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1. Introduction

High-dimensional time series data are frequently encountered in modern statistical and econometric studies, and they
may be one of the most common types of data in the “big data” era. Examples come from many fields including economics,
finance, genomics, environmental study, medical study, meteorology, chemometrics, and so forth. Hence, there is a pressing
need to develop effective statistical tools for their analysis. The celebrating large-dimensional factor models which allow
both the sample size and the dimension of time series to go to infinity have become a popular method in analyzing high-
dimensional time series data, and therefore have received considerable attention in statistics and econometrics since Stock
and Watson (1998, 2002), Bai and Ng (2002), and Forni et al. (2005). We refer to Bai and Li (2012, 2014), Fan et al. (2013,
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2015), Lam and Yao (2012), Onatski (2012) and Wang and Fan (2017) for recent advancement in estimation methods and
inference theory in large-dimensional factor modeling.

In large-dimensional factor models, it is assumed that a large number of time series are driven by low-dimensional latent
factors. Most existing estimation and forecasting methods in factor models are based on the assumption of time-invariant
factor loadings. However, with large-scale data spanning over a long period of time, more and more evidence shows that the
factor loadings tend to exhibit structural changes over time, that is, some structural breaks may occur at some dates over a
period of time in the study. Ignoring structural breaks generally leads to misleading estimation, inference, and forecasting
(Hansen, 2001). Hence, it is prudent to identify structural breaks of the factor loadings before one relies on the conventional
time-invariant factor models. Indeed, a growing number of researches have been devoted to studying structural changes in
factor loadings recently. To the best of our knowledge, most existing works can be classified into two categories. The first
category focuses on developing testing procedures to detect breaks. For example, Breitung and Eickmeier (2011), Chen et
al. (2014), Han and Inoue (2015), and Yamamoto and Tanaka (2015) propose various tests for a one-time structural change
in the factor loadings; Corradi and Swanson (2014) propose a test to check structural stability of both factor loadings and
factor-augmented forecasting regression coefficients; Su and Wang (2017) consider estimation and testing in time-varying
factor models and their test allows for multiple breaks in the factor loadings. The second category considers estimation
of the change points in factor models. For example, Cheng et al. (2016) consider an adaptive group-Lasso estimator for
factor models with a potential one-time structural change and possible emergence of new factors; Chen (2015) proposes a
consistent estimator of the break date based on the least squares loss function; Shi (2015) derives the limiting distribution
of the least square estimator of a break point in factor models when the break sizes shrink to zero at an appropriate rate;
Baltagi et al. (2017, 2016) consider least squares estimation of the single and multiple structural changes, respectively, in
factor models based on the observations that the changes of the factor loadings can be equivalently represented by the
changes in the second moments of the estimated factors. Apparently, most of these works focus on the case of a single
change with two exceptions by Su and Wang (2017) and Baltagi et al. (2016). In addition, Brandom et al. (2013) consider
consistent factor estimation in approximate dynamic factor models with moderate structural instability.

Frequently, one can reject the null hypothesis of constant factor loadings in empirical applications. Despite this, methods
for determining the number of breaks and for identifying the locations of the break dates in factor models remained
unavailable before the first version of the paper, due to great technical challenges in developing the asymptotic tools. In this
paper, we propose a novel three-step structural break detection procedure, which can automatically check the existence of
breaks and then identify the exact locations of breaks if any. The procedure is easy-to-implement and theoretically reliable.
Specifically, in Step I, we divide the whole time span into J + 1 subintervals and estimate a conventional factor model with
time-invariant factor loadings on each interval by the means of principal component analysis (PCA) (Bai and Ng, 2002; Bai,
2003). Based on the piecewise constant PCA estimates on each subinterval, we propose a BIC-type information criterion
to determine the number of common factors and show that our information criterion can identify the correct number of
common factors with probability approaching one (w.p.a.1). Our method extends Bai and Ng’s (2002) method to allow for
an unknown number of breaks in the data and is thus robust to the presence of structural breaks in factor models. In Step I,
we adopt the adaptive group fused Lasso (AGFL, Tibshirani et al., 2005; Yuan and Lin, 2006; Zou, 2006) to find intervals
that contain a break point. We apply an adaptive group fusion penalty to the successive differences of the normalized factor
loadings, which can identify the correct number of breaks and the subintervals that the breaks reside in w.p.a.1. In step III,
we devise a grid search method to find the break locations in the identified subintervals sequentially and show that w.p.a.1
we can estimate the break points precisely.

The above three-step method provides an automatic way to detect breaks in factor models, and it is computationally fast.
The major challenges in the asymptotic analysis of the proposed three-step procedure are threefold. First, some subintervals
obtained in the first step may contain a break point in which case the conventional time-invariant factor model is a
misspecified model. Hence, we need to develop asymptotic properties of the estimators of the factors and factor loadings
in the misspecified factor models, which do not exist in the literature. We find that the properties depend on whether the
break point lies in the interior or boundary region of such a time interval. Second, we consider this paper as the first work to
apply the AGFL procedure to the normalized factor loadings to identify whether a subinterval contains a break point or not,
where the adaptive weights behave substantially different from the weights investigated in the adaptive Lasso literature
(e.g., Zou, 2006) due to the presence of misspecified factor models in the first step. In particular, the adaptive weights have
distinct asymptotic behaviors when the break points occur in the interior or boundary region of a subinterval, which greatly
complicates the analysis of the AGFL procedure. Third, it is technically challenging to establish the theoretical claim that the
grid search in the third step identifies the true break points w.p.a.1., even after we find the subintervals that contain a break
point. In fact, our grid search method appears to be the first method to estimate the break dates consistently in the presence
of estimation errors in early stages.

We conduct a sequence of Monte Carlo simulations to evaluate the finite sample performance of our procedure. We find
that our information criterion can determine the correct number of factors accurately and our three-step procedure can
identify the true number of breaks and estimate the break dates precisely in large samples. We apply our method to Stock
and Watson’s (2009) macroeconomic dataset and detect five breaks for the period of 1959m01-2006m12.

After we finished the first version of the paper, we found that Baltagi et al. (2016, BKW hereafter) also study the estimation
of large dimensional factor models with an unknown number of structural changes. Our approach differs from theirs in
several aspects. First, the estimation methods are different. Following the lead of Han and Inoue (2015), BKW observe that
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the changes in the factor loadings can be represented as the changes in the second moment of the estimated factors, and they
then apply the standard techniques in the literature on time series structural change (e.g., Bai (1997) and Bai and Perron
(1998)) and consider both the joint and sequential estimation of the change points in the second moments of the estimated
factors. In contrast, our method is motivated from the Lasso literature. Second, the choices of the key tuning parameters differ.
Unlike our procedure which requires the division of the whole time span into J + 1 subintervals explicitly, BKW’s procedure
does not need so in theory. However, in practice, it requires the choice of a tuning/trimming parameter € by restricting the
minimum length of a regime to be €T, where € typically takes values from 0.05 to 0.25; see Assumption A4(ii) in Bai and
Perron (1998), Section 5.1 in Bai and Perron (2003), and the discussion in Qian and Su (2016b).! The performance of their
method highly depends on the choice of €, which plays a similar role to 1/(J + 1). Third, the asymptotic results are different.
As in the study of structural changes in time series regression, BKW establish the consistency of the estimator of the break
fractions but not that of the estimator of the common break dates. This is mainly because they transform the original problem
of estimating structural changes in the factor loadings to the problem of determining the breaks in the second moments of
the estimated factor time series process, which cannot use the common break date information across all cross-sectional
units effectively. In contrast, we work on the original problem and can establish the super-consistency of our estimator of
the common break dates by the effective use of the cross-sectional information as in Qian and Su (2016a). That being said, we
notice that BKW claim in their Section 5 that through re-estimation (based on the simultaneous search of the multiple break
dates after one obtains the estimated numbers of factors and breaks) they can establish the consistency of the estimators of
the break dates. This step parallels to Step III in our procedure with the only difference that our method is sequential while
their re-estimation is joint. In either case, the consistency of the break dates estimators are expected because both methods
can rely on the large-dimensional cross-sectional information effectively.

The rest of this paper is organized as follows. In Section 2, we introduce the three-step procedure for break points
detection and estimation. In Section 3, we study the asymptotic theory. In Section 4, we study the finite sample performance
of our method. Section 5 provides an empirical study. Section 6 concludes. All proofs are relegated to the appendix. Further
technical details are contained in the online supplementary material.

2. The factor model and estimation procedure

In this section, we consider a large-dimensional factor model with an unknown number of breaks, and then propose a
three-step procedure for estimation. We first introduce some notations which will be used throughout the paper. Let max (B)
and pumin (B) denote the largest and smallest eigenvalues of a symmetric matrix B, respectively. We use B > 0 to denote that
B is positive definite. For an m x n real matrix A, we denote its transpose as A", its Moore-Penrose generalized inverse
as A", its rank as rank(A), its Frobenius norm as ||A| (= [tr(AAT)]l/z), and its spectral norm as [|Afls, (= |/ MUmax (ATA) ).
Note that the two norms are equal when A is a vector. We will frequently use the submultiplicative property of these norms
and the fact that [|Ally, < [|A]l < ||A||sprank(A)1/2. Let Py = A(ATA)JFAT and Mp = I, — Pa, where I, denotes an m x m

identity matrix. For any set S, we use |S| to denote its cardinality. For any positive numbers a, and b, let a, =< b, denote

lim,_, s, /by = ¢, for a positive constant c, and let a, > b, denote a, b, = o(1). The operator A denotes convergence in
probability and plim denotes probability limit. We use (N, T) — oo to denote that N and T pass to infinity jointly.

2.1. The factor model

We consider the time-varying factor model:
X{[ :)\.;;Ft“re,‘t, l: 1,...,N, t= 1,...,T,

where LA is an R x 1 vector of time-dependent factor loadings, F; is an R x 1 vector of unobserved common factors, e;; is
the idiosyncratic error term, and both N and T pass to infinity. For simplicity of technical proofs, we assume that R does not
depend on N and T, but it is unknown. Hence we need to estimate R from the data. Writing the above model in the vector
form, we have

Xt:XtFt—i-e[, tzl,...,T,

where X; = (X1, ..., Xne)™, Ay = (A1gy - Ane)T,and e, = (€q¢, ..., ene).

We assume that the factor-loadings {A1, ..., At} exhibit certain sparse nature such that the total number of distinct
vectors in the set is given by m + 1, where m denotes the total number of break points in the process {A;} and it satisfies
T > m.Whenm > 1, let {ty, ..., t} denote the m change-points satisfying

Il=ty<ti<---<th<tpmm1=T+H+1,

so that the whole time span is divided into m 4 1 regimes/segments, denoted by I, = [¢, t,+1)for« =0,1,...,m— 1and
I;m = [tm, tm+1]. We assume that

Mie = aj forallt e l,andk =0,1,...,m.

1 BKW choose € = 0.1 in their simulations, which implies that the maximum number of breaks allowed is 8.
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When m = 0, we have Iy = I, = [to, t1) = [1, T] and Ay = «jp forall t € [1, T], so that no break happens in this scenario.
Let ¢, = (a1g,...,0n)" fork = 0,1,..., m. In practice, the number of breaks, m, and the locations of the breaks are
unknown if there are any breaks. Our target is to detect breaks, to find the number of breaks and identify their locations, and
to estimate R, ;. and F;. Let t,((), oc and F; 0 denote the true values of t,, o, o, and F;, respectively.

lK’

2.2. A three-step procedure

We propose a three step procedure to automatically detect breaks, to determine the number of breaks if any, and to
estimate their locations. For clarity, we assume that R is known in this section and Section 3, but we discuss how to estimate
it and establish the consistency of its estimator in Section 4.1.

2.2.1. Step I: Piecewise constant estimation

Noting that A, F; = A; ( ) H[F; for any R x R nonsingular matrix H;, A, and F; are not separately identified, and their
identification requires R? restrictions at each time point t. For the estimation of A; and F;, following the lead of Bai and Ng
(2002), we shall impose the following identification conditions:

T
AlA;/N = Iy for each t, Z F.F} /T is a diagonal matrix.
t=1

In this step, we propose to approximate \; by piecewise-constants, and then estimate A; and F; accordingly. The
procedure is described as follows. Let ] = J(N, T) be a prescribed integer that depends on (N, T), satisfying T > | > m.
Divide [1, T] into (J + 1) subintervals S; = [vj, vjyq1)forj = 0,1,...,] — 1and S; = [v;, T], where {v,}l_] is a sequence of

“equally-spaced” interior knots givenasvo =1 < vy < --- <y < T = vjr1, Wherev; = [Tj/(J+1)] forj=1,...,Jand |-]
denotes the integer part of -. Note that each interval contains T /(J 4+ 1) observations, forj =0, 1, ...,] — 1, when T/J+1)is
aninteger. Forany t € Sj, A;; is treated as a constant and can be approximated by A;; ~ §j;, so that the identification condition
that A{A;/N = Iz V t implies that Zi 18ij 8T/N =Igforeachj=0,1,...,]. Denote A;j = (8yj, ..., dn;)". Then we need

A}Aj/N =1l foreveryj=0,1,...,].

The estimators Aj and I:} are obtained by minimizing
D (X — AR (X — AjF)
tGSj

subject to A]TAJ/N = I and F}stj = diagonal, where Fs, = (F..t € ST = (Fyjs - Fy

) +1-1)7. By concentrating out
F = (AjTAj/N)‘l(A]TX[/N) = A}Xt/N, the above objective function becomes

D (Xe — AJATX/NY (X — A ATX(/N)
tes;

= Z XIX; — N™'ti(A]Xs X} A)),
tes;

where Xs; = (X, t € ;) and we have used the restriction that AT Aj/N = Ix. Thus, the estimators A (51]-, R SN,»)T can
be obtamed by maximizing

- tr( A}ngxgj Aj)

subject to AJTA]-/N = Iz. When rank(ijxgj) > Rforeveryj=0,...,], Aj is +/N times the eigenvectors corresponding to
the R largest eigenvalues of the N x N matrix ijXTj = Z[Est[X{, and F; = AjTXt/N fort €5;.

2.2.2. Step II: Adaptive group fused Lasso penalization for break detection
Let 7; = |S;| be the cardinality of the set S;. Let Vi ; denote the R x R diagonal matrix of the first R largest eigenvalues
of Nizjxij;j in descending order. For those time points in the same true regime (I, say), their factor loadings should be

the same. By Proposition 3.1(ii) below, AjVN,]‘ is a consistent estimator of & XrQJ for all j satisfying S; C I, where X is
defined in Assumption A1 and Q, is defined in Proposition 3.1, both of which do not depend onj. Note that ag XrQ] remains
unchanged if two consecutive intervals, say S; and S;_1, belong to I.. This motivates us to consider the following objective
function by imposing an AGFL penalty to detect the breaks between segments:

J J
1 o ~
N E E — AR ) (X — AjF) +y E w! || AV — Aj-1Vi 1] . (2.1)

o U tes; j=1

where y is a tuning parameter and w ’s are adaptive weights to be specified later.
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Let O = Ay, 65 = N2ZAVy /1161l Zr = N~V2|&(|Vy |Fe and Zs, = (Z.,t € ). We can slightly modify the
objective function in (2.1) in terms of ®;
1 &1 !
aN 2 1%~ OZs I’ +v Y wilO; — Ojll, (2.2)
j=0 j=1
where w; = N~"2w} ||©;||. Note that (2.1) compares A;Vy j with A;_;Vy ;_; while (2.2) contrasts their normalized versions.
Let éjyr denote the rth column of éj forr = 1,...,R. Let p;, denote the sample Pearson correlation coefficient of éj,,
and ®;_;, forj = 1,...,]. When the eigenvectors in A; are properly normalized to ensure the sign-identification, with

Proposition 3.1 below we can show that p; , % 1 when both Sj and S;_1 belong to I and they may converge in probability
to a value different from one otherwise. This motivates us to consider the following adaptive weights

R —x
= (] - Ril Zb],r) ) (23)

where x is some fixed p051t1ve constant, e.g., 2. Let ()j denote the penalized estimator of @; in (2.2). Then the penalized
estimator of A; is givenby A; = A; (y) = N~'/26; Vy ||() Il.

We apply Boyd et al’s (2011) alternatmg dlrectlon method of multipliers (ADMM) algorithm to obtain the penalized
estimator ®;. Boyd et al. (2011) show that the ADMM algorithm has a good global convergence property. The detailed
procedure is provided in Section 3 of the Supplementary Material. The tuning parameter y is chosen by the information
criterion method as given in Section 4.2.

2.2.3. Step III: Grid search for the locations of the breaks

Let B; = @; — ©j_1 forj = 1,...,]. By step II, we are able to identify the subintervals containing the breaks. There are
four situations that can happen for each subinterval S;: (1) when B; # 0 and B;,; # 0, the break happens in the interior of
the interval Sj; (2 ) when ﬂ] # 0 and ﬂj+1 = 0and ﬂ] 1 = 0, the break may happen near the left end of S; or the right end
of Sj_1; (3) when ﬂj+1 # 0 and /31 = 0and ﬂ]+2 = 0, the break may happen near the right end of S; or the left end of S;,1;

and (4) when ,6 =0and ,8 ;-1 = 0, no break happens in S;. For case (1), we can conclude that an estimated break happens in
the interval S], and for cases (2) and (3), we have that an estimated break happens in the intervals Sj*_l and S]* respectively,
where, e.g., S J 1 = [vj-1 + L1-1/2] + 1, vj + L7j/2]). Suppose that we have found i1 intervals that contain a break point.
We denote such i intervals as S, . . . S . Note that S;, coincides with either S;, or S; . Write S, = [t t¥ - ] with

K,10 0 Ti, T

=[S; | fork =1, ..., M. We discuss how to estimate these  break points below. J
To estimate the first break point, we conduct a grid search over the interval §j1 by using as many observations as possible
from both pre-S;, and post-S;, intervals. If the first break point happens to be t;, forsome ¢ € {1,2,...,7,}, we know
that observations that occur before ¢} , belong to the first regime w.p.a.1. Similarly, the observations that occur after ¢t} , but
before the first observation in §j2 belbng to the second regime w.p.a.1. But t7 , is unknown and has to be searched over all
points in §j1. After obtaining the first break point, we can find subsequent break points analogously.

To state the algorithm, let Sg ={t:a<t<b}land Fsg = (F,, ..., Fp) for any integersa < b. Let o) = (avyy, . . ., an)T for
I=1,2,...The following procedure describes how we can find the locations of all m break points sequentially:

T

1. To search for the first break point t;, we consider the following minimization problem:

min oy, 00, {F):t) = X — o1 F|)? X — ooF|)?
i Q@ 0, (i) ) ZNuf Fell” + ;Jh oF|

tes; 2.1
t
eSt1

subject to the constraints N~ oty = Iz, N~ lodoty = Ig, t]%]F;l F, b = = diagonaland = xFT - FS[* _, = di-
1

agonal. Denote the solution to the above minimization problem as (& (t;) , &> (t1), {Ft (t1)}). The first break point is
estimated as

= arg min Qi (& (0, & (&) (Fe @) 1)

tq ESjl

2. After obtaining the break points, fy, . .., t._1, we can search for the «th break point t, by considering the following
minimization problem

min  Q (o, &1, {Fe}; t)
{“K«ak+1’{Ff)}

= Y IXe—aFl + Z X — 1 Fell?

te—1 -1
teS K+1 1
te—1 teSy
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T

subject to the constraints N~ 'efet, = Ig, N~ 'a} ;a1 = Ig, F', ,F.-1 = diagonal and e
SrK ’

[—tlstkls
be—1 Ge—1

b1t -1

F g1 = diagonal. Denote the solution to the above minimization problem as (&, (t.) , &1 (tc), {Ft (t)}). The
S K

thl break point is estimated as

EK = arg mi_n QK (&K (t;c) s &K+l (tl() s {Ft (tK)}; tK') .

tic €5,
3. Repeat the above step until we obtain all m estimated break points.

At last, after we find the locations of the break points f1, ..., ts the whole time span is divided into + 1
regimes/segments, denoted by I, = [f,_1,&)forx = 1,...,1/H + 1 where fp = 1 and th = T + 1. On segment IK,
we estimate the factors and their loadings as

(e, {Ft}) = arg mm Z X; — o Fe ) (X — o Fr)

tel,(

subject to the constraints N~ 'al e, = Iz, and - 3 F: =diagonal.

u | 1
3. Asymptotic theory

In this section, we study the asymptotic properties of our estimators.
3.1. Theory for the piecewise constant estimators

For each subinterval S;, we will establish the asymptotic property of Aj from the piecewise constant estimation in Step

L. Denote S = {0, 1,2, ...,]}.Let 7j; = t° — v; and 7j, = 7; — 7j; when S; contains a true break point t° for some k = « (j) .
Define

Sy = {je S: SCl forsome/c(i)},
S2e = {j €S: Sjcontains a break t? for some « (j) such that Tlim 1/ = ]} ’
—00

Sye = 1j € S: §jcontains a break t,? for some « (j) such that Tlim 771/ € (0, 1)} .
— 00

Sop = {j €S: Sjcontains a break t? for some « (j) such that lim 7j;/7; =0
T—o0

Let S; = Syq U Sy U Sy . When no confusion arises, we will suppress the dependence of «k = « (j) on j. Noting that
[Sz] = m < J, we have [S¢] /] — 1.

Case 1.When no break occurs in the subinterval Sj, i.e., S; C I, for some segment I, then we have A = o forallt € S,
where o)) is the vector of the true factor loadings for the segment I,.. Let F? be the vector of true factors for t € S;. Then we
have

X =g F)+ep, i=1,...,N, t €S

Let ng = (F0,t € S = (FO ...,FSH ]) and o = (o, ...,y ). Denote yy (s,t) = N'E(ele;), ywr(s.t) =
N-'E (FsoesTet) VN.FF (S t) = N 1E(Foese[ ) gst = _1[ese[ - E(eset)] Crst = l[Fgoeset - E(Fsoese[)]s Crrst =

_ 0
N ][Fsoe}etFt T— E(Foeset D1, and gy (t1, &) = - [1 ZS [1[etsels —E(eisers)]. Let wis = E (epers) and @y, = i Let
C < oo denote a positive constant that may vary from case to case.
We make the following assumptions

Assumption A1. E[|F?||* < C and - 0] 1F2[ L = X + 0p((t — s)~/?) for some R x R positive definite matrix X and for

any two points ¢, s € [1, T] satlsfymgt — S — o0.
Assumption A2. };’s are nonrandom such that maxi<j<y 1<t<rllAicll < C and aOTa =X, +0 (N‘l/z) for some R x R
positive definite matrix X, forx = 0,1, ..., m.
Assumption A3. (i) E(e;) = 0 and maxi<i<,1<¢<rE (e n) <C.

(if) maxy<e<r Y g, lly(s, ) < C and maxy<s<r Y _; ly(s, )| < Cfory = yn, yn.r. and yy pr. Maxi<c<r || < i
for some @ such that max;<j<y Z?’leﬂ <C.

(iv) (N‘C])7]Z$]=lzg\]=12tesj2565j |w”»f5| =C
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4
(V) max15i.,gE|(t2 — [1)1/2§” ([], tz)’ <C for all t1 <ty such that t) —t1 — 00.
4
(vi) max s ;<rE HNl/zg“ST[ H < Cfor¢) = ¢y, ¢r.g and pr g, and maxy—,<rE [N-12ale, ||4 <Cfork=0,1,...,m.

1/2 1/2

Assumption A4. The eigenvalues of the R x R matrices X\.'“ X X,’“ are distinct for/c =0,1,
Assumptions A1-A2 parallel Assumptions A and B in Bai (2003). A1 implies that OTF0 EF +Op( -2 )astj — ooand

A2 requires A;; to be nonrandom and uniformly bounded. A3(i) imposes moment condltlons on ej and A3(ii)-(v) restricts
the cross-sectional and serial dependence among {e;, F;}. Similar conditions are also imposed in the literature; see, Bai and
Ng (2002) and Bai (2003). A4 is required to establish the convergence of certain eigenvector estimates.

Let nng = min{+/N, N, /%) and H; = Hygj = (= 1 F TFSJ )( OTA )V 1. Following Bai (2003), we can readily obtain the
following results

Proposition 3.1. Suppose that Assumptions A1-A4 hold. Then as (N, 5) = oo,

(i) L1 Aj — alH;|1? = Op(nﬁ, )and ||F; — H'FP|| = Op(nNr )forany t € Sjandj € Sy,

(ii) I Aje? — Qcll = Op(n,) and NHAJVN,J — @l ZpQ[ I = Op(ny2) for anyj € Sy,
where the matrix Q, is invertible and is given by Q, = UZTTZ_]/Z V. =diag(vie, ..., Upe), V1 > Ve > -+ > Vg, > 0 are
the eigenvalues of EFl/ 2 pIM ZJF” % and T, is the corresponding eigenvector matrix such that 7] Y, = Ix.

Remark 3.1. The above result can be proved by modifying the arguments used in Bai (2003). Alternatively, they can be
derived from the results in Proposition 3.2(ii) below.

Case 2. When a break point t? lies in the interval S; = [}, vj+1), we have

for some k = « (j) .

o, fort e [v,t?)
Ait = 0
fort € [t., vjt1)

Let B | = (.t € [, ) K, = (F.t € [t2,01)), and of = (a_;,0f). Let Ff = (F'";;, F'"1;0)" and
F; = (Fy.,....F; )7, where 1; = 1{u <t<tl}, 1 = 1{t? <t < v}, and we suppress the dependence of F;* on
. 1 ] 0 0 0 0 0 1 g -1
joLetHy =1 F*TF;‘jNozK Ay ] Hi = (FSTF G AV, ] and Hyz = (TFTFS ) el AV, ).

The followrng proposition establlshes the asymptotic property of Aj in Case 2.

Proposition 3.2. Suppose thatAssumptzonsAI -A4 hold. Then
(i) 11 A; — «0_ Hj1 1% = Op(ch,) and 1| AV — «0_ Z¢Q]_, |12 = Op(c3,) for allj € Spa;
(it) $ 1| Aj — alH; 211> = Op(c Jy,) and 1| AjVy; — a2 ZrQ|? = Op(c3y) for allj € Sop;
(iii) L1 Aj — atH} |2 = Op(nNr)and L AV, — (N5 (e ngle%. +oc°F0T Fg o) ory A2 = op(n,;fj)for all

Kk—1
. . o -1 .
J € Sac; where ¢ = 1y, + T2/7 and C2b = Ny + T/ e

Remark 3.2. Proposition 3.2 indicates that the asymptotic properties of Aj and AjVN,j depend on whether j lies in Sy,
Sap, O Sy. In particular, Proposmon 3.2(i) (resp. (ii)) says when the observations in S; are mainly from regime x — 1(resp.

k), the asymptotic property of A malnly depends on a (resp o ) in which case the probability limit of A iV j will be
different from that of AJ+1VNJ+1 (resp. A],]VNJ,]), given by oz,( 2rQ] (resp. agflEpQP]). In the case where j € S,., the
limit of AJ-VNJ will be different from those of Aj,lvNJ,l (which is given by “2—1 >rQ]_;)and Aj+1 Vi j+1 (which is given by
o XrQ)). This serves as the basis for the determination of the subintervals that contain a break point.

3.2. Identifying the intervals that contain a break point

Let ®F denote the elementwise probability limit of @; = N'/2A;Vy ;/ H A; .,J. In the absence of break
points on the whole time interval [1, T], we can readily show that & — ©; ; = 0forj = 1,...,]. In the general case,
O] — O, may be equal to or different from the zero matrix depending on whether the subinterval S; or S;_; contains a
break point.

Let |Imin| = Ming<,<m|l|. To state the next result, we add the following two assumptions.

Assumption A5.Fork = 1,2,...,m, 1 [|a?Z:Q] —a2712FQ,:71||2 — ¢, >0as (N, T) - oo.

Assumption A6. (i) 7 = O(N), tInT = o(|Imin|), and m/] = o (1).

(ii) As (N, T) — oo, (N7)"?y = 0(1) and (N7)"*yni /] — oo.

A5 ensures that parameters of interest in neighboring segments are distinct from each other. Note that Q. =
Vl/ 2 X 2 where V. and 7, collect the eigenvalues and normalized eigenvectors of EF]/ 2 X EF]/ 2, and X, denotes the
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limit of valTal. If a? = o ,, then a?XrQ7 = &, XrQ]_,. When o? and «?_, are distinct from each other such that
N ||oc - oc,? 1 H2 — ¢y for some ¢, > 0, we generally expect A5 to be satisfied. A6(i) ensures that n,grlj = O(‘L']-_l/z) and
eachinterval S;,j =0, 1, ..., ], contains at most one break. A6(ii) requires that y converge to zero at a suitable rate, which
is required to identify all intervals that do not contain a break point.

The next proposition is crucial for identifying the intervals that contain the break points.

Proposition 3.3. Suppose that Assumptions A1-A6 hold. Then
()N~'|6;— o || = Op(a?) forallj €S,

J x5 —
(ii) mzj‘:o ”O] — 6 ” =0p (nNr + m/j) )
(iii) Pr {| ©; — Oj_1| = 0forallj, j— 1€ S1} - 1as (N, T) > oo,
where a; = n;gj ifj € S1USy, aj = Cpa if j € Saa, and aj = ¢jpp if j € Sop, and cjpq and cjpp are defined in Proposition 3.2.

Remark 3.3. Proposition 3.3(i) establishes the mean square convergence rates of the penalized estimators @j which depend
on whetherj € S1, Syq, Sap, Or Syc. Proposition 3.3(ii) is the average version of (i). Proposition 3.3(iii) establishes the selection
consistency of our AGFL method; it says that w.p.a.1 all the zero matrices {G)j* - @)j’i1 ,J,J — 1 € S1} must be estimated as
exactly zeros by the AGFL method. On the other hand, we notice that @j* - @jtl =0ifj—1eSyandj € Sy, 0rj— 1€ Syp

andj € S;. In the latter two cases, the estimate @j - @j_1 of @j* - @j’j] may be zero or nonzero, depending on whether we

allow (Nf)l/zy(sz/tj)—h to pass to infinity in the case wherej — 1 € S; andj € S,q, and (Nr)l/zy(rﬂ/tj)_zx to pass to
infinity in the case where j — 1 € Sy and j € Syp. If the latter two conditions are satisfied, a close examination of the proof of
Proposition 3.3(iii) indicates that ®; —®:* ; will also be estimated by exactly zero in large samples whenj—1 € Sy andj € S,
orj— 1€ Sy, andj € S;. On the other hand, by (i), we know that the matrices (~)j* — @jtl can be consistently estimated by
©; — Oj_;. Putting these results together, Proposition 3.3 implies that the AGFL is capable of identifying the intervals among
{S;,j = 0,1,...,J} that might contain an unknown break point. Recall that we use 1 to denote the estimated number of
break points. A direct implication of Proposition 3.3 is that

Pr(f=m) — las (N,T) - oo. (3.1)

Remark 3.4. In order to see whether a subinterval 5, j = 1,...,J — 1, contains a break point (say, t9) or not, we need to
compare @ with both ()]* ; and Oj* ; atthe populatlon level or compare OJ with both OJ 1 and O]+1 at the sample level. At
the population level, we have four scenarios: (1) © ; # @* #* @ ;whenj € Sy, (2) @]72 = @’: #* @ = @jﬁr] when
jESmorj—1e Sy, (3) @j*_l = @j* * (~)j";r1 = @] when] e Saa or]+1 € Sy, (d) @j*—l = @j* = @j’fH when] € S;.Incase
(1), we can conclude that we have an estimated break point in the interval S;, and for cases (2) and (3), we can conclude that
a break point happens in 5", and 5, respectively (see Section 2.2.3 for the definitions of St and S ). The sample case has
been discussed at the beginning of Section 2.2.3. In addition, under the condition that |I,jy| > T/J, any finite fixed number
of consecutive intervals (e.g., Sj_1, Sj, and Sj;1) can contain at most one break, and Sp and S; cannot contain any break. Such
information is useful to prove the result in Proposition 3.3.

3.3. Estimation of the break dates

Assumption A7. 1 H (a2 —a_ )Ft‘fJ ,

+(T InT/|min] )"/,
Assumption A8. (i) max; <j<yMax;<r<r—s| 1 ZTHFOe,tlI = 0p ((s/InT)~'/2) for any s — oc.
(ii) maxi<s <7 v |efes — E (efes)| = Op ((N/InT)~1/2).
(iii) MaXo<,<mMaXi<¢<r ﬁagTe[ | = 0p (N/InT)=1/2).
(iv) maxes, ||Es; Hsp = Op(max(v/N, /7)) where Es; = (e;. t € S)).
Assumption A7 is needed to consistently estimate all m break points. To understand this, we focus on the case where

Dy, = %((xo - agq)T (a2 —a?_,) = D, > 0. In this case,

2
” > oy for € = 01and k = 1,...,m, where cyt = |lmin| Y?(InT)>/?

2 2
N H al — o)) Ft% , ” = tr (DN ,(Ft% /FtE z) > pmin (Dn.ic) F[‘E,ie H > cnr almost surely.
A8 is used to obtain some uniform result and can be verified under certain primitive conditions. For example, under certain
strong mixing and moment conditions on the process {Ftoei[, t > 1}, A8(i) can be verified by a simple use of Bernstein
inequality for strong mixing processes provided that N and T diverge to infinity at comparable rates. See Moon and Weidner
(2015) for primitive conditions to ensure A8(iv) to hold.

The next proposition establishes the super-consistency of the estimators of the break points.




S. Ma, L. Su / Journal of Econometrics 207 (2018) 1-29 9
Proposition 3.4. Suppose that Assumptions A1-A8 hold. Then Pr(f; = t?, R t9)m =m)— 1as(N,T) — oo.

Remark 3.5. In conjunction with (3.1), the above proposition indicates that we can estimate the break dates precisely w.p.a.1.
This result is much stronger that the first set of results in BKW. BKW consider both joint and sequential estimation of the
break dates in large dimensional factor models with an unknown number of structural changes. Conditioning on the correct
determination of the number of structural changes, they show that the distance between the estimated and true break
dates are Op (1), which implies the consistency of the estimators of the break fractions (t,? /T, k =1,..., m). Nevertheless,
BKW also consider simultaneous search of the multiple break dates after one obtains the estimated numbers of factors and
breaks; and they claim the consistency of the estimators of the break dates. This re-estimation step parallels to Step III in
our procedure with the only difference that our method is sequential while their re-estimation is joint. In either case, the
consistency of the break dates estimators are expected.

4. Practical issues

In this section we first discuss the determination of the number of factors and then propose an information criterion to
choose the tuning parameter y .

4.1. Determination of the number of factors

In the above analysis, we assume that the number of factors, R, is known. In practice, one has to determine R from the
data. Here we assume that the true value of R, denoted as Ry, is bounded from above by a finite integer Ry,.x. We propose a
BIC-type information criterion to determine Ry.

Now, we use A;(R) and F(R) to denote the estimators of A; and F; by using R factors defined in Section 2.2.1. Let

A{(R) = (Nrj)“xij;j Aj(R)forj=0,1,....J. Define

V(R) = V(R, {A[(R)})
J
= min J+1)7 Y (Ng) 'Y (X — A(RF: (R (X — A(RF(R)).

T F®.Fr R
{F1(R) T(R)} =0 es,

Following the lead of Bai and Ng (2002), we consider the following BIC-type information criterion to determine Ry:
i ® =V (R AR)]) + pwrk. (4.1)

where pqnr plays the role of In(NT)/(NT) in the case of BIC. Let R= arg mingICy (R) . We add the following assumption.

Assumption A9. As (N, T) — oo, pinr — 0and pinr/(mJ~! + ny?) — oo where ny. = min(+/N, v/7) and T = ming<j .
The conditions on pinr in A9 are typical conditions in order to estimate the number of factors consistently. The penalty
coefficient pqnt has to shrink to zero at an appropriate rate to avoid both overfitting and underfitting.

Proposition 4.1. Suppose that Assumptions A1-A4 and A8-A9 hold. Then P(IAQ =Rg) > 1as(N,T) - oo.

Remark 4.1. Proposition 4.1 indicates that we can minimize IC; (R) to consistently estimate Ry. To implement the
information criterion, one needs to choose the penalty coefficient pqnr. Following the lead of Bai and Ng (2002), we suggest
setting pivy = N In (NN#) or pinr = N,y*f’. Inn?. with ny: = min{ﬁ, VN}and T = T/(J + 1), and evaluate the
performance of these two information criteria in our simulation studies. Define

N+7T Nt
IC(R) = logV(R) + R In ( ik f>,
T
ICiv(R) = log(V(R)) + R N*; In 2. (42)

Let §1a = arg mingICy4(R) and kw = arg mingICy,(R). When the number of breaks, m, is fixed, it appears that one can choose
J such that] = 7, in which case J/m + 77,%,; = 771%1; provided T = O(N).

4.2. Choice of the tuning parameter y

We now discuss the choice of the tuning parameter y, which is an important issue when the penalized objective function
in (2.2) is used in practice. (2.2) suggests that a too large value of y tends to under-estimate the true number of breaks,
denoted as m® hereafter; similarly, a too small value of y tends to over-estimate m®. Therefore it is sensible to choose a
data-driven y such that m° can be identified.
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To proceed, we assume the existence of a closed interval, namely, I" = [¥min, YmaxJ, Such that when y = ymi, one can
identify at most mpy,, > m° breaks, and when y = ., one does not identify any break. If one believes that the number of
breaks is fixed when (N, T) — oo as in many applications, it is reasonable to conjecture a finite value for mpa. Then ymin
and ymax can be easily pinned down from the data.

Given y € [ymm, ¥max], we can apply the three-step procedure in Section 2 to obtain the break pomt estimates £, ),

Kk = 1, my, where we make the dependence of £, (y) and m, on y exp11c1t Letl ) = [te—1(y),t () for
k = 1,...,m, + 1, where fo(y) = 1 and tm +1(¥) =T+ 1.0n segmentI (v), we estimate the factors and their
loadings as
(& (), AFc () =arg min 3 (X — acF) (X — atcF)
telk(}’)
subject to the constraints that N~ !ef «, = I and FI e = diagonal. Let 74, (y) = {t: (¥) . ..., tw, (¥)}. Define

iy +16()—1

& (T, ) == 2 2 [X—aME 0] [X—&oEn].

=1 =)

Following the lead of Li et al. (2016), we propose to select y € I' to minimize the following information criterion

IG(y) = log[6° (7A—rﬁy )] + ponr (A, + 1), (4.3)

where p,nr is a predetermined tuning parameter that satisfies certain conditions. Let 7 = argmin, ¢, IC,(y). We add the
following assumption.

Assumption A10. (i) For any 0 < m < m°, there exists a positive non-increasing sequence ciyr and a positive constant C,
such that

m+1 §—
. . . T T
plimy 1), min min CINT o NT Z Z F T (0 —h) Muj(“j_)“?)F? Z G

N oT o=
aj: N ocjocj_JIR] j=1 t=tj_4

where 7, = {t1, ..., tp}With1 < t; < -+ < tm <T, andMa = Iy — aj(e; ozj)ﬂx
(11) As (N, T) —> 00, CINTNNIppin, —> O and ClNszNTm — 0.

(iii) As (N, T) — o0, panrCony — 00 where coyy = N™1 11 4 myp o, T

Assumptions A10(i) and (ii) impose conditions to avoid the selection of y to yield fewer breaks than the true number by
using IC,(y) in (4.3). A10(iii) specifies conditions to avoid the selection of y to yield more breaks than the true number. The
remark after the proof of Lemma A.8 in the online Appendix B discusses cases where c;yy = 1 when the m® is fixed and Iy

is proportional to T.
Proposition 4.2. Suppose that Assumptions A1-A8 and A10 hold. Then P(fh; = m®) — 1as (N, T) — oo.

Remark 4.2. Proposition 4.2 indicates that by minimizing IC, (y) we can obtain a data-driven 7 that ensures the correct
determination of the number of breaks asymptotically. When we minimize IC,(y ) in (4.3), we do not restrict y to satisfy
Assumption A6(ii). If A6(ii) is satisfied, we know from Proposition 3.3 that i, is given by the true number of breaks (m®)
w.p.a.1. But in practice, it is hard to ensure such an assumption is satisfied and Proposition 4.2 becomes handy.

To implement IC,(y) in practice, it is often reasonable to assume that m® and m, are fixed and I,;,  T. In this case,
Assumption A10 holds with c;yy = 1 and ¢y = N~ + T~! under some weak conditions. Then one can specify panr as
follows
clog (min (N, T))

min (N, T)
where c is a positive constant. Following Hallin and Liska (2007) and Li et al. (2016), one can also apply a data-driven
procedure to determine c.

PO2NT = (4.4)

)

5. Monte Carlo simulations

In this section, we conduct simulation studies to assess the finite-sample performance of our proposed break detection
procedure.
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5.1. Data generating processes

We generate data under the framework of high dimensional factor models with R = 2 common factors:
Xi = ALFc+ep, i=1,...,N, t=1,...,T,

where F; = (Fyr, Fo )T, Fir = 0.6F; (1 + Uy, Uye are ii.d. N(0, 1 — 0.62), Fy = 0.3F, 11 + uy, Uy are i.i.d. N(0, 1 — 0.3%)and
independent of uy;. We consider the following setups for the factor loadings A and error terms e;;.
DGP1: (Single structural break)

Ao = i1 fort:l,Z,...,tl—l
it ap fort=t,t;4+1,...,T"

where «;; are from i.i.d. N((0.5b, 0.5b)7, ((1, 0)7, (0, 1)7)) and «j, are from i.i.d. N((b, b)T, ((1, 0)7, (0, 1)7)) and independent

of ;1 . The error terms e;; are generated in two ways: (1) (IID) ey are i.i.d. N(0, 2), and (2) (CHeter) e;; = ojv;r, where o; are

i.i.d. U(0.5, 1.5), v; are from i.i.d. N(O, 2), and CHeter denotes cross-sectional heterogeneity in the error terms. Let b = 1,2.
DGP2: (Multiple structural breaks)

(0751 fort:l,Z,...,tl—l
Aie = 3§ Ui fort=t;,t1+1,...,tp—1,
a3 fort:fz,t2+1,...,T

where «;; are from i.i.d. N((0.5b, 0.5b)T, ((1, 0)T, (0, 1)7)), a4 are from i.i.d. N((b, b)T, ((1, 0)7, (0, 1)7)), e;3 are from i.i.d.
N((1.5b, 1.5b), ((1, 0)T, (0, 1)7)), and they are mutually independent of each other. The error terms e;; are generated in
two ways: (1) (IID) e;; are i.i.d. N(0, 2), and (2) (AR(1)) e;; = 0.2e;;_1 + u;;, where u;; are i.i.d. N(0, 2(1 — 0.22)). Letbh = 1,2.

DGP3: (No breaks) A = «; and ¢; are i.i.d. N((1, 1), ((1, 0)7, (0, 1)7)). The error terms e;; are i.i.d. N(0, 2).

For each DGP, we simulate 1000 datasets with sample sizes T = 250, 500 and N = 50. Since the factor loadings are
assumed to be nonrandom, we generate them once and fix them across the 1000 replications. We use / +1 = 10 subintervals
for T = 250 and use ] + 1 = 10, 15 subintervals for T = 500 in the piecewise constant estimation in Step I.

In DGP1, we consider two cases:

(Case 1) we set the break date t; = T/2, so that t; = 125 and 250 for T = 250 and 500, respectively;
(Case2) wesett; =T/2+410.5T/(J + 1)],sothatt; = 137 for T = 250 and t; = 275, 266 for] +1 = 10, 15and T = 500.

It is worth noting that when T = 250, t; = 125 is in the boundary of some subinterval and t; = 137 is located in the
interior of the subinterval. When T = 500, t; = 250 and 266 are in the boundary of some subinterval, respectively, for
J+1=10and 15, and t; = 275 and 250 are in the interior of some subinterval, respectively, for ] + 1 = 10 and 15.

In DGP2, we consider two cases:

(Case 1) we set the breaks t; = 0.3T and t, = 0.7T, so that t; = 75 and 150 for T = 250 and 500, and t, = 175 and 350
for T = 250 and 500;

(Case2) welett; =0.3Tandt, = 0.6T + |0.5T/(J + 1)],sothatt, = 162 for T = 250and t, = 325, 316 forJ+ 1 = 10,15
and T = 500.

Similarly to DGP1, some breaks are located in the boundary of an interval and some are in the interior of an interval.
5.2. Determination of the number of factors

First, we assume that the true number of factors is unknown. We select the number of factors by the two information
criteria IC14(R) and IC5(R) given in (4.2) of Section 4.1 . Since the information criteria also depend on J and J plays the
role of the trimming parameter € in Assumption A4(ii) of Bai and Perron (1998, BP hereafter), we follow Bai and Perron’s
(2003) recommendation and consider 5-25% of observations within each subinterval (i.e., ¢ € [0.05, 0.25]). Recall that BP
requires that each regime has at least T observations, and the larger value € takes, the smaller number of breaks are allowed.
Specifically, when T = 250, we set ] + 1 = 10 which corresponds to BP's € = 0.1; when T = 500, we set] + 1 = 10 and
15, which correspond to BP’s ¢ = 0.1 and 0.0667, respectively.

Table 1 presents the average selected number of factors (AVE) and the empirical probability of correct selection (PROB)
by the two information criteria for DGP1-3 with b = 1. We observe that the AVE is equal to or close to two, which is the
true number of factors, and the PROB is equal to or close to one for all cases. The results in Table 1 demonstrate the selection
consistency of the two information criteria established in Section 4.1.

To illustrate the relationship between the IC values and the number of factors, Fig. 1 shows the average value of IC14(R)
(thin line) and IC,(R) (thick line) among 1000 replications against the number of factors for (a) DGP1-Case1 with T = 250
and cross-sectionally heteroskedastic error terms; (b) DGP2-Case1 with T = 250 and autoregressive error terms; and (c)
DGP3. We observe that the average IC value reaches its minimum at R = 2 in these three plots. In addition, we find that
IC15(R) has steeper slope than IC14,(R) when R > 2 so that it helps to avoid overselecting the number of factors.
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Table 1

Performance of the two information criteria in determining the number of factors: DGPs 1-3 with b = 1.
(TJ + 1) Icla IC“J

(250, 10) (500, 10) (500, 15) (250, 10) (500, 10) (500, 15)

Average selected number of factors
DGP1-I1ID
Case 1 2.000 2.000 2.000 2.000 2.000 2.000
Case 2 2.000 2.000 2.000 2.000 2.000 2.000
DGP1-CHeter
Case 1 2.000 2.000 2.000 2.000 2.000 2.000
Case 2 2.003 2.001 2.000 2.000 2.000 2.000
DGP2-1ID
Case 1 2.000 2.000 2.000 2.000 2.000 2.000
Case 2 2.001 2.000 2.000 2.000 2.000 2.000
DGP2-AR
Case 1 2.000 2.000 2.000 1.998 2.000 2.000
Case 2 2.000 2.000 2.000 2.000 2.000 2.000
DGP3 2.000 2.000 2.000 2.000 2.000 2.000
Empirical probability of correct selection
DGP1-I1ID
Case 1 1.000 1.000 1.000 1.000 1.000 1.000
Case 2 1.000 1.000 1.000 1.000 1.000 1.000
DGP1-CHeter
Case 1 1.000 1.000 1.000 1.000 1.000 1.000
Case 2 0.997 0.999 1.000 1.000 1.000 1.000
DGP2-1ID
Case 1 1.000 1.000 1.000 1.000 1.000 1.000
Case 2 0.999 1.000 1.000 1.000 1.000 1.000
DGP2-AR
Case 1 1.000 1.000 1.000 0.998 1.000 1.000
Case 2 1.000 1.000 1.000 1.000 1.000 1.000
DGP3 1.000 1.000 1.000 1.000 1.000 1.000

5.3. Estimation of the break points

Following the literature on adaptive Lasso, we set x = 2 and 4 to determine the adaptive weight in the adaptive fused
Lasso penalty given in Section 2.2.2. For a larger value of », more sparsity is induced. We select the tuning parameter y
by minimizing the information criterion (4.4) given in Section 4.2. We set ¢ = 0.15 as suggested in Hallin and Liska (2007).
To examine the break detection performance, we calculate the percentages of correct estimation (C) of m, and conditional
on the correct estimation of m, the accuracy of break date estimation, which is measured by average Hausdorff distance of
the estimated and true break points divided by T (HD/T). Let D(A, B) = sup,ginfseala — b| for any two sets A and B. The
Hausdorff distance between A and B is defined as max{D(A, B), D(B, A)}.

The results for DGP 1-2 are shown in Tables 2 and 3 for x = 2 and 4, respectively. All figures in the tables are in
percentages (%). We observe that the percentage of correct estimation is closer to 100% for the larger signal of b = 2. By
using the same number of subintervals with ] + 1 = 10, the C value for T = 500 is larger than that for T = 250, and the
HD/T value for T = 500 is smaller than that for T = 250 for all cases. Moreover, for the same T = 500, the break detection
procedure performs better by using /] + 1 = 10 subintervals than ] + 1 = 15 subintervals by observing larger C values for
most cases. Furthermore, the HD/T value for breaks located at the boundaries of the subintervals is smaller than that for
breaks in the interior of the subintervals. For example, for DGP1-1ID with T = 500, for ] + 1 = 10, the 100 xHD/T value for
Case 1(0.029) is smaller than that (0.154) for Case 2, since the break is in the boundary for Case 1 and it is in the interior of
some subinterval for Case 2. However, the result is reversed for ] + 1 = 15 by observing 0.288 and 0.025, respectively, for
Case 1 and Case 2, since the break is in the boundary for Case 2 for this scenario.

To further evaluate the three-step break detection procedure for DGP1 with one break point, we calculate the frequency
for all identified break points among 1000 replications. Since the percentage of correct estimation for » = 4 is higher than
that for x = 2 for each case, in the following we just report the results for » = 2 to save spaces. Figs. 2-4 show the plots
of the frequency of the identified breaks among 1000 replications for DGP1 and for T = 250 andJ + 1 = 10,and T = 500
and J + 1 = 10,15, respectively. The blue shaded line with angle=135 is for b = 1 and the red shaded line with angle=45
is for b = 2. For plots (a) and (b) of Fig. 2, the true break is at t; = 125, and for plots (c) and (d) of Fig. 2, the true break
is at t; = 137. We see that the height of the frequency bar around the true break is close to 1000. This indicates that the
three-step procedure can identify the true break or some neighborhood point as a break with a high chance. For the stronger
signal with b = 2, the identified breaks are more concentrated around the true break than those for the weaker signal with
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Fig. 1. Plots of the ICy, (thin line) and ICy, (thick line) against the number of factors with b = 1 for (a) DGP1-Casel with T = 250 and cross-sectional
heteroscedastic errors, (b) DGP2-Case1 with T = 250 and autoregressive errors. and (c) DGP3.

b = 1. Moreover, by using the same number of subintervals with ] + 1 = 10, when we increase the T value from 250 to 500,
the frequency bar around the true break is closer to 1000 as shown in Fig. 3. For T = 500, when we increase | + 1 from 10
to 15, more points are identified as breaks, especially for the weaker signal with b = 1 as shown in Figs. 3 and 4. Figs. 5-7
show the plots of the frequency of the identified breaks among 1000 replications for DGP2. We see that the two true breaks
can be identified well. We can observe similar patterns as the frequency plots for DGP1. For example, for larger T value, the
frequency bars around the true breaks have height closer to 1000.

For DGP3 with no breaks, the false detection proportion among 1000 replication by using » = 4is0.021,0.000 and 0.008,
respectively, for the three cases: T = 250 with] +1 = 10, T = 500 with]J + 1 = 10,and T = 500 withJ + 1 = 15. There is
no break detected for T = 500 and ] 4+ 1 = 10, while the false detection proportion is close to zero for the other two cases.
This result indicates that our method works well when no break exists in the model.

6. Application

In this section, we apply our proposed method to the U.S. Macroeconomic DataSet (Stock and Watson, 2009) to detect
possible structural breaks in the underlying factor model. The dataset consists of N = 108 monthly macroeconomic time-
series variables including real economic activity measures, prices, interest rates, money and credit aggregates, stock prices,
exchange rates, etc. for the United States, spanning 1959m01-2006m12. Following the literature, we transform the data by
taking the first order difference, so that we obtain a total of T = 575 monthly observations for each macroeconomic variable.
The data have been centered and standardized for the analysis. We refer to Stock and Watson (2009) for the detailed data
description.

We use ] + 1 = 10 subintervals for the piecewise constant estimation, since as demonstrated in the simulation studies
that the method works well for T = 500 by using J + 1 = 10 subintervals. We let »x = 4 in the fused penalization procedure.
We first determine the appropriate number of common factors. We select the number of factors by the information criteria
IC3(R) givenin (4.2) of Section 4.1. As a result, the number of selected factors is 6. In Fig. 8, we plot the values of IC;(R) against
the number of factors. We observe that the IC value reaches its minimum at R = 6.

Next, we apply our proposed break detection procedure with the numbers of factors of R = 6. The tuning parameter in
the fused penalization procedure is selected by the information criterion described in Section 4.2 with ¢ = 0.15. Our method
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Table 2
Percentage of correct detection of the number of breaks (C) and accuracy of break-point estimation (100xHD/T): DGP1-2 with » = 2.
(T.J+1) (250, 10) (500, 10) (500, 15)
C 100xHD/T C 100xHD|T C 100xHD/T
b=1
DGP1-I1ID
Case 1 66.9 0.071 814 0.029 68.2 0.288
Case 2 65.7 0.661 77.0 0.154 73.1 0.025
DGP1-CHeter
Case 1 66.6 0.101 79.6 0.031 67.0 0.290
Case 2 64.1 0.672 75.8 0.165 71.9 0.034
DGP2-1ID
Case 1 84.3 0.118 89.4 0.042 76.2 0.180
Case 2 81.8 0.190 88.4 0.058 74.8 0.140
DGP2-AR
Case 1 78.6 0.187 85.2 0.078 67.5 0.232
Case 2 72.7 0.217 82.0 0.086 66.5 0.238
b=2
DGP1-1ID
Case 1 93.6 0.019 98.2 0.007 95.0 0.135
Case 2 93.5 0.173 98.0 0.019 94.4 0.006
DGP1-CHeter
Case 1 94.6 0.025 98.0 0.008 94.0 0.148
Case 2 934 0.212 98.1 0.018 94.2 0.008
DGP2-IID
Case 1 96.2 0.065 97.9 0.012 95.1 0.130
Case 2 935 0.145 97.2 0.023 95.0 0.085
DGP2-AR
Case 1 84.2 0.158 95.3 0.035 88.3 0.188
Case 2 824 0.211 92.2 0.044 87.4 0.134
Table 3
Percentage of correct detection of the number of breaks (C) and accuracy of break-point estimation (100xHD/T): DGP1-2 with » = 4.
(T.J+1) (250, 10) (500, 10) (500, 15)
C 100xHD|T C 100xHD/T C 100xHD/T
b=1
DGP1-I1ID
Case 1 86.4 0.033 91.5 0.018 76.4 0.769
Case 2 82.6 0.832 89.3 0.546 77.3 0.014
DGP1-CHeter
Case 1 85.0 0.040 91.7 0.016 76.1 0.798
Case 2 81.1 0.887 88.2 0.570 77.4 0.013
DGP2-1ID
Case 1 92.7 0.082 96.4 0.018 87.5 0.643
Case 2 90.5 0.538 96.2 0.126 86.8 0.589
DGP2-AR
Case 1 91.6 0.102 95.8 0.030 86.5 0.742
Case 2 88.9 0.702 95.3 0.182 834 0.618
b=2
DGP1-1ID
Case 1 98.1 0.015 99.4 0.005 94.0 0.502
Case 2 92.8 0.577 99.0 0.420 99.6 0.006
DGP1-CHeter
Case 1 97.9 0.016 99.3 0.007 941 0.585
Case 2 92.1 0.624 98.8 0.462 99.5 0.008
DGP2-IID
Case 1 99.7 0.034 100.0 0.008 93.2 0.356
Case 2 95.5 0.325 99.8 0.121 94.5 0.318
DGP2-AR
Case 1 99.4 0.056 100.0 0.020 98.0 0.334

Case 2 95.3 0.452 99.2 0.138 97.2 0.292
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Fig. 2. Plots of the frequency of the estimated breaks among 1000 replications for DGP1 and T = 250 and for (a) Case 1 and IID errors, (b) Case 1 and CHeter
errors, (c) Case 2 and IID errors, and (d) Case 2 and CHeter errors. The blue shaded line with angle = 135 is for b = 1 and the red shaded line with angle =
45 is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is able to identify five break dates in 1979m09, 1984m07, 1990m03, 1995m06, and 2002m01, respectively. The year of 1984
was considered as a potential break date by Stock and Watson (2009). As shown in a recent paper of Chen et al. (2014),
their Sup-Wald test detected one break date around 1979-1980 (second oil price shock). This break date is also found by our
proposed method. They mentioned that one possible explanation could be the impact on monetary policy in the US by the
Iranian revolution in the beginning of 1979. Moreover, by using the U.S. labor productivity time-series data, Hansen (2001)
plotted the sequence of Chow statistics for testing structural changes as a function of candidate break dates as shown in
Figure 1 of page 120. It shows that the curve of the Chow test statistic has two peaks around the years of 1991 and 1995
which indicates that breaks may happen at these time points if any. By using our proposed method, we detected two break
dates in 1990m03 and 1995mO06, respectively. For the break date in the year of 2002, it may be attributed to the early 2000s
recession (Kliesen, 2003).

7. Conclusion

In this paper, we propose a novel three-step procedure by utilizing nonparametric local estimation, shrinkage methods
and grid search to determine the number of breaks and to estimate the break locations in large dimensional factor models.
Based on the first-stage piecewise constant estimation of the factor loadings, we also propose a BIC-type information
criterion to determine the number of factors. The proposed procedure is easy to implement, computationally efficient, and
theoretically reliable. We show that the information criterion can consistently estimate the number of factors and our three-
step procedure can consistently estimate the number of breaks and the break locations. Simulation studies demonstrate good
performance of the proposed method. An application to U.S. macroeconomic dataset further illustrates the usefulness of our
method.
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Fig. 3. Plots of the frequency of the estimated breaks among 1000 replications for DGP1 and T = 500, + 1 = 10 and for (a) Case 1 and IID errors, (b) Case
1 and CHeter errors, (c) Case 2 and IID errors, and (d) Case 2 and CHeter error. The blue shaded line with angle = 135 is for b = 1 and the red shaded line
with angle = 45 is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Mathematical appendix

This appendix provides the proofs of Propositions 3.2-3.3 in Section 3 and 4.1-4.2 in Section 4. The proof of Proposition 3.4
as well as that of some technical lemmas are available in the online supplementary material.

Appendix A. Proofs of the Propositions in Section 3
A.1. Proof of Proposition 3.2

Let V., T, and Q, be as defined in Proposition 3.1. We first state the following three lemmas that are used in proving
Proposition 3.2. The proofs of these three lemmas are provided in the online Supplementary Material.

Lemma A.1. Suppose that Assumptions A1-A4 hold. Suppose that S; contains a break point t° for some k = « (j) andj € Sy.
Then
S a—1 A -1 " _
()NTTAT [(Nr,-) xij;j] Aj=Wj=Ve 1+ Op(nNJj + 112/7),
(i)NTTATQd | = Qe 1 + Op(y) + 72/T),
(iii) Hiy = STV 4 0nlnyd + 72/ %),
. ~ 2 N ~ 2 _
(iv) % ||Aj - “gleJll ” = %Zi:l Ajj — Hﬂﬂgwl H = OP("N; + (TIZ/TJ')Z)’
(V) Fe = g AJ i + 0N + s (g + 12/ 7)) for each t € 5,
N 2
vi) 2 [ — B R | = 0oV 20y + /5.

]
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Fig. 4. Plots of the frequency of the estimated breaks among 1000 replications for DGP1 and T = 500,J + 1 = 15 and for (a) Case 1 and IID errors, (b) Case
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Lemma A.2. Suppose that Assumptions A1-A4 hold. Suppose that S; contains a break point t,? forsome x = k (j) andj € Syp.
Then .
()NTTAT [(Nrj) xij;j] Ai=Vyj=V + op(n;,}j + 1j1/17),
(i) N"'Al o = Qe+ Op(iyg + 171/7),
(iii) i = 32 1V 4 0nny ) + 71 /7),
—alHa| = 3, = Op(iz + (51/),
(V) Fe = R A atFf + 0p(N™'2 + 12 (g + 5n/5)) for each ¢ € 5,

N 2
i) L | — BB R | = 0nN T a2 Ony) + 51/,

A'J ] Zal K

Lemma A.3. Suppose that Assumptions A1-A4 hold. Suppose that S; contains a break point t,? forsomex =k (j) andj € Sy.
Then

(i) N-lAjT [(Nr,) X, X} ]A, =Wyj=Vis + op(nNr)

(i) NTAT & = Q. + Op(ny)),

(iii) i = 23210V + 0p(n),

(W)% “AJ o HJ* || NZI 1 AU ]* u< = OP(’?E;)’

W) F = F AT Fr + OP(N V2T ) foreach t € S;andj € S,

(vi) &

Fs — F§ ol A]H =O0p(N~" +1777),
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Fig. 5. Plots of the frequency of the estimated breaks among 1000 replications for DGP2 and T = 250 and for (a) Case 1 and IID errors, (b) Case 1 and AR
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where V., is the diagonal matrix consisting of the R largest eigenvalues of oNe

corresponding (normalized) 2R x R eigenvector matrix, Q. = VJ,{ZTKT* EF_*MZ

X = limyo N T

Xpx EFlf %in descending order with 1, being the

, Zpx =diag (¢ Zr, (1—¢) ), ¢ = 11/7, and

The first part of Proposition 3.2(i) follows from Lemma A.1(iv). For the second part of Proposition 3.2(i), we have by the
Cauchy-Schwarz inequality and the submultiplicative property of Frobenius norm,

1 =«
= ||AJ'VNJ —a) 2 QI

IA

2
—||( j— el Hi 1)V ll? + —||a2_1(HJ-,]vN,j—EFQL)HZ

IA

N 2
12— e Hal? Vi + % o | Vi — 2T 1P

OP(’?E,ZJ. + (12/5)).

where the last equality follows from Lemma A.1(i), (iii) and (iv). Analogously, we can apply Lemma A.2 to prove
Proposition 3.2(ii).
The first part of Proposmon 3.2(iii) follows from Lemma A.3(iv). For the second part of Proposition 3.2(iii), noting that

ocf;H* =(Ny)~ (ocg 1FS 1Fsﬂcc 1+°‘OFS ZFSJ,zoc )A Verj by the definitions of o} andH* wehaveforanyt € Sjandj € Sy

1 A _ A
N 2w - v 1(a2_1F§j,1st,1aST_1 + aBF; 5200 A ”
1 15

= -t < |4 e | vl =ono)

by Lemma A.3(i) and (iv).
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Fig. 6. Plots of the frequency of the estimated breaks among 1000 replications for DGP2 and T = 500, + 1 = 10 and for (a) Case 1 and IID errors, (b) Case
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A.2. Proof of Proposition 3.3

Recall Zi = N=V2 | AjVy ;|| Vy | Frand Zs, = (Z;.. t € S;) = N-'2Fs,Vy | | AjV 5| (a7 x Rmatrix), where Fs, = (F;. t € S))
. Let a; be defined as in Proposition 3.3 . Let

Q] ifj € S )JFQ,;V;l 1 ifj € S
A - e Tl ifjeSu g _ EFQ«T_ZV,{_1 ifj € Saq
J o 2rQ,] ifjeSy ~ ZrQ Vo ifj €Sy’
@ HeVen  ifj €Sy Hew = Z‘]/ZT V2 = 5pQlvil ifje Sy
Ve  ifjes
0 VK—] lf] (S SZG _ .
Vi = V. ifj € Sy for some k =« (j) .
Vx* lf] € ch

Note that A; and V; denote the probability limits of A;Vy ; and Vy j, respectively. Let

NTVZECHVT Ay if € §1US2 USa

%= (Bt €S) = N ek v |A] i e a |

where Z; = N"2VTHIF, | Aj] ifj € S1 U S0 U Syp, and = NTV2V Q. F! || 4 ifj € Soc. Let ©F = N2 A;/| 4 .
To prove Proposmon 3.3, we need a lemma.

Lemma A4. Let E = Xs, — ()*ZT Let 9 = (91, ..., Vr), an N x Rmatrix, for j = 0,1, ..., ]. Let %; = N~"/?vec(d;) and
h=J+1 Suppose that the condztzons in Proposition 3.3 hold Then for each j € S, we have
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(i) ﬁ Z;, —Zs| =0p (1) and]llzﬁoﬁ . —Zs,|| = 0p (1),
2
. * (7 J * (7
(i) ey ’ESJ(ZSJ. ~25)| = 0p (V) and £ Yot B2 — 25)| = 0r (1)
2
(iii) 17— o 5. Zs;|| = Op (1) and i ON(;ﬂj)z EsZs| = Op (1),
T
(iv) e (zsjzsj —zsjzsj) z?jT] = op (1) %]
5T\ 051 T T
v) Wtr (Xs, — O )1iiZg — (X5, — OFZ] )Tﬁjzsj] =0p (1) |9
Proof of Proposition 3.3. (i) Let ©; = O, + a;9;. Let
1 <1 . . !
Ty (18))) = 55 22— DX = 021 (X = OZ) + v D wy [0 = 614

y Tj :
Jj=0 tes; Jj=1

/ J
1 &1 -
:—N;; [(XS —Oj )( Sj _@jzsj)]-i_y;wj”@j_@j]”‘

Let¢, j = 0,1,...,] be arbitrary positive constants that do not depend on (N, T) . Our aim is to show that for any given
€ > 0, there exists a large constant L such that for sufficiently large (N, T) we have

’ {N1/2||l9j||ilzjfl:,]'—0,1$_,_‘] vy ({0] +avi}) > Dy ({@J*})} z1-e (A1)

This implies that w.p.a.1 there is a local minimum {®;} such that the estimator { &} } lies inside the ball {{®} + a;;} : N='/2
||u“jH < ch} . Then we have N—1/2 || O; — Ch || = Op(q))forj=0,1,....].
, AT AT AT
Let D ({9}) = I'r,, ({8} + a9;}) — Tr, ({6;}) . Noting that Xs; — O/Zs, = (Xs; — ©/Zs) — a;9Zs,, we have

J
1 1 r r ar
D({»}) = N E ;J [(xsj - OZ; (X5, — OZs)) — (X5, — O7Zg )" (Xs; — @j*zsj)]
=0

+y ) wille -6 -6 —op}

[xs—oz NEA ]

Il
=~
-
M-
o
o \
N>
i)

Q’a
sa
I_l

_
M~
K \‘Q

+y Y wiile - o] -6 —oi])

J 2 J
1 aj 1 a, .
= ﬁ Z ? I:ﬁ]ZT ZSJ 19] ] N Z - [(XSJ @j ZSj )Tﬁ]zgj]
j=0 g j=0 J
1 @
J T
+ ﬁ jZO: ?jtr |:l9j <ZS ZSJ ZS ZSJ) 19]T:|
1 / a;j : T )
-5 Z ?jtr [(Xs e/ ZS) 19,25 (X5, — O/ Zg) ﬁjzsj]
j=0
+r Y w {6 — o] - |of - o7}
j=1

= D ({3}) = D> ({95}) + D3 ({95}) — D+ ({93}) +Ds ({03}) . say.
Recall that #; = N~"/?vec(s;) and E5 = ij — O/Z. Let A} = lZT $Zs and B; = N]/zra vec(E; xZs). Appar-

ently, [A;] = Op(1). By Lemma AA(iii), = Op (1) forj € S. Notmg that tr(B1B,) = vec(BT) vec(B;) and
tr(B1B,B3) =vec(B1)" (B, ® ]I)vec(BT) for any conformable matrices By, B, B3 and an identity matrix I (see, e.g., Bernstein
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(2005, p. 247 and p. 253)), we have

J 2 J
D ({#)) = % Z% |0z 2507 ) = %Zafﬂ} (A ®Tx) 9, and
j=0 j=0
Dz ({19]}) = N Z ﬁtl‘ [ﬁngEgT] = ZCIJZB]T#j
=0 JY j=0
By Lemma A.4(iv)-(v)
1 o J ,
Dy ({2)}) = 5 D T—]jtr [0 (2525 —2525) 9] | = > ov (a?) |25], and
j=0 j=0
1 ’] a . ]
D4 ({9}) = N Z?J]tr [(xs -0 Z )Tﬁjzgj —(Xs; — @j*z;j)rﬁjz;j]
j=0

To study Ds ({;}) , we define the event &,y = {j — 1,j € S : j — 1 € S; andj € S,}. Let £5; denote the complement of &yr.
Noting that T/(J + 1) < |Imin|, we have P (£5;) — 1as (N, T) — oo. Conditional on the event £g;,

Ds({oi)) =v D wJ‘H@f—@MHﬂ/[ >+ )

Jj€Sy.j—1€8y j€S1,j—1€SpqUSyc  jeSt,j—1€Sy

Y os Y }wj{“@j_@f1”‘”@“@’&\”

J€Sa.J—1€81  jESypUSyc.j—1€Sq

=D () + 3 0s ()

j—1es,-Apparently, Ds 5 ({#%;}) > 0. Noting that whenj € Sy andj—1 € Sy, Of = O}

Where e.g., ZES” leSy — Z =1, jeS
|©; — ©j_1|| = 0. Similarly, whenj — 1 € S; and j € Sy, O =), and

and D5 3 ({l9 }) - ijeS” leSwaJ

Ds4({9}) =¥ Z w; |6 — @1 = 0.

J€S2q,j—1€81

Whenj € Sq,j— 1€ Sy USy, @j* — @j‘;l # 0and

Ds2 (oDl =v D auwy |t — 9|

Jj€S1.J—1€S4USy,

J J
<2y max ijaj “VEC (19]) || = Op((N‘L')UZ)/)Zajz ”1?]” s
j= i

JES1.j—1€SpqUSy¢
where we use the fact that maxjes, j_1es,,us,,wj = Op (1) and aj‘1 = 0(t'/?). By the same token, we can show that

D55 (9))] = 0n(Ne) )5y [ 3]
Consequently, we have show that

J J
1
D({n}) = 5 D aio] (A @) ¥ — ) /B
Jj=0

Jj=0

J
—0p((NT)'2y + 1)) a || + s.m.
j=0

J
> 3 {Jiimn ) 81" = 118+ 0xct1 2]} +5im,
Jj=0
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where s.m. denotes terms that are of smaller order than the preceding displayed terms. Noting that ptmin (Aj) >c¢ > 0and
IB;| = 0p (1), by allowing ||0]|| = N~/ |9;| sufficiently large, the linear term [||B;| + Op(1)] | #;| will be dominated
by the quadratic term zumm AJ ||19 ||2 This implies that N~1/2 H g || has to be stochastically bounded for each j in order
for D ({19]}) to be minimized. That is, (A.1) must hold for some large positive constant L and N~/ | &; — &7 | = 0Op(«;) for

i=0,1,...,].
(11) Let 19] =a; (OJ — O ). Then we can follow the analysis of (i) and show that

1 -
0 > —D({9;
> 7 ({%))

ji @ { 3o 8) 5] = 18+ 0w [} + 5m,

where Op(1) holds uniformly in j. Then by the Cauchy-Schwarz inequality, we have

. 1 L |2
0= Laigounio) | 0 3

2 — |
) J 1/2 : J , 1/2
15, LB +or ﬁzafH&jH +sm,
j=0 j=0
It follows that
S le-ol = L ye o)
Ny e

J J
1 1
= 0p(— > [B|") + 0p(— > a?)0p(1)
I = I =

Note that
J
1 1
oL 8] = oL 115 i ZGZ 115
j=0 Jj€SY ]ESZ
— 00 (1?) — Y B + 0r (m/1)
n
J€S
= Op (ny2 + m/j) .
Analogously, we can show that ;- Z = Op (nyZ2 + m/J) . It follows that - o Z o |65 — ||2 =0p (nyz +m/J).

(iii) Define s = {j € S : ©F — OF ;é 0} and $° = {j € S: @ — @}, = 0} . We focus on the case where |S| > 1 which
implies that [1, T| contains at least one break. We will show that

Pr{|&;— &;_1| =0forallj, j—1€S;} - 1as (N,T) — oo. (A2)

Suppose that to the contrary, Bj = éj - @j_1 # 0 for some j such that j, j — 1 € S; for sufficiently large (N, T) . Then
existsr € {1, 2, ..., R} such that ||Bj,r|| = max{llBj.lH, I=1,...,R}, where ijr denotes the rth column of Bj. Without loss
of generality (Wlog), we assume that r = R. Then ||Bj,R||/||Bj|| > 1/«/E. To consider the first order condition (FOC) with
respect to (wrt) @;, j = 1, ..., J, we distinguish three cases: (a)2 <j <] —1,(b)j=J,and (c)j=1.Forj=1,...,], let
0j = (0.1, - - - » 0j.r) Where

Ojr = Bj,r/HBjH || if HBJ’H || #0forr=1,...,R, and HQ,” < 1 otherwise. (A3)
In case (a), we consider two subcases: (al)j+ 1 € Sy, US,c and (a2)j+ 1 € Sy U Sy,. In either subcase, the FOC wrt ©); g

for the minimization problem in (2.2) is given by

Onx1 = (Xs - O] )Zs R — @GN 2y w;B; R/||/31” + a5N"ywi10511k
W
aj

- W

+a 5Ny wii10511 8

[(@j* — éj)ZST-J + @j(Zgj — 25]) + E;f] isz — ajerl/Zywjﬁij/”ﬁj H
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N(o - &)L} sk + g S Zsr + (()* - &)L (isj’R )

f

=+ 7]@j(ZT Zg] )Zs] R+

f

—Eg, (Zs, — Zs;p) + aTN 'y wiBir/| B

VN \/N
+ 5Ny wii10i41.8
= B1j (R) + B2, (R) + B3 (R) + B4, (R) + Bsj (R) — Bgj (R) + B7; (R), say, (A4)

where Zs rand Zs; denote the R -th columns of Zs and Zs, respectively. By part (i i(R) H (N 1/2 ||@* -
@j||)|| Z! ZSJ Rl = Op (1) where we use the fact g; = "Nr = O( l/2) forj € 4 under Assumptlon A6(1) Slmllarly, by
H = Op (1) . By the submultiplicative property of the Frobenius norm, part (i) and Lemma A.4(i)-(ii),

Lemma A. 4(111)
we have that for j e 81,

[Bs,®)] = (5a N0 [0 — Gy 7 [z 5 [se 25

= OP(Tjaj) =op(1),
|Bas(R)| < (rjaz)wfvz 163 57 | 25,0 520 |25 — 25 @) = 0p (1),
[BssR| = (5t IN="20 a5 2y m — 200 = On(507) = 0 (1)

In addition,

|Bsj(R)| = a5y w; || Bir]| /] Bi]| = auN' v/ VR, (A5)

which is explosive in probability at rate (N7)'/?

¥ Ny, under Assumption A6(ii).

To determine the probability order of B; j(R), we consider two subcases. In subcase (a1)j+ 1 € Sy, USy, N~1/2 ||ﬁj+1 [| A
limy_.ooN~"2[|@7; — ©F|| # 0, implying that wj 1 = Op (1) and ||B7;(R)|| < qGN"*ywjy = Op((NT)?y) = 0p(1).
Consequently, !BGJ R)H > Zz_ HB,J || + ||B7] || and (A.4) cannot hold for sufficiently large (N, T) . Then we conclude
that w.p.a.1 B = ©; — @;_, must lie in a position where ||() — 04 || is not differentiable with respect to ®; in subcase
(a1). In this case we can apply the subdifferential calculus and the fact that 0 belongs to the subdifferential of the objective
function wrt ®; to obtain

— (X5, — O Z ) — 45N 12 ywjoj + a]f]N Vw]+lQ]+l

Onxr = «/ﬁ
a; ~ a;
= —=(0] — O))ZiZs + —=EsZs +

VN VN
+—= % O(Z —Z5)Zs + Y g (Zs. — Zs,) — a;tiN*ywio; + a;tiN2ywiiq0
N J Sj /45 JN S \ES) Sj i Tj Y Wwjgj + 4;T; Y Wjt+10j+1
= Byj+ Byj+ B3j+ Bsj+ Bsj — Bgj+ By, say, (A.6)

a; * = -
ﬁ(@] - @])Z;](ZSJ - ZSj)

for some g; and gj;4 that are defined as in (A.3).? Following the above analyses of Bij(R)forl=1,2,3,4,5and 7, we have
S0 |Bu]| + ||B74]| = e (1) Then (A.6) implies that we must have |Bs ;|| = a;5N"?yw; o] = 0p (1).
In subcase (a2) j + 1 € Sq U Sy,. First, we observe that in order for the FOC wrt ®; in (A.4) to hold, ||B7;(R)|| =

a;tiN"2yw;, 1| 0j41.-]l must be exploswe at the same rate as || Bg j(R)|| . In addition, we must have || B; j(R)|=||Bsj(R)| +0p (1)
and hence |[B7(R)| / ||Bsj(R ” — las (N, T) — 1. Next, we consider the FOC wrt Oj 1 ¢:
ajyq
Oyy1 = jTJ;V(ijH U;+1Zs+1 )Zsj+1,R — 17N Py wi10j41k + G154 1N 2y wiia0iia.R
= Byj11 (R) + Baji1 (R) + B3 jr1 (R) + Bgjy1 (R) + Bs j1 (R) — Bgji1 (R) + B7jr1 (R). (A7)

Noting that Bsj1(R) = “22B;(R) =< “B;(R) and [By(R)| /|Bs,(R)| = 1, this implies that both | Bs1(R)|

a7
P .
R)||=||Bsj+1(R)] + Op (1), and |[Bsj1(R)| /|Bejra(R)| — 1if
j+ 2 € Sq U Sy, Deducting this way untilj +1 € S U Sy, butj+14+ 1 € Sy U Sy for some 1 > 1. By assumption, if
the interval Sj;,4; contains a break so thatj+ 1+ 1 € Sy, U Sy, then the intervals Sj;,_; and Sj;, cannot contain a break (so

2 Here we abuse the notation slightly for Bg ;- its rth column is given by a;5;N/2yw;B; r/1 Bl as long as || ;]| # 0 and g;7;N"/?y w;g; for some g;, with
llojll < 1 otherwise. Similarly for By ;. We can regard B, ; as the matrix version of B,; (R) : Byj = (B“ Mm,..., By(R )) where ¢ =1,2,...,7,and By (1)
are defined analogously to B, (R) in (A.4) by considering the FOC wrt to ®; , instead.
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that we must have j+1— 1, j +1 € Sy). In addition, forj’ = 1, ..., t we have
5
[Brjss ®] = [Bojiy ®] =D [BusyR)] = af’f’liff [B7j17-1 R — Z By ®]

=1

T T (am/]tm/] |B7 12 R = Z |Bijs—1 (R ”)

C Gy T -1\ Gy 2T -2 =

5
= By ®|
=1

=1

%

%

j=1
P a;T; a;T;
(70 222 ) s ] = 3 (s ) 2 [ ®]

s=1
5
- Z By (R -
=1

i i+ 4t G+Gn At 4T Qi T, =
Noting that /T; S © 4 > C and maxj<s<,— 117i i l—s gy ny = MaXi<s<— 17&+t - < C for some constants

C, C > 0, we have

[ 5
|}B7j+, ®| = - (c |B7; ®| — (C+1 Z > [Bujss ® ||> — o0 in probability
s=1 I=1

because |[B7(R)| /1 is divergentin probability at the same speed as || Bg j(R)| /J1 under Assumption A8(ii) and we can readily
show that 1 ZS 12, ’ ”Ble R)H < 11 ]Z, 1 ||Blj+S || = 0, (1) .Butwhenj+1—1,j+1 € Sy, andj+1+1 € SpUSy, the
analysis in subcase (a1) applies to the FOC wrt Oy, g ~(A.6) holds with j replaced by j + 1 which forces |[Bs js: (R)|| = @j417j
Nl/zyw]ur, lloj+.,rll = Op (1) . In short, a contradiction would arise unless there is no point after j+ 1 that belongs to S, US,.

Similarly, if there is a point in {j + 1, ..., J} that belongs to S,,, we denote it as j + 1 for some 1 > 1. Then by assumption,
j+i1—2,j+1—1,j+1+1,j+14 2 € Sy, and we can apply arguments as used in subcase (al) to derive a contradiction
based on the FOC wrt ®;,. Hence Sj,1, ..., S; cannot contain any break as long as (A.5) holds. Third, we consider the FOC

wrt ©j_q g, i.e., (A.7) holds with j + 1 replaced by j — 1. Noting that Bs j(R) =
explosive by (A.5), we must have: ||BG_]-,1(R)H and ”BU,](R)” explode the same rate,

9By 1(R) 57 B7-1(R) and B (R) is
R = [|Bsj-1(R)| + 0 (D).

and ||B7;-1(R)| /| Bsj-1(R)|| L 1ifj—2 € S; US,y. Deducting this way untilj—1 € S; USy, butj—1— 1 € Sy,USy, for some
1> 2. Again,whenj —1— 1 € Sy, USy, the interval S;_,_; contains a break so that the neighboring intervals S;_, and Sj_, ;4

alfl

cannot contain a break. So the FOC wrt ©;_, p suggests that B ;_ l(R)H and |B7j_,(R)| are explosive at the same rate such
that ||B7(R)| = |Be.—1(R)| + Op (1) and ||B7,1(R)| /||Bs..—1(R H — 1. Similarly, the FOC wrt ©;_,_ suggests that in the
latter case ||Bsj——1(R)|| = Op((N7)""?y) = Op (1) but |B7;_,_1(R)| = ‘h’:{% | Bs.j—i(R)|| is explosive. So the FOC in this

last case cannot be satisfied and a contradiction would arise unless there is no break point before j — 1 for j > 2. But if there
is no point before j — 1 and after j that belongs to S, there will be no break point in the time interval [1, T], contradicting
to the requirement that we have at least one break contained in [1, T]. Consequently, w.p.a.1 ﬂj = @J @J ; must lie in a
position where |©; — ©;_1 || is not differentiable with respect to ; in subcase (a2).

Now, we consider case (b). Note that only one term in the penalty component ( )/Zj:] wj || ®; —®j_1 |)is involved with
©;. Suppose that ﬁj = 0 for sufficiently large (N, T) (note thatJ € S; under our assumption) and wlog ||BJ,R||/||B] | > 1/\/§.
Then the FOC wrt ©) i is given by

a a AT A s s
Oy = 71()(5] — O)Z))Zs; r — auN"ywBr/||B|

VN
= By (R) +Byj (R) +B3j (R) + B4 (R) +Bs; (R) — B j (R). (A.8)
As in case (a), we can readily show that Z,S 1 ”BU || = Op (1) and ”BGJ H is explosive in probability at the

rate (N7)"/>yn%_. So the above FOC cannot hold and B; = ©; — ©;_; must be in a position where ||@J O_1 H is not

differentiable with respect to ®;. Analogously, we can show that in case (c), ﬂl ©®; — ®, must be in a position where
|®1 — O]l is not differentiable with respect to ®g

In the case where |S| = 0o that[1, T] contains no break. First, suppose that ﬂj —6;_; # 0and wlog ||ﬂj R ||/||ﬂ, I >
1/f. Then the FOC wrt ®) i is given by (A.8); following the above analysis for case (b), we have 21:1 1By (R) || = Op (1)
and ||Bg; (R) || is explosive in probability at the rate (Nt)”z)/n;(,Z . This implies that the equality in (A.8) cannot occur in large
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samples and Pr{ll(:)] - (:)1_1 | =0} - 1as (N, T) — oo. In this case, by the subdifferential calculus, Oy, belongs to the
subdifferential of the objective function wrt ©;:

a " AT A
Onxr = Tjﬁ(xsf - @JZ;] JZs, — agN'ywiey
= Byy +Byj+B3; +Bsy+Bs; —Bs, (A9)

for some g; with ||Q] || < 1. In particular, the rth column of Bs; is now given by ¢;yyN'/?ywjo; . Since Zz 1 “BU ” =
Op (1), we must have ||BGJ || = Op (1) . Next, we consider the FOC wrt ©&;_;:

a_q At A
Ok = \J/N(XSJ 1 @1—12214)25]4 — g1y NPywiig-1 + gy N yupg
= Byj_1+Byj_1+B3j_1+Bsj_1+Bsj_1 —Bsj—1+B7j_1. (A.10)
Noting that B;;_; = 4="0=1Bs , — 0p (1) and Y, , |Bij—1| = Op (1), we must have

a7y
5

[Bosill =< Bl + 3 B = 222 36y | + Z |Buy—1]) = 00 (1)

=1 =1

in order for the first equality in (A.10) to hold. Then ,8],1 = @J,1 - @172 must be in a position where || Op_1— 0 || is not
differentiable with respect to ®@;_;. Deducting this way until j = 1, we must have

5 5
a;T;
B2 + Z I3l = oy [Bosnl + Z B

oo <
47 4j+1Tj+1
T G Ti <a1+2r ”B 6.j+2 ” + Z ||BU+1 ”) + Z ”B’J”
S cee
-1 GiTi & j+s aiTi
< (m 2 Y Il + 3 () 3 ol + 3 ]
Ai+1Tig1 o

forj=J-2,...,1
Noting that when |S| = 0, g;7; = n,;;r] = max(N~1/2, r171/2)1j and tj_1 = |Tj/l1] — TG — 1)/)1) forj = 1,... ], itis

ajT

easy to argue that both max;<j<j— 21'1_] T
C.[Eg.,iftji_y =T/J, foreachj, C = 1.] Then

and maxi<j<j—oyMaXj<s<j_j— 11'1]” —4%__ are bounded above by a constant

=T Qi 1T

1 2 c
7 amax, [Bss]| = (€ +1 Z Z By + i [Bss || = 00 ()
because we can readily show that ; Zj 12, 1 ”Bl] JH = Op (1) . Under Assumptlon A8(ii), itis still true that (N7) "2y n?_ /]

— ooas (N, T) — oo. This 1mp11es thatallj=J—-2,]-3,...,1, ﬂ, @j 1 must be in a position where H O — O;_ 1H
is not differentiable with respect to ®; and thus (A.2) also holds in thls case [ |

A.3. Proof of Proposition 4.1

Let S, Si, Soa, Sop, and Sy be as defined in Section 3.1. Recall that &} = (ag Lo ) F* = (Flj;_, el v+1 )7, and
Ff = (F1, FT1;,)7, where 1, = Hy<t<t?}, 1, = 1{t2 <t < vj,1}. Define H(R) = (ZngjTFg,) x(% 0TA(R)) an

Ry x R matrix, and H(R> (4 F*TF*) x(% *TA(R)) an 2R, x R matrix. Similarly, let HJ(IE) = (%_F%T,ZF%‘[)(N o 2A<R)) for
(=1,2.Let]; =] + 1 and r = mmoJJrj Defme

0y (R o
ocH; 0 ifj €S @ ifjes
0 iy e
_ o, HY ifjes, ol ifies
Aj(R) =1 1(R)  and A) =t ] * for some k = k (j). (A11)
KH] 5 ifj € Sy o, ifj € Syp
a*H® ifj € Sy oy ifje Sy

K Jx
To prove Proposition 3.3, we need the following three lemmas. More precisely, Lemmas A.5 and A.6 are used in the

proof of Lemma A.7, which is used to prove Proposition 4.1. The proofs of these three lemmas are provided in the online
Supplementary Material.
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Lemma A.5. Suppose that Assumptions A1-A4 and A8 hold. Then for any R > 1, there exist Ry x R matrices {H ® H® f .(R)} and

9 J,] 9 ]’2
2Ro x R matrices {H\"} with rank(H{®") = min {R, Ro} , rank(H}") = min {R, Ro} with ¢ = 1,2, and rank(H.(lR)) = min {R, 2R}

Ik
such that ,
() Tyee, N | A = AP = 05 (1 I511)
2
i - A (B AR -2
(ii) maxjes, N~ ”Aj - A ” =0p (ny7InT),
(i) maxics, [N~ AFTAP — N APTAP | = 05l In 1)),

where Hj(R), Hj(ﬁ), Hj(,';) and Hj(f) are implicitly defined in A;R) in(A.11).

Lemma A.6. Suppose that Assumptions A1-A4 and A8 hold and R > Ry. Write the Moore-Penrose generalized inverse of HJ.(R)

P+ 1
as Hj(R)Jr = ( ’(R) . , Where HJ.(R)Jr (1) and HJ(R)Jr (2) are Ry x Ry and (R — Ry) x Rq matrices, respectively. Let V,f,R; denote
HOT (2 b
J

an R x R diagonal matrix consisting of the R largest eigenvalues of the N x N matrix (th)flxijgj where the eigenvalues are
ordered in decreasing order along the main diagonal line. Write A}R) = [A;R) 1, A;R) (2)] and H].(R) = [Hj(R) 1, Hj(R) )1,
where A® 1, A;R) 2), Hj(R) (1), and Hj(R) (2)areN x Ry, N x (R—Ryp), Ry x Ry, and Ry x (R — Ry) matrices, respectively.
Write Vb(,]) = diag(V,f,'? (1), V,f,R; (2)), where V;,R} (1) denotes the upper left Ry x Ry submatrix of V,\(,Rj). Then
. | | 2 2

(i) maxjes, N~' ” AP (1) - a®H® (1) VP (1) ” = 0p (52 InT) and max;cs, [H® (2) ” —0p(t'INT+N1),

(if) maxjes, [HO* (1)” = 0p (1) and maxies, [H® 2) H — Op(z~V2(InT)V2 4 N-1/2),
- =1 ®+17 AR ®) -

(iii) 19117 Y jes, (N7)  r (FGH (A — Q7 )Es ) = Op (nyy)

. _ —1, 4 2 _
(iv) IS1] 1ZjeSl (NTJ‘) H(A;R) - “gHj(R) )Hj(RHF?jT =0p ("sz) :

Lemma A.7. Suppose that Assumptions A1-A4 and A8 hold. Then

(Vv (R, {A;R)}) —v (R, {A}‘“}) = 0p (ny! AnT)"2 + mj=1) for each Rwith 1 < R < Ry,

(ii) there exists a constant cg > 0 such that plim inf y.1)-oo [V (R, {Aj@}) -V (R, {A]O})] > cg for each R with
1 <R <Ry,

(iii) V (R, {A}‘”}) —v (Ro, {A}Rf’)}) = 0p (M)~ + ny?2) for each Rwith R > Ry,

where Aj(-’,j =0,1,...,J, aredefined in (A.11).

Proof of Proposition 4.1. Let V (R) = V(R, {A["'}) for all R. Note that IC; (R) —IC; (Ro) = In[V (R) /V (Ro)]+ (R — Ro) pinr-
We discuss two cases: (i) R < Ry, and (ii) R > Ry.

In case (i), V (R) /V (Rg) > 1+ ¢ for some ¢y > 0 w.p.a.1 by Lemma A.7(i) and (ii). It follows that In[V (R) /V (Rp)] >
€0/2 w.p.a.1. Noting that (R — Rp) pinr — 0 under Assumption A6, this implies that IC; (R) — IC; (Rg) > €p/4 w.p.a.1.
Consequently, we have P (IC; (R) — IC; (Rg) > 0) — 1forany R < Rg as (N, T) — oo. In case (ii), we apply Lemma A.7 (iii)
and Assumption A6 to obtain

P (IC; (R) — IC1 (Ro) > 0) = P{In[V (R) /V (Ro)] + (R — Ro) pinr > 0}
= P{0p (1) + (R = Ro) panr /(mJ " + 13 2) > 0} — 1
for any R > Ro as (N, T) — oo. Consequently, the minimizer of IC; (R) can only be achieved at R = Ry w.p.a.1. That is,
P(R=Rg) — 1foranyR € [1,Rpax]as (N,T) —> co. H

A.4. Proof of Proposition 4.2

Let T,,?o = {9, ..., tzo}, the collection of the true m® break dates. Let T,, consist of 7,, = {ti,..., tm} such that
2 <t <- <ty <T,tg = 1and tyy; = T + 1; and let T, consist of 7, = {ti,..., tn} such that 7;30 C Tm»
2<t;<--- <ty <Tform® <m < mmax. Asin Section 4.2, we define
1 mi1 G- 1 ~ T ~
6T == 2 O [Xe =& b ] [ - & (T )]
J=1t=tjq

where (&, (Tn) » {ﬁr (Tm)}) = arg minak«,{F[)Ztel,((xt — o F:)"(X¢ — e, F;) subject to the constraints that N~'ale, = Tz and
F,TK F,, = diagonal. To prove Proposition 4.2, we need the following two lemmas.
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Lemma A.8. Suppose that the conditions in Proposition 4.2 hold. Then there exists a positive constant c, such that

min __inf ¢ [62(Tm) — 6%(T%)] = ¢, +0p (1)

0<m<mO® Tm€Tm

Lemma A.9. Suppose that the conditions in Proposition 4.2 hold. Then we have

max  sup Cyyp |6%(Tm) — 6%(T5%)| = 0p (1)

m0 <m=<mmax T T

— -1 —
where coyy = N7V 10 4 Mg T

Proof of Proposition 4.2. Let 6,\2” = ﬁzlyﬂe{e[. Denote I = [0, Ymax], Which is divided into three subsets I'y, I"_ and Iy
as follows

N={yer:m=m’}, r_={yer:m, <m®},and I, ={y e I : m° < i, < mpa}.

Let 0 = y,f}T denote an element in I that also satisfies the conditions on y in Assumption A6(ii). Let fj(y) be the estimates
of the break dates in the third stage when the tuning parameter y is applied in the §ec0nd stage Lasso procedure. By
Propositions 3.3 and 3.4, for any y° € I'; we have i1 o = m® w.p.a.1. and limy, 1)~ o0 Pr(£i(y°) = tjo, j=1,...m =11t
is easy to show that 6%(T%) = &3 + Op (1y7) £ o, and IG; (y°) = log &2(7}y0(y0)) + panr (M® + 1) £ In(o?), where

002 = lim(N,T)ﬁooﬁZ'L]E(e{et) and the second convergence holds because panr (m0 + 1) = 0 (1) by Assumption A10(ii)
and T,;,yo (y% = 7,20 w.p.a.1. We next consider the cases of under- and over-fitted models separately.

Case 1 (Under-Fitted Model with tn,, < m®): By Lemma A.8 and Assumption A10(ii),

Pr (yienrf_ G, (y) > IG, (yo)) =Pr (yienrf_ i [In (62(ﬁﬁy(y))/62(7’30)) + ponr (1, —m°)] > 0)
>Pr(c,/2+40p (1) >0) — 1.

Case 2 (Over-Fitted Model with i, > m°): For given T, = {T1,..., Ty} € Tp, we let Tpupmo = {T1, Tos ..., Ty o}
denote the union of 7, and 7';30 with elements ordered in non-descending order: 2 < Ty < T, < -+ < Tpe o < T for
some m* € {0, 1,..., m}. In view of the fact that 62(T,«, o) < 6%(Tm) for all Toy € T, Gy [62(Tpe o) — G ] = Op(1)
uniformly in 7, € T}, by Lemma A.9, and C;NlT pont — o0 by Assumption A10(iii), we have

Pr( inf IG, (y) > Icz()/o))
vely

> Pr( min _inf {c;n; [In (62(Tn)/62(Tpo)) ] + Conpoant (m —m°)} > 0)

m0 <m<mmax Tm€Tm

> Pr( min inf {coyr [In (6% (T 4 m0)/6%(T0)) | + Conpoonr (m — m%) } > O)

mO <m<mmax Tm€Tm

— 1.

We have completed the proof of Proposition 4.2. ®

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.06.019.
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