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Abstract

We consider models with fermionic dark matter that transforms under a non-Abelian dark gauge
group. Exotic, vector-like leptons that also transform under the dark gauge group can mix with
standard model leptons after spontaneous symmetry breaking and serve as a portal between the
dark and visible sectors. We show in an explicit, renormalizable model based on a dark SU(2)
gauge group how this can lead to adequate dark matter annihilation to a standard model lepton
flavor so that the correct relic density is obtained. We identify a discrete symmetry that allows
mass mixing between the vector-like fermions and a single standard model lepton flavor, while
preventing mixing between these fields and the remaining standard model leptons. This flavor
sequestering avoids unwanted lepton-flavor-violating effects, substantially relaxing constraints on
the mass scale of the vector-like states. We discuss aspects of the phenomenology of the model,

including direct detection of the dark matter.
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I. INTRODUCTION

Although the literature on dark matter models is vast and diverse, the organizational
structure of many of these models is similar. The visible sector includes all the fields normally
associated with the minimal standard model; the dark sector consists of a collection of fields
that communicate very weakly with the visible sector; the messenger or portal sector consists
of those fields that allow for a weak coupling between the visible and dark sectors. In this
paper, we are interested in a possible portal for dark matter models, specifically ones in which
fermionic dark matter is charged under a dark gauge group. Our model will include vector-
like fermions that are also in nontrivial representations of the dark gauge group but can mix
with standard model fermions when the gauge symmetries of the theory are spontaneously
broken. We identify a mechanism, based on symmetries, that we call “flavor sequestering”
which allows this mixing to be non-negligible, while simultaneously suppressing unwanted
flavor-changing processes. This mechanism is new to the literature; it can provide for vector-
like fermion portal sectors that are lighter and more accessible experimentally than would
otherwise be possible. For the purposes of illustration, we choose to study a theory with
a non-Abelian dark gauge group, where an additional portal involving kinetic mixing of
some dark gauge boson components with hypercharge is naturally suppressed. In models
like the one we propose, where there are vector-like states charged both under the dark
and hypercharge gauge groups, the kinetic mixing parameter in an Abelian theory would
typically run below the Planck scale, leading to low-energy values that are not necessarily
small; this makes a non-Abelian dark sector the natural setting for formulating our proposal.
Scenarios in which multiple portals are relevant (for example, a vector-like fermion portal,
a Higgs-portal, a higher-dimension-operator portal, etc.) are of course possible and more
complicated; in the present work, however, we focus on the case where the vector-like fermion
portal is dominant. Examples of non-Abelian dark matter models can be found in Refs. [1-
7], [8-10] and [11]; we will not focus on models like those in Refs. [8-10] where a dark gauge
boson is itself the dark matter. Our model is also very different from the models of Refs. [11]
which involve unbroken non-Abelian dark gauge groups, either chosen to assure composite
dark matter candidates in the cases where there is confinement, or dark radiation in the case
where the dark gauge coupling is too small for confinement to be cosmologically relevant.

In our proposal, mixing between the vector-like and standard model fermions will only be



present when the non-Abelian dark gauge group is spontaneously broken.

Given these assumptions, we would like the vector-like fermion portal in our model to
allow the dark gauge bosons to develop a small coupling to the visible sector, adequate
enough to facilitate the annihilation of the dark matter for a successful thermal freeze-out,
without running afoul of direct detection bounds. This can be arranged if the effective
coupling between the dark and visible sectors does not appear at the same order in the dark
matter annihilation and dark-matter-nucleon elastic scattering cross sections. To achieve
this, we choose the quantum numbers of the vector-like states to allow mixing only with
standard model leptons. The induced coupling of the dark gauge bosons would allow dark
matter annihilation to leptons via tree-level diagrams, while diagrams involving quarks would
be higher-order. One might wonder whether coupling the dark gauge bosons to standard
model leptons directly might be a more economical alternative. However, proceeding in this
way leads to significant model building complications. For example, if one tries to couple the
dark gauge bosons to the standard model leptons directly, then the dark gauge bosons are
potentially no longer “dark,” unless their gauge coupling is taken to be very small. However,
this choice suppresses the coupling of the dark gauge bosons to both the dark and visible
sectors, making it ineffective as a channel for dark matter annihilation. Moreover, such
direct couplings lead generically to chiral anomalies, which must be cancelled by additional
states that are charged under both the dark and standard model gauge groups. There is
no guarantee that the simplest Higgs field content of the dark and visible sectors will have
the correct quantum numbers to provide Yukawa couplings for these additional states, so
that additional Higgs representations may be required. Another potential problem is that
charging standard model leptons under the new non-Abelian group may either restrict the
form of the standard model lepton Yukawa matrices in unwanted ways, or forbid them
entirely, unless a Higgs field charged under both the dark and standard model gauge groups
is introduced. While the proliferation of fields implied by these considerations does not rise
to the level of a no-go theorem, it does make the approach described a lot less appealing.

To avoid these complications, we assume that the non-Abelian dark gauge boson may
couple to a vector-like state y that can mix with standard model leptons after the gauge
symmetries of the theory (both dark and visible) are spontaneously broken. We will refer to
the x states as heavy, vector-like leptons. If the dark gauge boson’s coupling to dark matter

is gp, which may be substantial, then the induced coupling to the standard model lepton in



the mass eigenstate basis will be proportional to 8gp where 6 is a small mixing angle. Since
the gauge boson couples directly to a vector-like state, anomalies are cancelled, and a mass
term —M, X x can be written down at tree-level. A case of particular phenomenological
interest is where the vector-like sector is as light as possible. In this case, the mixing angle
6 can be large enough so that the desired dark matter relic density is obtained entirely
via dark matter annihilation to a standard model lepton-anti-lepton pair. This scenario
would not be possible in a similar model without flavor sequestering, so we focus on this
region of parameter space as the proof of principle that our flavor-sequestering idea can be
incorporated in viable models. The range of M, is then determined by the requirement that
the the mixing angle 6 is large enough to produce the desired value of the dark matter relic
density. In this paper, we will present an explicit and renormalizable model that illustrates
this proposal. Our focus differs from that of Refs. [1-7], where the origin of higher-dimension
operators connecting the dark and visible sectors was either unspecified, or assumed to arise
from a sector whose flavor structure and phenomenology was not explicitly investigated.
The idea that a dark sector could communicate to the visible sector in any appreciable way
through mixing between between vector-like leptons and their standard model counterparts
would seem to conflict with the stringent lower bounds on the mass scale of heavy vector-like
leptons that appear in the literature, which exceed 100 TeV [12]. Such stringent bounds,
however, come from consideration of lepton-flavor-violating processes that emerge when the
vector-like states mix with all three standard model lepton flavors. One expects such mixing
to be present generically, and this would doom the approach that we have just outlined. In
this paper, we show how a more favorable outcome can be achieved via discrete symmetries
that allow us to suppress the unwanted mass mixing arbitrarily. In our model, vector-like
leptons mix only with a single flavor of the standard model leptons, which in turn does not
mix substantially with the remaining two flavors, thus avoiding problems with lepton flavor
violation. We will show that the discrete symmetry used to achieve this flavor sequestering
does not adversely affect the remaining flavor structure of the charged leptons or neutrino
mass matrices. Phenomenological considerations place constraints on the mass spectrum of
the flavor-sequestered vector-like lepton states that can be tested in direct collider searches.
Our paper is organized as follows. In the next section, we define the simplest model
that illustrates a portal involving vector-like leptons and flavor sequestering. In Sec. 3, we

show how the flavor structure of the theory can be achieved using a discrete symmetry, so



that exclusive mixing with one standard model lepton generation is obtained and lepton-
flavor- violating effects avoided. In Sec. 4 we demonstrate the viability of our example
model by identifying the region of parameter space in which the correct dark matter relic
density is obtained through annihilation to a standard model lepton-anti-lepton pair. We also
consider the constraints from dark matter-nucleon elastic scattering, which follows from the
suppressed kinetic mixing that is induced after the non-Abelian gauge group is spontaneously

broken. In the final section, we summarize our conclusions.

II. THE MODEL

We consider the simplest non-Abelian dark gauge group, SU(2)p. As stated earlier, we

denote the heavy, vector-like leptons x, and assume the quantum numbers

XL ~ XR ™~ (27 17 17 _1> 3 (21)

where we indicate the representations of SU(2)px SU(3)ex SU(2)w xU(1)y, in that order.
In other words, these states are SU(2)p doublets, but have the same electroweak charges as
right-handed leptons. We further assume the simplest assignment for the dark matter, i.e.,
that it is a doublet under SU(2)p. However, to avoid a Witten anomaly [13] there must be

an even number of SU(2) fermion doublets, so we take

v ~ Y~ (2,1,1,0) . (2.2)

Since the v fields are charged only under SU(2)p, we can construct Dirac or Majorana
mass terms, or both. We will assume Dirac mass terms, for simplicity, though it is easy to
make this the only possibility by imposing additional discrete symmetries. For example, an
unbroken Z3 symmetry can forbid Majorana masses for v, and also serve as the symmetry
which stabilizes the dark matter, which we identify henceforth as the lightest component of
the ¢ doublet.

We assume that the dark gauge symmetry is spontaneously broken by two SU(2)p Higgs

field representations,
Hp ~(2,1,1,0) and Hp~(3,1,1,0) . (2.3)

We show at the end of this section that the Higgs potential has local minima consistent with



the pattern of vacuum expectation values (vevs):

ary = [ ) and = [P0 . (2.4)

Upo 0 —vp/2

If we decompose Hyr = H% (0%/2), where the 0% are Pauli matrices, then the Hy vev above
corresponds to (H3) = vy and (H%) = 0 for a = 1,2. In fact, an arbitrary vev for Hy can
always be rotated into the H2. direction by an SU(2)p transformation. With this choice,
vevs in both components of Hp are expected, and one of those can be made real by a further
SU(2)p phase rotation. The fact that the remaining Hp vev in Eq. (2.4) is assumed real
will be shown to be consistent with the minimization of a potential later.

We can now say something more concrete about the mass spectrum of the model. The

relevant Lagrangian terms are £ D Ly + L., where

,Cw = —Mw EL IbR —|— /\s EL HT wR —|— h.C. s (25)

and
Lye=—M X, Xr+NXp Hr Xr — 1 X Hper — 92X Hper — ye L Hep+ hee. , (2.6)

where H p = i02H}, and the final term is the usual standard model Yukawa coupling for a
single lepton flavor. Eq. (2.6) assumes the existence of a symmetry that leads to exclusive
mixing between any one standard model, right-handed charged lepton flavor (called eg
above) and the vector-like y fields. We show how this flavor sequestering can be arranged
by a discrete symmetry in Sec. ITII. The first terms in Eqgs. (2.5) and (2.6) provide a common
mass for each component of the given doublet, while the second terms lead to mass splittings
proportional to the vev vp. The third and fourth terms in Eq. (2.6) allow mixing between
the standard model lepton er and the y fields, since the coupling to the dark doublet Higgs
field Hp allows for the formation of an SU(2)p singlet. The final term leads to an e mass
when the standard model Higgs field develops a vacuum expectation value (H) = (0,v/v/2),
with v = 246 GeV. Defining the column vector T = (e, x", x®)T, which displays the
two components of the xy doublet, we may write the mass matrix that is produced after

spontaneous symmetry breaking by

£

mass

= —TLM TR + h.C. s (27)



where

’yg 0 0 mg 0 0O
M = | lwupdwen) o Xor = m M 0 |, (2.8)
(ysz\;iyzle) 0 MX’*'XS% mo 0 M2

where the second form is a convenient parametrization. This matrix can be diagonalized
by a bi-unitary transformation, M = U, M %9 U;r%. While this diagonalization can be done
numerically, there are certain limits that are relevant to us in which simple results can be
obtained. In particular, when M, My >> mq, mo >> myg, we find that the largest mixing

angles, which occur in Ug, are given by

m?2 m2
1—%<F12+F32> ml/Ml m2/M2

2
_ _ _1mi My _mymg 9
UR ml/Ml 2M12 Mo M12—M22 + y ( 9)
_ My _mamo _1m3
ma/Ma MAEoNE LT3
where the --- represent terms that are cubic order or higher in m,;/M;. For this case, we

can now find the leading coupling of the dark gauge fields A7, to the mass eigenstate fields.

In the gauge basis, the coupling to Tx can be written

L =iTpy"(0, —igpAD, T ) TR+ | (2.10)
where
0| 0
T = : (2.11)
0T

and T* = 0%/2,a = 1,...,3, are the generators of SU(2). The zero in the 1-1 element reflects
the fact that the standard model lepton is not charged under the dark gauge group. In the
mass eigenstate basis, the couplings of the a* dark gauge boson are therefore proportional

to U]T%’T“U r- In the same approximation as Eq. (2.9), these matrices are given by

ULTUg =
mimz _ M2 _ma 0 _rm2  1my m% _ m% _m mo
My My 2 My 2 M, 2M,; 2M; 2M2 2M2 2M; 2M>
_m2 1 i ma 1 _m 1
2 Mo 0 2 ’ 2 Mo 0 2 ’ 2 M, 2 0 ’
__m 1 _imy i ma _1
2 M, 2 0 2 M 2 0 2 M, 0 2
(2.12)

where we only show results to linear order in m;/M;, with the exception of the 1-1 entries,

because of their relevance to our subsequent discussion. For example, for the lightest dark
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FIG. 1: Qualitative picture of dark matter annihilation to a charged lepton-anti-lepton pair, as

discussed in the text. The insertions labelled by 6 represent mass mixing.

gauge boson, A%, the coupling to et e~ is given by

Tyt (UL T UR) T = 22 (70 2 s oy 2.13
g T rY" A, (URT Ur)Tr 5 \ 7z~ 1z ) e Apuen + (2.13)
1 2

which provides the A% gauge boson with a decay channel (since we assume its mass is

greater that 2m,) and allows for dark matter annihilation to a charged standard model

lepton-anti-lepton pair. For later convenience, we define
2 2
% = g (ﬁ - ﬂ) | (2.14)

We illustrate the qualitative idea in Fig. 1 that the dark matter annihilation to a charged
standard model lepton-anti-lepton pair emerges from mixing that affects two of the external
legs.

We note that in the case where mg is comparable to m; and my we find via numerical
diagonalization that our expression Uy in Eq. (2.9) still provides an accurate approximation.
Moreover, we can prove that mg appears only as a higher-order correction to €, as defined in
Eq. (2.14), the quantity that is most relevant to our phenomenological discussion later. The
argument is as follows: if m; or my where to vanish, then Ui must become the identity. This
implies that any corrections to the 1-2, 1-3, 2-1 and 3-1 entries of Uy that are proportional to
mo must come at no lower order than mgmy o /M 1272. This potential contribution is nonetheless
higher-order than the values shown for these entries in Eq. (2.9). It is also the case that the
1-1 entry of UIT%’T?’U R, from which 0 is extracted, depends only on these four entries. Hence,
the value of 6, which controls the induced coupling of A% to the chosen standard model
lepton flavor, remains unaffected at leading order.

Eq. (2.12) indicates that all states other than the lightest 1) mass eigenstate have available

decay channels that ultimately lead to standard model particles. Since the free parameter



space of our model is substantial, for definiteness we assume henceforth the following about

the spectrum:

e Due to the triplet vev, (M) and Ag’) are the lightest states of the dark sector, while
P2, A%) and Ag) are substantially heavier. We will consider the case where the
lighter dark sector states are in the O(1) — O(100) GeV range, with the restriction
that My < m A so that the dominant dark matter annihilation channel proceeds

through the vector-like lepton portal (see Sec. IV).

e We assume that the vector-like leptons y have masses above My/2, so that the Z
width is unaffected. Note that more substantial collider bounds apply when vector-
like leptons are either in weak doublets, or are long-lived [16], neither of which applies

in the present case.

With these assumptions, let us first sketch out the decay modes when the standard model
lepton flavor involved is the electron: the coupling matrices U,T%T‘ZU r, fora=1and a =3
allow decays of A} and A% directly to et e™; the same is not true for a = 2, but the A% boson
does couple to the two different ¢ mass eigenstates, which we will call ¢)(!) (the lighter, dark
matter component) and 1(®) (the heavier). The eigenstate 1)(®) can decay to dark matter
¥ plus et e~ via A}, exchange. Hence A% can decay to two dark matter particles and an
et e pair, whether or not ¢ is on shell. Due to the xA%e couplings in ULT3Ug, both x
mass eigenstates can decay to a same-sign e plus an et e™ pair via A3, exchange. Finally,
the exotic Higgs fields Hp and Hy couple to fermion pairs via their Yukawa couplings. Since
we have already established that those fermions couple ultimately to either e’s or 1/(!)’s, our
claim is established. Note that if the standard model fermion is either i or 7, nothing above
is changed if M A3 > 2my, or 2my; otherwise, decays to lighter charged leptons plus neutrinos
can still occur with the p’s or 7’s off shell.

Since the y and er have identical electroweak quantum numbers, there is no effect on
the coupling of the Z boson to eg in the mass eigenstate basis. However, x and e; couple
differently to the electroweak gauge bosons, and diagonalization of Eq. (2.8) also involves a
left-handed rotation matrix U which differs from the identity. Fortunately, the left-handed
mixing angles are much smaller than those in Eq. (2.9) so that this does not present any

phenomenological difficulties. For example, the fractional shift in the standard model Zere,,

momi1 momsa

vertex is of O™zt ™72 ), which is negligible given the spectrum we assume in Sec. IV. We
1 2



also may take the mostly xy mass eigenstates to be heavy enough so that rare Z decays to
x € are kinematically forbidden.
Finally, let us return to the issue of the spontaneous breaking of the dark gauge symmetry.
In the effective theory well below the electroweak scale, the most general renormalizable
potential involving the dark Higgs fields is given by
V(Hp, Hy) = —m%HL Hp — m2 te(Hr Hy) + M (Hb Hp)? + X\ [ tr(Hr Hy)]

B (2.15)
+ )\3H2L)HTHTHD + MlH;)HTHD + (LLQHTDHTHD + hC) ,

where we have used the fact that H:TF = Hp. We assume the potential does not violate CP,
so that all the couplings are real. Further, we require at least one of (—m%, —m?) to be
negative so that the Hp and Hr fields may develop non-zero vevs. It should be noted that
there are other terms involving the Higgs fields that could be added to the potential, such
as ﬁ[TDj-VID, tr(H7), ﬁ[]BHTfID, H]TDHD tr(HrHr), but these are not linearly independent of
the terms included in Eq. (2.15) and so have been omitted.

The Higgs doublet assumes the standard real-field parametrization,

Hy = [P , (2.16)

V2 ¢3 + 194
while the Higgs triplet can be represented by a 2 x 2 matrix of real fields Hy, Hy and Hj,

Hy— el - L Mo il (2.17)
2 2\ H +iH, —H,;

The normalization assures canonical kinetic terms. We proceed to show that there exists a
stable, local minimum of the potential for the pattern of vacuum expectation values described
in Eq. (2.4). One approach to studying the potential is to fix all the parameters and search for
minima, using standard steepest descent algorithms. However the downside to this approach
is that one may then have to repeatedly discard local minima that do not provide the pattern
of vevs desired for the model. So instead, we will fix the vevs and work backwards, showing

that an extremum exists that is also a local minimum for a fixed set of parameters.

The extremization of Eq. (2.15) with the fields set to the vevs shown in Eq. (2.4) provides
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the following nontrivial, linearly independent constraints:

1
—WQDUDl + )\11),?51 + )\1UD1U§)2 + [2VpoUT + ZUDWT()\:%UT +2u1) =0

1

3 (—p2vhy + p1Vp1VD2 + pavy) =0 (2.18)

1 1
—miur + Z)‘&WT (U%n + 111232) + Zﬂl(U%1 — V) + H2Up1Ups + Aav = 0.

For the purpose of numerical evaluation we work here in units where ; = 1. For fixed choices
of the vevs and the couplings A; 23, we may then determine mp, my and pe. To determine
whether the extremum is a minimum, maximum or saddle point, we need to examine the
eigenvalues of the mass squared matrix (the second derivative matrix with all fields set to
their vevs and with the solutions for mp, mr and ps corresponding to the extremum). Since
SU(2)p is spontaneously broken to nothing, we expect three Goldstone bosons, one for each
broken SU(2) generator, according to Goldstone’s theorem. Thus we would expect three of
the eigenvalues to be zero, corresponding to the massless degrees of freedom that are “eaten”
by the dark gauge bosons. The remaining eigenvalues must be positive for the extremum
to be a local minimum. For example, let us set vpr = vp1 = vpa/2 = A3 = 1 (here
we require vp; # vpg for a solution to exist). Then we find m% = 53/12, m% = 1/6 and
p2 = —2/3. The corresponding mass squared eigenvalues are {0, 0, 0, 3.75, 3.75, 4, 10}, in
units of 2, thus confirming that we are at a local minimum of the potential. This provides
an existence proof that local minima exist in which the pattern of vevs shown in Eq. (2.4)
is obtained. It is not difficult to find similar solutions for other choices of vpy, vps and vyp.

The SU(2)p breaking vevs affect the y-e mass spectrum via Eq. (2.8); the triplet vev also

splits the 1 mass eigenstates

1 1
mwu) = Mw — 5)\51}71, mw@) = Mw + 5)\SUT (219)

for Y r = (¢(1), w@))f »- The gauge field spectrum is obtained from the kinetic terms for
HD and HT,

Lyin(Hp, Hr) = (D, Hp)'(D"Hp) + tr [(D,Hr)'(D"Hr)], (2.20)
where DMHD = 8MHD — Z‘gDAaDN%aHD and DMHT = (3MHT - igD%aAcbuHT + Z.gDAaDMHT%a.
Following symmetry breaking the gauge bosons develop masses

2 2
g g
miy =iy = D0d, b, +40d), mdy = Dk +d). (220
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In splitting the v and Ap multiplet masses, the triplet vev leads to a simple low-energy
effective theory consisting of the dark matter /() (we assume A, > 0) and the mediator A3,
which has small induced couplings to a right-handed standard model lepton flavor. This
effective theory is relevant below the masses of the heavy vector-like leptons, ¥? and the
ABQ bosons, which we will associate with a common scale, for simplicity. In addition, we will
see that the triplet vev leads to induced couplings of the dark matter to quarks via kinetic
mixing, which will lead to avenues for direct detection. We discuss the phenomenology of

this scenario in Sec. IV.

III. FLAVOR SEQUESTERING

In this section, we show that it is possible to allow for non-negligible mixing between one
flavor of the standard model leptons and the heavier, vector-like leptons, while suppressing
the mixing with the other standard-model flavors, so that bounds on lepton-flavor-violating
processes become irrelevant. In the discussion below, we refer to that one flavor as the
electron e, though the approach described applies equally well if the chosen flavor were u
or 7. Let us consider the structure of the standard model Yukawa matrices first, and then
introduce couplings to the vector-like states.

We represent the three generation of standard model lepton doublets by L;;, and the right-
handed charged leptons by E;y, for e = 1,...,3, We imagine that the Yukawa couplings are
determined by a flavor symmetry of the form Zy x Gg. Our interest is in the effect of the
Zn factor, while we do not commit to any specific Gp. We aim to show that the restrictions
that follow from the Zy symmetry are sufficient to suppress the flavor mixing effects that
we would like to avoid, while remaining compatible with a variety of possible flavor models
that may determine the remaining, detailed structure of the Yukawa matrices.

We represent an element of Zy by w’, for j = 1,... N, where w¥ = 1. We assign the
following transformation properties to the L and F fields, representing them here as column
vectors:

L; — QL and ER—>QER , (31)

12



where

1 0 0
Q=10 w™ 0 . (3.2)
0 0 w"

Note that w™ = w¥~". Assuming that the standard model Higgs doublet is unaffected
by the Zy symmetry, the transformation properties of the charged-lepton Yukawa matrix

entries that lead to invariant couplings are summarized by

w—n
Ye~r|lw™ 1 w2 |, (3.3)

wh w1

where the transformation property of, for example, the 1-2 entry is understood to be Y3? —
w" Y32, and so on. We will choose N = 2n so that the entire two-by-two block on the lower
right is unconstrained by the Zy symmetry, the least restrictive possibility that meets our
needs!. The amount by which the electron mass eigenstate is affected by the second and
third generation fields, however, is entirely controlled by the size of n, once Zy breaking
fields are introduced, as we discuss later.

A symmetry affecting the left-handed charged leptons also affects the left-handed neutri-
nos, so we must verify that neutrino phenomenology is not adversely affected. For example,
if we had imposed a Z, symmetry, with n = 1, and required it to remain exactly unbroken,
we can also completely eliminate mixing between the first generation charged leptons and
those of the second and third generations. However, if we then introduce three generations
of right-handed neutrinos N;, for ¢ = 1,...,3, one can show that there are no Zy charge
assignments for the N fields that leads to the correct neutrino mass squared differences
and mixing angles, assuming the light mass eigenstates follow from the see-saw mechanism.
However, more favorable results may be obtained when the Z) symmetry is spontaneously

broken. Here, we assume the same transformation for all three right-handed neutrino fields:

NR%WPNR s (34)

! This choice is also compatible with G having a non-Abelian component in which two flavors of standard
model leptons transform as a doublet. However, it is sufficient (and simplest) for present purposes to

imagine that G has only Abelian factors.
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where p is an integer. Defining the Dirac neutrino mass via £ D LiLHY;pNg + h.c., the

transformation properties of the Yukawa coupling is given by

w™P w™P w™P

Yir~ | w™Plw P P | (3.5)

For the choice n = 2 p, or equivalently N = 2n = 4 p, we may use the fact that w7 = WP

and W™ P = WP to write

wPlw™P WP

Yir~ | wP | wP WP : (3.6)
wP | WP WP
The significance of this form is clear if we assume that there is a flavon field p with the Zy
transformation property

p—wp, (3.7)

and a vacuum expectation value such that (p)/M = € is a small parameter. Here M is the
flavor scale, which is the ultraviolet cut off of the effective theory. Then all the entries of
Y1 r are non-vanishing, and proportional to either (p/M)P or to (p*/M)?. Hence, we may
write

YLR = Ep ?LR y (38)

where Y75 is a three-by-three matrix that is thus far arbitrary. Following a similar argu-
ment, we define the right-handed neutrino Majorana mass matrix by the Lagrangian term

N¢rMprNg, and see immediately that
Mpr — w *Mgg . (3.9)
Again, this is consistent with the transformation property of (p*/M)?, so we may write
Mpgr = ¢ Mpgg (3.10)

where M, rr is a three-by-three Majorana mass matrix that is also arbitrary thus far. With
?L r and M, rr arbitrary, it is possible to obtain any desired neutrino phenomenology, which
demonstrates that the Zy symmetry does not lead to unwanted phenomenological restric-
tions. Theories that predict the detailed structure of ?L r and M, rr by the breaking of an

additional symmetry G are compatible with this framework. Note that the overall powers
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of € in Egs. (3.8) and (3.10) scale out of the see-saw formula which determines the Majorana

mass matrix for the three light neutrino mass eigenstates
My, = Mpgr Mpp Mg, (3.11)

where Mg = (v/v/2) Yig. The effect of the Zy symmetry on the form of the charged lepton

Yukawa matrix is to impose the form

Y11 | €"Y12 €'Y13

Yp ~ €Y1 | Yoo Y23 . (3-12)

€"Us1| Y2 Y33

For e sufficiently small, or n sufficiently large, or both, we can make Y as close to block
diagonal as we like.

Now we include the vector-like state x with the same electroweak quantum numbers as
a right-handed electron, but charged also under a dark gauge group. Yukawa couplings
involving X, er and a dark Higgs field are unaffected by the Zy symmetry, while those
involving X ur or X;7r transform by w*™. These potential sources of unwanted mixing
that may emerge after the dark gauge symmetry is spontaneously broken are therefore
highly suppressed by the same factors of €” that appear in the unwanted entries in Yz. We
conclude that it is possible to make the x, e, u, 7 mass matrix as block diagonal as desired,
by suitable choice of €", such that y mixes substantially only with e, or any one desired
lepton flavor, by a similar construction?.

The question of which lepton flavor is selected to mix with the heavier, vector-like states
impacts the phenomenology of the dark gauge bosons. For example, if the mixing only
involves the 7 lepton, then bounds on the A%, from searches for s-channel resonances in
low-energy ete™ collisions, or from indirect processes like the electron or muon g — 2 would

be irrelevant. The phenomenology in the case where the mixing involves either a first or

2 We also note that this result is not linked in any fundamental way to our initial choice to study a non-
Abelian dark gauge group. The present approach would be equally effective if the y mass mixing terms
were generated after the spontaneous breaking of a dark Abelian gauge symmetry. However, as noted
earlier, Abelian theories would generically have kinetic mixing with hypercharge at tree-level and one-loop
running of the mixing parameter below the Planck scale induced by the presence of the vector-like lepton
states. The flavor sequestering mechanism could be applied in Abelian dark sector models provided that

an additional mechanism is specified that adequately suppresses these kinetic mixing effects.
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second generation lepton would lead to more meaningful constraints, but one that would
depend on other assumptions about the spectrum, for example if A3, decays visibly or
invisibly, which depends on the dark matter mass. In the following section, we will assume
the least constrained possibility, that the x’s mix with the 7, and consider the wide range
of phenomenological issues associated with the other two possibilities in separate work [14].
This has the appealing aesthetic feature that the flavor symmetry distinguishes the third
generation from the other two, an idea that has appeared in many other contexts in the

literature on the flavor structure of the standard model [15].

IV. PHENOMENOLOGY

To confirm the viability of our flavor-sequestered model, we wish to show that it can
achieve the correct dark matter relic density. We will not do a complete study of the
model’s parameter space, but focus on a region that is unique to the flavor-sequestered
scenario, namely where the vector-like states are light enough so that sufficient dark matter
annihilation is achieved to standard model lepton-anti-lepton pairs, even in the absence of
other annihilation channels. We then comment on direct detection via the suppressed kinetic

mixing effects that emerge when the gauge symmetries are broken.

A. Relic Density

The scattering amplitude for s-channel dark matter annihilation into standard model
particles depicted in Fig. 1, with e replaced by 7, is given by
951" S ulp) TRyaK)  (0)
v u(p) u v .
4(q% —m?, +imA3bFD) poyp Tu
D

MWD — 7777) =

where p (p’) is the momentum of the incoming dark matter fermion (anti-fermion), & (k') is
the the momentum of the outgoing 7~ (71) and ¢ = p+p’ is the momentum flowing through
the A3, propagator. As discussed in Sec. II, the lightest gauge boson A3 couples to the
vector-like states ") and ¥, which then mix with a standard model lepton flavor (chosen
here as 7) after spontaneous symmetry breaking. This results in a factor of 6%, defined in
Eq. (2.14), in the scattering amplitude.

Our numerical results for dark matter annihilation depend on assumptions about the dark

particle mass spectrum and couplings. We assume the picture described earlier, where the
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lightest states consist of (!} and A%, and decays of A% to any of the heavier exotic states
are not kinematically allowed. For the mass range studied in this section, A%, can decay to
777, and possibly also WUW, depending on the dark matter mass. Consequently, the
total decay width of the dark gauge boson appearing in the propagator is given by

[P =T (A} = 777) + 6 (may = 2my0 ) T (A3 - w050) (4.2)

where O is a step function, i.e., ©(z) =1if x > 0 and O(z) =0 if z < 0, and

1/2

1 2 m?2 4m?

3 +. -\ __ 2 4 T T
F(AD—>7' T )—EgDmA%Q (1+m1243> (1—m1245) R (43)

D D

1/2
_ 1 2m? ., 4m?

r (A3 s M (U) L 1 v — . 14
D ¢ ¢ 487TgDmA% + mQA?)D mi% ( )

Since the mean dark matter velocity is typically around 220 km/s [16], we work in the non-
relativistic limit where E,a) & myw. We then find the thermally averaged annihilation
cross section times velocity

4 g4 2m?2 ., + m? 2\ V2
(oav) = T2 v (1 - m—> . (4.5)

32 (4m? ) — mi‘%)Q + mi%FZD m

Using this we calculate the freeze-out temperature Tr and the dark matter relic density by
standard methods [17]. Dark matter freeze out occurs when the interaction probability per

unit time I';,), equals the expansion rate of the universe, H, i.e.,

(1)
Ly ”}éclg (oav)
T=Tr T=Tg
Here n% is the equilibrium number density of the dark matter particle, given by
3/2
Npo ( o e : (4.7)

Freeze-out occurs during the radiation-dominated epoch in which case
H = 1.66¢'/*T?/M,,, (4.8)

where M, = 1.22x 10" GeV is the Planck mass and g.(7") the number of relativistic degrees

of freedom at temperature 7',

o= 3 g (§)+§ Y (%) (49)



Finally the dark matter relic density is given by
2-(1.07 x 10° GeV ™) ap
Vo.(Tr)Mpy (oav)

We define zp = m¢(1)/TF where Tp is obtained by solving Eq. (4.6). The factor of 2 is

Qph® =

(4.10)

included because we are accounting for the density of dark matter particles and antiparti-
cles. We require Eq. (4.10) to reproduce the WMAP result 0.1186 £ 0.0020 [16] within two
standard deviations.

To display our results, we fix m 43 and 6 and find the regions of the gp-m,a) plane in which
the desired dark matter relic density is obtained. We assume that the mixing angle remains
small (f < 1) but not so small that a satisfactory dark matter annihilation cross section
cannot be obtained. So that the dark gauge coupling remains perturbative, we assume
ap/(47) < 1/3 or equivalently gp < 47/+/3 ~ 7.25; one-loop corrections become comparable
to tree-level amplitudes when a/(47) ~ 1, so one-third of this value is a reasonable upper
limit on the dark coupling constant. For the purposes of determining g., we assume all exotic
mass eigenstates other than ™) and A%, are at my = 91.1876 GeV. With this choice, the
Z boson cannot decay into yY or x7, which could lead to an unacceptable broadening of
the precisely measured Z boson width [16].

Fig. 2 shows the regions of the gp-m,,u) plane in which the dark matter relic density is
within two standard deviations of the WMAP result 0.1186 + 0.0020 [16], for fixed choices
of m a3, and 6. We have intentionally centered the plots around the point of resonance
annihilation m,a) = m A3 /2 where the cross section is largest. For small values of gp at
fixed 6, some tuning is required to achieve a large enough annihilation cross section. However,
Fig. 2 indicates that we can have larger, perturbative values of gp without requiring that we
sit unnaturally close to the resonance. As 6 is made progressively smaller, however, more
tuning is required. This is indicated by the narrowing range in m,a) for each solution in
which gp is also perturbative.

Of course, the values of 0 that are indicated in Fig 2 are related to choices for the masses
and coupling in the model, such that 0 = gp (ﬁ—% — %), where the m; and M; were defined
in Eq. (2.8). It is not hard to verify that the values of # shown in Fig. 2 can be achieved given
the assumptions that went into the making of the plots. For example, in the m a3, =10 GeV
plot, consider the point where gp ~ 1 and m,,u) =~ 8.5 GeV, on the § = 0.1 band. Given our

earlier assumption in computing g, that the heavier exotic states are at my, one can check
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FIG. 2: Regions of the gp-m,,) plane in which the dark matter relic density is within two standard
deviations of the WMAP result 0.1186 £ 0.0020 [16], for fixed choices of m a3, and 0. The allowed
bands are not perfectly smooth due to their dependence on g, which is not a continuous function.
The point of minimum gp corresponds to resonance annihilation, where m,,a) = m A3 /2. Note that
as 0 decreases the range of m,,q) in which gp remains perturbative moves towards the resonance

region.

that this is consistent with, for example, vp, = vps = 14 GeV, vy =~ 49 GeV, A\; =~ 0.85, and
y1 = Yo =~ 0.06, where the Yukawa couplings y; were defined in Eq. (2.6). Similar statements

can be made about other points on the allowed bands®.

B. Direct Detection

The interactions that we have discussed to this point have involved leptons exclusively, but

couplings to quarks that are generated at the loop level also have significant consequences.

3 The scenario that we have considered assumes that communication between dark and visible sectors
occurs primarily through the portal that we have proposed, involving mixing with vector-like leptons. It
is of course possible to have scenarios in which communication is also significant through Higgs portal
couplings or other mediators. The present model could therefore represent a subset of the parameters
space of a more complicated model with other dark matter annihilation channels. There are also different
parameter regions in the model as we have defined it where other annihilation channels become relevant,
for example w(l)W — A3 A% whenm A3 S My The results presented in this section demonstrate the
effectiveness of the portal we have proposed in a region of parameter space where it provides the dominant
contribution to the dark matter annihilation cross section due to mixing effects that would not be possible
in models without flavor sequestering. This does not imply that other viable regions of parameter space

are impossible.
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FIG. 3: Self energies leading to kinetic mixing between the third dark gauge boson A(D?’) and

hypercharge Y after SU(2)p is spontaneously broken.

In this section, we consider direct detection of the dark matter in the model via dark-
matter-nucleon elastic scattering. The couplings to quarks arise after the SU(2)p symmetry
is spontaneously broken, since kinetic mixing between A%, and hypercharge is then allowed,

via an effective dimension-5 operator

,Ceff = Xtr ((HT>TaAa ) yH s (411)

Duv

where we have set the triplet Higgs to its vev, as per Eq. (2.4). Here, X is a constant with
units of GeV~! which is found by integrating out the “heavy” physics, i.e., the y fields,
the only fields that are charged both under SU(2)p and hypercharge U(1)y. To proceed,
we study the self-energy shown in Fig. 3, where y() and x® here represent the heavy
mass eigenstates, whose mass eigenvalues are given approximately by m,u = M, — ¢ and
m, e = M, +0 where § = N\, vr/2. (For the purposes of this estimate, we ignore mass mixing
with the standard model lepton, which is a subleading correction.) The first diagram is given
by

iM = (4.12)

_9p9y / d'k_tr [7“ (% + mx“)) v (% TP+ mx“))]
2 (2m)* [k — miu) +ie][(k +p)* — mi(n +de]

After carrying out this loop integral using dimensional regularization in D = 4—e dimensions,

the amplitude is

! 4
iMy = _9pgy / dr z(1 — x) (— — 2y + 2log(4r) — 210g(A1)> i(g"'p? — ptp”) , (4.13)
0 €

82
where A = mi(l) —x(1—xz)p?. Since A% couples to the y proportional to 6% /2, the amplitude
1My shown in Fig. 3 will differ from ¢M by a overall minus sign and the replacement of the

¥ by the y® mass. Hence, A; is replaced by Ay = mi@) — x(1 — 2)p?. Then, when these
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P P

FIG. 4: The Feynman diagram for the scattering of the dark matter particles, 1)V, off of protons,

P, through kinetic mixing of the dark matter boson A% and the photon, ~.

two amplitudes are added together, all terms in the remaining Feynman parameter integral

cancel, except for the terms that depend on the fermion masses:

! A
iMi+iMy =i(g"p* — p“p”)w/ de (1 —2z)log [ =) . (4.14)
472 0 A?

Assuming the mass splitting ¢ is small compared to the x masses (which will turn out to be
the case) the integrand can be expanded in §. The leading order term can be found using
(1 —z)log(A1/As) =~ —%5. Moreover, we can also expand the result in powers

of momentum, which can later be compared to a derivative expansion in the low-energy

effective theory. We find

, o .GDYYO L, o v
IMy + i1 Mgy = _267'(2MX (g“ e — p“p ) o (415)
where the --- represents terms involving higher powers of § and p? /Mi The result in

Eq. (4.15) must be matched to a similar amplitude in the low-energy effective theory in
which the y fields have been integrated out. We identify this as the tree-level amplitude

associated with the Eq. (4.11), treated as a two-point vertex,

1A =iXvr (pQg“” — p”p”) , (4.16)
from which we conclude
Ipgy 9
X=-——_T_ 4.17
672 M, vp ( )

Using Egs. (4.11) and (4.17), we can now calculate the cross section for dark matter

scattering off of nucleons. We will be working in the limit of low momentum transfer
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g ~ O(100) MeV (< M,), where the effective description is accurate and where scattering
through the Z boson is suppressed by ¢?/m% ~ 1075 compared to the photon. Hence, we
will consider kinetic mixing involving the photon only from here on. First, we consider the
dark matter, (1, scattering off of a quark, qf, as in the diagram in Fig. 4, with the protons

replaced by a quark of flavor f. This can be described by the effective dimension-six operator

Lesrg = CrpOyrpWgpy,gs . (4.18)

In the full theory, this quark-dark matter scattering amplitude is

1

(D) sV 4.19

IMy = Z‘XUTQngDe
or, in the limit of ¢* < mi<3)7
D

XvrQy gp
L R

IMyp = — 5

eW’y“w(l)@'yuqf ) (4.20)
A}

From this, we conclude the coefficient C'y for quarks is

_gaeXvrQp _ gpe*oQy
Qmi% 1272 Mxmigl,j

Cr= (4.21)

Of interest, however, is the effective interactions involving nucleons rather than quarks,

which can be written
Lepsn = CotpDyypWay,n + Cp p Wy Wy, p (4.22)

Using the fact that the quark vector currents are conserved, so that the spatial integral
of the zeroth component is a quark number operator, one can match matrix elements of
Eq. (4.18) between nucleon states with the same for Eq. (4.22), from which one concludes
C, = Cy + 2Cy and C, = 2C, + Cy, for the neutron and proton, respectively. (There are
no form factors as there would be for scalar quark operators.) Since the flavor dependence
of the Cy comes only from the electric charge, the coefficient (), and thus the scattering
amplitude for 1)) off of neutrons are both zero. Therefore, the only relevant scattering is
with the proton, for which

9pe’s

C,=20,+Cj= —22———
b + L 12w2 M, m?
D

(4.23)
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FIG. 5: Upper bound on the fractional mass splitting of the y) and x(® fermions as a function
of the mass of the dark matter particle, ¥(!), assuming gp = 0.3 and m A3 = 10GeV. The dis-
continuity in the curve reflects that the bounds on the dark-matter-nucleon elastic scattering cross
section originate from the CDMSlite experiment [19] below m,u) ~ 6 GeV, where the otherwise

tighter bounds from the XENONI1T experiment [18] do not exist.

Taking into account that the dark matter is non-relativistic and that momentum transfers

are small, a straightforward calculation of the scattering cross section yields

( > gpemym? ( 20 )2 (4.24)
TpWpspDp) = — -
VPR s (my + mw@))z mng M,

where we have separated out the dependence on 20/M,, the fractional mass spitting of
the vector-like leptons. Since this splitting is a free parameter in our model, we can use
the experimental bounds on the dark-matter-nucleon elastic scattering cross section to say
something about the vector-like lepton spectrum.

Using experimental bounds on the cross section from XENONIT [18] and CDMSlite [19],

2) mass splitting for dark matter masses between 2 GeV and

we show bounds on the y(M-y(
10 GeV. The results of this calculation are shown in Fig. 5, where a dark coupling of gp = 0.3
and a dark boson mass of m a3 =10 GeV have been used. For dark matter masses below
approximately 6 GeV, the cross section bounds from CDMSIlite are used, since no data from
XENONIT is available in this region. Although there is CDMSIlite data for dark matter
masses above 6 GeV, these bounds are superceded by the stricter ones from XENONIT.

For the range of 1) masses in Fig. 5 that are affected by the XENONI1T bounds, the
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masses of the charged fermions y") and y? are degenerate at the 1-10% level at minimum.
This feature could be observed in collider searches for the vector-like leptons and possibly

correlated with a dark matter direct detection signal.

V. CONCLUSIONS

We have presented a framework based on flavor symmetries that allows for a light portal
sector of vector-like leptons connecting a dark sector to the standard model. To illustrate our
approach, we considered an explicit, renormalizable non-Abelian dark SU(2) model which
contains two vector-like fermion doublets. One of them, v, includes a dark matter candidate;
the other doublet, y, has the same electroweak quantum numbers as a right-handed electron,
so that communication with the visible sector can occur via mass mixing. The @ and Yy
fields communicate with each other via the dark gauge group, so that the dark matter may
annihilate to standard model leptons. The dark SU(2) symmetry is spontaneously broken
via a Higgs sector involving doublet and triplet fields. The doublet vacuum expectation value
(vev) leads to mixing between the y and standard model lepton fields, while the triplet vev
splits the mass spectrum leaving a simple lower-energy theory consisting of the dark matter
(the lightest ¢ mass eigenstate) and the mediator (the third component of the SU(2) gauge
multiplet). We identify a discrete flavor symmetry that allows mixing between the vector-
like leptons y and a single standard model lepton flavor exclusively; the remaining standard
model lepton flavors may mix only with each other. This flavor sequestering eliminates
lepton-flavor-violating effects, relaxing bounds on the vector-like lepton mass scale. As a
consequence, mixing between the chosen lepton flavor and the y can be large enough so
that the correct relic density can be obtained exclusively via dark matter annihilation to
lepton-anti-lepton pairs, for perturbative values of the dark gauge coupling. This is true
even if no other significant annihilation channels are available.

The structure of our model avoids complications that would ensue if we tried to couple
the dark gauge bosons directly to standard model fields, such as the necessity of including
extraneous fermions to cancel chiral anomalies, or special Higgs representations to allow for
acceptable standard model Yukawa couplings. Unlike some of the non-Abelian dark matter
models appearing in the literature, the portal we present is renormalizable and completely

specified, including the discrete flavor symmetries that control the pattern of mixing between
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exotic and standard model fermions states. The portal we define for communication between
the dark and visible sectors can be lighter than in models without the flavor sequestering
we have proposed and presents a well defined framework for answering phenomenological
questions. In the present work, we showed that there are regions of the dark gauge coupling
- dark matter mass plane where the correct relic density is obtained, and where current
direct detection bounds are satisfied. The latter consideration also allowed us to conclude
that the two heavy lepton mass eigenstates (roughly the two components of the x doublet)
are notably degenerate in mass (to keep kinetic mixing effects small), a feature that could
be tested in collider searches for these states. This observation, together with the distinct
lepton flavor structure of the y decays, suggests that the collider signatures of the portal

that we have proposed are worthy of future detailed investigation [14].
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