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A B S T R A C T

Many choices are available in order to evaluate large radioactive decay networks. There are many parameters
that influence the calculated 𝛽-decay delayed single and multi-neutron emission branching fractions. We describe
assumptions about the decay model, background, and other parameters and their influence on 𝛽-decay delayed
multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining
𝛽-delayed multi-neutron branching ratios in 𝛽-neutron precursors produced by means of heavy-ion fragmentation
is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in
coincidence with an ion-implant and 𝛽 trigger. The technique allows one to extract 𝛽-delayedmulti-neutron decay
branching ratios measured with the 3He BRIKEN neutron counter. As an example, two analyses of the 𝛽-neutron
emitter 77Cu based on different a priori assumptions are presented along with comparisons to literature values.

1. Introduction

Measuring single and multi-neutron emission after 𝛽 decay of

neutron-rich nuclei is important in order to understand the evolution of

nuclear structure and its impact on 𝛽-decay properties far from stability.

Multi-neutron emission after 𝛽 decay of neutron-rich nuclei also impacts

astrophysical r-process calculations that estimate the abundance of var-

ious nuclei in the galaxy [1,2]. Present and future 𝛽-decay experiments

with neutron-rich exotic nuclei created from the fragmentation of heavy

ions involve complex decay networks. It is important to have a robust

method to reliably extract the decay information associated with each

nucleus. The 𝛽 delayed neutrons at RIKEN (BRIKEN) collaboration mea-

sured the 𝛽 decays of many neutron-rich nuclei that exhibit zero, single,

and multi-neutron emission probabilities, 𝑃𝑥𝑛 (where 𝑥 = 0, 1, 2,…) [3].

∗ Corresponding author at: Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6371, USA.
E-mail address: brasco@utk.edu (B.C. Rasco).

Techniques for evaluating single neutron branching ratios, 𝑃1𝑛, with
3He tubes [4,5] must be extended to include the possibility of multi-

neutron 𝛽 decay. So far, in heavy nuclei, only one case of a large 𝛽-

delayed 2 neutron emitter, 86Ga (𝑃2𝑛 = 20(10)%), has been reported [6].

The BRIKEN collaboration aims to extend current knowledge of two and

more neutron emitters in medium and heavy mass nuclei [3].

In this paper we present an analysis technique that may be applied

to other situations, though the discussion of the parameters is focused

on the BRIKEN experiment. The analysis technique is based upon

measuring zero, one, and two neutron activities detected in coincidence

with an ion-implant and a 𝛽 trigger, but the technique may be applied

to any decay activity in coincidence with another detector. The associ-

ated systematic and statistical uncertainties present several challenges

evaluating 𝑃𝑥𝑛. This paper discusses these challenges and presents one
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Fig. 1. (Color online) Schematic top view of the BRIKEN detector. The AIDA silicon
detectors (purple) are referred to as implant-𝛽 detectors, because the nuclei of interest
are first implanted into these detectors and then the 𝛽 particles emitted in subsequent 𝛽
decays are also observed in the same detectors. For the analysis described in the text, only
coincident information from the 3He tubes and one of the implant-𝛽 detectors is required.

Fig. 2. Fit of adapted Bateman equation to 77Cu data with an implant-𝛽 trigger correlation
and no information on the number of neutrons from the 3He tubes. The residual of the
𝑖th bin is defined as 𝑅𝑖 =

(
𝑑𝑎𝑡𝑎𝑖 − 𝑓𝑖𝑡

)
∕
√
𝑛𝑖, where 𝑛𝑖 is the number of counts in the 𝑖th

bin. Shown in the plot are the total fit (orange—solid), 77Cu (red—long dashed), 77Zn
(dark red—short dashed), 76Zn (blue—dotted), background (light gray—solid), and the
data (black—solid). All decay curves are offset by the background. The granddaughter
decays are not shown to preserve clarity . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

analysis procedure, the ORNL BRIKEN analysis procedure, used to evalu-
ate 𝑃𝑥𝑛. Alternative analysis methods along with expanded experimental
detail will be published separately [7]. This manuscript also discusses
the analysis of BRIKEN data using as an example 77Cu data. The analysis
of 77Cu is chosen because it is a known 𝛽-delayed neutron emitter, with
a known half life of 468(2) ms [8] and a consistently measured single
neutron decay fraction, 𝑃1𝑛 = 31.0(38)% [9] and 𝑃1𝑛 = 30.3(22)% [10].
The present paper does not comment on the evaluation of the associated
𝛾-ray detection, which will be presented in a future publication. In
addition to presenting the ORNL BRIKEN analysis method, we offer
comments on the inputs and parameters and their influence on the errors
in evaluating 𝑃𝑥𝑛.

2. Brief BRIKEN detector description

The BRIKEN detector as used in the experiments at RIKEN consists
of 140 3He neutron detector tubes, a dual purpose ion-implant and 𝛽

detector (implant-𝛽 detector), and two HPGe clovers and one of the
experimental setups is schematically shown in Fig. 1.

Fig. 3. (Color online) Fit of adapted Bateman equation to 77Cu data with an implant-𝛽
trigger correlation and zero neutrons detected in the 3He tubes. Colors and comments are
as in Fig. 2.

The BRIKEN detector was designed to maximize the neutron effi-
ciency while keeping the neutron efficiency as uniform as possible over
a wide range of initial neutron energies. The uniform neutron efficiency
minimizes the contribution to the neutron efficiency uncertainty from
the initial neutron kinetic energy. This effect and its impact on the
BRIKEN design is discussed in [11]. From the analysis presented in [11]
and neutron source measurements, the average single neutron efficiency
of the BRIKEN detector is 62(2)% for neutrons with kinetic energies
ranging from thermal energies to 5 MeV. Further details of the BRIKEN
setup used in the commissioning experiments can be found in [7,11].

BRIKEN was placed on the zero degree beam line following BigRIPS
at the RI Beam Factory (RIBF) of the RIKEN Nishina Center. The nuclei
were identified per event by means of the BigRIPS separator [12].

Several different implant-𝛽 detectors were used in the various
BRIKEN experimental runs at RIKEN. Two different silicon based
implant-𝛽 detectors were used in separate runs, the AIDA detector [13]
and the WAS3ABi detector [14]. In conjunction with the WAS3ABi
detector, a YSO scintillator [15] based implant-𝛽 detector was also used.
All of the implant-𝛽 detectors are segmented in order to reduce ion-
correlated background 𝛽 triggers. Two HPGe clovers from the CLARION
array of Oak Ridge National Laboratory were used to detect 𝛾 rays in
coincidence with 𝛽 and 𝛽-delayed neutron decays.

3. Main analysis result

In this section, the fundamental equation used in the analysis is
presented. A derivation of this fundamental equation is presented in
Appendix. The fundamental equation that contains only implant-𝛽 time
dependent terms can be written as

⎛⎜⎜⎝

𝐴0𝑛(𝑡)

𝐴1𝑛(𝑡)

𝐴2𝑛(𝑡)

⎞⎟⎟⎠
= 𝐴(𝑡)𝜖𝐼𝜀𝛽𝑟0𝑛𝐄

⎛⎜⎜⎝

𝑃0𝑛

𝑃1𝑛

𝑃2𝑛

⎞⎟⎟⎠
, (1)

where 𝐴𝑥𝑛(𝑡) is the implant-𝛽 activity with detecting 𝑥 neutrons at time
t (or summed over a range of times), 𝐴(𝑡) is the overall activity at the
same time, 𝜖𝐼 is the implant efficiency, 𝜀𝛽 is the 𝛽 efficiency for zero
neutron decays, 𝑟0𝑛 is the probability to detect no background neutrons
in a given time window, 𝑃𝑥𝑛 is the branching probability for emitting 𝑥
neutrons, and 𝐄 is a matrix given by

𝐄 =

⎛
⎜⎜⎜⎝

1 𝑎1𝜖10𝑛 𝑎2𝜖20𝑛

𝑟1𝑛∕𝑟0𝑛 𝑎1
(
𝜖11𝑛 + 𝜖10𝑛𝑟1𝑛∕𝑟0𝑛

)
𝑎2

(
𝜖21𝑛 + 𝜖20𝑛𝑟1𝑛∕𝑟0𝑛

)
𝑟2𝑛∕𝑟0𝑛 𝑎1

(
𝜖11𝑛𝑟1𝑛∕𝑟0𝑛 + 𝜖10𝑛𝑟2𝑛∕𝑟0𝑛

)
𝑎2

(
𝜖22𝑛 + 𝜖21𝑛𝑟1𝑛∕𝑟0𝑛 + 𝜖20𝑛𝑟2𝑛∕𝑟0𝑛

)
⎞
⎟⎟⎟⎠
.

(2)

In the matrix 𝐄, 𝑎𝑥 is the ratio of the 𝑥-neutron 𝛽 efficiency (𝜀𝛽𝑥) to
0-neutron 𝛽 efficiency (𝜀𝛽), 𝜖𝑥𝑦𝑛 is the probability to detect 𝑦 neutrons
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Fig. 4. (Color online) Fit of the adapted Bateman equation to 77Cu data with an implant-𝛽
trigger correlation and one neutron detected in the 3He tubes. Colors and comments are
as in Fig. 2, though the total and the 77Cu decay are almost indistinguishable.

Fig. 5. (Color online) Fit of the adapted Bateman equation to 77Cu data with an implant-𝛽
trigger correlation and two neutrons detected in the 3He tubes. Colors and comments are
as in Fig. 2, though the total and the 77Cu decay are almost indistinguishable.

given that 𝑥 neutrons were emitted (𝑥 ≥ 𝑦), and 𝑟𝑥𝑛 is the probability that
𝑥 background neutrons are detected within a given time window. By
either considering the reasoning in Appendix or merely extending the
patterns in Eq. (2), the matrix 𝐄 is easily extended to include three and
four neutron terms (𝐴3𝑛(𝑡), 𝐴4𝑛(𝑡), 𝑃3𝑛, 𝑃4𝑛, 𝑟3𝑛, 𝑟4𝑛, 𝜖33𝑛, etc...) if needed.

After solving Eq. (1) for the 𝑃𝑥𝑛 and taking the ratio of 𝑃𝑥𝑛 while
requiring the sum to be 1.0, the dependence of the results on the
variables 𝐴(𝑡), 𝜖𝐼 , 𝜀𝛽 , and 𝑟0𝑛 is removed.

Eqs. (1) and (2) are applicable to any situation where decay data
can be separated into coincidence with a noisy secondary detector. In
our case the secondary detector is the BRIKEN neutron detector. In most
cases the 𝑎𝑥 can be ignored by setting them equal to 1.0.

4. Discussion of BRIKEN specific parameters

Calculating 𝑃𝑥𝑛 involves evaluating the number of correlated implant
triggers with 𝛽 triggers versus implant-𝛽 times (𝛽 time minus implant
time), hereafter referred to as implant-𝛽 activities. Using the estimated
initial activity (the activity at the implant time) from the implant-𝛽
activity gated in coincidence on the neutron multiplicity gives a way
to obtain the 𝑃𝑥𝑛.

For each ion-implant signal all associated 𝛽 signals within ±10

sec within ±3 pixels of the implant pixel of AIDA are correlated in
software. Each pixel in AIDA has a 0.58 mm pitch in both the x and y
direction. The implant-𝛽 time correlation plot from a 60 h BRIKEN run

Fig. 6. The variation of the calculated 77Cu 𝑃2𝑛 with statistical uncertainties versus the
ratio of one neutron background coincidence probability to zero neutron background
coincidence probability. The vertical dashed line at 0.012 is the zero crossing point.

for BigRIPS selected 77Cu implanted ions is shown in Fig. 2. In addition
to the implant-𝛽 time correlation activity plots, there are implant-𝛽 time
correlation activity plots gated on the number of neutrons detected
within the neutron thermalization time window, 𝑇𝑡ℎ = 200 μs, after
each 𝛽 signal (neutron-multiplicity implant-𝛽 activities). The activity
gated on zero neutrons detected is shown in Fig. 3, the activity gated
on one neutron detected is shown in Fig. 4, and the activity gated on
two neutrons detected is shown in Fig. 5. Below we describe how the
estimated initial activity of the neutron-multiplicity implant-𝛽 activities
are used to calculate the 𝑃𝑥𝑛.

Before discussing the connections between the initial activity of
the neutron-multiplicity implant-𝛽 activities and the 𝑃𝑥𝑛, a discussion
of several required parameters is presented. Some of these required
parameters can be measured, while others must be estimated. The
evaluation and propagation of uncertainties from measured and esti-
mated parameters through the analysis is presented. A discussion of the
parameters considered in the BRIKEN 𝑃𝑥𝑛 evaluations is given below.

4.1. Implant-𝛽 background

Random 𝛽 signals in coincidence with each implant contribute to
the nearly constant background in each implant-𝛽 time correlation plot.
These random 𝛽 signals originate from other nearby implant 𝛽 signals
and implant 𝛽 signals that are not detected by the 𝛽 trigger. The small
slope of the background is associated with short time drops (up to tens
of seconds) in the rate of implanted ions from an otherwise DC beam.
When the beam drops before an implant, this lowers the correlated 𝛽

counts before the implant. Similarly, beam drops after an implant lower
the background counts after the implant. Because there are relatively
few beam drops, this is a small yet observable effect.

An accurate description of the background affects the fitting of
the neutron-multiplicity implant-𝛽 activities. Especially when the back-
ground models differ on the order of the daughter and granddaughter
activities. One way to minimize the impact of the background modeling
is to fit over a shorter time, this minimizes the impact of variations of the
background. For the 77Cu zero neutron-multiplicity implant-𝛽 activity,
the background slope is on the order of 1.5 counts per second, while for
the 77Cu one neutron-multiplicity implant-𝛽 activity, the background
slope is on the order of 0.2 counts per second. While this is small, it
contributes a bias to the fit of the 77Cu descendent activities.

The background is linearly modeled, 𝐶0 + 𝐶1 ∗ 𝑡, before the implant
and it is assumed that the background after the ion-implant time is
linearly modeled as, 𝐶0 − 𝐶1 ∗ 𝑡, with 𝐶0 and 𝐶1 calculated from
the background before the implant. There is some uncertainty in this
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assumption and an approach is taken to minimize the impact of the
background uncertainty on the estimation of the initial activity.

The ion-implants have very little background signal, due to the large
unique signal of stopping a heavy ion with 100 − 200 MeV/u energy
and the isotopic identification plus coincident timing from the BigRIPS
detectors [12], though the ion-implants do create background in the
other detectors.

4.2. 3He neutron detector

The neutron-rich nuclei studied have roughly 100 − 200 MeV/u of
kinetic energy and their implantation creates background signals in all
of the detectors, including the silicon, scintillator, 𝛾, and 3He neutron
detectors. The 3He detectors see two types of background neutron
counts. The first type of background the 3He counters see is an increase
in neutron and 𝛾 counts associated with the implanted energetic ion,
referred to as the prompt flash. The second type of neutron counter
background is from the neutron room background in online conditions,
referred to as random neutron background.

The prompt flash neutron background associated with the stopping
of energetic ions detected in the 3He counters is removed by rejecting
neutrons detected in the 3He counters within one neutron thermaliza-
tion time, 𝑇𝑡ℎ, after the implant time.

Random neutron backgrounds contribute to the implant-𝛽 activities
time structure since they occur in coincidence with the 𝛽 signal, and
therefore these need to be accounted for in the analysis. Random
neutron background probability coincidences that occur within one
neutron thermalization time window after the 𝛽-trigger time in the 3He
detectors are denoted by 𝑟0𝑛 for the probability of zero background
neutrons detected in coincidence, 𝑟1𝑛 for the probability of one random
background neutron detected, and 𝑟2𝑛 for the probability of two random
background neutrons detected within 𝑇𝑡ℎ of the 𝛽-signal time (written
generally as 𝑟𝑥𝑛 where 𝑥 = 0, 1, 2,…).

The magnitude of the background neutron coincidence probability,
𝑟𝑥𝑛, can be estimated by requiring decays that have no possible 𝑃2𝑛

decay (𝑄𝛽2𝑛 < 0.0) to have an average calculated 𝑃2𝑛 consistent
with zero. This requirement leads to an estimation of the background
neutron coincidence probabilities. Using the analysis presented below,
the predicted 77Cu 𝑃2𝑛 versus the ratio of the probability of detecting
one neutron to detecting zero neutrons, 𝑟1𝑛∕𝑟0𝑛, with an assumed small
two neutron detection probability is shown in Fig. 6. Because it is
energetically impossible for 77Cu to emit two neutrons, where the 𝑃2𝑛

curve crosses zero gives the estimated 𝑟1𝑛∕𝑟0𝑛 ratio. This technique gives
consistent results for 𝑟1𝑛∕𝑟0𝑛 for other nuclei that have zero 𝑃2𝑛 that were
measured with BRIKEN. The two neutron background coincidence rate
is of order (𝑟1𝑛∕𝑟0𝑛)

2 and therefore in general can be neglected compared
to the one neutron coincidence rate, though in the equations below it is
tracked for the sake of completeness.

4.3. Parent–daughter 𝛽 efficiencies

The daughter nuclei may have a different 𝛽-trigger efficiency than
the parent decay. If the daughter nuclei decay has a different 𝛽-trigger
efficiency than the parent nuclei decay and it is not accounted for
in the Bateman equation, this will influences the fit of the parent
activity. For many decays the parent and daughter nuclei have radically
different 𝛽-decay energy windows, 𝑄𝛽 and they may have different low
energy 𝛾 rays that have large conversion electron branches. Both of
these factors can lead to different 𝛽-detector efficiencies for parent and
daughter nuclei which depend strongly on the low energy threshold
of the implant-𝛽 detector. The Bateman equations need to be adapted
in order to account for these effects and to minimize the influence of
related uncertainties on 𝑃𝑥𝑛.

4.4. Neutron multiplicity dependent 𝛽 efficiencies

Analogously to parent and daughter nuclei possibly having different
𝛽-detection efficiencies, the different neutron multiplicity components
of a single 𝛽 decay can have different 𝛽 detection efficiencies. The
component of the 𝛽-decay with no neutrons emitted has in general a
larger decay energy, 𝑄𝛽 , available for the 𝛽 and 𝜈̄𝑒 to share, than for the
one neutron component of the 𝛽-decay. This impacts the 𝛽-detection
efficiency of the 𝛽 detector. Similarly, the component of the 𝛽-decay
with one neutron emitted generally has a larger decay energy, 𝑄𝛽𝑛 =

𝑄𝛽 − 𝑆𝑛, available than two neutron component of the 𝛽-decay decay,
𝑄𝛽2𝑛 = 𝑄𝛽 − 𝑆2𝑛, which again can impact the 𝛽-detection efficiency.

Another effect that impacts the 𝛽 efficiency is the final depth that the
implanted nuclei stops within the implant-𝛽 detector. For nuclei stopped
very near the silicon surface approximately 50% of the emitted electrons
leave no energy deposit in the ion-implant pixel of the 𝛽 detector. The
implantation depth also influences the number of detected minimally
ionizing 𝛽 particles, which to a good approximation are 𝛽 particles with
energy above 1 MeV. Minimally ionizing 𝛽 particles deposit about 400
keV per mm of silicon. With a 𝛽-detection threshold of 200 keV, it is
possible for a high energy 𝛽 to leave less than the threshold energy in
the implant-𝛽 detector if it travels through less than 0.5 mm of silicon.
To a first approximation to calculate the effect of the implantation depth
on the 𝛽 efficiency one can assume ∼ 55% of minimally ionizing 𝛽s are
detected. The number of minimally ionizing 𝛽 particles can be estimated
by assuming a Gamow–Teller 𝛽 emission spectrum with end-point 𝑄𝛽 ,
𝑄𝛽𝑛, or 𝑄𝛽2𝑛, as appropriate. Simulations and further discussion of this
effect can be found in [7].

In this paper the 𝛽 efficiency for 𝛽 decays that emit no neutrons
(𝑃0𝑛 decays) is written as 𝜀𝛽 , while the 𝛽 efficiencies for 𝛽 decays that
emit one (𝑃1𝑛 decays) or two neutrons (𝑃2𝑛 decays) are given by 𝜀𝛽1 and
𝜀𝛽2, respectively. For

77Cu (𝑄𝛽𝑛 = 5.61 MeV and 𝑄𝛽 = 10.17 MeV [8]),
an implant-𝛽 detector threshold of 200 keV and assuming a Gamow–
Teller 𝛽 distribution leads to a ∼ 1% relative difference in the number
of 𝛽s detected. And, still assuming a Gamow–Teller 𝛽 distribution, up
to a ∼ 10% relative difference in the number of high energy 𝛽 particles
detected if the ion-implant position in the silicon detector is taken into
account. To account for possible additional effects, a 15% uncertainty in
the ratio of the one neutron emission 𝛽 efficiency to the zero neutron 𝛽

efficiency is assumed for 77Cu to be 𝜀𝛽1∕𝜀𝛽 = 1.00(15).

4.5. Energy dependence of neutron efficiency

As emphasized in [4], the overall neutron efficiency depends on the
energy of the emitted neutron. The energy of neutrons emitted in 𝑃(𝑥+1)𝑛

events in general will have lower energy compared with 𝑃𝑥𝑛 events,
though how much lower is challenging to estimate. By using 𝑄𝛽 and the
neutron separation energy, 𝑆𝑛, values, estimates of the absolute upper
emitted neutron energies can be made.

5. Extracting activities with the Bateman equation

5.1. Impact on Bateman equations

The impact of differing Parent–daughter 𝛽 efficiencies is not included
in the original Bateman equation solution [16]. In order to properly
fit the full Bateman equation, the 𝑃𝑥𝑛 need to be known, and for
unmeasured 𝛽-delayed neutron emitting nuclei this is not the case. In
addition, the parent and daughter 𝛽 efficiencies need to be known. The
modification to the Bateman equation for differing Parent–daughter 𝛽
efficiencies is similar to the correction due to the 𝑃𝑥𝑛 daughter-neutron
daughter factor, and disentangling these two values is not well defined
from the fit of the adapted Bateman equation to the data.

The Bateman equation solutions for zero, one, and two neutron
ion-implant 𝛽 activities depend on the 𝑃𝑥𝑛 values, the parent and
daughter 𝛽 efficiencies, and on the neutron efficiency in a more intricate
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way than the full ion-implant 𝛽-decay time activity does. Effectively,
these parameters are not uniquely identifiable from the fit. Fortunately,
precise knowledge of these parameters is not required to estimate the
𝑃𝑥𝑛. Even with ambiguity in the parameter values, the estimated initial
activities from the neutron-multiplicity ion-implant-𝛽 activities can be
used to calculate the 𝑃𝑥𝑛.

In order to minimize the influence of the relative daughter 𝛽 effi-
ciencies and the unknown 𝑃𝑥𝑛 values on the Bateman fits, the estimated
initial activity of the zero, one, and two coincident neutron implant-𝛽
activity curves (𝐴0𝑛, 𝐴1𝑛, 𝐴2𝑛) can be extracted instead of the full number
of counts obtained from a original Bateman equation fit. The initial
activity precision is affected by the statistics, but is mainly influenced by
the parent half-life uncertainty. It is worth noting that the full statistics
are used to estimate the initial activity. The influence of unknown
daughter 𝛽 efficiencies and of the initially unknown 𝑃𝑥𝑛 dominate the
errors. The impact of these uncertainties are minimized by looking at
the estimated initial activity, see Figs. 3, 4, 5. Finally, it is worth noting
that the initial activity at the implant time can be read directly from the
decay curve in order to make online estimates of the 𝑃𝑥𝑛.

5.2. Bateman fitting ranges

The time range used for fitting the adapted Bateman equations is
an important factor. For the BRIKEN implant-𝛽 detectors there was
electronic noise in AIDA for the first 30 ms immediately after the ion-
implant time, so this early time data is not included in the fit. This noise
has been corrected after the first experimental runs and the initial cutoff
time has been reduced to around 10 ms. This electronic noise is much
longer than, and therefore dominates, the ion-implant exclusion time,
𝑇𝑡ℎ, mentioned previously. In the

77Cu data we do not use the first 40 ms

of data, which does not impact the calculations due to the much longer
77Cu half life of 468(2) ms [8]. For much shorter half lives this becomes
a limiting factor.

Choosing the higher time cutoff depends on several factors. First is
the limitation of the background being modeled as linear, as discussed
previously. The second limitation is the accuracy of the modified
Bateman equation and what is actually being fit as the maximum time
is increased. There is effectively no more direct information about the
parent decay after six parent half lives, so fitting beyond that only
gains information on the daughter and grand daughter decays. But the
daughter decays are not the primary information we are after, we are
after the parent decay information. For all of the adapted Bateman
equation fits, the endpoint of each fit is varied from 6 to 10 times the
parent half life.

5.3. Initial activity contamination by daughter activities

The early ion-implant-𝛽 activities for the 𝐴𝑥𝑛(𝑡) have small quantifi-
able contributions from the daughter decays. By looking at early times,
times much smaller than the daughter half life just after the ion-implant
time, the amount of daughter activity at time 𝑡 is given approximately
by

𝐴𝐷(𝑡) ∼
(
𝜆𝐷𝑡

)
𝐴𝑃0, (3)

where 𝐴𝐷(𝑡) is the daughter activity at time 𝑡, 𝜆𝐷 is the daughter decay
rate, and 𝐴𝑃0 is the initial activity of the parent. This approximation
is valid as long as 𝜆𝐷𝑡 ≪ 1 and that there are enough 𝐴𝑃0 counts at
early times. In the 77Cu example, the number of daughter decays at
time 𝑡 = 10 ms amounts to ∼ 0.2% of the initial activity of 77Cu.

5.4. Influence of daughter parameters on initial activities

All of the parameters related to the daughter decays, 𝑃𝑥𝑛 values,
daughter 𝛽 efficiencies, and daughter half lives, minimally influence the
initial activity deduced from the fit. This is because all of the parameters
in the modified Bateman equation at early times are proportional to

Fig. 7. The variation of the calculated 𝑃1𝑛 versus input
77Cu half life. This demonstrates

the technique’s level of stability to uncertainties in the half life. The experimental 77Cu
half life is bounded by the two gray lines [8]. The solid blue line is drawn to guide the eye
. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

terms shown in Eq. (3). And therefore as time goes to zero, the direct
influence of the parameter uncertainties on the initial activity fit also
goes to zero. The daughter parameters still influence the estimation of
the parent half life, but as we demonstrate below this error has reduced
influence on the 𝑃𝑥𝑛.

This line of argument is only true for experiments with no directly
implanted daughter nuclei in the same pixel within the analysis time
window. For experiments with a nonzero initial daughter activity Eq. (3)
does not apply and hence the propagation of errors in the daughter
nuclei parameters do not necessarily reduce to zero as in Eq. (3).

5.5. Influence of half life on the initial activities

The parent half life uncertainty influences the 𝑃𝑥𝑛 uncertainty, but
the impact on the calculated 𝑃𝑥𝑛 is mitigated by the linear nature of the
solution of Eqs. (1) and (2). Since the parent half life is the same for
all three decay components, the impact on the 𝑃𝑥𝑛 errors of the half life
uncertainty is minimized.

In Fig. 7, the assumed 77Cu half life is varied by ±50% and the impact
on the calculated 77Cu 𝑃1𝑛 is (+2,−16)%. If the

77Cu half life is assumed
unknown by ±10%, the impact on the calculated 77Cu 𝑃1𝑛 is ±2%. In
the case of the literature value of 77Cu, 468(2) ms [8–10], the resulting
uncertainty of 𝑃1𝑛 is ±0.2%. This is a negligible number when compared
with the other sources of uncertainty.

One way to evaluate the half life error is to use the one neutron
implant-𝛽 activity to estimate the half life, because the uncertainty in
the zero neutron implant-𝛽 activity is usually larger. The one neutron
implant-𝛽 activity half life is then used in the zero neutron implant-𝛽
activity to calculate the 𝑃𝑥𝑛. We demonstrate this for the

77Cu below.
For more neutron rich nuclei, the challenge of extracting a half life due
to daughter contamination will be present in the one and even the two
neutron implant-𝛽 activities and therefore it may be more challenging
to obtain a precise half life. But due to the linear nature of the ORNL
BRIKEN analysis technique, the impact of the half-life error on the 𝑃𝑥𝑛

is reduced.

6. Statistical and systematic uncertainties summary

Knowledge of the parent half life has an impact on the estimated
errors of 𝑃𝑥𝑛. In many cases, knowledge of the half life is available from
previous experiments, but for many of the exotic neutron-rich nuclei
measured with BRIKEN, the half lives are currently unknown or have
extremely large uncertainties.
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Fig. 8. (Color online) Statistical variation of 77Cu initial activities and the impact on the
𝑃𝑥𝑛 assuming the known

77Cu half life, 𝑇1∕2 = 468(2) ms. 𝑃0𝑛 is shown as a solid gray line,
𝑃1𝑛 is shown as a dashed red line, and 𝑃2𝑛 is shown as a dotted blue line.

Fig. 9. (Color online) Statistical and systematic errors after variation of 77Cu initial
activities and the other parameters described in the text and their impact on the 𝑃𝑥𝑛

assuming the known 77Cu half life, 𝑇1∕2 = 468(2) ms. Colors and line styles are as in
Fig. 8.

Fig. 10. (Color online) Statistical variation of 77Cu initial activities and the impact on the
𝑃𝑥𝑛 with non-fixed

77Cu half life. Colors and line styles are as in Fig. 8.

In 𝛽-neutron decays, up until recently it has been possible to use
the one neutron decay activity to get a good half-life measurement,
because it is a clean spectrum with little to no contamination from the
daughter decays. For exotic neutron-rich nuclei this may no longer be
the case because the daughter nuclei decays may also have a significant
𝛽-delayed neutron decay channel, and extracting the half-life from one,

and even two, neutron implant-𝛽 activity curves may not be a precise
measure of the 𝛽-decay half life. Another effective way to measure a
more precise half life is to measure an associated 𝛾 ray and its half life
gating on the 𝛾 energy in the HPGe detectors. But this is not always
possible, such as in cases where there are no detected 𝛾 rays associated
with the particular decay, whether from low statistics or from no 𝛾

rays being emitted. In each case the single best possible estimate of
the half life should be used to fit all of the x-neutron activity decay
curves, though what is considered best will depend on the specifics of
each nuclei and its daughters.

7. Example - 77Cu

The decay of 77Cu is presented to demonstrate the analysis procedure
described in this manuscript. For 77Cu the half life is well known, 468(2)
ms [8–10], but as an exercise, the evaluation is also presented as if the
half life is unknown and the half lives for the zero, one and two neutron
decay activities are treated as independent. This means the half lives
are (slightly) different for each 𝑥 (𝑥 = 0, 1, 2) neutron implant-𝛽 activity,
which in turn leads to large uncertainties in the calculated 𝑃𝑥𝑛 values.
In the analysis of nuclei measured with BRIKEN, the same half life is
used for zero, one, and two neutron decay activity curves.

By varying the initial activities, 𝐴𝑥𝑛, with the uncertainties from
the adapted Bateman equation fit and propagating the results through
Eq. (1) the statistical errors in the 𝑃𝑥𝑛 can be calculated. To calculate
the systematic errors, one can vary the parameters (𝜖11𝑛, 𝑎𝑥, 𝑟𝑥𝑛∕𝑟0𝑛,
etc.) in Eqs. (1) and (2) by their respective uncertainties independently
or correlated, as is appropriate, while evaluating the 𝑃𝑥𝑛 repeatedly.

The decay of 77Cu is well characterized, 𝑄𝛽𝑛 = 5.61(15) MeV,
𝑄𝛽2𝑛 = −2.21(15) MeV] [8]. The negative 𝑄𝛽2𝑛 for

77Cu means that
two neutron decay is not possible. In Figs. 3, 4, and 5 the implant-𝛽
activities with zero, one, and two neutron multiplicity as a function of
time, 𝐴𝑥𝑛(𝑡), for

77Cu are shown. Approximate initial activities, 𝐴𝑥𝑛, can
be read off the histograms, though associating a precise uncertainty for
the read off initial activity poses challenges. The initial activities and
uncertainties from the fits with the adapted Bateman equation without
using information on the 77Cu half life and not requiring the zero, one,
and two neutron implant-decay curve half lives to be the same are
𝐴0𝑛 = 914(106), 𝐴1𝑛 = 209(15), and 𝐴2𝑛 = 2.5(7).

The initial activities and uncertainties from the fits with the adapted
Bateman equation assuming the known half life, 𝑇1∕2 = 468 ms, are
𝐴0𝑛 = 908(11), 𝐴1𝑛 = 212(3), and 𝐴2𝑛 = 2.6(4). Notice the uncertainties
are much smaller than in the unknown and independently varied half-
life case. The resulting 77Cu half life from the one neutron decay activity
fit is 𝑇1∕2 = 471(25) ms and if half life is used in the analysis of all three
decay activity curves it gives identical results as using the known half
life of 468(2) ms.

Since there are two neutron counts detected, one might naively think
there is possibly a small two neutron decay branch. But if one compares
the initial two neutron activity to the initial one neutron activity, the
ratio is a little over 0.01, which is just the relative probability to
detect a single random background neutron in the 3He detectors in our
thermalization time window, 𝑟1𝑛∕𝑟0𝑛 = 0.012. Using the same argument,
about 10 of the one neutron activity counts, 𝐴1𝑛 = 212(3), are actually
zero neutron events in coincidence with a background neutron. In this
case it is a small correction, ∼ 5% relative error, but in other cases with
different relative 𝑃𝑥𝑛 values this can be a much larger correction. For
example, a large 𝑃0𝑛 and a small 𝑃1𝑛, on the order of a percent or two,
will have a large component of random coincidences in the one neutron
decay curve. This observation holds similarly for a large 𝑃1𝑛 and a small
𝑃2𝑛.

Using these initial activities and assuming a single neutron efficiency
of 62% [11], a relative daughter 𝛽 efficiency, 𝑎1 = 1.0, and estimating the
noise by requiring the 𝑃2𝑛 is zero which gives 𝑟1𝑛∕𝑟0𝑛 = 0.012, as shown
in Fig. 6. For the case where the 77Cu half life is fixed to the known value
and varying the𝐴𝑥𝑛 by their uncertainties 100,000 times while inputting
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Fig. 11. (Color online) Systematic and statistical variation of 77Cu initial activities and
the other parameters described in the text and their impact on the 𝑃𝑥𝑛 with a non-fixed
77Cu half life. Colors and line styles are as in Fig. 8.

these values into Eq. (1), a fit of the resulting distribution is shown in
Fig. 8 with a Gaussian function and reporting the 𝑃 and 𝜎𝑃 , one obtains
𝑃0𝑛 = 71.2(5)%, 𝑃1𝑛 = 28.8(5)%, and 𝑃2𝑛 = 0.000(1)%. For the case with an
unconstrained 77Cu half life and the same neutron efficiency one obtains
𝑃0𝑛 = 71.1(33)%, 𝑃1𝑛 = 28.9(33)%, and 𝑃2𝑛 = 0.000(2)%, the results are
shown in Fig. 10.

If in addition to the statistical uncertainties, the single neutron
efficiency is varied as 62(2)% [11], and the relative neutron-multiplicity
as 𝛽 efficiency as 𝑎1 = 1.00(15) (motivated previously), the calculated
𝑃𝑥𝑛 distributions are shown in Figs. 9 and 11. Fitting each distribution
with a Gaussian function, one obtains 𝑃0𝑛 = 70.8(30)%, 𝑃1𝑛 = 29.2(30)%,
and 𝑃2𝑛 = 0.000(1)% using the known half life and leaving the half
life unconstrained one obtains 𝑃0𝑛 = 70.7(44)%, 𝑃1𝑛 = 29.3(44)%, and
𝑃2𝑛 = 0.000(2)%.

Since the 77Cu half life is well known, our reported one neutron
branching fraction, 𝑃1𝑛 = 29.2(30)%, is in 1 𝜎 agreement with the
literature values of 𝑃1𝑛 = 31.0(38)% [9] and 𝑃1𝑛 = 30.3(22)% [10].
The two literature values were obtained using two different techniques,
providing confidence in the value.

8. Summary

We have presented the fundamentals of the BRIKEN analysis and
shown two evaluations of 77Cu 𝛽-neutron precursor decay properties
and the associated statistical and systematic uncertainties as examples.
We present a general result that simplifies calculation and propagation
of uncertainties. We also present a discussion of extracting zero, one, and
two neutron activities appropriate for the BRIKEN setup. This discussion
is applicable to other experiments if daughter implants are spatially
and temporally distinguishable from the nuclei of interest implants. If
this is not an appropriate description of a particular other experiment,
the conversion of activities to 𝑃𝑥𝑛 in Eqs. (1) and (2) is still valid. For
77Cu the BRIKEN result for the one neutron branching fraction, 𝑃1𝑛 =

29.2(30)% agrees with previous measurements of 𝑃1𝑛 in the literature.
This agreement increases our confidence in the evaluation procedure
presented in this paper.
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Appendix. Derivation of Eqs. (1) and (2)

In this appendix we describe the derivation of Eqs. (1) and (2). For
the derivation we only consider up to a two neutron emitting nucleus.
The extension of the analysis to three and four neutron decays is straight
forward. The basis of the derivation is to consider all of the possible
ways to detect y neutrons (0 ≤ 𝑦 ≤ 𝑥) given that x neutrons (0 ≤ 𝑥 ≤ 2)
are emitted. For clarity, in the first part of the derivation we ignore
the dependence of the relative 𝛽 efficiency on the number of neutrons
emitted, that modification is shown following the basic derivation.

The possible ways to detect no neutrons for various decay events
are listed here. There are only three possible ways. The first possibility
is a decay with zero neutrons emitted and no background neutrons
detected. The second possibility is a decay with one neutron emitted but
that neutron is not detected and no background neutrons are detected.
The third possibility is a decay with two neutrons emitted but neither
neutron is detected and no background neutrons are detected. Using the
notation used in Eqs. (1) and (2), the ways to detect zero neutrons can
be written as

𝐴0𝑛(𝑡) = 𝐴(𝑡)𝜖𝐼𝜀𝛽𝑟0𝑛
(
𝑃0𝑛 + 𝜖10𝑛𝑃1𝑛 + 𝜖20𝑛𝑃2𝑛

)
. (A.1)

Next is the list of possible ways to detect one neutron from various
decay events. There are five possible ways. The first possibility is a
decay with zero neutrons emitted and one background neutron detected.
The second possibility is a decay with one neutron emitted and that
neutron is detected and no background neutrons are detected. The third
possibility is a decay with one neutron emitted but that neutron is not
detected and one background neutron is detected. The fourth possibility
is a decay with two neutrons emitted and only one of those neutrons are
detected and no background neutrons are detected. The fifth possibility
is a decay with two neutrons emitted and neither of those neutrons are
detected but one background neutron is detected. Using the notation
used in Eqs. (1) and (2), the ways to detect one neutron can be written
as

𝐴1𝑛(𝑡) = 𝐴(𝑡)𝜖𝐼𝜀𝛽
(
𝑃0𝑛𝑟1𝑛 + 𝜖11𝑛𝑟0𝑛𝑃1𝑛 + 𝜖10𝑛𝑟1𝑛𝑃1𝑛

+ 𝜖21𝑛𝑟0𝑛𝑃2𝑛 + 𝜖20𝑛𝑟1𝑛𝑃2𝑛

)
, (A.2)

The last enumeration of possibilities considered is the list of possible
ways to detect two neutrons from various decay events. There are six
possible ways. The first possibility is a decay with zero neutrons emitted
and two background neutron detected. The second possibility is a decay
with one neutron emitted and that neutron is detected in coincidence
with one background neutron detected. The third possibility is a decay
with one neutron emitted but that neutron is not detected but two
background neutrons are detected. The fourth possibility is a decay with
two neutrons emitted and both emitted neutrons are detected along
with no background neutrons detected. The fifth possibility is a decay
with two neutrons emitted and only one of the emitted neutrons is
detected along with one background neutron detected. Lastly, the sixth
possibility is a decay with two neutrons emitted and neither of the
emitted neutrons is detected but two background neutrons are detected.
Using the notation for Eqs. (1) and (2), the ways to detect two neutrons
can be written as

𝐴2𝑛(𝑡) = 𝐴(𝑡)𝜖𝐼𝜀𝛽
(
𝑃0𝑛𝑟2𝑛 + 𝜖11𝑛𝑟1𝑛𝑃1𝑛 + 𝜖10𝑛𝑟2𝑛𝑃1𝑛

+ 𝜖22𝑛𝑟0𝑛𝑃2𝑛 + 𝜖21𝑛𝑟1𝑛𝑃2𝑛 + 𝜖20𝑛𝑟2𝑛𝑃2𝑛

)
. (A.3)

Eqs. (A.1), (A.2), and (A.3) are not quite Eqs. (1) and (2), one additional
set of parameters remains to be inserted.

Due to the possible large difference between 𝑄𝛽 , 𝑄𝛽𝑛, and 𝑄𝛽2𝑛

(decay energy for zero, one, and two neutron decays) the associated 𝛽
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efficiencies (𝜀𝛽 , 𝜀𝛽1, 𝜀𝛽2) may not be the same. Adding these parameters
to the equations, the zero neutron equation becomes

𝐴0𝑛(𝑡) = 𝐴(𝑡)𝜖𝐼 𝑟0𝑛
(
𝜀𝛽𝑃0𝑛 + 𝜀𝛽1𝜖10𝑛𝑃1𝑛 + 𝜀𝛽2𝜖20𝑛𝑃2𝑛

)
, (A.4)

with similar changes to the one and two neutron equations.
After factoring out 𝜀𝛽 , 𝑟0𝑛, and group the 𝐴𝑥𝑛(𝑡) and the 𝑃𝑥𝑛 into

vectors, the remaining components are the matrix E, we arrive at the
Eqs. (1) and (2), the basis of the ORNL BRIKEN analysis technique.

The extension of this analysis to three and larger neutron emission
is straight forward, with the additional modification that the random
probability of three and four background neutrons should be included
and that the 𝛽 efficiencies and neutron efficiencies for three and four
neutron decays should be included.
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