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We consider change-point detection and estimation in sequences of functional
observations. This setting often arises when the quality of a process is character-

ized by such observations, called profiles, and monitoring profiles for changes in
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structure can be used to ensure the stability of the process over time. While inter-
estin phase II profile monitoring has grown, few methods approach the problem
from a Bayesian perspective. We propose a wavelet-based Bayesian methodology
that bases inference on the posterior distribution of the change point without
placing restrictive assumptions on the form of profiles. By obtaining an analytic
form of this posterior distribution, we allow the proposed method to run online
without using Markov chain Monte Carlo (MCMC) approximation. Wavelets, an
effective tool for estimating nonlinear signals from noise-contaminated obser-
vations, enable us to flexibly distinguish between sustained changes in profiles
and the inherent variability of the process. We analyze observed profiles in
the wavelet domain and consider two possible prior distributions for coeffi-
cients corresponding to the unknown change in the sequence. These priors,
previously applied in the nonparametric regression setting, yield tuning-free
choices of hyperparameters. We present additional considerations for control-
ling computational complexity over time and their effects on performance. The
proposed method significantly outperforms a relevant frequentist competitor on
simulated data.
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1 | INTRODUCTION

tion in quality. While the most common SPC charts are
designed to monitor univariate or low-dimensional mul-

Technological advancements in manufacturing have
increased the amount and complexity of data in process
monitoring, prompting the development of statistical
process control (SPC) methods to analyze these data. SPC
techniques are used to ensure quality when analyzing
sequences of observations output by the process. These
observations are realizations of a quality characteristic,
and changes in the sequence can indicate a deteriora-

tivariate quality characteristics, recent research in this
area has predominately focused on high-dimensional or
functional observations.

The sequentially observed units of study in this case are
noise-contaminated, discretely-sampled functions called
profiles. At each time ¢, a functional profile

vi=fl)+e, i=1,..,n, €))

Qual Reliab Engng Int. 2018;1-15.

wileyonlinelibrary.com/journal/qre

© 2018 John Wiley & Sons, Ltd. | 1


https://doi.org/10.1002/qre.2409
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fqre.2409&domain=pdf&date_stamp=2018-10-16

L WiLEY

VARBANOV ET AL.

is observed, where yl? are the values of the quality charac-
teristic, x; are the corresponding values of an explanatory
variable, n is the number of observations in each pro-
file, and the error terms e§ represent the noise inherently
associated with the process. The observations y! can be
measurements made across positions x; of a manufactured
part. While subject to some variability, reflected by e§ , the
measurements should meet specified quality standards.

Examples of profile monitoring applications in literature
include semiconductor manufacturing, where gate oxide
thickness is a function of surface location;! a stamping
operation, where stamping force is a function of crank
angle;? artificial sweetener development, where amount
dissolved is a function of temperature;® roundness evalu-
ation of mechanical components, where radial measure-
ment is a function of turning;* and automobile engine
testing where torque produced is a function of engine
speed.’

SPC is broken into two steps—phase I and phase II.
In phase I, historical data are retrospectively analyzed to
identify and model the desired, or in-control, performance
of the process. In phase II, online procedures sequentially
process new observations to detect deviations from the tar-
gets identified in phase I. Profile monitoring methods can
be used to detect changes in the underlying structure or
variability of profiles, as either change may be indicative
of a deterioration in quality. If a process is operating in
the presence of such conditions, which are termed faults,
it is said to be out of control. Faults can be increasing, as
a trend, or sustained at a constant magnitude. In some
cases, the presence of a particular fault may be only tem-
porary. In others, the process needs to be stopped, and the
cause of the fault addressed before the process can resume
functioning properly. A successful monitoring method will
allow an in-control process to run without disruption but
will stop an out-of-control process quickly. These criteria
are usually evaluated in terms of average run length (ARL),
the mean time until a false alarm is signaled for in an
in-control process, and the mean time until a change is
detected in an out-of-control process.

The transition from traditional SPC charts to profile
monitoring has been followed by the evolution of profile
monitoring itself. Approaches to profile monitoring can be
classified by phase and the assumptions they make of pro-
files. In early work, monitoring methods focused on linear
profiles. This assumption was relaxed in methods that
assumed a nonlinear but parametric form of profile. The
most robust methods consider nonparametric models for
nonlinear profiles. For good reviews on profile monitoring,
see Woodall et al,*® Noorossana et al,’ and Qiu.!°

Parametric approaches generally summarize an
in-control profile with a small set of parameters in phase
I; estimates of the those parameters from new profiles

are then monitored using univariate or multivariate
control charts in phase II. Although there exist changes
that may not be reflected in the parameters of the cho-
sen model, these methods can be useful when profiles
have the assumed parametric form. In practice, however,
there are often cases with irregular profiles that are not
parametrizable.

Many profile monitoring methods are designed with a
specific application in mind. We approach the problem
generally and require a nonparametric method to avoid
restrictions on the form of the profile. Nonparametric
methods generally rely on smoothing and dimension
reduction tools to separate signal from noise in order to
compute metrics that accurately quantify the difference
between observed profiles and an in-control template.

Chang and Yadama'' used wavelets to smooth profiles
before fitting an estimate with B-splines and computing a
statistic based on the control points. Williams et al'? also
used B-splines, but instead of using the control points,
they proposed a variety of metrics based on the smoothed
estimate. Gardner' used bivariate splines in the case of
surface profiles with multiple explanatory variables. It
should be noted that the use of splines implies that a pro-
file has no explicitly unsmooth features such as jumps or
points of nondifferentiability. Qiu et al'*'* used local lin-
ear kernel smoothing in exponentially weighted moving
average (EWMA) control schemes. Shiau et al'> smoothed
data with splines and used principal component analysis
(PCA) to project profiles into a lower dimensional space.
The principal components of projected profiles are then
monitored using independent or combined control charts.
In addition to PCA, Ding et al'® explored the possibility
utilizing a normality assumption in dimension reduction
through independent component analysis (ICA).

Wavelets, a tool for both smoothing and dimension
reduction, have proven to be a useful aid in many pro-
file monitoring methods. Jin and Shi,>'” Lada et al,'® and
Zhou et al* used different thresholding schemes to select
a subset of wavelet coefficients to monitor using multivari-
ate control charts. By monitoring only a subset of coeffi-
cients, these nonparametric approaches suffer from some
of the same pitfalls as parametric methods—changes not
reflected in the chosen subset will not be detected. Chicken
et al* incorporated thresholding when computing a statis-
tic using all observed coefficients in a change-point proce-
dure based on a likelihood ratio test (LRT). Wavelets have
also been used in several procedures that relax common
assumptions such as normality and independence on the
noise structure of profiles.?**

In statistical inference, a Bayesian framework can
improve the interpretability of results and allow for the
natural input of prior knowledge—two possibilities that
are particularly useful in any type of process monitoring.
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Despite demonstrated success in a variety of applica-
tions, Bayesian analysis has received little attention in
profile monitoring. This can likely be attributed to the
high computational cost typically associated with Bayesian
inference. Abbas et al*** considered the linear profile
monitoring problem and monitored the posterior esti-
mates of parameters for changes. Park and Shrivastava®
considered a unique profile monitoring scenario involving
nanoparticle growth during self-assembly. In a moderate
dimensional setting, they used B-splines to parametrize
geometric data in a time-series model. They used phase I
analysis to facilitate computation of a Bayes factor approx-
imation for inference.

In this paper, we propose a wavelet-based Bayesian
(WBB) approach to phase II nonlinear profile monitor-
ing. The proposed method monitors profiles for changes in
underlying functional structure in the presence of Gaus-
sian white noise. We establish a change-point framework
and base inference on the posterior distribution of the
change point given the observed profiles. The control chart
statistic is the posterior probability that a change has
occurred. Once the process is stopped, the maximum a pos-
teriori probability (MAP) estimate of the change point can
be used to identify the time when the process went out of
control.

For computing the posterior of the change point,
observed profiles are projected into the wavelet domain.
We consider each observation in its entirety without direct
dimension reduction. Instead, we assign the wavelet coef-
ficients of the unknown functional change a prior that has
been previously used for wavelet thresholding and reflects
the sparsity of the wavelet representation. The posterior
can be then be computed using all of the coefficients from
a profile while maintaining the expectation that many will
be zero, regardless of whether a change has occurred. The
control chart statistic can then allow evidence of a sub-
tle, but sustained, fault condition to build while taking
into account information about the frequency and loca-
tion of potential faults. Due to the orthogonality of the
wavelet basis, we obtain an analytic form of the poste-
rior and do not rely on computationally intensive Markov
chain Monte Carlo (MCMC) for approximation. The pro-
posed method shows substantial improvement over initial
work in Varbanov et al.’

The remainder of the paper is organized as fol-
lows. Section 2 provides a brief overview of wavelet
analysis in statistics. Section 3 describes the proposed
method in detail. Section 4 demonstrates the proposed
method's improvement over a relevant frequentist com-
petitor through simulation. Section 5 concludes with a
discussion of results, other considerations, and future
work.

2 | BACKGROUND

2.1 | Wavelet representation

Wavelets are localized wave-like functions that can be used
to generate a basis for a large class of functions. Often
introduced as a refinement of Fourier analysis, wavelet
analysis of functions allows for localization in both the fre-
quency and x-axis domains. Wavelet bases can have several
properties particularly useful in statistical applications:
orthogonality, which can decorrelate data and maintain
independence, and compactly supported basis elements,
which can be scaled to reflect the finite nature of data. For
good introductions to wavelets and their properties, see
Ogden® and Vidakovic.”

Let ¢ and y denote appropriately chosen father and
mother wavelet functions, respectively. The many choices
for this pair of functions carry different properties.*® Here,
we choose compactly supported ¢ and y to generate an
orthonormal basis. The translations and dilations of ¢ and
y given by

ix) =2/2p2Ix — k), w0 =2y 2x-k) (2)

generate the following orthonormal basis for the space of
square-integrable functions L,(R):

{Djok-Wikljo, j  k € Zs j = jo}, 3)

for any fixed j,. A function f € L,(R) can then be
expressed as the infinite series

FO) =Y Ekdik+ D Y O, (@)
k i=io k
where the wavelet coefficients &, = (f,¢;k) and Oy =
(f,wji) are given by the usual inner product of the function
fand the corresponding basis function.

The smoothest structure of a function is represented by
the first series in Equation 4, consisting of translations of
the dilated father wavelet ¢; . Higher frequency parts of
the function are represented by separate series of transla-
tions and increasing dilations of the mother wavelet .
Assuch, we refer to &; x as smooth, or coarse, wavelet coeffi-
cients and 6y, as detail wavelet coefficients. The projection
of a function across this sequence of subspaces allows
for the multiresolution property of wavelets. Varying the
parameter j changes the resolution level of the analysis,
allowing one to zoom in or out on the smooth or detailed
structure of f. Varying the parameter k allows one to ana-
lyze a function in the x-axis domain. This combination of
spatial and frequency adaptivity allows wavelets to model
both irregular and smooth functions. The important fea-
tures of functions can often be retained in parsimonious
representations involving relatively few coefficients and
basis functions.
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2.2 | Discrete wavelet transform

In practice, functional data are not collected continuously
but discretized into high-dimensional vectors. For these
cases, there exist efficient algorithms for estimating the
coefficients of the discrete analog of Equation 4. The pyra-
mid algorithm of Mallat* for the discrete wavelet trans-
form (DWT) estimates the coefficients of the function f
sampled at n = 2’ equispaced points with computational
cost O(n). The DWT can be expressed in terms ofan n X n
orthogonal transformation matrix W. A vector of n empir-
ical coefficients for f = ( f1,f, ... .f,) is given by

dy ) = WF.
(5)

d= (Cjol,Cjoz, ,Cjozfo,djol,djoz, ..

The lowest resolution level of the decomposition, j,, is
specified by the user and may vary from 0 toJ — 1. Applying
the inverse DWT, W~! = W, to the estimated coefficients
will recover the original data f = W'd = W Wf. The DWT
can be executed without numerical integration by treating
the observed values fas the coefficients at resolution level
J. With this approach, wavelet bases become wavelet fil-
ters. Hereafter, the term “wavelet coefficient” refers to the
wavelet coefficient from the DWT of a discretely sampled
function.

2.3 | Wavelet thresholding

In observed data, wavelet coefficients estimated from
a noisy function are themselves noisy versions of the
true wavelet coefficients corresponding to the underlying
function. Wavelet thresholding can be used to obtain
a parsimonious estimate of the underlying function in
nonparameteric regression. A thresholding procedure
assumes sparsity of the wavelet representation and modi-
fies observed coefficients, setting a portion of them equal
to zero, before using the coefficients to reconstruct the
function.

A thresholding procedure requires the selection of a
threshold value, 4, and a rule by which to modify the
coefficients. Thresholding can be applied to coefficients
individually (term-by-term) or in groups (blocks). For a
threshold value 4, hard thresholding sets coefficients with
magnitudes less than A to zero. Soft thresholding com-
bines hard thresholding with the additional shrinkage of
coefficients with magnitudes larger than A. Global thresh-
olding methods apply the same A to coefficients across
all levels while level-dependent thresholds use different
values of A for each level j. Thresholding is usually only
applied to the detail coefficients, dj; smooth coefficients,
cj,k» are considered representative of a function’s basic
structure.

Bayesian approaches to wavelet estimation generally use
amixture prior to reflect the sparsity of coefficients. For the
true detail coefficients of a function, several methods?-3233
considered the prior

Ojk ~ (1 — @;)5(0) + w;N(0, 57), (6)

with hyperparameters that vary with resolution level. In
this model, coefficients are independent and can be esti-
mated with the posterior mean or median. The hyper-
parameters ®; and s; can be chosen to reflect prior
knowledge, or they can be estimated from the data. To
improve theoretical properties and to reflect empirically
observed marginal distributions of real data, Johnstone
and Silverman* proposed modifying the nonzero portion
of Equation 6 to a density with heavier tails than those
of the normal distribution. They also proposed an empir-
ical Bayes approach to choosing the hyperparameters by
maximizing the marginal likelihood.

3 1 METHODOLOGY

3.1 | Change-point framework

The process monitoring problem of interest can be framed
as
V=100 +g@)It > 1) + £, @

where f° is the functional relationship between the
explanatory variable and the quality characteristic when
the process is in control, and g is an unknown functional
change introduced when the process goes out of control.
Here, we express a profile as the vector y* and use the
notation f{x) to denote the values of the function f at each
component of the vector x. Our inferential objectives are to
(1) determine whether the process is in control given the
profiles observed at times t = 1,2, ... ,T and (2) update
this classification with each newly observed y’. This is
equivalent to considering the hypothesis test

Hy:f°=f'=f=..=f"

Ho: f'=fl=fr= .. =f¢ ==/,

te{l,2,..,T}
®)
at each time T. If the null hypothesis is rejected and the
process is classified as out of control, we want to estimate
7, the time of the first out-of-control profile.

As indicated by the framework in Equation 7, we con-
sider a single change point after which the functional
change g remains constant. The proposed method is
designed to detect changes in the underlying function of
profiles and does not directly monitor profiles for changes
in variability. We assume that the errors glf are iid normal
random variables with mean zero and variance ¢2. We con-
sider 62 and the in-control function f° to be known a priori.
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If unknown, f° and 2 must be estimated from historical
data during phase I monitoring. Without loss of generality,
we set f%(x) = 0and 62 = 1 for notational convenience.
In practice, this is equivalent to analyzing the standardized
profiles

t 0
t _y _f (x)
y = —O'g .

9)

This essentially reframes the problem of change detec-
tion as one of signal detection, because we no longer have
the presence of a signal in observations prior to a change
in the sequence.

When considering the observed data, we project each
profile y* into a vector of coefficients in the wavelet
domain using the DWT. Let d* denote the vector of
all empirical wavelet coefficients of profile y' and let
d; denote the ith entry in this vector, as the vector is
defined in Equation 5. As an orthogonal transformation,
the DWT will maintain the independence of the initial
noise structure. So when the process is in control and
t <,

d'=Wel = ¢, (10)

and d' will contain only Gaussian white noise £/. Once the
process is out of control and t > ,

d'=Wg(x)+ We' =60+ £, (11)

and d' contains noise-contaminated observations of 0,
the wavelet coefficients of g(x). For the application of
the DWT to y*, the constant vector x is assumed to con-
tain equispaced values of the explanatory variable, and
profiles are assumed to be of dyadic length n = 2/,
JeN.

3.2 | Obtaining the posterior distribution
of ¢

We approach process monitoring from a Bayesian per-
spective, basing inference on the posterior distribution
of the change point given the data. This framework was
introduced by Shiryaev,* who first developed the optimal
change detection procedure in the Bayesian formulation
of the change-point problem. For our goal of develop-
ing an online monitoring method, we require a tractable
posterior. To obtain an expression for this posterior, prior
distributions need to be assigned to the unknown param-
eters in our model: 7, the time of the first out-of-control
profile, and 6, the wavelet coefficients of g(x). Let D =
(dt, &, ... ,dT} denote the empirical wavelet coefficients,

or data, collected until the current time. The marginal
posterior of r can be written as

[ Dz, 0)7.(1)70(6)dO
>, [of Dl7,0)1.(T)me(0)dO
fD|t)z.(7)

B SL f(Dle=Dr(r=t)+ f(D|t > Dr (x> T)
12)

where 7.(7) is the prior distribution of z, 7¢(6) is the prior
distribution of 8, and f(D|r) is the marginal density of the
empirical wavelet coefficients conditioned only on 7. The
probability mass function of the posterior will allow us
to compute z(r < T|D), the probability that a change
has occurred given our data. We can then classify the pro-
cess as out of control when this value is large enough.
The selection of the threshold for making this classifica-
tion is discussed in Section 3.3. This threshold will define
the amount of evidence required to stop the process by act-
ing as an upper control limit (UCL) for z(z < T|D). After

classifying a process as out of control, we can estimate the
exact change point by choosing

z(z|D)

% = argmax z(z = t|D), (13)
1<t<T
the most probable change point according to the posterior
distribution.
For the prior on 7, we analogize each observed profile to
a Bernoulli trial and consider 7 to be the time of the first
“success.” This is reflected by the geometric prior

n(r=0=0-p)'p, t=1,2, ... (14)

In this analogy, a memoryless in-control process has a
probability p of being out of control at the next time step
and will, on average, go out of control at time t = 1/p.

When choosing a prior for 6 without any knowledge of
g(x), we simply look to utilize the beneficial properties of
wavelets—namely, orthogonality and sparsity. The com-
ponents of the vector 6 correspond to the true wavelet
coefficients resulting from the projection in Equation 5 and
can accordingly be written as

9 = (fjol’ 5/'02’ ,fjozjn, 9j01,9j02, ey 0]_1’2]—1),, (15)

where §;  are smooth coefficients, and 6, are detail coef-
ficients. To model the sparsity of the detail coefficients,
we modify the mixture prior from Equation 16, which
has been previously used for wavelet thresholding in the
nonparametric regression setting.>** In these works, the
authors increased the precision of estimates by varying
the hyperparameters w and a by resolution level j and
estimated these values from the data to adapt to a given
function. As we look to avoid unnecessary computational
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cost, we propose using prespecified fixed values for the
hyperparameters. To avoid overspecifying the structure
of the unknown coefficients, we propose using global
hyperparameters instead of the previously implemented
level-dependent versions. The resulting prior is given by

70, (071) = (1 — @)80(01) + wys(Oy1),
k=1,..,2,

j =j(), ...,J— 1,

(16)
where &, is the Dirac delta function at zero, and y, is a
unimodal symmetric density, centered at zero with scale
parameter s > 0. The mixture represents the idea that
with probability w, a coefficient will be drawn from y, and
with probability 1 — w, a coefficient will be exactly zero.
For y,, we consider the normal density

1 0;
rs(0) = exp (17)
sV 2m ( 25 >
as in Abramovich et al** and the Laplace density
1
1s(0) = 5 exp(=s|6i). (18)

as in Johnstone and Silverman.** A unique benefit of the
normal density for this purpose is that it is the conju-
gate prior for the normal likelihood associated with the
observed coefficients. Alternatively, the heavy tails of the
Laplace distribution may be more suitable for modeling
the extreme coefficients associated with certain functions,
particularly when we model all nonzero coefficients with
a single y,. We compare the performance of both choices of
7 in Section 4, referring to them as the normal and Laplace
mixtures.

We complete the prior specification for smooth coeffi-
cients of 6 by setting @ = 1 in Equation 16, resulting in

(éjok) ya(gj‘)k)’ k= 1, ..., 2j0' (19)

/ok

With this choice, we reflect the expectation that all
smooth coefficients in our model will be nonzero and that
these coefficients will be on the same scale as nonzero
detail coefficients. Smooth coefficients are subject to the
scale of the function being estimated. Because any effec-
tive monitoring method will detect large global changes
reflected by large smooth coefficients, we prioritize the
detection of subtle changes whose magnitude will be rel-
atively small. In these cases, there is no reason to expect
a significant difference in the magnitude of smooth and
detail coefficients. Due to the orthogonality of the wavelet
representation, the complete prior models each coefficient
independently, a common assumption in Bayesian wavelet
estimation.

To compute the posterior distribution of the parameter
of interest 7, we require f{D|r), the density of the observed
coefficients conditioned only the change point. Obtain-
ing this density requires marginalizing out the unknown
coefficients through integration over the prior distribution
of 6. Both proposed choices of prior for 8 will result in
closed-form expressions of f{lD|r) and in turn, z(z|D). Note

thatfort < 7 (in-control profiles), d‘ N(O 1),and fort >
7 (out-of-control profiles), dlf ~ N (91, 1). When evaluating
f(D|r), we factor the density into two parts: the density of
coefficients of in-control profiles and the density of coeffi-
cients of out-of-control profiles. The density of in-control
coefficients can be written as a product of the individual
densities of the independent coefficients. Empirical coef-
ficients in position i from out-of-control profiles, d?f =
(d:, d’+1 . ,dl.T), are dependent in that they correspond
to the same parameter #;. We account for the dependence
of equivalently positioned coefficients by rewriting their
density in terms of their respective sample means before
integrating out the parameter ;. The sample mean of each
set of corresponding out-of-control coefficients is given by

T
Jt>t __ 1 t .o X 1
4 _T—r+1;di N<0"T—T+1>' (20)
‘We can now write
fDlz) = /f(D | 0, 7)7m(0)dO
[7—-1 n T n
= | [1[ e 10.1) / l]‘[l'[qb(d;wi,l)]
| =1 i=1 t=1 i=1
7p,(0;)d0;
[7—1 n n
= T1I e 10.1) l]‘[u(d?’) / ¢<El?f|ei,
| =1 i=1 i=1
%)nai(ei)dei]
-1 n n
- [Hl'[qb(dﬁ | 0,1>] [Hu(d?f)v(agznl ,
t=1 i=1 i=1
(21)

where n, = T — 7 + 1 is the number of out-of-control
profiles, and ¢(:|u, 6?) is the normal density function with
mean y and variance o2. The functions u and v result from
the factorization of the density of d: 27 and are given below.

o (df = dZ)?
Vo)1 2

If y, is the normal density, then

w(d®") =

wd=) =1 - a))¢<c_l?’|0, %) + a)¢<c_llf27|0, st + %)

(23)



VARBANOV ET AL.

WILEY——~

If y, is the Laplace density, then

v@) = (1~ w)¢<3§2’|0, ni> +oz(dF), 4

T

where

_ 2
i ) ot )
+exp (s1%7) D, <a;2f >]

(25)

Here, @, refers to the normal cumulative distribution
function (CDF) with y = 0 and 6% = ni and ®, =1 - @,.

3.3 | Calibration and hyperparameters

We have now introduced each of the components needed
to obtain the posterior of z in Equation 12. To imple-
ment the process monitoring method, we need to select the
hyperparameters for the prior distributions of = and 0 and
determine an appropriate UCL for the posterior probability
that a change has occurred.

The prior distribution of @ contains the hyperparame-
ters w and s, which reflect the sparsity and scale of the
nonzero detail coefficients, respectively. When these priors
were used to model detail coefficients in the nonparamet-
ric regression setting,*** the authors proposed using the
median of the posterior distribution as the estimate of a
coefficient. This results in a true thresholding procedure
that sets coefficients less than a certain magnitude to zero.
The relationship between the posterior median med(8;|d;),
an observed wavelet coefficient d;, and the hyperparame-
ters w and s can be expressed in closed form.**3*3 Without
loss of generality in the thresholding procedure, consider
d; > 0. The posterior median is given by

med(0;|d;) = max(0, h(d;, w, s)). (26)

When y, is the normal density,

> 1 + min(wypost, 1
h(d;, w,s) = s d - S g ( post )> ’
1+ 52 Mts2 e >

(27)

where @ is the standard normal CDF, and the posterior
odds ratio for the coefficient at 0 is given by

1-— Szdl.2
Wpost = T s2+1 exp —m . (28)

When y, is the Laplace density,

h(d;, w,s) = d; — s — ® }(min(c, 1)), (29)

where
dd; —s
o(d;—s

1 o (~D(di+S _
c=s5¢d; s)<w + s< +¢(di+s> 1).
(30)

Equations 26 to 30 also define the relationship between
w, S, and the posterior median threshold, which is given by

Amed = min{d : d > 0, h(d, w,s) > 0}. (31)

Because w has the same meaning in either choice of v,
we treat w as a user-specified quantity reflective of some
sparsity level. In subsequent sections, we show results for
the somewhat arbitrary choice w = 0.05. Given w, the user
can choose s that results in a desired median threshold.
Without any prior knowledge of the function g, we propose
mapping Ameq to the universal threshold Ayniv = /2 log(n)
of Donoho and Johnstone,*” where n corresponds to the
dimensionality of profiles. For @ = 0.05, this mapping
results in s = 1.07,1.31 for the normal and Laplace
mixtures, respectively.

The hyperparameter p for the prior on z and the UCL
for n(r < T|D) work in unison to control the sensitiv-
ity of the proposed method and are adjusted to control for
false alarms. When calibrating the method to result in a
desired in-control ARL, the user can either (1) adjust p for
a fixed UCL or (2) adjust the UCL for a fixed p. The for-
mer eases interpretation when comparing z(z < T|D) to
the UCL while the latter allows for more direct input of
knowledge of the in-control properties of the process. For
example, by setting UCL = 0.5, we utilize the intuitive
interpretability of the Bayesian framework and classify the
process as out-of-control when it is more likely than not
that a change has occurred. Alternatively, if an in-control
process will on average run ¢ time steps before going out
of control, then setting p = 1/t will match the mean of
the prior distribution to that of the actual distribution. The
performance of the proposed method under both calibra-
tion techniques is similar in terms of in-control stability
and out-of-control detection time. Because the distribution
of in-control run length is intractable, calibrating either p
or the UCL to result in a particular in-control ARL can be
carried out through Monte Carlo simulation.

3.4 | Computational considerations

A fundamental problem with an online monitoring
method based on the posterior distribution in Equation 12
is that the posterior requires O(T) computations at time 7.
The linear growth of computation time needed to process
anew observation is attributable to the growth in the num-
ber of possible change points. We circumvent this issue
through the commonly used approach of using a moving
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window or windowing (for a general overview of sam-
ple size considerations in SPC, see Montgomery**). With
this approach, we only consider the most recent window,
or subset, of data when computing the posterior. Let W
denote the window size in number of time steps and let
TV, TY, ..., Ty, denote the respective time indices of pro-
files in the window at time T (note that T’ 1W =T-W+1and
Tx = T). The windowed posterior, or the posterior given
only thedata DI, = {d' : t =T}, TV, ..., T}, is then

Dy |)7(7)

ence the comparison as both methods only monitor the
differences between observed profiles and an in-control
template—not the profiles themselves.

The parameters of the simulation emulate those
used in Chicken et al,®® where LRT outperformed the
wavelet-based methods of Fan,* Jin and Shi,”” and Jeong
et al.** We considered profiles with n = 512 observations.
When applying the DWT required by both methods, we

JT(TlDTW) =

Yo, fDOL|r = r(z = ) + f(DL |t > T)zo(z > T)
Dy, 10)7 ()

(32)

= TW
fOLle < Tz (z < TV )+ 3 "

Unlike the full posterior, the windowed posterior treats
data outside of the window as missing, resulting in the
consideration of at most W + 1 specific change points
at any time. This allows the method to maintain a fixed
computational cost at each time of the process. Change
points in the distant past, outside the current window,
are weighted according to the prior in the same way as
future change points. So while only the posterior utilizes
only a portion of the data, its support covers the entire
space of possible change points. Discarding data will still
hinder the estimation of an exact change point outside of
the current window and can prevent evidence of minor
changes from accumulating. In practice, however, win-
dowing would only be utilized for online process moni-
toring, and estimation of a change point can always be
carried out offline using the full posterior after the process
is stopped. In Section 4, we show the performance of the
proposed method for W = 10.

4 | SIMULATION

We compared the performance of the proposed WBB
method to the LRT method of Chicken et al®* through
Monte Carlo simulation. The comparison is of particu-
lar interest as both methods use wavelets to address the
phase II profile monitoring problem in a change-point
framework—one from a Bayesian perspective, the other
from a frequentist one. The methods operate under the
same assumptions: iid Gaussian errors and a single and
sustained change in the functional structure of profiles.
Both methods require that f° and o, be known or esti-
mated prior to online monitoring. In order to compare
WBB and LRT, we set f°x) = 0 and ¢, = 1, with-
out loss of generality. Using these values did not influ-

—TW
_T2

f(Da,h' =br(rt=1t)+ f(DTwlT > Tr.(t > T).

used the Haar wavelet basis to obtain a complete decom-
position (ie, j, = 0). For the implementation of WBB, we

TABLE 1 A calibration summary from 100 replications of an
in-control monitoring scenario®

Method Prior w ARL SDRL UCL
WBB Normal Full 211.26 183.61 0.170
WBB Normal 10 216.30 163.30 0.200
WBB Laplace Full 202.95 173.73 0.170
WBB Laplace 10 205.85 129.43 0.250
LRT N/A N/A 205.96 244.40 0.033

Abbreviations: ARL, average run length; LRT, likelihood ratio test;
SDRL, standard deviation of run length; UCL, upper control limit; WBB,
wavelet-based Bayesian.

2For each method, the summary includes the average and standard deviation
of the 100 simulated run lengths as well as the upper control limit that was
used.

In-Control Run Length

1500
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Run Length
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]

T T
Normal Full Normal 10 Laplace Full Laplace 10 LAT

Mathod

FIGURE1 The distribution of run length for each method from
100 simulated replications of an in-control monitoring scenario
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set @ = 0.05 and mapped the posterior median threshold
to the universal threshold, as described in Section 3.3,

resulting in s = 1.07 for the normal mixture and s = 1.31
for the Laplace mixture. We considered both the full WBB



v | WILEY

VARBANOV ET AL.

TABLE 2 The ARL and (SDRL) for each method from 100 replications of each monitoring scenario whenz = 1

Method m Horizontal Line Triangular
Normal Full 0.01  4.16 (2.31) 10.71 (4.67)
0.04  1.32(0.47) 2.63 (0.77)
0.09 1.02(0.14) 1.49 (0.52)
0.16  1.00 (0.00) 1.05 (0.22)
0.25  1.00 (0.00) 1.00 (0.00)
Normal10  0.01  4.43(2.37) 12.58 (7.45)
0.04  1.35(0.50) 2.71 (0.78)
0.09 1.02(0.14) 1.51 (0.52)
0.16  1.00 (0.00) 1.05 (0.22)
0.25  1.00 (0.00) 1.00 (0.00)
Laplace Full 0.01  4.11(2.13) 9.84 (4.02)
0.04 1.25(0.44) 2.61 (0.79)
0.09  1.01(0.10) 1.44(0.52)
0.16 1.00 (0.00) 1.04 (0.20)
0.25 1.00 (0.00) 1.00 (0.00)
Laplace10  0.01  4.60 (2.38) 11.74 (6.54)
0.04  1.33(0.49) 2.70 (0.78)
0.09 1.02 (0.14) 1.47 (0.52)
0.16  1.00 (0.00) 1.05 (0.22)
0.25  1.00(0.00) 1.00 (0.00)
LRT 0.01 53.40 (49.41) 122.93 (109.31)
0.04 2.42(1.61) 7.36 (6.00)
0.09  1.13(0.39) 1.56 (0.87)
0.16  1.00 (0.00) 1.02 (0.14)
0.25  1.00 (0.00) 1.00 (0.00)

Parabolic Broken Line  Local Jumps
6.37 (3.32) 8.36(3.92) 11.44 (5.21)
1.82 (0.69) 2.19(0.73) 2.96 (1.01)
1.06 (0.24) 1.27 (0.45) 1.65 (0.52)
1.00 (0.00) 1.00 (0.00) 1.06 (0.24)
1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
6.78 (3.57) 9.03 (4.65) 13.63 (7.91)
1.89 (0.69) 2.21(0.78) 2.99 (1.00)
1.07 (0.26) 1.30 (0.46) 1.69 (0.51)
1.00 (0.00) 1.00 (0.00) 1.08 (0.27)
1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
6.21 (2.93) 8.07 (3.41) 10.79 (4.50)
1.79 (0.69) 2.19(0.76) 2.96 (0.95)
1.06 (0.24) 1.23 (0.42) 1.64 (0.54)
1.00 (0.00) 1.00 (0.00) 1.04 (0.20)
1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
6.69 (3.11) 9.30 (4.65) 13.11 (7.33)
1.86 (0.70) 2.31 (0.79) 3.08 (1.06)
1.06 (0.24) 1.27 (0.45) 1.69 (0.53)
1.00 (0.00) 1.00 (0.00) 1.07 (0.26)
1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

107.13 (102.49) 123.56 (101.73) 114.20 (106.98)
5.48 (4.27) 8.46 (6.08) 11.41 (8.97)
1.35(0.63) 1.62 (0.92) 2.29 (1.51)
1.02 (0.14) 1.05 (0.22) 1.05 (0.22)
1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Abbreviations: ARL, average run length; LRT, likelihood ratio test; SDRL, standard deviation of run length.

model and the windowed WBB model with W = 10.
Hereafter, we may identify WBB implementations simply
by the combination of prior and window size (eg, Normal
10, Laplace Full).

4.1 | Calibration and in-control
performance

Before comparing the ability to detect changes, we con-
sidered each method’s stability when monitoring an
in-control process. The in-control statistical properties of
a monitoring method allow us to control false alarms and
make a fair comparison of each method's power.

We estimated the in-control ARL of each method using
100 replications of the monitoring scenario. Each method
was calibrated by choosing a UCL to result in an in-control
ARL of approximately 200. Given this target in-control
ARL, we set p = 1/200 to match the mean of the prior on
7. The chosen UCL was the smallest value for which the
ARL of the simulated run lengths was at least 200. A cal-
ibration summary for all methods is given in Table 1. The
table includes the standard deviation of run length (SDRL).

A graphical comparison of the distributions of in-control
run length for each method is shown in Figure 1.

From Table 1 and Figure 1, we see an important ben-
efit of WBB. While WBB and LRT are both calibrated to
result in the same in-control ARL, WBB attains that aver-
age with much less variability. LRT has a much higher
SDRL and extreme run length values that far exceed those
of any WBB setting. Given the presence of these extreme
values in the distribution of run length, the LRT method
will result in a higher proportion of early false alarms in
order to match desired in-control ARL.

This discrepancy highlights a shortcoming of using ARL
for in-control calibration. With increasingly complex pro-
cess monitoring methods, error rates change in time and
are often difficult to obtain. This prompts the use of ARL
to control false alarms. However, without consideration of
the stability with which that ARL is attained, a monitor-
ing method may have undesirable in-control properties. In
general, the in-control run length of a method is a random
variable with a heavy-tailed, right-skewed distribution to
which the mean is sensitive. A direction for future work
would be to replace ARL with a robust characterization of
run length.
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TABLE 3 The ARL and (SDRL) for each method from 100 replications of each monitoring scenario when

T =20
Method m Horizontal Line Triangular Parabolic Broken Line Local Jumps
Normal Full  0.01 3.88(1.82) 10.47 (5.20) 5.86 (2.74) 8.01 (3.75) 11.50 (5.08)
Pra = 005  0.04 1.34(0.52) 2.66 (0.88) 1.77 (0.66) 2.20 (0.74) 2.85(0.97)
0.09 1.01 (0.10) 1.56 (0.50) 1.08 (0.27) 1.26 (0.46) 1.68 (0.53)
0.16 1.00 (0.00) 1.01 (0.10) 1.00 (0.00) 1.02 (0.14) 1.11 (0.31)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Normal10  0.01 3.93(1.83) 11.14 (6.52) 5.92 (2.61) 8.46 (4.32) 12.27 (7.35)
Pra = 0.04  0.04 1.38 (0.55) 2.74(0.89) 1.79 (0.67) 2.22(0.72) 2.89 (0.98)
0.09 1.02 (0.14) 1.58 (0.50) 1.09 (0.29) 1.28 (0.47) 1.71 (0.52)
0.16 1.00 (0.00) 1.02 (0.14) 1.00 (0.00) 1.02 (0.14) 1.11 (0.31)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Laplace Full 0.01 3.74 (1.72) 9.67 (4.57) 5.63(2.50) 7.76 (3.28) 10.88 (4.49)
Pra = 0.05  0.04 1.32(0.51) 2.63(0.85) 1.77 (0.66) 2.22(0.70) 2.89 (0.95)
0.09 1.01 (0.10) 1.47 (0.50) 1.06 (0.24) 1.24 (0.45) 1.66 (0.54)
0.16 1.00 (0.00) 1.01 (0.10) 1.00 (0.00) 1.02 (0.14) 1.09 (0.29)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Laplace 10  0.01 3.97 (1.75) 10.57 (5.68) 6.01 (2.49) 7.95 (3.06) 11.54 (6.20)
DPra = 0.02  0.04 1.38 (0.55) 2.72(0.87) 1.83 (0.68) 2.36 (0.67) 2.99 (0.97)
0.09 1.01 (0.10) 1.52 (0.50) 1.10 (0.30) 1.29 (0.48) 1.73 (0.53)
0.16 1.00 (0.00) 1.01 (0.10) 1.00 (0.00) 1.02 (0.14) 1.11 (0.31)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
LRT 0.01  59.30 (50.47) 121.99 (93.74) 101.48 (86.20) 129.53(94.93) 132.82 (97.58)
Pra = 0.08  0.04 2.62 (1.80) 8.76 (6.45) 4.97 (3.40) 9.31 (7.03) 13.22 (10.04)
0.09 1.21 (0.48) 1.73 (0.98) 1.44 (0.72) 1.72 (0.96) 2.39(1.45)
0.16 1.00 (0.00) 1.00 (0.00) 1.03 (0.22) 1.06 (0.28) 1.08 (0.27)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.01 (0.10)

Abbreviations: ARL, average run length; LRT, likelihood ratio test; SDRL, standard deviation of run length.

The difference in the variability of a full WBB method

and its windowed counterpart may be explained by the
influence of the prior on the change point. The windowed
models utilize less data and are therefore subject to greater
influence by the prior. This removal of randomness results
in more stable monitoring. It also shows the possibility of
stably calibrating to any desired in-control ARL.

4.2 | Out-of-control performance
and estimation

We used the UCL values from Section 4.1 to compare each
method's ability to detect varying functional changes g of
different magnitudes m. The test functions are those used
in Chicken et al.*® We define m to be the integrated squared
error introduced by g and considered magnitudes ranging
from 0.01 to 0.25. We considered five different forms of g:
a uniformly additive shift and the four different functions
shown in Figure 2. The test functions represent changes of
not only different forms but with different levels of local-
ization. Figure 3 shows noise-contaminated versions of the
test functions when m = 0.25, the largest magnitude con-

sidered. We see that even for the largest magnitude, the
functional changes are small relative to the level of noise
and may be difficult to detect visually.

Tables 2 to 3 summarize the detection performance of
each method from 100 replications of each setting. Table 2
sets T = 1 (ie, the process is never in control), and Table 3
sets ¢ = 20. The ARL and corresponding SDRL val-
ues refer to the number of out-of-control profiles observed
before a change was signaled. For = > 1, if a method sig-
naled a false alarm prior to time 7z, the monitoring method
was reset and allowed to resume monitoring at the next
time point, now closer to the change point than when the
replicate originally began. The proportion of run lengths
that ended in a false alarm is reported as Pg4. All meth-
ods excel at detecting changes of the largest magnitudes,
often stopping the process after a single out-of-control
observation. The starkest differences are seen for lower
magnitude changes where all WBB methods significantly
outperform LRT. This can be explained by the ability of the
WBB method to incorporate frequency and location infor-
mation across profiles. While LRT uses all coefficients in
its control statistic, it only uses the sum of the squared
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TABLE 4 The mean and (RMSE) of the estimated  in each method from 100 replications of each monitoring

scenariowhen 7 = 1

Method m Horizontal Line  Triangular Parabolic Broken Line Local Jumps
Normal Full  0.01 1.82 (1.80) 2.63(3.35) 2.61(2.98) 2.31(2.52) 3.39(3.93)
0.04 1.02 (0.14) 1.04 (0.20) 1.02 (0.14) 1.02 (0.14) 1.06 (0.24)
0.09 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.16 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Normal10  0.01 1.82 (1.80) 6.39 (8.39) 2.99 (3.38) 3.53(4.20) 7.82 (10.00)
0.04 1.02 (0.14) 1.04 (0.20) 1.02 (0.14) 1.02 (0.14) 1.05 (0.22)
0.09 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.16 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Laplace Full 0.01 1.62 (1.55) 2.59(3.14) 2.18(2.34) 2.08 (2.21) 3.03(3.53)
0.04 1.03 (0.17) 1.04 (0.20) 1.04 (0.20) 1.04 (0.20) 1.08 (0.32)
0.09 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.16 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Laplace 10  0.01 1.64 (1.54) 5.08 (6.73) 2.43(2.83) 3.48 (4.25) 6.68 (8.58)
0.04 1.03 (0.17) 1.05 (0.22) 1.04 (0.20) 1.04 (0.20) 1.06 (0.28)
0.09 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.16 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
LRT 0.01  37.57(55.20) 79.68 (115.35)  82.30(129.51)  87.40(132.81)  82.94 (120.86)
0.04 1.74 (1.40) 4.52(5.66) 3.53(4.26) 5.28 (6.65) 6.43 (8.30)
0.09 1.04 (0.20) 1.29 (0.77) 1.15 (0.46) 1.34 (0.76) 1.56 (1.26)
0.16 1.00 (0.00) 1.02 (0.14) 1.01 (0.10) 1.02 (0.14) 1.03 (0.17)
0.25 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

coefficients, which discards the frequency and location
information that those coefficients carry. Without carrying
that information forward in some way, a method will strug-
gle to quickly detect changes whose magnitude is small
relative to the magnitude of the noise.

Tables 4-5 summarize the performance of change-point
estimation from the same simulation replications used in
the detection comparison. For each method, we report the
mean estimate 7 after the process was stopped and its
root mean squared error (RMSE). The results are in line
with what we might expect from the detection simulation.
LRT, which struggles to detect the smallest changes, also
struggles to estimate their location. For WBB, the process
shows more promising results for pinpointing the location
of the change. Even in cases when it took WBB longer than
10 observations to detect the change, the estimate of the
change point was much closer to the true change point
than the stopping time.

Aspreviously mentioned, the WBB results in this section
show a significant improvement over initial variations of
the framework.?” These improvements are largely reflected
inthe ARLvalues of small magnitude changes for which the
previous WBB approach performed similarly to LRT. The

primary differences between the current implementation
and the previous iteration include the structure of the prior
on the unknown wavelet coefficients across resolution lev-
els and how the parameters of that prior are determined.
The stability of prespecified global values results in better
performance than previous attempts to improve flexibility
by estimating level-dependent hyperparameters from the
data. Given that the simulation settings used in this paper
match those used in the comparison of wavelet-based meth-
ods in Chicken et al,” the proposed WBB method would
also be an improvement over the wavelet-based methods
of Fan,* Jin and Shi,'” and Jeong et al.

5 | DISCUSSION

In this paper, we proposed a general WBB model for the
phase II monitoring of nonlinear profiles. Under a variety
of simulated settings, the proposed method demonstrated
success in quickly detecting different functional changes
and estimating the position of the change in the sequence.
The proposed method is particularly suited for detecting
changes that are minor relative to the noise associated with
the process.



VARBANOV ET AL.

WILEY——2

TABLE 5 The mean and (RMSE) of the estimated 7 in each method from 100 replications of each monitoring

scenariowhenz = 1

Method m Horizontal Line Triangular Parabolic Broken Line Local Jumps
Normal Full 0.01 20.70 (1.85) 20.94 (2.27) 21.39 (2.70) 21.27 (2.65) 22.30 (4.58)
0.04 19.92(0.51) 19.97 (0.48) 19.87 (0.54) 19.89 (0.71) 19.96 (0.86)
0.09 19.98(0.14) 19.96 (0.24) 19.95 (0.22) 19.94 (0.24) 19.91 (0.39)
0.16 20.00 (0.00) 19.99 (0.10) 20.00 (0.00) 20.00 (0.00) 19.96 (0.20)
0.25 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 19.98 (0.14)
Normal 10  0.01 20.48 (1.98) 23.51 (6.44) 20.92 (2.49) 21.78 (3.92) 25.30 (8.86)
0.04 19.92(0.51) 19.98 (0.47) 19.87 (0.54) 19.89 (0.71) 19.96 (0.86)
0.09 19.98 (0.14) 19.96 (0.24) 19.95 (0.22) 19.94 (0.24) 19.92 (0.37)
0.16 20.00 (0.00) 19.99 (0.10) 20.00 (0.00) 20.00 (0.00) 19.96 (0.20)
0.25 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 19.98 (0.14)
Laplace Full 0.01 20.33 (1.57) 20.69 (2.16) 20.61 (2.17) 20.82(2.12) 21.52 (3.42)
0.04 19.95(0.48) 19.92 (0.76) 19.91 (0.52) 19.90 (0.75) 19.93 (0.88)
0.09 20.00 (0.00) 19.96 (0.40) 20.00 (0.00) 19.98 (0.20) 19.93 (0.36)
0.16  20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 19.98 (0.14)
0.25 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00)
Laplace 10  0.01 20.14 (1.62) 22.68 (5.56) 20.30 (1.87) 20.88 (2.23) 23.63 (6.96)
0.04 19.95(0.48) 19.92 (0.76) 19.93 (0.48) 19.92 (0.73) 19.93 (0.88)
0.09 20.00 (0.00) 19.96 (0.40) 20.00 (0.00) 19.99 (0.17) 19.93 (0.36)
0.16  20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 19.98 (0.14)
0.25 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00)
LRT 0.01 64.84 (64.66) 107.61 (124.80) 91.77 (105.08) 116.18 (134.02) 114.63 (134.94)
0.04 21.12(2.01) 25.15(7.79) 22.84 (4.20) 24.32 (6.60) 26.74 (10.72)
0.09 20.20 (0.51) 20.43 (0.98) 20.32 (0.75) 20.43 (0.95) 20.68 (1.22)
0.16  20.00 (0.00) 20.00 (0.00) 20.03 (0.22) 20.03 (0.22) 20.06 (0.24)
0.25 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.00 (0.00) 20.01 (0.10)

Abbreviation: LRT, likelihood ratio test.

In future work, we are interested in exploring alterna-
tives to windowing. Given our goal of detecting subtle
changes, discarding data to maintain a certain level of com-
putational complexity is counterproductive. This problem
could possibly be solved through the construction of a
posterior approximation that allows evidence of a change
to build.

Other considerations for the method primarily focus
on increasing its practical applicability. While common
in the literature, the assumption of additive iid Gaussian
noise will rarely be met. Considering a more flexible noise
structure would result in a method more suited for real
scenarios. Monitoring the process for changes in noise
structure would address another common fault condition
in SPC. Currently, the method requires knowledge of the
in-control function and noise magnitude but does not
incorporate the uncertainty that may be associated with
those estimates.

The proposed method works well for the suggested
hyperparameter values. The method's sensitivity to these
settings (including hyperparameter values, calibration
approach, and window size) is fully explored and reported
in Varbanov.*! We note that changing the proposed settings

can have effects on performance, though generally not to
the extent that would result in performance inferior to the
other considered competitors.

The proposed method is unique in that it approaches
the profile monitoring problem in a Bayesian framework
without imposing restrictive assumptions on the form of
the profiles or detectable functional changes. A Bayesian
approach allows for the natural input of process knowl-
edge and for an intuitive interpretation of the monitoring
statistic. Wavelets allow the proposed method to flexibly
monitor for a variety of profile changes, including the
often irregular forms encountered in practice. By avoiding
MCMC approximation of the posterior, the method incor-
porates these benefits of Bayesian analysis in an online
monitoring procedure.
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