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Abstract—In small-cell wireless networks where users are
connected to multiple base stations (BSs), it is often advantageous
to switch off dynamically a subset of BSs to minimize energy
costs. We consider two types of energy cost: (i) the cost of
maintaining a BS in the active state, and (ii) the cost of switching
a BS from the active state to inactive state. The problem is to
operate the network at the lowest possible energy cost (sum of
activation and switching costs) subject to queue stability. In this
setting, the traditional approach — a Max-Weight algorithm
along with a Lyapunov-based stability argument — does not
suffice to show queue stability, essentially due to the temporal
co-evolution between channel scheduling and the BS activation
decisions induced by the switching cost. Instead, we develop
a learning and BS activation algorithm with slow temporal
dynamics, and a Max-Weight based channel scheduler that has
fast temporal dynamics. We show using convergence of time-
inhomogeneous Markov chains, that the co-evolving dynamics of
learning, BS activation and queue lengths lead to near optimal
average energy costs along with queue stability.

Index Terms—wireless scheduling, base-station activation, en-
ergy minimization

I. INTRODUCTION

Due to the tremendous increase in demand for data traffic,
modern cellular networks have taken the densification route to
support peak traffic demand [2]. While increasing the density
of base-stations gives greater spectral efficiency, it also results
in increased costs of operating and maintaining the deployed
base-stations. Rising energy cost is a cause for concern, not
only from an environmental perspective, but also from an
economic perspective for network operators as it constitutes a
significant portion of the operational expenditure. To address
this challenge, latest research aims to design energy efficient
networks that balance the trade-off between spectral efficiency,
energy efficiency and user QoS requirements [3], [4].

Studies reveal that base-stations contribute to more than
half of the energy consumption in cellular networks [5], [6].
Although dense deployment of base-stations are useful in
meeting demand in peak traffic hours, they regularly have
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excess capacity during off-peak hours [4], [7]. A fruitful way
to conserve power is, therefore, to dynamically switch off
under-utilized base-stations. Even in networks that do not have
fluctuations in traffic load, switching base-stations dynamically
is a useful way to reduce power consumption while meeting
the network traffic demand. For this purpose, modern cellular
standards incorporate protocols that include sleep and active
modes for base-stations. The sleep mode allows for selec-
tively switching under-utilized base-stations to low energy
consumption modes. This includes completely switching off
base-stations or switching off only certain components.
Consider a time-slotted multi base-station (BS) cellular
network where subsets of BSs can be dynamically activated.
Since turning off BSs could adversely impact the performance
perceived by users, it is important to consider the underlying
energy vs. performance trade-off in designing BS activation
policies. In this paper, we study the joint problem of dynam-
ically selecting the BS activation sets and user rate allocation
depending on the network load. We take into account two types
of overheads involved in implementing different activation
modes in the BSs.
(i) Activation cost occurs due to maintaining a BS in the active
state. This includes energy spent on main power supply, air
conditioning, transceivers and signal processing [7]. Surveys
show that a dominant part of the energy consumption of an
active base-station is due to static factors that do not have
dependencies with traffic load intensities [4], [8]. Therefore,
an active BS consumes almost the same energy irrespective of
the amount of traffic it serves. Typically, the operation cost
(including energy consumption) in the sleep state is much
lower than that in the active state since it requires only minimal
maintenance signaling [6].
(ii) Switching cost is the penalty due to switching a BS
from active state to sleep state or vice-versa. This factors in
the signaling overhead (control signaling to users, signaling
over the backhaul to other BSs and/or the BS controller),
state-migration processing, and switching energy consumption
associated with dynamically changing the BS modes [7].
Further, switching between these states typically cannot
occur instantaneously. Due to the hysteresis time involved in
migrating between the active and sleep states, BS switching
can be done only at a slower time-scale than that of channel
scheduling [9], [10].

Main Contributions

We formulate the problem in a (stochastic) network cost
minimization framework. The task is to select the set of active


http://ieeexplore.ieee.org
http://ieeexplore.ieee.org

BSs in every time-slot, and then based on the instantaneous
channel state for the activated BSs, choose a feasible allocation
of rates to users. Our aim is to minimize the total network cost
(sum of activation and switching costs) subject to stability of
the user queues at the BSs.

While BS switching can be used to reduce energy costs
both when the traffic load is dynamic and static, we consider
the static case in this paper. Specifically, we assume that the
incoming traffic for each user to a BS is independent and
identically distributed (i.i.d.) with fixed rates. In this stationary
setting, the task is to find the right way to activate and de-
activate BSs so as to serve the incoming load while minimizing
the energy cost. This is challenging especially because the
energy cost includes the cost of switching the BSs from one
state to the other. In practice, one could model the non-
stationary setting as one with regime changes. One could then
separately apply the main findings of our i.i.d. traffic load
study to each regime. Our simulation studies described later
in the paper suggest the modifications needed for application
of our findings to settings with regime changes.

Insufficiency of the standard Lyapunov technique: Such
stochastic network resource allocation problems typically
adopt greedy primal dual algorithms along with virtual-queues
to accommodate resource constraints [11], [12], [13]. To
ensure stability, this technique crucially relies on achieving
negative Lyapunov drift in some fixed number of time-slots. In
our problem, unlike in the traditional setting, such an approach
cannot be applied because the rates available for allocation in
a time-slot is correlated with the network state in the previous
time-slot. See Section IV-D.1 for more details.

To circumvent difficulties introduced through this co-
evolution, we propose an approach that uses queue-lengths
for channel scheduling at a fast time-scale, but explicitly uses
arrival and channel statistics (using learning via an explore-
exploit learning policy) for activation set scheduling at a
slower time-scale. Our main contributions are as follows.

1) Static-split Activation + Max-Weight Channel
Scheduling: We propose a solution that explicitly
controls the time-scale separation between BS activation
and rate allocation decisions. At BS switching instants
(which occurs at a slow time-scale), the strategy uses
a static-split rule (time-sharing) which is pre-computed
using the explicit knowledge of the arrival and channel
statistics for selecting the activation state. This activation
algorithm is combined with a queue-length based
Max-Weight algorithm for rate allocation (applied at
the fast time-scale of channel variability). We show
that the joint dynamics of these two algorithms lead
to stability; further, the choice of parameters for the
algorithm enables us to achieve an average network cost
that is arbitrarily close to the optimal cost.

2) Learning algorithm with provable guarantees: In
the setting where the arrival and channel statistics are
not known, we propose an explore-exploit policy that
estimates arrival and channel statistics in the explore
phase, and uses the estimated statistics for activation
decisions in the exploit phase (this phase includes BS
switching at a slow time-scale). This is combined with

a Max-Weight based rate allocation rule restricted to
the activated BSs (at a fast time-scale). We prove that
this joint learning-cum-scheduling algorithm can ensure
queue stability while achieving close to optimal network
cost.

3) Convergence bounds for time-inhomogeneous Markov
chains: In the course of proving the theoretical guar-
antees for our algorithm, we derive useful technical
results on convergence of time-inhomogeneous Markov
chains. More specifically, we derive explicit convergence
bounds for the marginal distribution of a finite-state time-
inhomogeneous Markov chain whose transition probabil-
ity matrices at each time-step are arbitrary (but small)
perturbations of a given stochastic matrix. We believe that
these bounds are useful not only in this specific problem,
but are of independent interest.

To summarize then, our approach can be viewed as an
algorithmically engineered separation of time-scales for only
the activation set dynamics, while adapting to the channel
variability for the queue dynamics. Such an engineering of
time-scales leads to coupled fast-slow dynamics, the ‘fast’ due
to opportunistic channel allocation and packet queue evolution
with Max-Weight, and the ‘slow’ due to infrequent base-
station switching using learned statistics. Through a novel Lya-
punov technique for convergent time-inhomogeneous Markov
chains, we show that we can achieve queue stability while
operating at a near-optimal network cost.

Related Work

While mobile networks have been traditionally designed
with the objective of optimizing spectral efficiency, design of
energy efficient networks has been of recent interest. A survey
of various techniques proposed to reduce operational costs and
carbon footprint can be found in [4], [14], [3], [6]. The survey
in [6] specially focuses on sleep mode techniques in BSs.

Various techniques have been proposed to exploit BS sleep
mode to reduce energy consumption in different settings.
Most of them aim to minimize energy consumption while
guaranteeing minimum user QoS requirements. For example,
[15], [7], [16] consider inelastic traffic and consider outage
probability or blocking probability as metrics for measuring
QoS. In [9], the problem is formulated as a utility optimization
problem with the constraint that the minimum rate demand
should be satisfied. But they do not explicitly evaluate the
performance of their algorithm with respect to user QoS. The
authors in [17], [18] model a single BS scenario with elastic
traffic as an M/G/1 vacation queue and characterize the impact
of sleeping on mean user delay and energy consumption. In
[10], the authors consider the multi BS setting with Poisson
arrivals and delay constraint at each BS.

Most papers that study BS switching use models that ignore
switching cost. Nonetheless, a few papers acknowledge the
importance of avoiding frequent switching. For example, Oh
et al. [19] implement a hysteresis time for switching in their
algorithm although they do not consider it in their theoretical
analysis. Gou et al. [18] also study hysteresis sleeping schemes
which enforce a minimum sleeping time. In [9] and [10], it



is ensured that interval between switching times are large
enough to avoid overhead due to transient network states.
Finally Jie et al. [7] consider BS sleeping strategies which
explicitly incorporate switching cost in the model (but they
do not consider packet queue dynamics). They emphasize that
frequent switching should be avoided considering its effect
on signaling overhead, device lifetime and switching energy
consumption, and also note that incorporating switching cost
introduces time correlation in the system dynamics.

Finally, this paper builds on the rich MaxWeight literature
for opportunistic scheduling [20], [21], [22]. The literature
has considered many aspects of utility maximization and tail
performance [23], [12], [24], partial channel information [25],
[26], and heterogeneous and inconsistent network information
[27]; we refer to [13] for a comprehensive survey. Most related
among these are the studies with partial information and
two-stage decision making [25], [26], [28], with MaxWeight
averaged through an appropriate conditional expectation for
first-stage decision making, and the usual MaxWeight rule for
the second stage, and with the proofs of stability shown using
a Lyapunov argument. Our work differs in that the switching
stemming from base-station activation does not directly permit
a standard Lyapunov argument to hold (see Section IV-D.1 for
additional discussion); thus we use explicit learning in the first
stage, followed by the usual MaxWeight for the second stage.
Our proof technique also substantially differs, as our first stage
arguments are based on an analysis of time-inhomogeneous
Markov Chains.

Notation: Important notation for the problem setting can
be found in Table 1. For any two vectors v, vy and scalar a,
vi - vo denotes the dot product between the two vectors and
vy +a=vy+al.

II. SYSTEM MODEL

We consider a time-slotted cellular network with n users
and M base-stations (BS) indexed by v = 1,...,n and
m =1,..., M respectively. Users can possibly be connected
to multiple BSs. It is assumed that the user-BS association
does not vary with time.

A. Arrival and Channel Model

Data packets destined for a user w arrive at a connected
BS m as a bounded (at most A packets in any time-slot),
iid. process {An (t)},~, with rate E[A,, ()] = Amu.
Arrivals get queued if they are not immediately transmitted.
Let Q. . (t) represent the queue-length of user u at BS m at
the beginning of time-slot ¢.

The channel between the BSs and their associated users is
also time-varying and i.i.d across time (but can be correlated
across links), which we represent by the network channel-
state process {H ()}, . At any time ¢, H () can take values
from a finite set 7 with probability mass function given by
p. Let R be the maximum number of packets that can be
transmitted over any link in a single time-slot. We consider
an abstract model for interference by working with the set
R(1,h) C {0,1,..., R}M>*" defined as the set of all possible
rate vectors (the number of packets that can be transmitted in

a time-slot) achievable by non-randomized scheduling rules in
a single time-slot, given that the channel state in that time-slot
is h. Since the number of packets that can be transmitted per
link is upper bounded by R, R(1, &) has finite cardinality. For
concrete examples of interference models, we refer the reader
to [11, Ch. 2].

B. Resource Allocation

At any time-slot ¢, the scheduler has to make two types of
allocation decisions:
BS Activation: Each BS can be scheduled to be in one of
the two states, ON (active mode) and OFF (sleep mode).
Packet transmissions can be scheduled only from BSs in
the ON state. The cost of switching a BS from ON in
the previous time-slot to OFF in the current time-slot is
given by Cy and the cost of maintaining a BS in the ON
state in the current time-slot is given by C;. The activation
state at time ¢ is denoted by J(t) = (Jin(t)),,c(ar)» Where
JIm(t) ;= 1{BS m is ON at time t}. We also denote the set
of all possible activation states, {0, 1}, by 7. The total cost
of operation, which we refer to as the network cost, at time ¢
is the sum of switching and activation cost and is given by

O(t) = Coll(I(t = 1) =ID) [l + CollI @)y (D)

It is assumed that the current network channel-state H (¢) is
unavailable to the scheduler at the time of making activation
decisions.

Rate Allocation: The network channel-state is observed after
the BSs are switched ON and before the packets are scheduled
for transmission. Moreover, only the part of the channel
state restricted to the activated BSs, which we denote by
H(t)|3(t), can be observed. For any j € J,h € H, let
R(j,h) C {0,1,..., R}M*" denote the set of all possible
service rate vectors that can be allocated when the activation
set is j and the channel state is h. A more precise definition
of R(j,h) is as follows. For any j € J, r € RMX" et the

product r o j be an RM*" matrix defined as
. Tma Af jm =1,
roj)mu = ’ . 2
(o 5)m, {0 otherwise. @

Also for any set R C RM*" define Roj:={roj:r € R}
We assume that (i) a BS that is merely switched ON but not
transmitting packets does not cause any interference in the
network, and (ii) R(1,h)oj C R(1,h) for any j € J. Based
on these assumptions, we define R(j, h) := R(1, k) o j. This
means that R(j’,h) C R(j,h) for any j',j € J such that
j' < j,and R(1, h) contains all possible rate vectors when the
channel state is i for any BS activation set. Given the channel
observation H(t)|y(), the scheduler allocates a rate vector
S(t) = (Smr“(t))me[M],uE[n] from the set R(J(t), H(t))
for packet transmission. This allows for draining of S, ., (¢)
packets from user u’s queue at BS m for all w € [n] and
m € [M].

Thus the resource allocation decision in any time-slot ¢ is
given by the tuple (J(¢), S(¢)). The sequence of operations in
any time-slot can, thus, be summarized as follows: (i) Arrivals,
(i) BS Activation-Deactivation, (iii) Channel Observation, (iv)
Rate Allocation, and (v) Packet Transmissions.



TABLE I
GENERAL NOTATION
I Symbol [ Description I
n Number of users
M Number of BSs
] The set {1,2,...,1} for an integer .
m,u(t Arrival for user u at BS m at time ¢

Maximum number of arrivals
A to any queue in a time-slot
A Average arrival rate vector
Channel state at time ¢
H Set of all possible channel states
" Probability mass function of channel state
Maximum service rate
to any queue in a time-slot
hl; Channel state h restricted to
the activated BSs in j
Set of all possible rate vectors for
activation vector j and channel state h
Activation vector at time ¢

R(j, h) C RMX"

J() = (Jm(1))

J Set of all possible activation states
S(t) = (Sm,u(?)) Rate allocation at time ¢

Cy Cost of operating a BS in ON state

Co Cost of switching a BS from

ON to OF'F state

C(t) Network cost at time ¢
Qm,u(t) Queue of user u at BS m
at the beginning of time-slot ¢
P Set of all probability (row) vectors in R’
Plz Set of all stochastic matrices in RF¥?
4%} Set of all stochastic matrices in
R!X! with a single ergodic class
1; All 1’s Column vector of size [
I Identity matrix of size [

C. Model Extensions

Some of the assumptions in the model above are made for
ease of exposition and can be extended in the following ways:
(i) Network Cost: We assume that the cost of operating a BS
in the OFF state (sleep mode) is zero. However, it is easy
to include an additional parameter, say C}, which denotes the
cost of a BS in the OFF state. Similarly, for switching cost,
although we consider only the cost of switching a BS from
ON to OFF state, we can also include the cost of switching
from OFF to ON state (say C{)). The analysis in this chapter
can then be extended by defining the network cost as

O(t) = Coll(I(t = 1) = I0) "I, + CLIID)I,
+ Coll(I() = It =)y + CL (M~ IID)]])

instead of (1).

(ii) Switching Hysteresis Time: While our system allows
switching decisions in every time-slot, we will see that the
key to our approach is a slowing of activation set switching
dynamics. Specifically, on average our algorithm switches
activation states once every 1/e, timeslots, where €, is a
tunable parameter. Additionally, it is easy to incorporate ‘“hard
constraints” on the hysteresis time by restricting the frequency
of switching decisions to, say once in every L time-slots
(for some constant L). This avoids the problem of switching
too frequently and gives a method to implement time-scale
separation between the channel allocation decisions and BS
activation decisions. While our current algorithm has inter-

switching times i.i.d. geometric with mean 1/e;, it is easy to
allow other distributions that have bounded means with some
independence conditions (independent of each other and also
the arrivals and the channel). We skip details in the proofs for
notational clarity.

III. OPTIMIZATION FRAMEWORK

For any ¢ € N, let 7, = (A(1),3(0), H() 50, S()),_,- A
policy is given by a (possibly random) sequence of resource
allocation decisions (J(t),S(t)),., where, at any time ¢, the
decision may depend on the information from random vari-
ables observed in the past but not the future, i.e., BS activation
may depend on F; and rate allocation on (Fy, J(t), H(t)|501))-
Let (J(t—1),Q(t)) be the network state at time ¢. The
rationale behind this choice of network state is to construct

policies that provide control over switching costs.
Notation: We use P, [] and E,, [-] to denote probabilities
and expectation under policy . We skip the subscript when

the policy is clear from the context.

A. Stability, Network Cost, and the Optimization Problem

Definition 1 (Stability). A network is said to be stable under
a policy o if there exist constants Q, p > 0 such that for any
initial condition (J(0),Q(1)),

S Qumal) Q| 3(0),Q1)| > p.

me[m],u€n]

1 X
l;}rigéfT;IP’¢

3)

Remark 1. The above definition of stability is applicable for a
general network state process that is not necessarily Markov. It
is motivated by the fact that for an aperiodic and irreducible
DTMC, Definition 1 implies positive recurrence. Indeed, for
such a DTMC, we can conclude from (3) that

lim sup P,
T—o0

holds and hence the DTMC is recurrent; further (4) violates
the necessary condition for null recurrence ([29, Th. 21.17]):

lim Pcp Q(t) =q J(O)’Q(l) =0, Vq,

t—o0

and hence the DTMC is positive recurrent.

Consider the set of all ergodic Markov policies 91, including
those that know the arrival and channel statistics. A policy
p € M if and only if it makes (possibly randomized)
allocation decisions at time ¢ based only on the current
state (J(t —1),Q(¢)) (and possibly the arrival and channel
statistical parameters), and the resulting network state process
is an ergodic Markov chain. Later, in Section IV-C, we discuss
why it is sufficient to restrict attention to this class of policies.
We now define the support region of a policy and the capacity
region.



Definition 2 (Support Region of a Policy ). The support
region A¥ () of a policy ¢ is the set of all arrival rate vectors
for which the network is stable under the policy .

Definition 3 (Capacity Region). The capacity region A(p) is
the set of all arrival rate vectors for which the network is
stable under some policy in M, i.e., A(p) =, con A7 (1)

Definition 4 (Network Cost of a Policy ). The network cost
C?(w, A) under a policy ¢ is the long term average network
cost (BS switching and activation costs) per time-slot, i.e.,

T
C?(p, A) := lijgljotip % ZE%" [C(t) | 3(0),Q(1)] .

We formulate the resource allocation problem in a network
cost minimization framework. Consider the problem of net-
work cost minimization under Markov policies 99T subject to
stability. The optimal network cost is given by

C™(p, A) = C?(p,\). (5)

inf
{peM:NeA?(pn)}

B. Markov-Static-Split Rules

The capacity region A(u) will naturally be characterized by
only those Markov policies that maintain all the BSs active in
all the time-slots, i.e., J(¢) = 1V¢. In the traditional schedul-
ing problem without BS switching, it is well-known that the
capacity region can be characterized by the class of static-split
policies [21] that allocate rates in a random i.i.d. fashion given
the current channel state. An arrival rate vector A € A(p) iff
there exists convex combinations {a(l,h) € Pir@,n
such that

) nen

A< Z w(h) Z ap(1,h)r.

heH reR(1,h)

But note that static-split rules in the above class, in which BSs
are not switched OFF, do not optimize the network cost.

We now describe a class of activation policies called the
Markov-static-split + static-split rules which are useful in
handling the network cost. A policy is a Markov-static-split +
static-split rule if it uses a time-homogeneous Markov rule for
BS activation in every time-slot, and an i.i.d. static-split rule
for rate allocations. For any [ € N, let W, denote the set of
all stochastic matrices of size [ with a single ergodic class. A
Markov-static-split + static-split rule is characterized by

1) a stochastic matrix P € W, 7| with a single ergodic class,

2) convex combinations {c(j, h) € P|R(jvh)|}jej,h67-t’
Here P represents the transition probability matrix that speci-
fies the jump probabilities from one activation state to another
in successive time-slots. {c(j, h)};c 7 ey specify the static-
split rate allocation policy given the activation state and the
network channel-state.

Let 9GS denote the class of all Markov-static-split + static-
split rules. For a rule (P, a = {a(j, h)}jej,heH) € MG, let
o denote the invariant probability distribution corresponding
to the stochastic matrix P. Then the expected switching and
activation costs are given by Co >~ i 7 0 Py [|(5" — N
and C; >, 7 0;jll, respectively. We prove in the following

theorem that the class 911G can achieve the same performance
as I, the class of all ergodic Markov policies.

Theorem 1. For any A, p and ¢ € M such that X € A?(w),
there exists a ¢ € MG such that X € A¥ (p) and
C? (u,A) = C?(u, ). Therefore,

C™ (p, ) = inf C? (, ).

P EMS AEAP (1)
Proof Outline. The proof of this theorem is similar to the
proof of characterization of the stability region using the
class of static-split policies. It maps the time-averages of BS
activation transitions and rate allocations of the policy ¢ € 9
to a Markov-static-split rule ¢’ € 9GS that mimics the same
time-averages. (Detailed proof is in the Appendix.) O

From the characterization of the class 91&, Theorem 1
shows that the optimal cost C™(u, A) is equal to the optimal
value of the optimization problem V' (u, A), which is given by

. . N+ .
inf Co > o Pl =)+ G ol
' iieT jeg

such that P € W| J| with unique invariant distribution o €
Pi7)» and a(j,h) € Pirin) Vi € T, h € H with

A<Y o Y ) > e (6)

jET  heH reR(j,h)

C. A Modified Optimization Problem

Now, consider the linear program given by

rcrruél (o Z o;lljll;, such that

)

jeT
o c P‘j‘
Bihr >0 YreR(jh),VjeT heH,

o= > Bine Yi€T heH, (7)
reR(j,h)

A< Z Bjnrt(h)r. 8
JET heH,
reR(j,h)

The constraint (7) forces the right-hand side to be a constant
over h € H.

Let d := [J| + > jc7nenlR(j:h)| be the number of
variables in the above linear program. We denote by L. (g, A),
a linear program with constraints as above and with ¢ € R?
as the vector of weights in the objective function. Thus, the
feasible set of the linear program L. (g, A) is specified by the
parameters g, A and the objective function is specified by the
vector c. Let C}(p, A) denote the optimal value of L.(p, A)
and O} (p, A) denote the optimal solution set. Also, let

Si={(u,A): AeA(p)},

Ue = {(,A) € S : Lc(p, A) has a unique solution} .
We claim that Leo(pe, A), with

= ((Cilljll1)je,0) ©)



provides a lower bound on the value of the original opti-
mization problem V(u,A). To see this, observe that we can
lower bound the value by removing the switching cost from
the objective. Then change variables 3; 5, = oja.(j,h) to
reach the new form, but with strict inequality in the last
constraint on (8), and then relax this inequality. Finally, (7)
is met because Y-, ;4 ar(j,h) = 1. These observations
establish the claim. Therefore

Co(psA) < C™(u, N). (10)

We use results from [30], [31] to show (in the Lemma below)
that the solution set and the optimal value of the linear program
are continuous functions of the input parameters.

Lemma 1. (I) As a function of the weight vector ¢ and the
parameters p, A, the optimal value C(*. )() is continuous
at any (c, (1, A)) € R? x S.

(I) For any weight vector ¢, the optimal solution set O%(-),
as a function of the parameters (p, ), is continuous at
any (p, A) € Ue.

Remark 2. Since Of(p, A) is a singleton if (p, A) € Ue, the
definition of continuity in this context is unambiguous.

D. A Feasible Solution: Static-Split + Max-Weight

We now discuss how we can use the linear program L to
obtain a feasible solution for the original optimization problem
(5). We need to deal with two modified constraints:

(i) Single Ergodic Class — Spectral Gap: For any o € P 7|
and €, € (0, 1), the stochastic matrix

P(o,¢;) := 6slIJI‘T""(l_€S)I|.17| 1D

is aperiodic and has a single ergodic class given by {j : o; >
0} with o as the invariant distribution. Therefore, given any
optimal solution (o, 3) for the relaxed problem L.(u, ), we
can construct a feasible solution (P (o, €), o) for the original
optimization problem V (g, A) such that the network cost for
this solution is at most e, M Cy more than the optimal cost.
Note that €, is the spectral gap of the matrix P (o, €;).
(i) Stability — Capacity Gap: To ensure stability, it is
necessary that the arrival rate is strictly less than the service
rate (inequality (6)). It can be shown that an optimal solution
to the linear program satisfies the constraint (8) with equality,
and therefore cannot guarantee stability. An easy remedy to
this problem is to solve a modified linear program with a
fixed small gap ¢, between the arrival rate and the offered
service rate. We refer to the parameter €4 as the capacity gap.
Continuity of the optimal cost of the linear program L (from
part (I) of Lemma 1) ensures that the optimal cost of the
modified linear program is close to the optimal cost of the
original optimization problem for sufficiently small .

To summarize, if the statistical parameters g, A were
known, one could adopt the following scheduling policy:
(a) BS activation: Compute an optimal solution (o*, 3*) for
the linear program Leo(p, X + €4). At every time-slot, with
probability 1 — €5, maintain the BSs in the same state as
the previous time-slot, i.e., no switching. With probability e,
choose a new BS state according to the static-split rule given

by o*. The network can be operated at a cost close to the
optimal by choosing ¢, €, sufficiently small.

(b) Rate allocation: To ensure stability, use a queue-based
rule such as the Max-Weight rule to allocate rates given the
observed channel state:

S(t) = Q) .

arg max
reR(J(t),H(t))

12)

We denote the above static-split + Max-Weight rule with
parameters €5, €, by (e, A + €4, €5). Theorem 2 shows that
the static-split + Max-Weight policy achieves close to optimal
cost while ensuring queue stability.

Theorem 2. For any p, A such that (p, X + 2¢,4) € S, and
Sor any €5 € (0,1), under the static-split + Max-Weight rule
Pk, A+ €g, €5),

1) the network cost satisfies

ORI ) (1, X) € O™ (1 X) o s + 7y

for some constant k that depends on the network size and
Co, C1, and for some increasing function ~y(-) such that
lime, ,0(eg) =0, and

2) the network is stable, i.e.,

A€ A«P(H-Nreg»fs)(u)'

Proof Outline. Since P(o*,¢;) has a single ergodic class,
the marginal distribution of the activation state (J(t¢))i>o
converges to o*. Part 1 of the theorem then follows from (10)
and the continuity of the optimal value of L (Lemma 1(I)).
Part 2 relies on the strict inequality gap enforced by ¢, in (6).
Therefore, it is possible to serve all the arrivals in the long-
term. We use a standard Lyapunov argument which shows that
the T'-step quadratic Lyapunov drift for the queues is strictly
negative outside a finite set for some 7" > 0. A complete proof
of this theorem can be found in the Appendix. [

One can also achieve the above guarantees with a static-
split + static-split rule which has BS activations as above,
but channel allocation through a static-split rule with convex
combinations given by a* such that

0p(ih) = B e e G e JhE R, (3)
J

E. Effect of Parameter Choice on Performance

The constants ¢, and ¢, can be used as control parameters
to trade-off between two desirable but conflicting features —
small queue lengths and low network cost.

(i) Spectral gap, €,: €, is the spectral gap of the transition
probability matrix P(o*, ¢;) and, therefore, impacts the mix-
ing time of the activation state (J(¢)),.,. Since the average
available service rate is dependent on the distribution of the
activation state, the time taken for the queues to stabilize
depends on the mixing time, and consequently, on the choice
of e;. With e, = 1, we are effectively ignoring switching
costs, as this corresponds to a rule that chooses the activation
sets in an i.i.d. manner according to the distribution o*.
Thus, stability is ensured but at a penalty of larger average
costs. At the other extreme, when ¢, = 0, the transition



probability matrix I 7, corresponds to an activation rule that
never switches the BSs from their initial activation state. This
extreme naturally achieves zero switching cost, but does not
guarantee queue stability as the initial activation set is frozen
for all time and may not be large enough to ensure stable
queues.

(ii) Capacity gap, ¢,: Recall that ¢, is the gap enforced
between the arrival rate and the allocated service rate in the
linear program Lco(p, A + €4). Since the mean queue-length
is known to vary inversely as the capacity gap, the parameter
€4 can be used to control queue-lengths. A small €, results in
low network cost and large mean queue-lengths.

IV. PoLIiCcY WITH UNKNOWN STATISTICS

In the setting where arrival and channel statistics are un-
known, our interest is in designing policies that learn the
arrival and channel statistics to make rate allocation and BS
activation decisions. As described in Section II-B, channel
rates are observed in every time-slot after activation of the
BS:s. Since only channel rates of activated BSs can be obtained
in any time-slot, the problem naturally involves a trade-off
between activating more BSs to get better channel estimates
versus maintaining low network cost. Our objective is to
design policies that achieve network cost close to C™, while
learning the statistics well enough to stabilize the queues.

A. An Explore-Exploit Policy

Algorithm 1 gives a policy ¢(ep, €, €4), wWhich is an explore-
exploit strategy similar to the e-greedy policy in the multi-
armed bandit problem. Here, €, €5, ¢4 are fixed parameters of
the policy. If an iterative scheme is used to solve the LP (line
15 of Algorithm 1), one could initialize the iteration at the
solution parameterized by the previously obtained empirical
distributions.

1) Initial Perturbation of the Cost Vector: Given the orig-
inal cost vector c? (given by (9)), the policy first generates a
slightly perturbed cost vector c» by adding to c® a random
perturbation uniformly distributed on the ¢,-ball. It is easily
verified that, for any (pu, ) € S,

|Ceer (1, A) = Clo (1, A)| < V[H[ +1C16p.

In addition, the following lemma shows that the perturbed
linear program has a unique solution with probability 1.

Lemma 2. For any (pu, A) € S,
P [(/J’v >‘) € Ueer | J(O)v Q(l)} =1

2) BS Activation:

Estimated Markov-static-split rule: The policy at-
tempts to mimic the Markov-static-split rule using the empiri-
cal means (f1, A). The vector J(t) is used to keep track of the
BS activations according to the estimated Markov-static-split
rule. To be precise, with probability 1 — e, the policy chooses
to keep the same activation set as the previous time-slot’s
candidate, i.e., J (t—1). With probability e, it solves the linear
program Lcep ([L, A+ eg) with the perturbed cost vector c»
and parameters fi, A+ €4 given by the empirical distribution.

Algorithm 1 Policy ¢(ep, €5, €5) With parameters €, €,, €

1: Generate a uniformly distributed random direction v €
d _
R (vl = 1.
2: Construct a perturbed weight vector
c? ¢ + epu.

3: Initialize 1 < 0, A < 0 and J(0) < J(0).
4: for all £ > 0 do

5: Generate F(t), an indep. Bernoulli(es) sample.

6: if E;(t) =0 then > No Switching
7: J(t) « J(t—1).

8: else

9: Solve Lgep (ﬂ, A+ eg).

10: Select an optimal solution (&(t), 3(t)).

11: Select J(t) according to the distribution &(t).

12: end if

130 Set (t) + 218t

14: Generate F(t), an indep. Bernoulli(;(t)) sample.

15: if E;(t) =1 then > Explore

16: J(t) < 1 (Activate all the BSs).

17: Observe the channel state H (t).

18: Update empirical distributions fi, A

19: else > Exploit

20: J(t) « I(t).

21 Observe the channel state H (t)|5¢)-

22: end if

23: Allocate channels according to the Max-Weight Rule,
S(t) « argmax Q(t)-r.

reR(JI(t),H(t))

24: end for

From an optimal solution (& (¢), ,é(t)) of the linear program,
it chooses the BS activation vector J(t) according to the
distribution & (t).

Explore-Exploit: At each time, the policy chooses to
either explore or exploit and accordingly selects the actual
BS activation vector J(t). The probability that it explores,
et) = 21‘th, decreases with time.

« In the explore phase, the policy activates all the BSs and
observes the channel. It maintains ;1,5\, the empirical
distribution of the channel and the empirical mean of the
arrival vector respectively, obtained from samples in the
explore phase.

o In the exploit phase, it simply chooses the activation
vector given by the estimated Markov-static-split rule,
ie, J(t)=J(t).

3) Rate Allocation: The policy uses the Max-Weight Rule

given by (12) for channel allocation.

B. Performance Guarantees
In Theorem 3, we give stability and network cost guarantees
for the proposed learning-cum-scheduling rule ¢(ep, €5, €4).

Theorem 3. For any p, X such that (p, X + 2¢4) € S, and
for any €,,¢5 € (0,1), under the policy ¢(e,, €5, ¢€q),



1) the network cost satisfies
C¥ercacal(p, N) < O™ (i, A) + Klep + €5) +7(eg),

for some constant k that depends on the network size and
Co, C1, and for some increasing function ~y(-) such that
lim,, 07v(€ey) = 0, and

2) the network is stable, i.e.,

A € A9(enmencs) (py),

Proof Outline. As opposed to known statistical parameters for
the arrivals and the channel in the Markov-static-split rule,
the policy uses empirical statistics that change dynamically
with time. Thus, the activation state process (J(t))¢>0, in this
case, is not a time-homogeneous Markov chain. However, we
note that J(¢) along with the empirical statistics forms a time-
inhomogeneous Markov chain with the empirical statistics
converging to the true statistics almost surely. Specifically,
we show that the time taken by the algorithm to learn the
parameters within a small error has a finite second moment.

We then use convergence results for time-inhomogeneous
Markov chains (derived in Lemma 3 in Section V) to show
convergence of the marginal distribution of the activation state
(J(t))t>0- As in Theorem 2, Part 1 then follows from (10) and
the continuity of the optimal value of L (Lemma 1(I)).

Part 2 requires further arguments. The queues have a neg-
ative Lyapunov drift only after the empirical estimates have
converged to the true parameters within a small error. To bound
the Lyapunov drift before this time, we use boundedness of
the arrivals along with the existence of a second moment for
the convergence time of the estimated parameters. By using a
telescoping argument as in Foster’s theorem, we show that this
implies stability as per Definition 1. For the complete proof,
please see the Appendix. [

C. Optimality of static-split + max-weight policies

We now address the restriction to ergodic Markov policies
and the question of its optimality. Recall Definition 1. When
there is only activation cost, and no switching cost, it is easy
to see that the class of static-split policies is both cost and
throughput optimal. This scenario is represented by the linear
program L¢ (g, A) in Section III-C. The optimal cost for the
problem with switching cost cannot be lower than the value
of L¢; see (10). The static-split + max-weight policies in
Section III-D can get arbitrarily close to this value; see The-
orem 2. We can thus conclude that it is sufficient to consider
the class of all ergodic Markov policies. Theorem 3 finally
asserts that a Markov-static-split policy for BS activation can
be implemented using estimated parameters.

D. Discussion: Other Potential Approaches

Recall that our system consists of two distinct time-scales:
(a) exogenous fast dynamics due the channel variability, that
occurs on a per-time-slot basis, and (b) endogenous slow
dynamics of learning and activation due to base-station active-
sleep state dynamics. By ‘exogenous’, we mean that the
time-scale is controlled by nature (channel process), and by
‘endogenous’, we mean that the time-scale is controlled by the

learning-cum-activation algorithm (slowed dynamics where
activation states change only infrequently). To place this in
perspective, consider the following alternate approaches, each
of which has defects.

1. Virtual queues + MaxWeight: As is now standard [11],
[13], suppose that we encode the various costs through vir-
tual queues (or variants there-of), and apply a MaxWeight
algorithm to this collection of queues. Due to the switching
cost, the effective channel, i.e., the vector of channel rates on
the active collection of base-stations, has dependence across
time (coupled dynamics of channel and queues) through the
activation set scheduling, and voids the standard Lyapunov
proof approach for showing stability. Specifically, we cannot
guarantee that the time average of various activation sets
chosen by this (virtual + actual queue) MaxWeight algorithm
equals the corresponding optimal fractions computed using a
linear program with known channel and arrival parameters.

2. Ignoring Switching Costs with Fast Dynamics: Suppose
we use virtual queues to capture only the activation costs. In
this case, a MaxWeight approach (selecting a new activation
set and channel allocation in each time-slot) will ensure
stability, but will not provide any guarantees on cost optimality
as there will be frequent switching of the activation set.

3. Ignoring Switching Costs with Slowed Dynamics: Again,
we use virtual queues for encoding only activation costs, and
use block scheduling. In other words, re-compute an activation
+ channel schedule once every R time-slots, and use this fixed
schedule for this block of time (pick-and-compare, periodic,
frame-based algorithms [32], [33], [34], [35]). While this
approach minimizes switching costs (as activation changes
occur infrequently), stability properties are lost as we are not
making use of opportunism arising from the wireless channel
variability (the schedule is fixed for a block of time and does
not adapt to instantaneous channel variations).

Our approach avoids the difficulties in each of these ap-
proaches by explicitly slowing down the time-scale of the
activation set dynamics (an engineered slow time-scale), thus
minimizing switching costs. However, it allows channels to
be opportunistically re-allocated in each time-slot based on
the instantaneous channel state (the fast time-scale of nature).
The channel allocations are based on observations of channel
state but only on the activated BSs. This fast-slow co-evolution
of learning, activation sets and queue lengths requires a new
proof approach. We combine new results (see Section V) on
convergence of inhomogeneous Markov chains with Lyapunov
analysis to show both stability and cost (near) optimality.

V. CONVERGENCE OF A TIME-INHOMOGENEOUS MARKOV
PROCESS

In this section, we derive some convergence bounds for per-
turbed time-inhomogeneous Markov chains which are useful in
proving stability and cost optimality. Let P := {Ps,6 € A} be
a collection of stochastic matrices in RV*N with {o5,5 € A}
denoting the corresponding invariant probability distributions.
Also, let P, be an N x N aperiodic stochastic matrix with a
single ergodic class and invariant probability distribution o.



Recall that for a stochastic matrix P the coefficient of
ergodicity [36] 71(P) is defined by

71(P) :=

max
2T1n=0, ||z, =1

[Pz, (14)

It has the following basic properties [36]:

D 7 (P1Py) < 7 (Py)mi(P2),

2) [n(P1) = 1 (P2)| < [Py —Pafl .,

3) |xP —-yP|;, < m(P)|lx—yl|; Vx,y € Pn, and

4) 7(P) < 1 if and only if P has no pair of orthogonal

rows (i.e., if it is a scrambling matrix).

By the results in [37], if P, is aperiodic and has a single
ergodic class then there exists an integer 72 such that P¥ is
scrambling for all k > . Therefore, 71 (P*) < 1 Vk > 1.

Define

e:=sup ||Ps — P,|;. (15)
seA

Now, consider a time-inhomogeneous Markov chain
(X(t));>( with initial distribution y(0), and transition prob-
ability matrix at time ¢ given by Ps, € P V¢t > 0. Let
{y(t)},> be the resulting sequence of marginal distributions.
The following lemma gives a bound on the convergence of the
limiting distribution of such a time-inhomogeneous DTMC to
o .. Additional results are available in the Appendix.

Lemma 3. For any y(0),
(a) the marginal distribution satisfies

ly(n) — o, < n(PY)[ly(0) — o,
n—1
+ey n(PY), (16
=0

(b) and the limiting distribution satisfies

limsup [ly(n) - o], < T(P.)
n—oo

where T(P.) =2, n(P!) < #(l)vn)

Proof. The trajectory (y(n)),>o satisfies Vn > 1,
y(n = DP. +y(n—1)(Ps,_, = P.).

Using (17) recursively, we have

y(n) = (17)

y(n) = yOPI+> y(n—k)(Ps,_, —PPI
k=1
which gives us
y(n) —o. = (y(0) — 0. )PY

+) y(n—k)(Ps,_, — PP (18)
k=1

Now, taking norms and using the definitions in (14) and (15),
we obtain
n—1

Hy<n) - 0*”1 < Tl(Pf)HY(O) - 0'*H1 +e€ 27-1(1)5;) .
=0

This proves part (a) of the lemma. Now, note that

n(P%) < (nEm)" (19)

for any positive integers k, m. Since 71(P7) < 1, it follows
that lim,, o, 71 (P?) = 0, and

Y(P.) =) nP) < #(Pm)
(=0 *

Using this in (16), we have

€M
li -0 LeT(Py) £ —————,
lﬂsogpllyw) oy = eT(Py) < ¢ Ty
which proves part (b) of the lemma. O

VI. SIMULATION RESULTS

We present simulations that corroborate the theoretical
results in this paper. The setting is as follows. There are five
users and three BSs in the system. BS 1 can service users
1, 2, and 5. BS 2 can service users 1, 2, 3, and 4. BS 3
can service users 3, 4, and 5. The Bernoulli arrival rates on
each queue (which have to be learned by the algorithm) is
0.1 packets/slot on each mobile-BS service connection. The
total arrival rate to the system is thus 0.1 packet/slot x 10
connections, or 1 packet/slot. A good channel yields a service
of 2 packets/slot while a bad channel yields 1 packet/slot.
In our correlated fading model, either all channels are bad,
or all connections to exactly one BS are good while the
others bad. This yields four correlated channel states and all
four are equiprobable (the probabilities being unknown to the
algorithm). The fading process is independent and identically
distributed over time. The activation constraint is that each BS
can service at most one mobile per slot. The per BS switching
cost Cp and activation cost C; are both taken to be 1.

Figure 1 provides the instantaneous queue sizes (first two
plots) and time-averaged costs (third plot) for two values of e,
namely, 0.2 (first plot) and 0.05 (second plot). The plots show
that a smaller ¢, yields a lower average cost and stabilizes the
queue, but has higher queue occupancy.
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Fig. 1. The top two plots show the total queue size as a function of time
when €s = 0.2 and €; = 0.05, respectively. The bottom plot shows the
corresponding average costs (with the solid curve for e; = 0.05). A smaller
€s yields a lower average cost but has higher queue occupancy.



Figure 2 considers a situation with regime changes (see top
plot). A value 0.5 indicates that all instantaneous arrival rates
are lowered by a factor 0.5. The parameter ¢, = 0.05. The
middle plot shows instantaneous total queue occupancy. The
bottom plot is a short-term average cost (averaged over the past
200 slots). The algorithm was modified to keep the learning
rate for estimating A and /i not below a threshold (0.001) to
help track regime changes. Figure 2 indicates that the queues
are stabilized but have a higher occupancy due to the use of
a constant learning rate in comparison to the middle plot in
Figure 1. But the short-term average cost (bottom plot) is kept
small through the regime changes.

VII. CONCLUSION

We study the problem of jointly activating base-stations
along with channel allocation, with the objective of minimiz-
ing energy costs (activation + switching) subject to packet
queue stability. Our approach is based on timescale decom-
position, consisting of fast-slow co-evolution of user queues
(fast) and base-station activation sets (slow). We develop a
learning-cum-scheduling algorithm that can achieve an average
cost that is arbitrarily close to optimal, and simultaneously
stabilize the user queues (shown using convergence results for
inhomogeneous Markov chains).
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Fig. 2. The top plot shows a time-varying traffic pattern. The middle plot
shows total queue size as a function of time when €; = 0.05. The bottom
plot shows the corresponding short-term averaged cost. The learning algorithm
is modified and employs a constant learning rate so as to track the regime
changes. Due to a constant learning rate, queue occupancy is a little higher,
but the algorithm tracks the changes and stabilizes queue. The short-term
average cost is kept small through the regime changes. The larger fluctuation
in comparison to the bottommost plot in Figure 1 is due to the short-term
nature of the average.

APPENDIX A
PROOF OF THEOREM 1

Proof of Theorem 1. Consider an ergodic Markov policy ¢ €
2t such that A € A¥(p). We use the notation P to denote
probabilities corresponding to the stationary distribution under
policy . Let for all j/,j € 7,
oj =P [J(t) = 4],
Pjrj =P [J(t) =j It - 1) =j]1{ojo; >0},
and
ar(j,h) =P, [S(t) =1 | I(t) = 4, H(t) = h)
Vr € R(j,h), Vj € T,heH.

We first show that P € W‘ T Since ¢ € 9, the network state
process {X(t)}+>0, where X (¢t) = (J(t—1),Q(t)), under

policy ¢ is an ergodic Markov chain. Therefore, for any j',j €
J such that 0,0, > 0, there exists a constant k¥ € N and £

states (jo = 7', q1), (j1,92); - - -, (Je—1 = Jr qi) € T x ZM*"
such that forall 1 <[ <k —1,

Pr [X(I+1) = (i, 1) | X(1) = (i1, a1)] >0,

and

Pr [X(1) = (Ji—1, )] > 0.
This gives us that
Pj :]P)Tr['](l):jl‘.](l—l):]l,ﬂ>0

1—1,J1

Therefore, for any j’, j € J such that j # j’ and 0,0, > 0,
there exists a k € N such that Pﬁ, ;> 0. A similar argument
shows that P is aperiodic. In addition, we also have o = oP,
from which we can conclude that P1; = 1 7. This proves
that P is a stochastic matrix with a single ergodic class, i.e.,
Pe W| Tl

Further, it is easy to verify that

Co Y oy Pl =0Tl +Ci D osllill = C# (M),

Jhied JjeJ

S0 Y)Y anli by =Bl [S()]

j€T  heH reR(j,h)
Since A € A?(p), we have A < E [S(¢)]. Therefore, for

¢ = (P,a = {a(j, h)}jejﬁe?{) )

we have ¢’ € MS, A € A (u) and C¥ (, A) = C?(p, N).
O

and

APPENDIX B
PROOFS OF LEMMAS 1 AND 2

Proof of Lemma 1. Let F and D denote the feasible sets of
L and its dual respectively. By Theorem 2 in [30], to prove
(D), it is sufficient to establish that F and D are continuous
multifunctions on R¢ x S. The feasible set of the linear
program depends only on (g, A) and not on c. By Proposition
6 in [30], F is continuous on § if

(i) the dimension of JF is constant on S, and



(i) for any (w,A) € S, there exists a neighborhood V of
(p, A) such that, if a particular inequality constraint is
tight (satisfied with equality) for all € F (u, A), then
for any (u/, \') € V, the corresponding constraint is tight
for all x € F (', N).

The above two conditions are satisfied if

(i) the equality constraints are the same for every JF (u, A),
and

(ii) for any (u,A) € S, no inequality constraint is tight for
every x € F (p, A).

These can be verified to be true for all (i, A) € S. Therefore,

F is continuous on S.

According to Corollary 11 in [30], D is continuous on
R? x S if F is bounded. This is again true since any feasible
solution is a set of probability mass functions. Therefore, by
Theorem 2 in [30], C* is continuous on R? x S.

To prove (II), i.e., that the optimal solution set O%(-) is
continuous on U, we first note that O} (p, A) is the feasible
set for a family of linear constraints, which is same as that for
F (w, A), in addition to the equality constraint

c-(0,8) =Cc (1, A).
By definition, the set O} (i, A) is non-empty for any (pe, A) €
S, and is a singleton for any (p, A) € U.. Now consider any
(1, A) € Ue. Using (I) and Theorem 3.1 in [31], the extreme
point set of O is continuous at (u, A). Since O is convex
and is a singleton at (p, A), it follows that O} is continuous
at (p, A). O

Proof of Lemma 2. For any (s, X) € S, it holds that (¢, A) €
Uc<p if the vector c» is not perpendicular to any of the faces
of the polytope given by the feasible set of Lcer (1, A). For
any 1 < k < d — 1, consider any k-dimensional face of this
polytope. The probability that the vector cr lies in the d — k
dimensional space orthogonal to this face is zero. Since there
are only a finite number of faces, by the union bound, we have

Pl(p, A) ¢ Ueer | J(0),Q(1)] = 0.
O
APPENDIX C
PROOF OF THEOREM 2

We use continuity of the linear program L (Lemma 1) to
prove part 1 of Theorem 2. To prove part 2 of Theorem 2, we
show that the long term Lyapunov drift is negative.

A. Cost Optimality

Part 1 of the theorem follows easily from the continuity of
the optimal value of the linear program L. Since P(o*, ¢5) has
a single ergodic class, the marginal distribution of the Markov
chain {J(t)},., converges to o*. This gives us

liiri)song [C(t) ] 3(0),Q(1)]

<S(1—e) > b Gl +e [ MCo+ Y o3Callill,
i'eg ieJ

S C:o ([L, )\ + Gg) + MC()GS
< Coo (1, A) + MCoes +7(eg),

for some increasing function (-) such that lim,, o v(ey) =
0. This follows from the continuity of C?, (u,-) (part (I) of
Lemma 1). Therefore, for k = MC,

T
lim sup % ZE [C(t)] 3(0),Q(1)]

T—o0
< Coo(p, A) + res +(ey)
< Om(ﬂv >‘) + Kes + 'Y(eg);

where the last inequality follows from (10). This proves part 1
of Theorem 2.

B. Stability: Negative Lyapunov Drift

We show stability in the sense of Definition 1 by showing
that the quadratic Lyapunov drift for the Markov policy
©(p, A + €4, €5) is negative outside a finite set. Let V(q) :=
> w4 be the Lyapunov function. For any 7' > 0, ¢t > 0,
let Ar(t) := V(Q(t+T))—V(Q(t)) be the T-step Lyapunov
drift. Due to Foster’s theorem, it is sufficient to prove the
following lemma to prove part 2 of Theorem 2.

Lemma 4. For any p, A, there exists constants T, B such
that for any t € N,

ELP(M,A+EQ,65) [AT(t) ‘ J(t - 1); Q(t)]
<BT = ¢T Y  Qmalt).

m,u
Proof. Since the marginal distribution of the Markov chain
{J(t)},>, converges to o*, we can choose a constant 7' € N
such that

T-1
max 3 Z‘]P’ [30) =4]30) =] o
Jj'ed ¢
=0 jeJ
Since we have bounded arrivals and service, for B’ =
nM max{A? R?}, the T-step drift satisfies
T-1
Ap(t) < BT+2) (A(t+1)—S(t+1) Q(t+1).
1=0
Let a® be the set of convex combinations related to the
unique optimal solution (o*,3*) through (13). Since the
policy ¢(pt, A + €4, €5) allocates rates according to the Max-
Weight rule, we have

Sit+1)-Q(t+1)

Tey

<SSR (20)

ma. r-Q(t+1
reR(J(t-i—l)},(H(t-i-l)) Q )

> > QI+, Hit+1)r-Q(t+1),
reR(I(t+1),H (t+1))
forany [ € {0,1,...,T — 1}. Using the above inequality and
that the arrivals and service per time-slot are bounded at every
queue, for B = B’ + nM max{A? R2}(T — 1), we obtain

Ar(t)
T-—1

BT +2> A(t+1)-Q(t)

=0

T-1
= > et 41, H(t +1)r- Q).

1=0 reR(JI(t+1),H(t+1))

IN



Taking averages in the above inequality, we get

E[Ar(t) | I(t—1),Q(t)] < BT +2(TA - Z) - Q(t),

2n
where
T—1
Z:=> E > apIt+ 1), Ht+)r | It —1)
1=0 | reR(I(t+1),H(t+1))
Now, for any [ € [0, T — 1], let
yt+10); =P[It+1)=4|It-1)].
Then,
T—-1
Y E > QI+, HE+D)r | It —1)
1=0  |reR@(t+1),H(t+1))
T—-1
=Dyt | Y ouh) > ei(h)r
1=0 jeJ heH reR(j,h)
>T (> o3> uh) D> ailih)r
jeT heH reR(j,h)

T-1 _
=D Iyt +) —o"|R
=0
2 T()‘ + 69/2)3

where the last inequality follows from (20) and the fact that
any solution to the linear program Leo (pt, A + €,) satisfies its

constraints
oo > uh) >
reR(j,h)

JjeT heH

ap(j,h)r > A+¢,.

Substituting this inequality in (21), we get the required result

) | J(t - 1)7Q(t)] < BT — Teg ZQm,u(t)

m,u

E [Ar(t

APPENDIX D
PROOF OF THEOREM 3

As in the proof of Theorem 2, we use continuity of the
linear program L (Lemma 1) to prove part 1 of Theorem 3.
To prove stability (part 2 of Theorem 3), we show that the
long term Lyapunov drift is negative outside a finite set given
the event

EY = (U, A+ ¢y) € Ueer. (22)

This negative Lyapunov drift, as in the Foster’s theorem
for time-homogeneous Markov chains, is then used to prove
stability as per Definition 1. The proof for cost optimality
(part 1 of Theorem 3) is given below and the proof for
stability (part 2 of Theorem 3) is included in the supplementary
downloadable material available at http://ieeexplore.ieee.org.

A. Cost Optimality

According to the BS activation rule of policy ¢(ey, s, €4),
we have J(t) = (1 — E;(t))J(t) + Ey(t)1 and J(t) > J(t),
which in turn implies that

1) = 30,
S ME((t—1)+ (3t =1 =I®) ", (1 - E(t - 1))
< ME(t - 1)+ (3¢ -1~ 30) |,

where the last inequality can be checked via an straightforward
case-by-case analysis of Ej(t — 1) and E;(t). Let

2(t) = (1 {3@) =j}>jej7
y(@) == (L{I(t) =j})jes-

Then, the expected cost at time ¢ under policy ¢(ep, €5, €4) is
given by

E[C(1]3(0),Q()]
= E [Coll(3(t = 1) = I0) I, + 30, [30)]

< Go (Matt- 1)+ 2 |36 -1 - 30) 1, | 30)])
+GE |30, |30)]

= C()Mel(t - 1)
+Co 30 Bla(t= 120 [ IO G =)
NvISA
+C Y Ely(1); [ IO, (23)
jeT

In the rest of the proof, we will suppress the dependence on
the initial state J(0) for convenience of notation.

Let (f1(t), A(t)) be the estimated parameters at the begin-
ning of time-slot £. Observe that fi(-), A(-), and consequently
&(-) and B(-), are modified only at times ¢ when E;(t) = 1.
Now, consider a sample path that fixes (Ej(-), a(-), A(-)).
Conditioned on this sample path, the process z(-) is a time-
inhomogeneous Markov chain with transition probability ma-
trix P(6 (1), es) at time {. Hence

which when unconditioned yields

t
E[z(t)] = E |2(0) [[P(6(), )
I=1
Given &£° as defined in (22), let (%, 3%) € Ok, (1, A+ €4)
be the unique solution to the linear program

Leen (p, A + €4). Since lim;_, 22:1 Ei(s) £ 0, we have
limg o0 (£2(1), A()) = (s, A) and from part (II) of Lemma 1,
limy 400 6(t) = o* and limy_,o P(6(t),65) = P(0*,¢,).
Furthermore, using Lemma 3(b) and the limit law under a


http://ieeexplore.ieee.org

sample path (E;(-), fu(-), A(-)) with all these properties, we

also have
t

lim z(0) [[P(6(1),es) & o7,

t—o0
=1

which gives us lim;_, . E [z(t)] = o* by the bounded conver-
gence theorem, and

lim Efy(t)] = Jim (1 a()E ()] + a(tn = o
Similarly, for any j’,5 € 7,
lim E[z(t — 1);.2(t);] =

t—o0

tlim Efz(t —1);P(a(t),€s)j5]
—00

= [ im =(t — 1), P(6(1), )]
= tli>I£10E [Z(t - 1)]'] P(U*a es)j/,j

= 0';/1:)(0'*7 Es)j/7j7

where the second equality is once again due to the bounded
convergence theorem. Applying these along with Lemma 2 to
(23) yields

limsupE [C(t) | J(0),Q(1)]

t—o0
. . N+
<limsupCo »  E[2(t —1);2(t);] (7' = )" |y
t—o00 A
JJeT
+1limsup C1 > Ely(t);]5l,
t—00 jeg
* * . N TR
=Co Y, o3P(o el =)y +C Y arllill
JjIeT JjeT

< C:EP (Ha)‘ + Eg) + MCopes

< Clo (p, A+ €g) + /| H| + 1Cqiep + M Cpes
< Coo (1, A) + k(e + €5) +7(€y);

for some increasing function 7(-) such that lim, 0 y(¢y) =0
and k = max(/|H| + 1Cy, M Cp). This gives us

T—o0

lim sup % SCE[C(#) | 3(0),Q(1)]

< CZO (/1’7 )‘) + H(Gp + 65) + ’7(69)
< Cm(l"a A)+ ”(ep +€s) + 7(65])7

where the last inequality follows from (10). This proves part 1
of Theorem 3.
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