = 1, 2, 6} are the plane stress-reduced stiffnesses and εx, εy, and γxy are the strains of the
composite.14 The strain energies Φ90 and Φ0 of the 90◦ and 0◦ EMCs, respectively, are computed as:
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where ε90 and ε0 are the prestrains applied to the 90◦ and 0◦ EMCs, respectively. The coefficients p1 through
p4 are those of a quartic polynomial that describes the nonlinear stress function of an EMC with zero in-plane
Poisson’s ratio. These coefficients, shown in Table 1, pertain to a polynomial fit of a stress-strain curve measured
through a uniaxial tensile test. The total strain energy (Φ) of the system is the sum of the strain energies of the
constituent layers:

Φ = Φc + Φ90 + Φ0. (7)

Table 1: Coefficients of a nonlinear stress function of an EMC with zero in-plane Poisson’s ratio obtained from
a uniaxial tensile test.

p1 p2 p3 p4
-0.698 x 106 2.29 x 106 -2.306 x 106 1.598 x 106
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Figure 2: Schematic representation of the actuation forces on the composite.

Snap-through between stable shapes is modeled using transverse external forces R90 and R0 as shown in Figure
2. For example, R90 6= 0 and R0 = 0 if the initial stable shape is curved about the Y axis. Variational work
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done by the actuation forces is written as:

W = R0w
(E)
0 +R0w

(F )
0 +R90w

(G)
0 (8)

Displacements of the mid-plane, described using complete seventh-order polynomials, are of the form:

ũ0 =
7∑
q=0

q∑
p=0

bp,q−px̃
pỹp−q, ṽ0 =

7∑
q=0

q∑
p=0

cp,q−px̃
pỹp−q, w̃0 =

7∑
q=0

q∑
p=0

dp,q−px̃
pỹp−q, (9)

where bp,q−p, cp,q−p, and dp,q−p are the unknown coefficients that are to be evaluated. Given that the composite
is symmetric about the X axis, ṽ0 is assumed to odd in ỹ and even in x̃. Though the composite lies in the
x̃ > 0 space, it’s displacement can be assumed to be symmetric about the Y axis. This choice does not affect the
solution since strain energy is computed only for x̃ > 0. Therefore, ũ0 is odd in x̃ and even in ỹ. The out-of-plane
displacement w̃0 is even in x̃ and ỹ.

The equilibrium shapes of the composite are obtained as a function of actuation forces by minimizing the net
energy using the Rayleigh-Ritz approach: ∑

i

∂(Φ−W )

∂Ci
= 0, (10)

where Ci = {bp,q−p, cp,q−p, dp,q−p} for p ranging from 0 to q and q ranging from 0 to 7. The number of
coefficients for seventh order polynomials is 29. The expressions for UT , W , and their partial derivatives are
derived in symbolic form using MAPLE. The nonlinear equations resulting from (10) are solved in MATLAB
using the Newton-Raphson method.

3. RESULTS AND DISCUSSION

The model presented in section 2 has been experimentally validated by Chillara and Dapino10 for rectangular
laminates. In this section, parametric studies are presented to discuss the effect of planform on the bistable
response of the laminate. Material properties and dimensions of the composite are listed in Tables 2 and 3,
respectively.

Table 2: Box dimensions of laminae of the modeled prestressed composites.

Lamina Length (mm) Width (mm) Thickness (mm)
90◦ EMC 152.4 38.1 2.032
Core 152.4 152.4 0.127
0◦ EMC 38.1 152.4 2.032

Table 3: Material properties of the laminae of the modeled prestressed composites.

Lamina E1 (MPa) E2 (MPa) G12 (MPa) ν12 ν21
90◦ EMC Nonlinear 0.4 1.2 0 0
Core layer 200,000 200,000 78,125 0.28 0.28
0◦ EMC 0.4 Nonlinear 1.2 0 0

Stable shapes are calculated as a function of EMC prestrain for laminates with a taper ω = 0.5 (Figure 3).
The out-of-plane deflection w0, measured at (Lx, 0) reduces with a reduction in prestrain ε90 up to a critical
point where the composite loses bistability and settles into a single curved shape (Figure 3(a)); deflection in the
resulting monostable composite is a function of ε0. Therefore, for a given prestrain in the 0◦ EMC, there exists a

critical value of prestrain ε
(cr)
90 in the 90◦ EMC that is required to maintain bistability. Critical prestrain reduces

with a reduction in ε0. A similar relationship between EMC prestrains is observed relative to the second stable
shape (Figure 3(b)).

Proc. of SPIE Vol. 10968  1096811-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Forces corresponding to snap-through and snap-back are calculated for composites with ω = 0.5. Snap-
through forces for square composites of side Lx are shown with dashed lines for reference (Figure 4). It is
observed that snap-through load corresponding to curvature about the Y axis is the same for tapered and square
laminates even though their initial deflections are different (Figure 4(a)). Forces for snap-back are higher in the
presence of taper because the moment arm about the mid-plane is lower than in the case of square laminates
(Figure 4(b)). Note that a pair of forces, each of magnitude R0, are applied on the tapered edges (points E and F
in Figure 2) at points defined by d = 0.5Lx. The increase in snap-through load due to taper could potentially be
compensated by shifting the point of application of the forces. Actuation forces required for switching between
stable shapes increase with an increase in EMC prestrain.
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Figure 3: Out-of-plane deflection of the composite corresponding to curvatures about (a) Y axis and (b) X axis.
ε90 and ε0 are the prestrains applied to the 90◦ and 0◦ EMCs, respectively
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Figure 4: Force-deflection curves showing shape transition in a composite that is initially curved about (a) Y
axis and (b) X axis. The dashed and solid lines refer to ω = 0 and ω = 0.5, respectively.
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4. SENSITIVITY STUDY

The sensitivity of design parameters is studied relative to two performance metrics, viz., domain of bistability
(defined by εcr90 and εcr0 ) and snap through forces defined by R0 and R90. The parameters analyzed are: planform
taper (ω), position of the 0◦ EMC (D), and position (d) of force (R0) application on the tapered edges. The
tapered composite analyzed has Lx , 2Ly = 152.4 mm.

To study the effect of taper on bistability, tip deflection of a composite curved about the Y axis is shown
as a function of prestrain ε90 (Figure 5(a)); ε0 is kept constant at 1. Critical prestrain εcr90 is minimum for a
square composite and reaches a maximum as taper is increased. At a given distance along the X axis, the
cross-sectional area of the core reduces with an increase in taper, thereby yielding higher curvature (about Y )
at the tip (Lx, 0) relative to the root (0, 0). Higher curvature (or w0) corresponds to higher critical prestrain, as
shown in Figure 3(b). Critical prestrain has an inflection point w.r.t. taper such that further increase in taper
forces the composite into a monostable curvature about the X axis rather than a higher bistable curvature about
the Y axis. Among the critical prestrains, εcr90 is more sensitive to taper than εcr0 (Figure 5(b)). Such a response
can be attributed to a higher deflection, for a given taper, when curved about the Y axis than the X axis.
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Figure 5: (a) Deflection at (Lx, 0) as a function of prestrain ε90 for various values for taper. (b) Critical prestrains
as a function of taper.

In a composite with non-rectangular planform, the relative position of the EMCs influences bistability. For
a trapezoidal geometry, this effect is analyzed by varying the non-dimensionalized distance D/Lx of the 0◦

EMC along the X axis. Prestrains ε0 and ε90 are kept constant at 0.4 and 1, respectively. Deflection at (0, Ly)
corresponding to curvature about the X axis is shown in Figure 6(a). The sharp change in deflection corresponds
to loss in bistability and the existence of a single curvature about the Y axis. These transition points are plotted
as a function of taper to obtain the domain of bistability, as represented by the shaded region in Figure 6(b).
The lower limit of D/Lx decreases with an increase in taper because the centroid of the trapezoidal core moves
closer to the origin. The upper limit of D/Lx increases with taper probably because of high localized curvatures,
due to the reduced cross-section, that propagate into a global curvature about the X axis.

The deflection at (0,Ly) of a composite (ω = 0.5) curved about the X axis is calculated as a function of a pair
of vertical forces R0 applied at points E and F (Figure 7). With an increase in the non-dimensionalized distance
(d/Lx) of force application, the force required for snap-through increases linearly. Further, the deflection during
the snap-through event increases parabolically with an increase in d/Lx. The variation in snap-through force R0

over taper ranging from 0 to 1 is -4.4% at d/Lx = 0 and -10.9% at d/Lx = 1 (Figure 8(a)). The corresponding
variation in the deflection at snap-through w0 is -17.7% and -21.9% (Figure 8(b)).
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Figure 6: (a) Deflection as a function of the position of the 0◦ EMC for various values for taper. (b) Range of
0◦ EMC positions that yield bistability (shown by the shaded region).
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CONCLUDING REMARKS

The response of mechanically-prestressed bistable composites with tapered planform has been modeled in this
work. A high-order non-dimensionalized analytical model has been developed to study the sensitivity of design
parameters on the stability and actuation requirements of the composites. A trapezoidal planform is considered
in the analysis and the stable shapes are compared with those of rectangular laminates. The force requirement
for snapping the tapered edges from a flat to curved shape increases with an increase in taper. The sensitivity
study presented in this work guides actuator placement and positioning of EMCs for actuating composites with
shaped planform, such as winglets, with minimal energy.
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(a) (b)
Figure 8: (a) Snap-through load and (b) deflection as a function of non-dimensionalized distance of the force
from the Y Z plane.
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