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Abstract

We consider models with fermionic dark matter that transforms under a non-Abelian dark gauge

group. Exotic, vector-like leptons that also transform under the dark gauge group can mix with

standard model leptons after spontaneous symmetry breaking and serve as a portal between the

dark and visible sectors. We show in an explicit, renormalizable model based on a dark SU(2)

gauge group how this can lead to adequate dark matter annihilation to a standard model lepton

flavor so that the correct relic density is obtained. We identify a discrete symmetry that allows

mass mixing between the vector-like fermions and a single standard model lepton flavor, while

preventing mixing between these fields and the remaining standard model leptons. This flavor

sequestering avoids unwanted lepton-flavor-violating effects, substantially relaxing constraints on

the mass scale of the vector-like states. We discuss aspects of the phenomenology of the model,

including direct detection of the dark matter.
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I. INTRODUCTION

Although the literature on dark matter models is vast and diverse, the organizational

structure of many of these models is similar. The visible sector includes all the fields normally

associated with the minimal standard model; the dark sector consists of a collection of fields

that communicate very weakly with the visible sector; the messenger or portal sector consists

of those fields that allow for a weak coupling between the visible and dark sectors. In this

paper, we are interested in a possible portal for dark matter models, specifically ones in which

fermionic dark matter is charged under a dark gauge group. Our model will include vector-

like fermions that are also in nontrivial representations of the dark gauge group but can mix

with standard model fermions when the gauge symmetries of the theory are spontaneously

broken. We identify a mechanism, based on symmetries, that we call “flavor sequestering”

which allows this mixing to be non-negligible, while simultaneously suppressing unwanted

flavor-changing processes. This mechanism is new to the literature; it can provide for vector-

like fermion portal sectors that are lighter and more accessible experimentally than would

otherwise be possible. For the purposes of illustration, we choose to study a theory with

a non-Abelian dark gauge group, where an additional portal involving kinetic mixing of

some dark gauge boson components with hypercharge is naturally suppressed. In models

like the one we propose, where there are vector-like states charged both under the dark

and hypercharge gauge groups, the kinetic mixing parameter in an Abelian theory would

typically run below the Planck scale, leading to low-energy values that are not necessarily

small; this makes a non-Abelian dark sector the natural setting for formulating our proposal.

Scenarios in which multiple portals are relevant (for example, a vector-like fermion portal,

a Higgs-portal, a higher-dimension-operator portal, etc.) are of course possible and more

complicated; in the present work, however, we focus on the case where the vector-like fermion

portal is dominant. Examples of non-Abelian dark matter models can be found in Refs. [1–

7], [8–10] and [11]; we will not focus on models like those in Refs. [8–10] where a dark gauge

boson is itself the dark matter. Our model is also very different from the models of Refs. [11]

which involve unbroken non-Abelian dark gauge groups, either chosen to assure composite

dark matter candidates in the cases where there is confinement, or dark radiation in the case

where the dark gauge coupling is too small for confinement to be cosmologically relevant.

In our proposal, mixing between the vector-like and standard model fermions will only be
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present when the non-Abelian dark gauge group is spontaneously broken.

Given these assumptions, we would like the vector-like fermion portal in our model to

allow the dark gauge bosons to develop a small coupling to the visible sector, adequate

enough to facilitate the annihilation of the dark matter for a successful thermal freeze-out,

without running afoul of direct detection bounds. This can be arranged if the effective

coupling between the dark and visible sectors does not appear at the same order in the dark

matter annihilation and dark-matter-nucleon elastic scattering cross sections. To achieve

this, we choose the quantum numbers of the vector-like states to allow mixing only with

standard model leptons. The induced coupling of the dark gauge bosons would allow dark

matter annihilation to leptons via tree-level diagrams, while diagrams involving quarks would

be higher-order. One might wonder whether coupling the dark gauge bosons to standard

model leptons directly might be a more economical alternative. However, proceeding in this

way leads to significant model building complications. For example, if one tries to couple the

dark gauge bosons to the standard model leptons directly, then the dark gauge bosons are

potentially no longer “dark,” unless their gauge coupling is taken to be very small. However,

this choice suppresses the coupling of the dark gauge bosons to both the dark and visible

sectors, making it ineffective as a channel for dark matter annihilation. Moreover, such

direct couplings lead generically to chiral anomalies, which must be cancelled by additional

states that are charged under both the dark and standard model gauge groups. There is

no guarantee that the simplest Higgs field content of the dark and visible sectors will have

the correct quantum numbers to provide Yukawa couplings for these additional states, so

that additional Higgs representations may be required. Another potential problem is that

charging standard model leptons under the new non-Abelian group may either restrict the

form of the standard model lepton Yukawa matrices in unwanted ways, or forbid them

entirely, unless a Higgs field charged under both the dark and standard model gauge groups

is introduced. While the proliferation of fields implied by these considerations does not rise

to the level of a no-go theorem, it does make the approach described a lot less appealing.

To avoid these complications, we assume that the non-Abelian dark gauge boson may

couple to a vector-like state χ that can mix with standard model leptons after the gauge

symmetries of the theory (both dark and visible) are spontaneously broken. We will refer to

the χ states as heavy, vector-like leptons. If the dark gauge boson’s coupling to dark matter

is gD, which may be substantial, then the induced coupling to the standard model lepton in
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the mass eigenstate basis will be proportional to θgD where θ is a small mixing angle. Since

the gauge boson couples directly to a vector-like state, anomalies are cancelled, and a mass

term −Mχχχ can be written down at tree-level. A case of particular phenomenological

interest is where the vector-like sector is as light as possible. In this case, the mixing angle

θ can be large enough so that the desired dark matter relic density is obtained entirely

via dark matter annihilation to a standard model lepton-anti-lepton pair. This scenario

would not be possible in a similar model without flavor sequestering, so we focus on this

region of parameter space as the proof of principle that our flavor-sequestering idea can be

incorporated in viable models. The range of Mχ is then determined by the requirement that

the the mixing angle θ is large enough to produce the desired value of the dark matter relic

density. In this paper, we will present an explicit and renormalizable model that illustrates

this proposal. Our focus differs from that of Refs. [1–7], where the origin of higher-dimension

operators connecting the dark and visible sectors was either unspecified, or assumed to arise

from a sector whose flavor structure and phenomenology was not explicitly investigated.

The idea that a dark sector could communicate to the visible sector in any appreciable way

through mixing between between vector-like leptons and their standard model counterparts

would seem to conflict with the stringent lower bounds on the mass scale of heavy vector-like

leptons that appear in the literature, which exceed 100 TeV [12]. Such stringent bounds,

however, come from consideration of lepton-flavor-violating processes that emerge when the

vector-like states mix with all three standard model lepton flavors. One expects such mixing

to be present generically, and this would doom the approach that we have just outlined. In

this paper, we show how a more favorable outcome can be achieved via discrete symmetries

that allow us to suppress the unwanted mass mixing arbitrarily. In our model, vector-like

leptons mix only with a single flavor of the standard model leptons, which in turn does not

mix substantially with the remaining two flavors, thus avoiding problems with lepton flavor

violation. We will show that the discrete symmetry used to achieve this flavor sequestering

does not adversely affect the remaining flavor structure of the charged leptons or neutrino

mass matrices. Phenomenological considerations place constraints on the mass spectrum of

the flavor-sequestered vector-like lepton states that can be tested in direct collider searches.

Our paper is organized as follows. In the next section, we define the simplest model

that illustrates a portal involving vector-like leptons and flavor sequestering. In Sec. 3, we

show how the flavor structure of the theory can be achieved using a discrete symmetry, so
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that exclusive mixing with one standard model lepton generation is obtained and lepton-

flavor- violating effects avoided. In Sec. 4 we demonstrate the viability of our example

model by identifying the region of parameter space in which the correct dark matter relic

density is obtained through annihilation to a standard model lepton-anti-lepton pair. We also

consider the constraints from dark matter-nucleon elastic scattering, which follows from the

suppressed kinetic mixing that is induced after the non-Abelian gauge group is spontaneously

broken. In the final section, we summarize our conclusions.

II. THE MODEL

We consider the simplest non-Abelian dark gauge group, SU(2)D. As stated earlier, we

denote the heavy, vector-like leptons χ, and assume the quantum numbers

χL ∼ χR ∼ (2,1,1,−1) , (2.1)

where we indicate the representations of SU(2)D× SU(3)C× SU(2)W×U(1)Y , in that order.

In other words, these states are SU(2)D doublets, but have the same electroweak charges as

right-handed leptons. We further assume the simplest assignment for the dark matter, i.e.,

that it is a doublet under SU(2)D. However, to avoid a Witten anomaly [13] there must be

an even number of SU(2) fermion doublets, so we take

ψL ∼ ψR ∼ (2,1,1, 0) . (2.2)

Since the ψ fields are charged only under SU(2)D, we can construct Dirac or Majorana

mass terms, or both. We will assume Dirac mass terms, for simplicity, though it is easy to

make this the only possibility by imposing additional discrete symmetries. For example, an

unbroken Z3 symmetry can forbid Majorana masses for ψ, and also serve as the symmetry

which stabilizes the dark matter, which we identify henceforth as the lightest component of

the ψ doublet.

We assume that the dark gauge symmetry is spontaneously broken by two SU(2)D Higgs

field representations,

HD ∼ (2,1,1, 0) and HT ∼ (3,1,1, 0) . (2.3)

We show at the end of this section that the Higgs potential has local minima consistent with
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the pattern of vacuum expectation values (vevs):

〈HD〉 =

 vD1

vD2

 and 〈HT 〉 =

 vT/2 0

0 −vT/2

 . (2.4)

If we decompose HT = Ha
T (σa/2), where the σa are Pauli matrices, then the HT vev above

corresponds to 〈H3
T 〉 = vT and 〈Ha

T 〉 = 0 for a = 1, 2. In fact, an arbitrary vev for HT can

always be rotated into the H3
T direction by an SU(2)D transformation. With this choice,

vevs in both components of HD are expected, and one of those can be made real by a further

SU(2)D phase rotation. The fact that the remaining HD vev in Eq. (2.4) is assumed real

will be shown to be consistent with the minimization of a potential later.

We can now say something more concrete about the mass spectrum of the model. The

relevant Lagrangian terms are L ⊃ Lψ + Lχe, where

Lψ = −Mψ ψL ψR + λs ψLHT ψR + h.c. , (2.5)

and

Lχe = −Mχ χL χR + λ′s χLHT χR− y1 χLHD eR− y2 χL H̃D eR− ye LLH eR + h.c. , (2.6)

where H̃D ≡ iσ2H∗D, and the final term is the usual standard model Yukawa coupling for a

single lepton flavor. Eq. (2.6) assumes the existence of a symmetry that leads to exclusive

mixing between any one standard model, right-handed charged lepton flavor (called eR

above) and the vector-like χ fields. We show how this flavor sequestering can be arranged

by a discrete symmetry in Sec. III. The first terms in Eqs. (2.5) and (2.6) provide a common

mass for each component of the given doublet, while the second terms lead to mass splittings

proportional to the vev vT . The third and fourth terms in Eq. (2.6) allow mixing between

the standard model lepton eR and the χ fields, since the coupling to the dark doublet Higgs

field HD allows for the formation of an SU(2)D singlet. The final term leads to an e mass

when the standard model Higgs field develops a vacuum expectation value 〈H〉 = (0, v/
√

2),

with v = 246 GeV. Defining the column vector Υ ≡ (e, χ(1), χ(2))T , which displays the

two components of the χ doublet, we may write the mass matrix that is produced after

spontaneous symmetry breaking by

Lχemass = −ΥLM ΥR + h.c. , (2.7)
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where

M =


hev√

2
0 0

(y1v1D+y2v2D)√
2

Mχ − λ′svT
2

0

(y1v2D−y2v1D)√
2

0 Mχ + λ′svT
2

 ≡

m0 0 0

m1 M1 0

m2 0 M2

 , (2.8)

where the second form is a convenient parametrization. This matrix can be diagonalized

by a bi-unitary transformation, M = ULM
diag U †R. While this diagonalization can be done

numerically, there are certain limits that are relevant to us in which simple results can be

obtained. In particular, when M1, M2 >> m1, m2 >> m0, we find that the largest mixing

angles, which occur in UR, are given by

UR =


1− 1

2

(
m2

1

M2
1

+
m2

2

M2
2

)
m1/M1 m2/M2

−m1/M1 1− 1
2

m2
1

M2
1
−M1

M2

m1m2

M2
1−M2

2

−m2/M2
M2

M1

m1m2

M2
1−M2

2
1− 1

2

m2
2

M2
2

+ · · · , (2.9)

where the · · · represent terms that are cubic order or higher in mi/Mj. For this case, we

can now find the leading coupling of the dark gauge fields AaDµ to the mass eigenstate fields.

In the gauge basis, the coupling to ΥR can be written

L = iΥRγ
µ(∂µ − igDAaDµT a)ΥR + · · · , (2.10)

where

T a =

 0 0

0 T a

 , (2.11)

and T a = σa/2, a = 1, . . . , 3, are the generators of SU(2). The zero in the 1-1 element reflects

the fact that the standard model lepton is not charged under the dark gauge group. In the

mass eigenstate basis, the couplings of the ath dark gauge boson are therefore proportional

to U †RT aUR. In the same approximation as Eq. (2.9), these matrices are given by

U †RT aUR =


m1m2

M1M2
− m2

2M2
− m1

2M1

− m2

2M2
0 1

2

− m1

2M1

1
2

0

 ,


0 − im2

2M2

im1

2M1

im2

2M2
0 − i

2

− im1

2M1

i
2

0

 ,


m2

1

2M2
1
− m2

2

2M2
2
− m1

2M1

m2

2M2

− m1

2M1

1
2

0

m2

2M2
0 −1

2


 ,

(2.12)

where we only show results to linear order in mi/Mj, with the exception of the 1-1 entries,

because of their relevance to our subsequent discussion. For example, for the lightest dark
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FIG. 1: Qualitative picture of dark matter annihilation to a charged lepton-anti-lepton pair, as

discussed in the text. The insertions labelled by θ represent mass mixing.

gauge boson, A3
D, the coupling to e+ e− is given by

gDΥRγ
µA3

Dµ(U †RT 3UR)ΥR =
gD
2

(
m2

1

M2
1

− m2
2

M2
2

)
eRγ

µA3
DµeR + · · · (2.13)

which provides the A3
D gauge boson with a decay channel (since we assume its mass is

greater that 2me) and allows for dark matter annihilation to a charged standard model

lepton-anti-lepton pair. For later convenience, we define

θ2 ≡ gD

(
m2

1

M2
1

− m2
2

M2
2

)
. (2.14)

We illustrate the qualitative idea in Fig. 1 that the dark matter annihilation to a charged

standard model lepton-anti-lepton pair emerges from mixing that affects two of the external

legs.

We note that in the case where m0 is comparable to m1 and m2 we find via numerical

diagonalization that our expression UR in Eq. (2.9) still provides an accurate approximation.

Moreover, we can prove that m0 appears only as a higher-order correction to θ, as defined in

Eq. (2.14), the quantity that is most relevant to our phenomenological discussion later. The

argument is as follows: if m1 or m2 where to vanish, then UR must become the identity. This

implies that any corrections to the 1-2, 1-3, 2-1 and 3-1 entries of UR that are proportional to

m0 must come at no lower order thanm0m1,2/M
2
1,2. This potential contribution is nonetheless

higher-order than the values shown for these entries in Eq. (2.9). It is also the case that the

1-1 entry of U †RT 3UR, from which θ is extracted, depends only on these four entries. Hence,

the value of θ, which controls the induced coupling of A3
D to the chosen standard model

lepton flavor, remains unaffected at leading order.

Eq. (2.12) indicates that all states other than the lightest ψ mass eigenstate have available

decay channels that ultimately lead to standard model particles. Since the free parameter
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space of our model is substantial, for definiteness we assume henceforth the following about

the spectrum:

• Due to the triplet vev, ψ(1) and A
(3)
D are the lightest states of the dark sector, while

ψ(2), A
(1)
D and A

(2)
D are substantially heavier. We will consider the case where the

lighter dark sector states are in the O(1) − O(100) GeV range, with the restriction

that mψ(1) ≤ m
A

(3)
D

, so that the dominant dark matter annihilation channel proceeds

through the vector-like lepton portal (see Sec. IV).

• We assume that the vector-like leptons χ have masses above MZ/2, so that the Z

width is unaffected. Note that more substantial collider bounds apply when vector-

like leptons are either in weak doublets, or are long-lived [16], neither of which applies

in the present case.

With these assumptions, let us first sketch out the decay modes when the standard model

lepton flavor involved is the electron: the coupling matrices U †RT aUR, for a = 1 and a = 3

allow decays of A1
D and A3

D directly to e+ e−; the same is not true for a = 2, but the A2
D boson

does couple to the two different ψ mass eigenstates, which we will call ψ(1) (the lighter, dark

matter component) and ψ(2) (the heavier). The eigenstate ψ(2) can decay to dark matter

ψ(1) plus e+ e− via A1
D exchange. Hence A2

D can decay to two dark matter particles and an

e+ e− pair, whether or not ψ(1) is on shell. Due to the χA3
De couplings in U †RT 3UR, both χ

mass eigenstates can decay to a same-sign e plus an e+ e− pair via A3
D exchange. Finally,

the exotic Higgs fields HD and HT couple to fermion pairs via their Yukawa couplings. Since

we have already established that those fermions couple ultimately to either e’s or ψ(1)’s, our

claim is established. Note that if the standard model fermion is either µ or τ , nothing above

is changed if MA3
D
> 2mµ or 2mτ ; otherwise, decays to lighter charged leptons plus neutrinos

can still occur with the µ’s or τ ’s off shell.

Since the χ and eR have identical electroweak quantum numbers, there is no effect on

the coupling of the Z boson to eR in the mass eigenstate basis. However, χ and eL couple

differently to the electroweak gauge bosons, and diagonalization of Eq. (2.8) also involves a

left-handed rotation matrix UL which differs from the identity. Fortunately, the left-handed

mixing angles are much smaller than those in Eq. (2.9) so that this does not present any

phenomenological difficulties. For example, the fractional shift in the standard model ZeLeL

vertex is of O(m0m1

M2
1

m0m2

M2
2

), which is negligible given the spectrum we assume in Sec. IV. We
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also may take the mostly χ mass eigenstates to be heavy enough so that rare Z decays to

χ e are kinematically forbidden.

Finally, let us return to the issue of the spontaneous breaking of the dark gauge symmetry.

In the effective theory well below the electroweak scale, the most general renormalizable

potential involving the dark Higgs fields is given by

V (HD, HT ) = −m2
DH

†
DHD −m2

T tr(HTHT ) + λ1(H
†
DHD)2 + λ2

[
tr(HTHT )

]2
+ λ3H

†
DHTHTHD + µ1H

†
DHTHD +

(
µ2H

†
DHT H̃D + h.c.

)
,

(2.15)

where we have used the fact that H†T = HT . We assume the potential does not violate CP,

so that all the couplings are real. Further, we require at least one of (−m2
D, −m2

T ) to be

negative so that the HD and HT fields may develop non-zero vevs. It should be noted that

there are other terms involving the Higgs fields that could be added to the potential, such

as H̃†DH̃D, tr(H4
T ), H̃†DHT H̃D, H

†
DHD tr(HTHT ), but these are not linearly independent of

the terms included in Eq. (2.15) and so have been omitted.

The Higgs doublet assumes the standard real-field parametrization,

HD =
1√
2

φ1 + iφ2

φ3 + iφ4

 , (2.16)

while the Higgs triplet can be represented by a 2× 2 matrix of real fields H1, H2 and H3,

HT = Haσ
a

2
=

1

2

 H3 H1 − iH2

H1 + iH2 −H3

 . (2.17)

The normalization assures canonical kinetic terms. We proceed to show that there exists a

stable, local minimum of the potential for the pattern of vacuum expectation values described

in Eq. (2.4). One approach to studying the potential is to fix all the parameters and search for

minima, using standard steepest descent algorithms. However the downside to this approach

is that one may then have to repeatedly discard local minima that do not provide the pattern

of vevs desired for the model. So instead, we will fix the vevs and work backwards, showing

that an extremum exists that is also a local minimum for a fixed set of parameters.

The extremization of Eq. (2.15) with the fields set to the vevs shown in Eq. (2.4) provides
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the following nontrivial, linearly independent constraints:

−m2
DvD1 + λ1v

3
D1 + λ1vD1v

2
D2 + µ2vD2vT +

1

4
vD1vT (λ3vT + 2µ1) = 0

1

2

(
−µ2v

2
D1 + µ1vD1vD2 + µ2v

2
D2

)
= 0

−m2
TvT +

1

4
λ3vT

(
v2D1 + v2D2

)
+

1

4
µ1(v

2
D1 − v2D2) + µ2vD1vD2 + λ2v

3
T = 0.

(2.18)

For the purpose of numerical evaluation we work here in units where µ1 = 1. For fixed choices

of the vevs and the couplings λ1,2,3, we may then determine mD, mT and µ2. To determine

whether the extremum is a minimum, maximum or saddle point, we need to examine the

eigenvalues of the mass squared matrix (the second derivative matrix with all fields set to

their vevs and with the solutions for mD, mT and µ2 corresponding to the extremum). Since

SU(2)D is spontaneously broken to nothing, we expect three Goldstone bosons, one for each

broken SU(2) generator, according to Goldstone’s theorem. Thus we would expect three of

the eigenvalues to be zero, corresponding to the massless degrees of freedom that are “eaten”

by the dark gauge bosons. The remaining eigenvalues must be positive for the extremum

to be a local minimum. For example, let us set vT = vD1 = vD2/2 = λ1,2,3 = µ1 (here

we require vD1 6= vD2 for a solution to exist). Then we find m2
D = 53/12, m2

T = 1/6 and

µ2 = −2/3. The corresponding mass squared eigenvalues are {0, 0, 0, 3.75, 3.75, 4, 10}, in

units of µ2
1, thus confirming that we are at a local minimum of the potential. This provides

an existence proof that local minima exist in which the pattern of vevs shown in Eq. (2.4)

is obtained. It is not difficult to find similar solutions for other choices of vD1, vD2 and vT .

The SU(2)D breaking vevs affect the χ-e mass spectrum via Eq. (2.8); the triplet vev also

splits the ψ mass eigenstates

mψ(1) = Mψ −
1

2
λsvT , mψ(2) = Mψ +

1

2
λsvT (2.19)

for ψL,R =
(
ψ(1), ψ(2)

)T
L,R

. The gauge field spectrum is obtained from the kinetic terms for

HD and HT ,

Lkin(HD, HT ) = (DµHD)†(DµHD) + tr
[
(DµHT )†(DµHT )

]
, (2.20)

where DµHD = ∂µHD − igDAaDµ σ
a

2
HD and DµHT = ∂µHT − igD σa

2
AaDµHT + igDA

a
DµHT

σa

2
.

Following symmetry breaking the gauge bosons develop masses

m2
A1
D

= m2
A2
D

=
g2D
4

(v2D1 + v2D2
+ 4 v2T ), m2

A3
D

=
g2D
4

(v2D1 + v2D2
). (2.21)
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In splitting the ψ and AD multiplet masses, the triplet vev leads to a simple low-energy

effective theory consisting of the dark matter ψ(1) (we assume λs > 0) and the mediator A3
D,

which has small induced couplings to a right-handed standard model lepton flavor. This

effective theory is relevant below the masses of the heavy vector-like leptons, ψ(2) and the

A1,2
D bosons, which we will associate with a common scale, for simplicity. In addition, we will

see that the triplet vev leads to induced couplings of the dark matter to quarks via kinetic

mixing, which will lead to avenues for direct detection. We discuss the phenomenology of

this scenario in Sec. IV.

III. FLAVOR SEQUESTERING

In this section, we show that it is possible to allow for non-negligible mixing between one

flavor of the standard model leptons and the heavier, vector-like leptons, while suppressing

the mixing with the other standard-model flavors, so that bounds on lepton-flavor-violating

processes become irrelevant. In the discussion below, we refer to that one flavor as the

electron e, though the approach described applies equally well if the chosen flavor were µ

or τ . Let us consider the structure of the standard model Yukawa matrices first, and then

introduce couplings to the vector-like states.

We represent the three generation of standard model lepton doublets by LiL and the right-

handed charged leptons by EiR, for i = 1, . . . , 3, We imagine that the Yukawa couplings are

determined by a flavor symmetry of the form ZN × GF . Our interest is in the effect of the

ZN factor, while we do not commit to any specific GF . We aim to show that the restrictions

that follow from the ZN symmetry are sufficient to suppress the flavor mixing effects that

we would like to avoid, while remaining compatible with a variety of possible flavor models

that may determine the remaining, detailed structure of the Yukawa matrices.

We represent an element of ZN by ωj, for j = 1, . . . N , where ωN ≡ 1. We assign the

following transformation properties to the L and E fields, representing them here as column

vectors:

LL → ΩLL and ER → ΩER , (3.1)
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where

Ω =


1 0 0

0 ω−n 0

0 0 ωn

 . (3.2)

Note that ω−n ≡ ωN−n. Assuming that the standard model Higgs doublet is unaffected

by the ZN symmetry, the transformation properties of the charged-lepton Yukawa matrix

entries that lead to invariant couplings are summarized by

YE ∼


1 ωn ω−n

ω−n 1 ω−2n

ωn ω2n 1

 , (3.3)

where the transformation property of, for example, the 1-2 entry is understood to be Y 12
E →

ωn Y 12
E , and so on. We will choose N = 2n so that the entire two-by-two block on the lower

right is unconstrained by the ZN symmetry, the least restrictive possibility that meets our

needs1. The amount by which the electron mass eigenstate is affected by the second and

third generation fields, however, is entirely controlled by the size of n, once ZN breaking

fields are introduced, as we discuss later.

A symmetry affecting the left-handed charged leptons also affects the left-handed neutri-

nos, so we must verify that neutrino phenomenology is not adversely affected. For example,

if we had imposed a Z2 symmetry, with n = 1, and required it to remain exactly unbroken,

we can also completely eliminate mixing between the first generation charged leptons and

those of the second and third generations. However, if we then introduce three generations

of right-handed neutrinos Ni, for i = 1, . . . , 3, one can show that there are no Z2 charge

assignments for the N fields that leads to the correct neutrino mass squared differences

and mixing angles, assuming the light mass eigenstates follow from the see-saw mechanism.

However, more favorable results may be obtained when the ZN symmetry is spontaneously

broken. Here, we assume the same transformation for all three right-handed neutrino fields:

NR → ωpNR , (3.4)

1 This choice is also compatible with GF having a non-Abelian component in which two flavors of standard

model leptons transform as a doublet. However, it is sufficient (and simplest) for present purposes to

imagine that GF has only Abelian factors.
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where p is an integer. Defining the Dirac neutrino mass via L ⊃ LLH̃YLRNR + h.c., the

transformation properties of the Yukawa coupling is given by

YLR ∼


ω−p ω−p ω−p

ω−n−p ω−n−p ω−n−p

ωn−p ωn−p ωn−p

 . (3.5)

For the choice n = 2 p, or equivalently N = 2n = 4 p, we may use the fact that ω−n−p ≡ ωp

and ωn−p ≡ ωp to write

YLR ∼


ω−p ω−p ω−p

ωp ωp ωp

ωp ωp ωp

 . (3.6)

The significance of this form is clear if we assume that there is a flavon field ρ with the ZN

transformation property

ρ→ ω ρ , (3.7)

and a vacuum expectation value such that 〈ρ〉/M ≡ ε is a small parameter. Here M is the

flavor scale, which is the ultraviolet cut off of the effective theory. Then all the entries of

YLR are non-vanishing, and proportional to either (ρ/M)p or to (ρ∗/M)p. Hence, we may

write

YLR = εp ỸLR , (3.8)

where ỸLR is a three-by-three matrix that is thus far arbitrary. Following a similar argu-

ment, we define the right-handed neutrino Majorana mass matrix by the Lagrangian term

N c
RMRRNR, and see immediately that

MRR → ω−2pMRR . (3.9)

Again, this is consistent with the transformation property of (ρ∗/M)2p, so we may write

MRR = ε2pM̃RR , (3.10)

where M̃RR is a three-by-three Majorana mass matrix that is also arbitrary thus far. With

ỸLR and M̃RR arbitrary, it is possible to obtain any desired neutrino phenomenology, which

demonstrates that the ZN symmetry does not lead to unwanted phenomenological restric-

tions. Theories that predict the detailed structure of ỸLR and M̃RR by the breaking of an

additional symmetry GF are compatible with this framework. Note that the overall powers
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of ε in Eqs. (3.8) and (3.10) scale out of the see-saw formula which determines the Majorana

mass matrix for the three light neutrino mass eigenstates

MLL = MLRM
−1
RRM

T
LR, (3.11)

where MLR = (v/
√

2)YLR. The effect of the ZN symmetry on the form of the charged lepton

Yukawa matrix is to impose the form

YE ∼


y11 εnỹ12 εnỹ13

εnỹ21 y22 y23

εnỹ31 y32 y33

 . (3.12)

For ε sufficiently small, or n sufficiently large, or both, we can make YE as close to block

diagonal as we like.

Now we include the vector-like state χ with the same electroweak quantum numbers as

a right-handed electron, but charged also under a dark gauge group. Yukawa couplings

involving χLeR and a dark Higgs field are unaffected by the ZN symmetry, while those

involving χLµR or χLτR transform by ω±n. These potential sources of unwanted mixing

that may emerge after the dark gauge symmetry is spontaneously broken are therefore

highly suppressed by the same factors of εn that appear in the unwanted entries in YE. We

conclude that it is possible to make the χ, e, µ, τ mass matrix as block diagonal as desired,

by suitable choice of εn, such that χ mixes substantially only with e, or any one desired

lepton flavor, by a similar construction2.

The question of which lepton flavor is selected to mix with the heavier, vector-like states

impacts the phenomenology of the dark gauge bosons. For example, if the mixing only

involves the τ lepton, then bounds on the AaD from searches for s-channel resonances in

low-energy e+e− collisions, or from indirect processes like the electron or muon g− 2 would

be irrelevant. The phenomenology in the case where the mixing involves either a first or

2 We also note that this result is not linked in any fundamental way to our initial choice to study a non-

Abelian dark gauge group. The present approach would be equally effective if the χ mass mixing terms

were generated after the spontaneous breaking of a dark Abelian gauge symmetry. However, as noted

earlier, Abelian theories would generically have kinetic mixing with hypercharge at tree-level and one-loop

running of the mixing parameter below the Planck scale induced by the presence of the vector-like lepton

states. The flavor sequestering mechanism could be applied in Abelian dark sector models provided that

an additional mechanism is specified that adequately suppresses these kinetic mixing effects.
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second generation lepton would lead to more meaningful constraints, but one that would

depend on other assumptions about the spectrum, for example if A3
D decays visibly or

invisibly, which depends on the dark matter mass. In the following section, we will assume

the least constrained possibility, that the χ’s mix with the τ , and consider the wide range

of phenomenological issues associated with the other two possibilities in separate work [14].

This has the appealing aesthetic feature that the flavor symmetry distinguishes the third

generation from the other two, an idea that has appeared in many other contexts in the

literature on the flavor structure of the standard model [15].

IV. PHENOMENOLOGY

To confirm the viability of our flavor-sequestered model, we wish to show that it can

achieve the correct dark matter relic density. We will not do a complete study of the

model’s parameter space, but focus on a region that is unique to the flavor-sequestered

scenario, namely where the vector-like states are light enough so that sufficient dark matter

annihilation is achieved to standard model lepton-anti-lepton pairs, even in the absence of

other annihilation channels. We then comment on direct detection via the suppressed kinetic

mixing effects that emerge when the gauge symmetries are broken.

A. Relic Density

The scattering amplitude for s-channel dark matter annihilation into standard model

particles depicted in Fig. 1, with e replaced by τ , is given by

M(ψ(1)ψ(1) → τ+τ−) =
ig2Dθ

2

4
(
q2 −m2

A3
D

+ imA3
D

ΓD
) v(p′)γµu(p) u(k)γµv(k′) (4.1)

where p (p′) is the momentum of the incoming dark matter fermion (anti-fermion), k (k′) is

the the momentum of the outgoing τ− (τ+) and q = p+p′ is the momentum flowing through

the A3
D propagator. As discussed in Sec. II, the lightest gauge boson A3

D couples to the

vector-like states χ(1) and χ(2), which then mix with a standard model lepton flavor (chosen

here as τ) after spontaneous symmetry breaking. This results in a factor of θ2, defined in

Eq. (2.14), in the scattering amplitude.

Our numerical results for dark matter annihilation depend on assumptions about the dark

particle mass spectrum and couplings. We assume the picture described earlier, where the
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lightest states consist of ψ(1) and A3
D, and decays of A3

D to any of the heavier exotic states

are not kinematically allowed. For the mass range studied in this section, A3
D can decay to

τ+τ−, and possibly also ψ(1)ψ(1), depending on the dark matter mass. Consequently, the

total decay width of the dark gauge boson appearing in the propagator is given by

ΓD = Γ
(
A3
D → τ+τ−

)
+ Θ

(
mA3

D
− 2mψ(1)

)
Γ
(
A3
D → ψ(1)ψ(1)

)
(4.2)

where Θ is a step function, i.e., Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 if x < 0, and

Γ
(
A3
D → τ+τ−

)
=

1

48π
g2DmA3

D
θ4

(
1 +

2m2
τ

m2
A3
D

)(
1− 4m2

τ

m2
A3
D

)1/2

, (4.3)

Γ
(
A3
D → ψ(1)ψ(1)

)
=

1

48π
g2DmA3

D

(
1 +

2m2
ψ(1)

m2
A3
D

)(
1−

4m2
ψ(1)

m2
A3
D

)1/2

. (4.4)

Since the mean dark matter velocity is typically around 220 km/s [16], we work in the non-

relativistic limit where Eψ(1) ≈ mψ(1) . We then find the thermally averaged annihilation

cross section times velocity

〈σAv〉 =
g4Dθ

4

32π

2m2
ψ(1) +m2

τ

(4m2
ψ(1) −m2

A3
D

)2 +m2
A3
D

Γ2
D

(
1− m2

τ

m2
ψ(1)

)1/2

. (4.5)

Using this we calculate the freeze-out temperature TF and the dark matter relic density by

standard methods [17]. Dark matter freeze out occurs when the interaction probability per

unit time Γψ(1) , equals the expansion rate of the universe, H, i.e.,

Γψ(1)

H

∣∣∣∣
T=TF

=
nψ

(1)

EQ 〈σAv〉
H

∣∣∣∣∣
T=TF

' 1. (4.6)

Here nψ
(1)

EQ is the equilibrium number density of the dark matter particle, given by

nψ
(1)

EQ = 2

(
mψ(1)T

2π

)3/2

e
−m

ψ(1)/T . (4.7)

Freeze-out occurs during the radiation-dominated epoch in which case

H = 1.66 g1/2∗ T 2/Mpl, (4.8)

where Mpl = 1.22×1019 GeV is the Planck mass and g∗(T ) the number of relativistic degrees

of freedom at temperature T ,

g∗(T ) =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
i=fermions

gi

(
Ti
T

)4

. (4.9)
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Finally the dark matter relic density is given by

ΩDh
2 =

2 · (1.07× 109 GeV−1)xF√
g∗(TF )MPl 〈σAv〉

. (4.10)

We define xF ≡ mψ(1)/TF where TF is obtained by solving Eq. (4.6). The factor of 2 is

included because we are accounting for the density of dark matter particles and antiparti-

cles. We require Eq. (4.10) to reproduce the WMAP result 0.1186± 0.0020 [16] within two

standard deviations.

To display our results, we fixmA3
D

and θ and find the regions of the gD-mψ(1) plane in which

the desired dark matter relic density is obtained. We assume that the mixing angle remains

small (θ < 1) but not so small that a satisfactory dark matter annihilation cross section

cannot be obtained. So that the dark gauge coupling remains perturbative, we assume

αD/(4π) < 1/3 or equivalently gD < 4π/
√

3 ∼ 7.25; one-loop corrections become comparable

to tree-level amplitudes when α/(4π) ≈ 1, so one-third of this value is a reasonable upper

limit on the dark coupling constant. For the purposes of determining g∗, we assume all exotic

mass eigenstates other than ψ(1) and A3
D, are at mZ = 91.1876 GeV. With this choice, the

Z boson cannot decay into χχ or χτ , which could lead to an unacceptable broadening of

the precisely measured Z boson width [16].

Fig. 2 shows the regions of the gD-mψ(1) plane in which the dark matter relic density is

within two standard deviations of the WMAP result 0.1186 ± 0.0020 [16], for fixed choices

of mA3
D

and θ. We have intentionally centered the plots around the point of resonance

annihilation mψ(1) = mA3
D
/2 where the cross section is largest. For small values of gD at

fixed θ, some tuning is required to achieve a large enough annihilation cross section. However,

Fig. 2 indicates that we can have larger, perturbative values of gD without requiring that we

sit unnaturally close to the resonance. As θ is made progressively smaller, however, more

tuning is required. This is indicated by the narrowing range in mψ(1) for each solution in

which gD is also perturbative.

Of course, the values of θ that are indicated in Fig 2 are related to choices for the masses

and coupling in the model, such that θ2 = gD

(
m2

1

M2
1
− m2

2

M2
2

)
, where the mi and Mi were defined

in Eq. (2.8). It is not hard to verify that the values of θ shown in Fig. 2 can be achieved given

the assumptions that went into the making of the plots. For example, in the mA3
D

= 10 GeV

plot, consider the point where gD ≈ 1 and mψ(1) ≈ 8.5 GeV, on the θ = 0.1 band. Given our

earlier assumption in computing g∗ that the heavier exotic states are at mZ , one can check
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FIG. 2: Regions of the gD-mψ(1) plane in which the dark matter relic density is within two standard

deviations of the WMAP result 0.1186± 0.0020 [16], for fixed choices of mA3
D

and θ. The allowed

bands are not perfectly smooth due to their dependence on g∗, which is not a continuous function.

The point of minimum gD corresponds to resonance annihilation, where mψ(1) = mA3
D
/2. Note that

as θ decreases the range of mψ(1) in which gD remains perturbative moves towards the resonance

region.

that this is consistent with, for example, vD1 = vD2 ≈ 14 GeV, vT ≈ 49 GeV, λs ≈ 0.85, and

y1 = y2 ≈ 0.06, where the Yukawa couplings yi were defined in Eq. (2.6). Similar statements

can be made about other points on the allowed bands3.

B. Direct Detection

The interactions that we have discussed to this point have involved leptons exclusively, but

couplings to quarks that are generated at the loop level also have significant consequences.

3 The scenario that we have considered assumes that communication between dark and visible sectors

occurs primarily through the portal that we have proposed, involving mixing with vector-like leptons. It

is of course possible to have scenarios in which communication is also significant through Higgs portal

couplings or other mediators. The present model could therefore represent a subset of the parameters

space of a more complicated model with other dark matter annihilation channels. There are also different

parameter regions in the model as we have defined it where other annihilation channels become relevant,

for example ψ(1)ψ(1) → A3
DA

3
D, when mA3

D
≤ mψ(1) . The results presented in this section demonstrate the

effectiveness of the portal we have proposed in a region of parameter space where it provides the dominant

contribution to the dark matter annihilation cross section due to mixing effects that would not be possible

in models without flavor sequestering. This does not imply that other viable regions of parameter space

are impossible.
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FIG. 3: Self energies leading to kinetic mixing between the third dark gauge boson A
(3)
D and

hypercharge Y after SU(2)D is spontaneously broken.

In this section, we consider direct detection of the dark matter in the model via dark-

matter-nucleon elastic scattering. The couplings to quarks arise after the SU(2)D symmetry

is spontaneously broken, since kinetic mixing between A3
D and hypercharge is then allowed,

via an effective dimension-5 operator

Leff = X tr
(
〈HT 〉T aAaDµν

)
Y µν , (4.11)

where we have set the triplet Higgs to its vev, as per Eq. (2.4). Here, X is a constant with

units of GeV−1 which is found by integrating out the “heavy” physics, i.e., the χ fields,

the only fields that are charged both under SU(2)D and hypercharge U(1)Y . To proceed,

we study the self-energy shown in Fig. 3, where χ(1) and χ(2) here represent the heavy

mass eigenstates, whose mass eigenvalues are given approximately by mχ(1) = Mχ − δ and

mχ(2) = Mχ+δ where δ ≡ λ′s vT/2. (For the purposes of this estimate, we ignore mass mixing

with the standard model lepton, which is a subleading correction.) The first diagram is given

by

iM1 = −gDgY
2

∫
d4k

(2π)4
tr
[
γµ
(
/k +mχ(1)

)
γν
(
/k + /p+mχ(1)

)]
[k2 −m2

χ(1) + iε][(k + p)2 −m2
χ(1) + iε]

. (4.12)

After carrying out this loop integral using dimensional regularization inD = 4−ε dimensions,

the amplitude is

iM1 = −gDgY
8π2

∫ 1

0

dx x(1− x)

(
4

ε
− 2γ + 2 log(4π)− 2 log(∆1)

)
i(gµνp2 − pµpν) , (4.13)

where ∆1 = m2
χ(1)−x(1−x)p2. Since A3

D couples to the χ proportional to σ3/2, the amplitude

iM2 shown in Fig. 3 will differ from iM1 by a overall minus sign and the replacement of the

χ(1) by the χ(2) mass. Hence, ∆1 is replaced by ∆2 = m2
χ(2) − x(1− x)p2. Then, when these

20



A3
D

γ

ψ(1) ψ(1)

P P

q

p1 p2

k1 k2

FIG. 4: The Feynman diagram for the scattering of the dark matter particles, ψ(1), off of protons,

P , through kinetic mixing of the dark matter boson A3
D and the photon, γ.

two amplitudes are added together, all terms in the remaining Feynman parameter integral

cancel, except for the terms that depend on the fermion masses:

iM1 + iM2 = i(gµνp2 − pµpν)gDgY
4π2

∫ 1

0

dx x(1− x) log

(
∆1

∆2

)
. (4.14)

Assuming the mass splitting δ is small compared to the χ masses (which will turn out to be

the case) the integrand can be expanded in δ. The leading order term can be found using

x(1 − x) log(∆1/∆2) ≈ − 4mx(1−x)
m2−x(1−x)p2 δ. Moreover, we can also expand the result in powers

of momentum, which can later be compared to a derivative expansion in the low-energy

effective theory. We find

iM1 + iM2 = −i gDgY δ
6π2Mχ

(gµνp2 − pµpν) + · · · , (4.15)

where the · · · represents terms involving higher powers of δ and p2/M2
χ. The result in

Eq. (4.15) must be matched to a similar amplitude in the low-energy effective theory in

which the χ fields have been integrated out. We identify this as the tree-level amplitude

associated with the Eq. (4.11), treated as a two-point vertex,

iA = iXvT
(
p2gµν − pµpν

)
, (4.16)

from which we conclude

X = − gDgY δ

6π2MχvT
. (4.17)

Using Eqs. (4.11) and (4.17), we can now calculate the cross section for dark matter

scattering off of nucleons. We will be working in the limit of low momentum transfer
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q ∼ O(100) MeV (� Mχ), where the effective description is accurate and where scattering

through the Z boson is suppressed by q2/m2
Z ∼ 10−6 compared to the photon. Hence, we

will consider kinetic mixing involving the photon only from here on. First, we consider the

dark matter, ψ(1), scattering off of a quark, qf , as in the diagram in Fig. 4, with the protons

replaced by a quark of flavor f . This can be described by the effective dimension-six operator

Leff,q = Cf ψ(1)γµψ(1)qfγµqf . (4.18)

In the full theory, this quark-dark matter scattering amplitude is

iMf = iXvTQf
gD
2
e

1

(q2 −m2
A3
D

+ iε)(q2 + iε)
ψ(1)γµψ(1)qfγµqf (4.19)

or, in the limit of q2 � m2

A
(3)
D

,

iMf = −iXvTQf

m2
A3
D

gD
2
eψ(1)γµψ(1)qfγµqf . (4.20)

From this, we conclude the coefficient Cf for quarks is

Cf = −gdeXvTQf

2m2
A3
D

=
g2De

2δQf

12π2Mχm2
A3
D

. (4.21)

Of interest, however, is the effective interactions involving nucleons rather than quarks,

which can be written

Leff,N = Cn ψ(1)γµψ(1)nγµn+ Cp ψ(1)γµψ(1)pγµp . (4.22)

Using the fact that the quark vector currents are conserved, so that the spatial integral

of the zeroth component is a quark number operator, one can match matrix elements of

Eq. (4.18) between nucleon states with the same for Eq. (4.22), from which one concludes

Cn = Cu + 2Cd and Cp = 2Cu + Cd, for the neutron and proton, respectively. (There are

no form factors as there would be for scalar quark operators.) Since the flavor dependence

of the Cf comes only from the electric charge, the coefficient Cn and thus the scattering

amplitude for ψ(1) off of neutrons are both zero. Therefore, the only relevant scattering is

with the proton, for which

Cp = 2Cu + Cd =
g2De

2δ

12π2Mχm2
A3
D

. (4.23)
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FIG. 5: Upper bound on the fractional mass splitting of the χ(1) and χ(2) fermions as a function

of the mass of the dark matter particle, ψ(1), assuming gD = 0.3 and mA3
D

= 10 GeV. The dis-

continuity in the curve reflects that the bounds on the dark-matter-nucleon elastic scattering cross

section originate from the CDMSlite experiment [19] below mψ(1) ≈ 6 GeV, where the otherwise

tighter bounds from the XENON1T experiment [18] do not exist.

Taking into account that the dark matter is non-relativistic and that momentum transfers

are small, a straightforward calculation of the scattering cross section yields

〈
σψ(1)p→ψ(1)p

〉
=

g4De
4m2

pm
2
ψ(1)

576π5
(
mp +mψ(1)

)2
m4
A3
D

(
2δ

Mχ

)2

, (4.24)

where we have separated out the dependence on 2δ/Mχ, the fractional mass spitting of

the vector-like leptons. Since this splitting is a free parameter in our model, we can use

the experimental bounds on the dark-matter-nucleon elastic scattering cross section to say

something about the vector-like lepton spectrum.

Using experimental bounds on the cross section from XENON1T [18] and CDMSlite [19],

we show bounds on the χ(1)-χ(2) mass splitting for dark matter masses between 2 GeV and

10 GeV. The results of this calculation are shown in Fig. 5, where a dark coupling of gD = 0.3

and a dark boson mass of mA3
D

= 10 GeV have been used. For dark matter masses below

approximately 6 GeV, the cross section bounds from CDMSlite are used, since no data from

XENON1T is available in this region. Although there is CDMSlite data for dark matter

masses above 6 GeV, these bounds are superceded by the stricter ones from XENON1T.

For the range of ψ(1) masses in Fig. 5 that are affected by the XENON1T bounds, the
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masses of the charged fermions χ(1) and χ(2) are degenerate at the 1-10% level at minimum.

This feature could be observed in collider searches for the vector-like leptons and possibly

correlated with a dark matter direct detection signal.

V. CONCLUSIONS

We have presented a framework based on flavor symmetries that allows for a light portal

sector of vector-like leptons connecting a dark sector to the standard model. To illustrate our

approach, we considered an explicit, renormalizable non-Abelian dark SU(2) model which

contains two vector-like fermion doublets. One of them, ψ, includes a dark matter candidate;

the other doublet, χ, has the same electroweak quantum numbers as a right-handed electron,

so that communication with the visible sector can occur via mass mixing. The ψ and χ

fields communicate with each other via the dark gauge group, so that the dark matter may

annihilate to standard model leptons. The dark SU(2) symmetry is spontaneously broken

via a Higgs sector involving doublet and triplet fields. The doublet vacuum expectation value

(vev) leads to mixing between the χ and standard model lepton fields, while the triplet vev

splits the mass spectrum leaving a simple lower-energy theory consisting of the dark matter

(the lightest ψ mass eigenstate) and the mediator (the third component of the SU(2) gauge

multiplet). We identify a discrete flavor symmetry that allows mixing between the vector-

like leptons χ and a single standard model lepton flavor exclusively; the remaining standard

model lepton flavors may mix only with each other. This flavor sequestering eliminates

lepton-flavor-violating effects, relaxing bounds on the vector-like lepton mass scale. As a

consequence, mixing between the chosen lepton flavor and the χ can be large enough so

that the correct relic density can be obtained exclusively via dark matter annihilation to

lepton-anti-lepton pairs, for perturbative values of the dark gauge coupling. This is true

even if no other significant annihilation channels are available.

The structure of our model avoids complications that would ensue if we tried to couple

the dark gauge bosons directly to standard model fields, such as the necessity of including

extraneous fermions to cancel chiral anomalies, or special Higgs representations to allow for

acceptable standard model Yukawa couplings. Unlike some of the non-Abelian dark matter

models appearing in the literature, the portal we present is renormalizable and completely

specified, including the discrete flavor symmetries that control the pattern of mixing between
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exotic and standard model fermions states. The portal we define for communication between

the dark and visible sectors can be lighter than in models without the flavor sequestering

we have proposed and presents a well defined framework for answering phenomenological

questions. In the present work, we showed that there are regions of the dark gauge coupling

- dark matter mass plane where the correct relic density is obtained, and where current

direct detection bounds are satisfied. The latter consideration also allowed us to conclude

that the two heavy lepton mass eigenstates (roughly the two components of the χ doublet)

are notably degenerate in mass (to keep kinetic mixing effects small), a feature that could

be tested in collider searches for these states. This observation, together with the distinct

lepton flavor structure of the χ decays, suggests that the collider signatures of the portal

that we have proposed are worthy of future detailed investigation [14].
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