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a b s t r a c t

In this paper we study the estimation of a large dimensional factor model when the factor

loadings exhibit an unknown number of changes over time.We propose a novel three-step

procedure to detect the breaks if any and then identify their locations. In the first step, we

divide the whole time span into subintervals and fit a conventional factor model on each

interval. In the second step, we apply the adaptive fused group Lasso to identify intervals

containing a break. In the third step,wedevise a grid searchmethod to estimate the location

of the break on each identified interval. We show that with probability approaching one

our method can identify the correct number of changes and estimate the break locations.

Simulation studies indicate superb finite sample performance of ourmethod.We apply our

method to investigate Stock andWatson’s (2009) U.S.monthlymacroeconomic dataset and

identify five breaks in the factor loadings, spanning 1959–2006.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional time series data are frequently encountered in modern statistical and econometric studies, and they

may be one of the most common types of data in the ‘‘big data’’ era. Examples come from many fields including economics,

finance, genomics, environmental study, medical study, meteorology, chemometrics, and so forth. Hence, there is a pressing

need to develop effective statistical tools for their analysis. The celebrating large-dimensional factor models which allow

both the sample size and the dimension of time series to go to infinity have become a popular method in analyzing high-

dimensional time series data, and therefore have received considerable attention in statistics and econometrics since Stock

and Watson (1998, 2002), Bai and Ng (2002), and Forni et al. (2005). We refer to Bai and Li (2012, 2014), Fan et al. (2013,
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2015), Lam and Yao (2012), Onatski (2012) and Wang and Fan (2017) for recent advancement in estimation methods and

inference theory in large-dimensional factor modeling.

In large-dimensional factor models, it is assumed that a large number of time series are driven by low-dimensional latent

factors. Most existing estimation and forecasting methods in factor models are based on the assumption of time-invariant

factor loadings. However, with large-scale data spanning over a long period of time, more andmore evidence shows that the

factor loadings tend to exhibit structural changes over time, that is, some structural breaks may occur at some dates over a

period of time in the study. Ignoring structural breaks generally leads to misleading estimation, inference, and forecasting

(Hansen, 2001). Hence, it is prudent to identify structural breaks of the factor loadings before one relies on the conventional

time-invariant factor models. Indeed, a growing number of researches have been devoted to studying structural changes in

factor loadings recently. To the best of our knowledge, most existing works can be classified into two categories. The first

category focuses on developing testing procedures to detect breaks. For example, Breitung and Eickmeier (2011), Chen et

al. (2014), Han and Inoue (2015), and Yamamoto and Tanaka (2015) propose various tests for a one-time structural change

in the factor loadings; Corradi and Swanson (2014) propose a test to check structural stability of both factor loadings and

factor-augmented forecasting regression coefficients; Su and Wang (2017) consider estimation and testing in time-varying

factor models and their test allows for multiple breaks in the factor loadings. The second category considers estimation

of the change points in factor models. For example, Cheng et al. (2016) consider an adaptive group-Lasso estimator for

factor models with a potential one-time structural change and possible emergence of new factors; Chen (2015) proposes a

consistent estimator of the break date based on the least squares loss function; Shi (2015) derives the limiting distribution

of the least square estimator of a break point in factor models when the break sizes shrink to zero at an appropriate rate;

Baltagi et al. (2017, 2016) consider least squares estimation of the single and multiple structural changes, respectively, in

factor models based on the observations that the changes of the factor loadings can be equivalently represented by the

changes in the second moments of the estimated factors. Apparently, most of these works focus on the case of a single

change with two exceptions by Su and Wang (2017) and Baltagi et al. (2016). In addition, Brandom et al. (2013) consider

consistent factor estimation in approximate dynamic factor models with moderate structural instability.

Frequently, one can reject the null hypothesis of constant factor loadings in empirical applications. Despite this, methods

for determining the number of breaks and for identifying the locations of the break dates in factor models remained

unavailable before the first version of the paper, due to great technical challenges in developing the asymptotic tools. In this

paper, we propose a novel three-step structural break detection procedure, which can automatically check the existence of

breaks and then identify the exact locations of breaks if any. The procedure is easy-to-implement and theoretically reliable.

Specifically, in Step I, we divide the whole time span into J + 1 subintervals and estimate a conventional factor model with

time-invariant factor loadings on each interval by the means of principal component analysis (PCA) (Bai and Ng, 2002; Bai,

2003). Based on the piecewise constant PCA estimates on each subinterval, we propose a BIC-type information criterion

to determine the number of common factors and show that our information criterion can identify the correct number of

common factors with probability approaching one (w.p.a.1). Our method extends Bai and Ng’s (2002) method to allow for

an unknown number of breaks in the data and is thus robust to the presence of structural breaks in factor models. In Step II,

we adopt the adaptive group fused Lasso (AGFL, Tibshirani et al., 2005; Yuan and Lin, 2006; Zou, 2006) to find intervals

that contain a break point. We apply an adaptive group fusion penalty to the successive differences of the normalized factor

loadings, which can identify the correct number of breaks and the subintervals that the breaks reside in w.p.a.1. In step III,

we devise a grid search method to find the break locations in the identified subintervals sequentially and show that w.p.a.1

we can estimate the break points precisely.

The above three-stepmethod provides an automatic way to detect breaks in factor models, and it is computationally fast.

Themajor challenges in the asymptotic analysis of the proposed three-step procedure are threefold. First, some subintervals

obtained in the first step may contain a break point in which case the conventional time-invariant factor model is a

misspecified model. Hence, we need to develop asymptotic properties of the estimators of the factors and factor loadings

in the misspecified factor models, which do not exist in the literature. We find that the properties depend on whether the

break point lies in the interior or boundary region of such a time interval. Second, we consider this paper as the first work to

apply the AGFL procedure to the normalized factor loadings to identify whether a subinterval contains a break point or not,

where the adaptive weights behave substantially different from the weights investigated in the adaptive Lasso literature

(e.g., Zou, 2006) due to the presence of misspecified factor models in the first step. In particular, the adaptive weights have

distinct asymptotic behaviors when the break points occur in the interior or boundary region of a subinterval, which greatly

complicates the analysis of the AGFL procedure. Third, it is technically challenging to establish the theoretical claim that the

grid search in the third step identifies the true break points w.p.a.1., even after we find the subintervals that contain a break

point. In fact, our grid search method appears to be the first method to estimate the break dates consistently in the presence

of estimation errors in early stages.

We conduct a sequence of Monte Carlo simulations to evaluate the finite sample performance of our procedure. We find

that our information criterion can determine the correct number of factors accurately and our three-step procedure can

identify the true number of breaks and estimate the break dates precisely in large samples. We apply our method to Stock

and Watson’s (2009) macroeconomic dataset and detect five breaks for the period of 1959m01–2006m12.

Afterwe finished the first version of the paper,we found that Baltagi et al. (2016, BKWhereafter) also study the estimation

of large dimensional factor models with an unknown number of structural changes. Our approach differs from theirs in

several aspects. First, the estimation methods are different. Following the lead of Han and Inoue (2015), BKW observe that
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the changes in the factor loadings can be represented as the changes in the secondmoment of the estimated factors, and they
then apply the standard techniques in the literature on time series structural change (e.g., Bai (1997) and Bai and Perron
(1998)) and consider both the joint and sequential estimation of the change points in the second moments of the estimated
factors. In contrast, ourmethod ismotivated from the Lasso literature. Second, the choices of the key tuningparameters differ.
Unlike our procedure which requires the division of the whole time span into J + 1 subintervals explicitly, BKW’s procedure
does not need so in theory. However, in practice, it requires the choice of a tuning/trimming parameter ϵ by restricting the
minimum length of a regime to be ϵT , where ϵ typically takes values from 0.05 to 0.25; see Assumption A4(ii) in Bai and
Perron (1998), Section 5.1 in Bai and Perron (2003), and the discussion in Qian and Su (2016b).1 The performance of their
method highly depends on the choice of ϵ,which plays a similar role to 1/(J + 1). Third, the asymptotic results are different.
As in the study of structural changes in time series regression, BKW establish the consistency of the estimator of the break
fractions but not that of the estimator of the common break dates. This is mainly because they transform the original problem
of estimating structural changes in the factor loadings to the problem of determining the breaks in the second moments of
the estimated factor time series process, which cannot use the common break date information across all cross-sectional
units effectively. In contrast, we work on the original problem and can establish the super-consistency of our estimator of
the common break dates by the effective use of the cross-sectional information as in Qian and Su (2016a). That being said, we
notice that BKW claim in their Section 5 that through re-estimation (based on the simultaneous search of themultiple break
dates after one obtains the estimated numbers of factors and breaks) they can establish the consistency of the estimators of
the break dates. This step parallels to Step III in our procedure with the only difference that our method is sequential while
their re-estimation is joint. In either case, the consistency of the break dates estimators are expected because both methods
can rely on the large-dimensional cross-sectional information effectively.

The rest of this paper is organized as follows. In Section 2, we introduce the three-step procedure for break points
detection and estimation. In Section 3, we study the asymptotic theory. In Section 4, we study the finite sample performance
of our method. Section 5 provides an empirical study. Section 6 concludes. All proofs are relegated to the appendix. Further
technical details are contained in the online supplementary material.

2. The factor model and estimation procedure

In this section, we consider a large-dimensional factor model with an unknown number of breaks, and then propose a
three-step procedure for estimation.We first introduce somenotationswhichwill be used throughout the paper. Letµmax (B)
andµmin (B) denote the largest and smallest eigenvalues of a symmetric matrix B, respectively. We use B > 0 to denote that
B is positive definite. For an m × n real matrix A, we denote its transpose as A⊤, its Moore–Penrose generalized inverse

as A+, its rank as rank(A), its Frobenius norm as ∥A∥ (≡ [tr(AA⊤)]1/2), and its spectral norm as ∥A∥sp (≡
√

µmax

(

A⊤A
)

).

Note that the two norms are equal when A is a vector. We will frequently use the submultiplicative property of these norms

and the fact that ∥A∥sp ≤ ∥A∥ ≤ ∥A∥sprank(A)1/2. Let PA ≡ A
(

A⊤A
)+

A⊤ and MA ≡ Im − PA, where Im denotes an m × m
identity matrix. For any set S, we use |S| to denote its cardinality. For any positive numbers an and bn, let an ≍ bn denote

limn→∞an/bn = c , for a positive constant c , and let an ≫ bn denote a−1
n bn = o(1). The operator

P→ denotes convergence in
probability and plim denotes probability limit. We use (N, T ) → ∞ to denote that N and T pass to infinity jointly.

2.1. The factor model

We consider the time-varying factor model:

Xit = λ
⊺

itFt + eit , i = 1, . . . ,N, t = 1, . . . , T ,

where λit is an R × 1 vector of time-dependent factor loadings, Ft is an R × 1 vector of unobserved common factors, eit is
the idiosyncratic error term, and both N and T pass to infinity. For simplicity of technical proofs, we assume that R does not
depend on N and T , but it is unknown. Hence we need to estimate R from the data. Writing the above model in the vector
form, we have

Xt = λtFt + et , t = 1, . . . , T ,

where Xt = (X1t , . . . , XNt )
⊺, λt = (λ1t , . . . , λNt )

⊺, and et = (e1t , . . . , eNt )
⊺.

We assume that the factor-loadings {λ1, . . . ,λT } exhibit certain sparse nature such that the total number of distinct
vectors in the set is given by m + 1, where m denotes the total number of break points in the process {λt} and it satisfies
T ≫ m. Whenm ≥ 1, let {t1, . . . , tm} denote them change-points satisfying

1 ≡ t0 < t1 < · · · < tm < tm+1 ≡ T + 1,

so that the whole time span is divided intom+ 1 regimes/segments, denoted by Iκ = [tκ , tκ+1) for κ = 0, 1, . . . ,m− 1 and
Im = [tm, tm+1]. We assume that

λit = αiκ for all t ∈ Iκ and κ = 0, 1, . . . ,m.

1 BKW choose ϵ = 0.1 in their simulations, which implies that the maximum number of breaks allowed is 8.
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When m = 0, we have I0 = Im = [t0, t1) = [1, T ] and λit = αi0 for all t ∈ [1, T ], so that no break happens in this scenario.
Let ακ = (α1k, . . . , αNκ )

⊺ for κ = 0, 1, . . . ,m. In practice, the number of breaks, m, and the locations of the breaks are
unknown if there are any breaks. Our target is to detect breaks, to find the number of breaks and identify their locations, and
to estimate R, αiκ and Ft . Let t

0
κ , α0

iκ , α0
κ and F 0

t denote the true values of tκ , αiκ , ακ and Ft , respectively.

2.2. A three-step procedure

We propose a three step procedure to automatically detect breaks, to determine the number of breaks if any, and to
estimate their locations. For clarity, we assume that R is known in this section and Section 3, but we discuss how to estimate
it and establish the consistency of its estimator in Section 4.1.

2.2.1. Step I: Piecewise constant estimation
Noting that λtFt = λt

(

H−1
t

)⊺
H

⊺

t Ft for any R × R nonsingular matrix Ht , λt and Ft are not separately identified, and their

identification requires R2 restrictions at each time point t . For the estimation of λt and Ft , following the lead of Bai and Ng
(2002), we shall impose the following identification conditions:

λ
⊺

t λt/N = IR for each t ,

T
∑

t=1

FtF
⊺

t /T is a diagonal matrix.

In this step, we propose to approximate λit by piecewise-constants, and then estimate λit and Ft accordingly. The
procedure is described as follows. Let J = J(N, T ) be a prescribed integer that depends on (N, T ), satisfying T ≫ J ≫ m.

Divide [1, T ] into (J + 1) subintervals Sj = [vj, vj+1) for j = 0, 1, . . . , J − 1 and SJ = [vJ , T ], where {vj}Jj=1 is a sequence of
‘‘equally-spaced’’ interior knots given as v0 ≡ 1 < v1 < · · · < vJ < T ≡ vJ+1, where vj = ⌊Tj/(J+1)⌋ for j = 1, . . . , J and ⌊·⌋
denotes the integer part of ·. Note that each interval contains T/(J +1) observations, for j = 0, 1, . . . , J −1, when T/(J +1) is
an integer. For any t ∈ Sj, λit is treated as a constant and can be approximated by λit ≈ δij, so that the identification condition

that λ
⊺

t λt/N = IR ∀ t implies that
∑N

i=1δijδ
⊺

ij/N = IR for each j = 0, 1, . . . , J . Denote∆j = (δ1j, . . . , δNj)
⊺. Then we need

∆
⊺

j ∆j/N = IR for every j = 0, 1, . . . , J.

The estimators ∆̂j and F̂t are obtained by minimizing
∑

t∈Sj

(Xt − ∆jFt )
⊺(Xt − ∆jFt )

subject to ∆
⊺

j ∆j/N = IR and F
⊺

Sj
FSj = diagonal, where FSj = (Ft , t ∈ Sj)

⊺ = (Fvj , . . . , Fvj+1−1)
⊺. By concentrating out

Ft = (∆
⊺

j ∆j/N)−1(∆
⊺

j Xt/N) = ∆
⊺

j Xt/N , the above objective function becomes

∑

t∈Sj

(Xt − ∆j∆
⊺

j Xt/N)⊺(Xt − ∆j∆
⊺

j Xt/N)

=
∑

t∈Sj

X
⊺

tXt − N−1tr(∆
⊺

j XSjX
⊺

Sj
∆j),

where XSj = (Xt , t ∈ Sj) and we have used the restriction that∆
⊺

j ∆j/N = IR. Thus, the estimators ∆̂j = (δ̂1j, . . . , δ̂Nj)
⊺ can

be obtained by maximizing

N−1tr(∆
⊺

j XSjX
⊺

Sj
∆j)

subject to∆
⊺

j ∆j/N = IR. When rank(XSjX
⊺

Sj
) ≥ R for every j = 0, . . . , J, ∆̂j is

√
N times the eigenvectors corresponding to

the R largest eigenvalues of the N × N matrix XSjX
⊺

Sj
=
∑

t∈SjXtX
⊺

t , and F̂t = ∆̂
⊺

j Xt/N for t ∈ Sj.

2.2.2. Step II: Adaptive group fused Lasso penalization for break detection
Let τj = |Sj| be the cardinality of the set Sj. Let VN,j denote the R × R diagonal matrix of the first R largest eigenvalues

of 1
Nτj

XSjX
⊺

Sj
in descending order. For those time points in the same true regime (Iκ , say), their factor loadings should be

the same. By Proposition 3.1(ii) below, ∆̂jVN,j is a consistent estimator of α0
κΣFQ

⊺
κ for all j satisfying Sj ⊂ Iκ , where ΣF is

defined in Assumption A1 and Qκ is defined in Proposition 3.1, both of which do not depend on j. Note that α0
κΣFQ

⊺
κ remains

unchanged if two consecutive intervals, say Sj and Sj−1, belong to Iκ . This motivates us to consider the following objective
function by imposing an AGFL penalty to detect the breaks between segments:

1

2N

J
∑

j=0

1

τj

∑

t∈Sj

(Xt − ∆jF̂t )
⊺(Xt − ∆jF̂t ) + γ

J
∑

j=1

w0
j



∆jVN,j − ∆j−1VN,j−1



 , (2.1)

where γ is a tuning parameter and w0
j ’s are adaptive weights to be specified later.
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Let Θ̆j = ∆̂jVN,j, Θj = N1/2
∆jVN,j/∥Θ̆j∥, Ẑjt = N−1/2∥Θ̆j∥V−1

N,j F̂t and ẐSj = (Ẑjt , t ∈ Sj). We can slightly modify the
objective function in (2.1) in terms of Θj

1

2N

J
∑

j=0

1

τj
∥XSj − ΘjẐSj∥2 + γ

J
∑

j=1

wj∥Θj − Θj−1∥, (2.2)

wherewj = N−1/2w0
j ∥Θ̆j∥.Note that (2.1) compares∆jVN,j with∆j−1VN,j−1 while (2.2) contrasts their normalized versions.

Let Θ̆j,r denote the rth column of Θ̆j for r = 1, . . . , R. Let ρ̆j,r denote the sample Pearson correlation coefficient of Θ̆j,r

and Θ̆j−1,r for j = 1, . . . , J. When the eigenvectors in ∆̂j are properly normalized to ensure the sign-identification, with

Proposition 3.1 below we can show that ρ̆j,r
P→ 1 when both Sj and Sj−1 belong to Iκ and they may converge in probability

to a value different from one otherwise. This motivates us to consider the following adaptive weights

wj =
(

1 − R−1

R
∑

r=1

ρ̆j,r

)−~

, (2.3)

where ~ is some fixed positive constant, e.g., 2. Let Θ̃j denote the penalized estimator of Θj in (2.2). Then the penalized

estimator of∆j is given by ∆̃j = ∆̃j (γ ) = N−1/2Θ̃jV
−1
N,j ∥Θ̆j∥.

We apply Boyd et al.’s (2011) alternating direction method of multipliers (ADMM) algorithm to obtain the penalized
estimator Θ̃j. Boyd et al. (2011) show that the ADMM algorithm has a good global convergence property. The detailed
procedure is provided in Section 3 of the Supplementary Material. The tuning parameter γ is chosen by the information
criterion method as given in Section 4.2.

2.2.3. Step III: Grid search for the locations of the breaks

Let β̃j ≡ Θ̃j − Θ̃j−1 for j = 1, . . . , J . By step II, we are able to identify the subintervals containing the breaks. There are

four situations that can happen for each subinterval Sj: (1) when β̃j ̸= 0 and β̃j+1 ̸= 0, the break happens in the interior of

the interval Sj; (2) when β̃j ̸= 0 and β̃j+1 = 0 and β̃j−1 = 0, the break may happen near the left end of Sj or the right end

of Sj−1; (3) when β̃j+1 ̸= 0 and β̃j = 0 and β̃j+2 = 0, the break may happen near the right end of Sj or the left end of Sj+1;

and (4) when β̃j = 0 and β̃j+1 = 0, no break happens in Sj. For case (1), we can conclude that an estimated break happens in
the interval Sj, and for cases (2) and (3), we have that an estimated break happens in the intervals S∗

j−1 and S∗
j , respectively,

where, e.g., S∗
j−1 ≡ [vj−1 + ⌊τj−1/2⌋ + 1, vj + ⌊τj/2⌋). Suppose that we have found m̂ intervals that contain a break point.

We denote such m̂ intervals as S̄j1 , . . . , S̄jm̂ . Note that S̄jκ coincides with either Sjκ or S∗
jκ
. Write S̄jκ = [t∗κ,1, . . . , t

∗
κ,τ̄jκ

] with

τ̄jκ =
⏐

⏐S̄jκ

⏐

⏐ for κ = 1, . . . , m̂. We discuss how to estimate these m̂ break points below.

To estimate the first break point, we conduct a grid search over the interval S̄j1 by using as many observations as possible

from both pre-S̄j1 and post-S̄j1 intervals. If the first break point happens to be t∗1,ℓ for some ℓ ∈
{

1, 2, . . . , τ̄j1

}

, we know
that observations that occur before t∗1,ℓ belong to the first regime w.p.a.1. Similarly, the observations that occur after t∗1,ℓ but
before the first observation in S̄j2 belong to the second regime w.p.a.1. But t∗1,ℓ is unknown and has to be searched over all

points in S̄j1 . After obtaining the first break point, we can find subsequent break points analogously.

To state the algorithm, let Sba = {t : a ≤ t ≤ b} and FSba
= (Fa, . . . , Fb)

⊺ for any integers a ≤ b. Let αl = (α1l, . . . , αNl)
⊺ for

l = 1, 2, . . . The following procedure describes how we can find the locations of all m̂ break points sequentially:

1. To search for the first break point t1, we consider the following minimization problem:

min
{α1,α2,{Ft }}

Q1 (α1, α2, {Ft} ; t1) =
∑

t∈St1−1

1

∥Xt − α1Ft∥2 +
∑

t∈S
t∗
2,1

−1

t1

∥Xt − α2Ft∥2

subject to the constraintsN−1α
⊺

1α1 = IR,N
−1α

⊺

2α2 = IR,
1

t1−1
F
⊺

S
t1−1

1

F
S
t1−1

1

= diagonal and 1
t∗
2,1

−t1
×F

⊺

S
t∗
2,1

−1

t1

F
S
t∗
2,1

−1

t1

= di-

agonal. Denote the solution to the above minimization problem as (α̃1 (t1) , α̃2 (t1) , {F̃t (t1)}). The first break point is
estimated as

t̂1 = arg min
t1∈S̄j1

Q1

(

α̃1 (t1) , α̃2 (t1) , {F̃t (t1)}; t1
)

.

2. After obtaining the break points, t̂1, . . . , t̂κ−1, we can search for the κth break point tκ by considering the following
minimization problem

min
{ακ ,ακ+1,{Ft }}

Qκ (ακ , ακ+1, {Ft} ; tκ)

=
∑

t∈Stκ −1

t̂κ−1

∥Xt − ακFt∥2 +
∑

t∈S
t∗
κ+1,1

−1

tκ

∥Xt − ακ+1Ft∥2
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subject to the constraints N−1α⊺
κακ = IR, N

−1α
⊺

κ+1ακ+1 = IR,
1

tκ−t̂κ−1
F
⊺

S
tκ −1

t̂κ−1

F
S
tκ −1

t̂κ−1

= diagonal and 1
t∗
κ+1,1

−tκ
F
⊺

S
t∗
κ+1,1

−1

tκ

F
S
t∗
κ+1,1

−1

tκ

= diagonal. Denote the solution to the above minimization problem as (α̃κ (tκ) , α̃κ+1 (tκ) , {F̃t (tκ)}). The
κth break point is estimated as

t̂κ = arg min
tκ∈S̄jκ

Qκ

(

α̃κ (tκ) , α̃κ+1 (tκ) , {F̃t (tκ)}; tκ
)

.

3. Repeat the above step until we obtain all m̂ estimated break points.

At last, after we find the locations of the break points, t̂1, . . . , t̂m̂, the whole time span is divided into m̂ + 1

regimes/segments, denoted by Îκ = [t̂κ−1, t̂κ ) for κ = 1, . . . , m̂ + 1, where t̂0 = 1 and t̂m̂+1 ≡ T + 1. On segment Îκ ,

we estimate the factors and their loadings as

(α̂κ , {F̂t}) = arg min
ακ ,{Ft }

∑

t∈Îκ

(Xt − ακFt )
⊺(Xt − ακFt )

subject to the constraints N−1α⊺
κακ = IR, and

1

|Îκ |F
⊺

Îκ
FÎκ =diagonal.

3. Asymptotic theory

In this section, we study the asymptotic properties of our estimators.

3.1. Theory for the piecewise constant estimators

For each subinterval Sj, we will establish the asymptotic property of ∆̂j from the piecewise constant estimation in Step

I. Denote S = {0, 1, 2, . . . , J}. Let τj1 = t0κ − vj and τj2 = τj − τj1 when Sj contains a true break point t0κ for some κ = κ (j) .

Define

S1 =
{

j ∈ S : Sj ⊂ Iκ for some κ (j)
}

,

S2a =
{

j ∈ S : Sj contains a break t0κ for some κ (j) such that lim
T→∞

τj1/τj = 1

}

,

S2b =
{

j ∈ S : Sj contains a break t0κ for some κ (j) such that lim
T→∞

τj1/τj = 0

}

,

S2c =
{

j ∈ S : Sj contains a break t0κ for some κ (j) such that lim
T→∞

τj1/τj ∈ (0, 1)

}

.

Let S2 = S2a ∪ S2b ∪ S2c . When no confusion arises, we will suppress the dependence of κ = κ (j) on j. Noting that

|S2| = m ≪ J, we have |S1| /J → 1.

Case 1.When no break occurs in the subinterval Sj, i.e., Sj ⊂ Iκ for some segment Iκ , then we have λit = α0
iκ for all t ∈ Sj,

where α0
iκ is the vector of the true factor loadings for the segment Iκ . Let F

0
t be the vector of true factors for t ∈ Sj . Then we

have

Xit = α
0⊺

iκ F
0
t + eit , i = 1, . . . ,N, t ∈ Sj.

Let F0Sj = (F 0
t , t ∈ Sj)

⊺ = (F 0
vj
, . . . , F 0

vj+1−1)
⊺ and α0

κ = (α0
1κ , . . . , α

0
Nκ )

⊺. Denote γN (s, t) = N−1E
(

e
⊺
set
)

, γN,F (s, t) =
N−1E

(

F 0
s e

⊺
set
)

, γN,FF (s, t) = N−1E(F 0
s e

⊺
setF

0⊺
t ), ζst = N−1[e⊺set − E(e

⊺
set )], ζF ,st = N−1[F 0

s e
⊺
set − E(F 0

s e
⊺
set )], ζFF ,st =

N−1[F 0
s e

⊺
setF

0⊺
t − E(F 0

s e
⊺
setF

0⊺
t )], and ςil (t1, t2) = 1

t2−t1

∑t2
s=t1

[eisels −E(eisels)]. Let ϖil,ts = E (eitels) and ϖil,t = ϖil,tt . Let

C < ∞ denote a positive constant that may vary from case to case.

We make the following assumptions.

Assumption A1. E∥F 0
t ∥4 ≤ C and 1

t−s
F
0⊺

St−1
s

F0
St−1
s

= ΣF + OP ((t − s)−1/2) for some R × R positive definite matrix ΣF and for

any two points t, s ∈ [1, T ] satisfying t − s → ∞.

Assumption A2. λit ’s are nonrandom such that max1≤i≤N,1≤t≤T∥λit∥ ≤ C and 1
N
α0⊺

κ α0
κ = Σκ +O

(

N−1/2
)

for some R × R

positive definite matrix Σκ for κ = 0, 1, . . . ,m.

Assumption A3. (i) E(eit ) = 0 and max1≤i≤N,1≤t≤TE
(

e4it

)

≤ C .

(ii) max1≤t≤T

∑T

s=1 ∥γ (s, t)∥ ≤ C and max1≤s≤T

∑T

t=1 ∥γ (s, t)∥ ≤ C for γ = γN , γN,F , and γN,FF . max1≤t≤T

⏐

⏐ϖil,tt

⏐

⏐ ≤ ϖil

for some ϖil such that max1≤l≤N

∑N

i=1ϖil ≤ C .

(iv)
(

Nτj
)−1∑N

i=1

∑N

l=1

∑

t∈Sj
∑

s∈Sj

⏐

⏐ϖil,ts

⏐

⏐ ≤ C .
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(v) max1≤i,l≤TE
⏐

⏐(t2 − t1)
1/2ςil (t1, t2)

⏐

⏐

4 ≤ C for all t1 < t2 such that t2 − t1 → ∞.

(vi) max1≤s,t≤TE






N1/2ζ

†
st







4

≤ C for ζ
†
st = ζst , ζF ,st and ζFF ,st , and max1≤t≤TE



N−1/2α0⊺
κ et





4 ≤ C for κ = 0, 1, . . . ,m.

Assumption A4. The eigenvalues of the R × Rmatrices Σ
1/2
κ ΣFΣ

1/2
κ are distinct for κ = 0, 1, . . . ,m.

Assumptions A1–A2 parallel Assumptions A and B in Bai (2003). A1 implies that 1
τj
F
0⊺

Sj
F0Sj = ΣF +OP (τ

−1/2

j ) as τj → ∞ and

A2 requires λit to be nonrandom and uniformly bounded. A3(i) imposes moment conditions on eit and A3(ii)–(v) restricts

the cross-sectional and serial dependence among {eit , Ft}. Similar conditions are also imposed in the literature; see, Bai and

Ng (2002) and Bai (2003). A4 is required to establish the convergence of certain eigenvector estimates.

Let ηNτj = min{
√
N,

√
τj} and Hj = HNτj,j = ( 1

τj
F
0⊺

Sj
F0Sj )(

1
N
α0⊺

κ ∆̂j)V
−1
N,j . Following Bai (2003), we can readily obtain the

following results:

Proposition 3.1. Suppose that Assumptions A1–A4 hold. Then as
(

N, τj
)

→ ∞,

(i) 1
N
∥∆̂j − α0

κHj∥2 = OP (η
−2
Nτj

) and ∥F̂t − H−1
j F 0

t ∥ = OP (η
−1
Nτj

) for any t ∈ Sj and j ∈ S1,

(ii) ∥ 1
N
∆̂

⊺

j α
0
κ − Qκ∥ = OP (η

−1
Nτj

) and 1
N
∥∆̂jVN,j − α0

κΣFQ
⊺
κ ∥2 = OP (η

−2
Nτj

) for any j ∈ S1,

where the matrix Qκ is invertible and is given by Qκ = V
1/2
κ Υ ⊺

κ Σ
−1/2

F , Vκ =diag(v1κ , . . . , vRκ ), v1κ > v2κ > · · · > vRκ > 0 are

the eigenvalues of Σ
1/2

F ΣκΣ
1/2

F , and Υκ is the corresponding eigenvector matrix such that Υ ⊺
κ Υκ = IR.

Remark 3.1. The above result can be proved by modifying the arguments used in Bai (2003). Alternatively, they can be

derived from the results in Proposition 3.2(ii) below.

Case 2.When a break point t0κ lies in the interval Sj = [vj, vj+1), we have

λit =
{

α0
i,κ−1 for t ∈ [vj, t

0
κ )

α0
iκ for t ∈ [t0κ , vj+1)

for some κ = κ (j) .

Let F0Sj,1 = (F 0
t , t ∈ [vj, t

0
κ ))

⊺, F0Sj,2 = (F 0
t , t ∈ [t0κ , vj+1))

⊺, and α∗
κ = (α0

κ−1, α
0
κ ). Let F∗

t = (F
0⊺
t 1jt , F

0⊺
t 1̄jt )

⊺ and

F∗
Sj

= (F∗
vj
, . . . , F∗

vj+1
)⊺, where 1jt = 1

{

vj ≤ t < t0κ
}

, 1̄jt = 1{t0κ ≤ t < vj+1} , and we suppress the dependence of F∗
t on

j. Let H∗
j = 1

τj
F

∗⊺
Sj
F∗
Sj

1
N
α∗⊺

κ ∆̂jV
−1
N,j , Hj,1 = ( 1

τj
F
0⊺

Sj,1
F0Sj,1)(

1
N
α
0⊺

κ−1∆̂j)V
−1
N,j , and Hj,2 = ( 1

τj
F
0⊺

Sj,2
F0Sj,2)(

1
N
α0⊺

κ ∆̂j)V
−1
N,j .

The following proposition establishes the asymptotic property of ∆̂j in Case 2.

Proposition 3.2. Suppose that Assumptions A1–A4 hold. Then

(i) 1
N
∥∆̂j − α0

κ−1Hj,1∥2 = OP (c
2
j2a) and

1
N
∥∆̂jVN,j − α0

κ−1ΣFQ
⊺

κ−1∥2 = OP (c
2
j2a) for all j ∈ S2a;

(ii) 1
N
∥∆̂j − α0

κHj,2∥2 = OP (c
2
j2b) and

1
N
∥∆̂jVN,j − α0

κΣFQ
⊺
κ ∥2 = OP (c

2
j2b) for all j ∈ S2b;

(iii) 1
N
∥∆̂j − α∗

κH
∗
j ∥2 = OP (η

−2
Nτj

) and 1
N

∥ ∆̂jVN,j − (Nτj)
−1(α0

κ−1F
0⊺

Sj,1
F0Sj,1α

0⊺

κ−1 + α0
κF

0⊺

Sj,2
F0Sj,2α

0⊺
κ ) ∆̂j∥2 = OP (η

−2
Nτj

) for all

j ∈ S2c; where cj2a = η−1
Nτj

+ τj2/τj and cj2b = η−1
Nτj

+ τj1/τj.

Remark 3.2. Proposition 3.2 indicates that the asymptotic properties of ∆̂j and ∆̂jVN,j depend on whether j lies in S2a,

S2b, or S2c . In particular, Proposition 3.2(i) (resp. (ii)) says, when the observations in Sj are mainly from regime κ − 1 (resp.

κ), the asymptotic property of ∆̂j mainly depends on α0
κ−1 (resp. α0

κ ), in which case the probability limit of ∆̂jVN,j will be

different from that of ∆̂j+1VN,j+1 (resp. ∆̂j−1VN,j−1), given by α0
κΣFQ

⊺
κ (resp. α0

κ−1ΣFQ
⊺

κ−1). In the case where j ∈ S2c, the

limit of ∆̂jVN,j will be different from those of ∆̂j−1VN,j−1 (which is given by α0
κ−1ΣFQ

⊺

κ−1) and ∆̂j+1VN,j+1 (which is given by

α0
κΣFQ

⊺
κ ). This serves as the basis for the determination of the subintervals that contain a break point.

3.2. Identifying the intervals that contain a break point

Let Θ∗
j denote the elementwise probability limit of Θ̂j ≡ N1/2

∆̂jVN,j/


∆̂jVN,j



 , j = 0, 1, . . . , J. In the absence of break

points on the whole time interval [1, T ] , we can readily show that Θ∗
j − Θ∗

j−1 = 0 for j = 1, . . . , J. In the general case,

Θ∗
j − Θ∗

j−1 may be equal to or different from the zero matrix depending on whether the subinterval Sj or Sj−1 contains a

break point.

Let |Imin| = min0≤κ≤m|Iκ |. To state the next result, we add the following two assumptions.

Assumption A5. For κ = 1, 2, . . . ,m, 1
N



α0
κΣFQ

⊺
κ − α0

κ−1ΣFQ
⊺

κ−1





2 → cκ > 0 as (N, T ) → ∞.

Assumption A6. (i) τ = O(N), τ ln T = o(|Imin|), andm/J = o (1) .

(ii) As (N, T ) → ∞, (Nτ)1/2γ = O (1) and (Nτ)1/2γ η~
Nτ/J → ∞.

A5 ensures that parameters of interest in neighboring segments are distinct from each other. Note that Qκ =
V

1/2
κ Υ ⊺

κ Σ
−1/2

F , where Vκ and Υκ collect the eigenvalues and normalized eigenvectors of Σ
1/2

F ΣκΣ
1/2

F , and Σκ denotes the
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limit of 1
N
α0⊺

κ α0
κ . If α0

κ = α0
κ−1, then α0

κΣFQ
⊺
κ = α0

κ−1ΣFQ
⊺

κ−1. When α0
κ and α0

κ−1 are distinct from each other such that
1
N



α0
κ − α0

κ−1





2 → cακ for some cακ > 0, we generally expect A5 to be satisfied. A6(i) ensures that η−1
Nτj

= O(τ
−1/2

j ) and

each interval Sj, j = 0, 1, . . . , J, contains at most one break. A6(ii) requires that γ converge to zero at a suitable rate, which

is required to identify all intervals that do not contain a break point.

The next proposition is crucial for identifying the intervals that contain the break points.

Proposition 3.3. Suppose that Assumptions A1–A6 hold. Then

(i) N−1


Θ̃j − Θ∗
j





2 = OP (a
2
j ) for all j ∈ S,

(ii) 1
N(J+1)

∑J

j=0



Θ̃j − Θ∗
j





2 = OP

(

η−2
Nτ + m/J

)

,

(iii) Pr
{

Θ̃j − Θ̃j−1



 = 0 for all j, j − 1 ∈ S1

}

→ 1 as (N, T ) → ∞,

where aj = η−1
Nτj

if j ∈ S1 ∪ S2c , aj = cj2a if j ∈ S2a, and aj = cj2b if j ∈ S2b, and cj2a and cj2b are defined in Proposition 3.2.

Remark 3.3. Proposition 3.3(i) establishes themean square convergence rates of the penalized estimators Θ̃j which depend

onwhether j ∈ S1, S2a, S2b, or S2c . Proposition 3.3(ii) is the average version of (i). Proposition 3.3(iii) establishes the selection

consistency of our AGFL method; it says that w.p.a.1 all the zero matrices {Θ∗
j − Θ∗

j−1, j, j − 1 ∈ S1} must be estimated as

exactly zeros by the AGFL method. On the other hand, we notice that Θ∗
j − Θ∗

j−1 = 0 if j − 1 ∈ S1 and j ∈ S2a, or j − 1 ∈ S2b

and j ∈ S1. In the latter two cases, the estimate Θ̃j − Θ̃j−1 of Θ
∗
j − Θ∗

j−1 may be zero or nonzero, depending on whether we

allow (Nτ)1/2γ
(

τj2/τj
)−2~

to pass to infinity in the case where j − 1 ∈ S1 and j ∈ S2a, and (Nτ)1/2γ
(

τj1/τj
)−2~

to pass to

infinity in the case where j− 1 ∈ S1 and j ∈ S2b. If the latter two conditions are satisfied, a close examination of the proof of

Proposition 3.3(iii) indicates thatΘ∗
j −Θ∗

j−1 will also be estimated by exactly zero in large sampleswhen j−1 ∈ S1 and j ∈ S2a,

or j − 1 ∈ S2b and j ∈ S1. On the other hand, by (i), we know that the matrices Θ∗
j − Θ∗

j−1 can be consistently estimated by

Θ̃j − Θ̃j−1. Putting these results together, Proposition 3.3 implies that the AGFL is capable of identifying the intervals among

{Sj, j = 0, 1, . . . , J} that might contain an unknown break point. Recall that we use m̂ to denote the estimated number of

break points. A direct implication of Proposition 3.3 is that

Pr
(

m̂ = m
)

→ 1 as (N, T ) → ∞. (3.1)

Remark 3.4. In order to see whether a subinterval Sj, j = 1, . . . , J − 1, contains a break point (say, t0κ ) or not, we need to

compare Θ∗
j with both Θ∗

j−1 and Θ∗
j+1 at the population level or compare Θ̃j with both Θ̃j−1 and Θ̃j+1 at the sample level. At

the population level, we have four scenarios: (1) Θ∗
j−1 ̸= Θ∗

j ̸= Θ∗
j+1 when j ∈ S2c, (2) Θ∗

j−2 = Θ∗
j−1 ̸= Θ∗

j = Θ∗
j+1 when

j ∈ S2b or j−1 ∈ S2a, (3) Θ∗
j−1 = Θ∗

j ̸= Θ∗
j+1 = Θ∗

j+2 when j ∈ S2a or j+1 ∈ S2b, (d) Θ∗
j−1 = Θ∗

j = Θ∗
j+1 when j ∈ S1. In case

(1), we can conclude that we have an estimated break point in the interval Sj, and for cases (2) and (3), we can conclude that

a break point happens in S∗
j−1 and S∗

j , respectively (see Section 2.2.3 for the definitions of S∗
j−1 and S∗

j ). The sample case has

been discussed at the beginning of Section 2.2.3. In addition, under the condition that |Imin| ≫ T/J , any finite fixed number

of consecutive intervals (e.g., Sj−1, Sj, and Sj+1) can contain at most one break, and S0 and SJ cannot contain any break. Such

information is useful to prove the result in Proposition 3.3.

3.3. Estimation of the break dates

Assumption A7. 1
N







(

α0
κ − α0

κ−1

)

F 0

t0κ −ℓ







2

≫ cNT for ℓ = 0,1 and κ = 1, . . . ,m, where cNT = |Imin|−1/2(ln T )3/2

+(τ ln T/|Imin|)1/2.
Assumption A8. (i) max1≤i≤Nmax1≤r≤T−s∥ 1

s

∑r+s

t=rF
0
t eit∥ = OP

(

(s/ln T )−1/2
)

for any s → ∞.

(ii) max1≤s,t≤T
1
N

⏐

⏐e
⊺

t es − E
(

e
⊺

t es
)
⏐

⏐ = OP

(

(N/ln T )−1/2
)

.

(iii) max0≤κ≤mmax1≤t≤T
1
N



α0⊤
κ et



 = OP

(

(N/ln T )−1/2
)

.

(iv) maxj∈S1


ESj





sp
= OP (max(

√
N,

√
τj)) where ESj = (et , t ∈ Sj).

Assumption A7 is needed to consistently estimate all m break points. To understand this, we focus on the case where

DN,κ ≡ 1
N

(

α0
κ − α0

κ−1

)⊤ (
α0

κ − α0
κ−1

)

→ Dκ > 0. In this case,

1

N







(

α0
κ − α0

κ−1

)

F 0

t0κ −ℓ







2

= tr

(

DN,κF
0

t0κ −ℓ
F 0⊤
t0κ −ℓ

)

≥ µmin

(

DN,κ

)






F 0

t0κ −ℓ







2

≫ cNT almost surely.

A8 is used to obtain some uniform result and can be verified under certain primitive conditions. For example, under certain

strong mixing and moment conditions on the process {F 0
t eit , t ≥ 1}, A8(i) can be verified by a simple use of Bernstein

inequality for strongmixing processes provided that N and T diverge to infinity at comparable rates. See Moon andWeidner

(2015) for primitive conditions to ensure A8(iv) to hold.

The next proposition establishes the super-consistency of the estimators of the break points.
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Proposition 3.4. Suppose that Assumptions A1–A8 hold. Then Pr(t̂1 = t01 , . . ., t̂m = t0m|m̂ = m) → 1 as (N, T ) → ∞.

Remark3.5. In conjunctionwith (3.1), the above proposition indicates thatwe can estimate the break dates preciselyw.p.a.1.

This result is much stronger that the first set of results in BKW. BKW consider both joint and sequential estimation of the

break dates in large dimensional factor models with an unknown number of structural changes. Conditioning on the correct

determination of the number of structural changes, they show that the distance between the estimated and true break

dates are OP (1) , which implies the consistency of the estimators of the break fractions (t0κ /T , κ = 1, . . . ,m). Nevertheless,

BKW also consider simultaneous search of the multiple break dates after one obtains the estimated numbers of factors and

breaks; and they claim the consistency of the estimators of the break dates. This re-estimation step parallels to Step III in

our procedure with the only difference that our method is sequential while their re-estimation is joint. In either case, the

consistency of the break dates estimators are expected.

4. Practical issues

In this section we first discuss the determination of the number of factors and then propose an information criterion to

choose the tuning parameter γ .

4.1. Determination of the number of factors

In the above analysis, we assume that the number of factors, R, is known. In practice, one has to determine R from the

data. Here we assume that the true value of R, denoted as R0, is bounded from above by a finite integer Rmax. We propose a

BIC-type information criterion to determine R0.

Now, we use ∆̂j(R) and F̂t (R) to denote the estimators of ∆j and Ft by using R factors defined in Section 2.2.1. Let

∆̆j(R) =
(

Nτj
)−1

XSjX
⊺

Sj
∆̂j(R) for j = 0, 1, . . . , J. Define

V (R) = V (R, {∆̆j(R)})

= min
{F1(R),...,FT (R)}

(J + 1)−1

J
∑

j=0

(Nτj)
−1
∑

t∈Sj

(Xt − ∆̆j(R)Ft (R))
⊺(Xt − ∆̆j(R)Ft (R)).

Following the lead of Bai and Ng (2002), we consider the following BIC-type information criterion to determine R0:

IC1 (R) = ln V

(

R,

{

∆̆j(R)

})

+ ρ1NTR, (4.1)

where ρ1NT plays the role of ln(NT )/(NT ) in the case of BIC. Let R̂ = argminRIC1 (R) . We add the following assumption.

Assumption A9. As (N, T ) → ∞, ρ1NT → 0 and ρ1NT/(mJ−1 + η−2
Nτ ) → ∞ where ηNτ = min(

√
N,

√
τ ) and τ = min0≤j≤Jτj.

The conditions on ρ1NT in A9 are typical conditions in order to estimate the number of factors consistently. The penalty

coefficient ρ1NT has to shrink to zero at an appropriate rate to avoid both overfitting and underfitting.

Proposition 4.1. Suppose that Assumptions A1–A4 and A8–A9 hold. Then P(R̂ = R0) → 1 as (N, T ) → ∞.

Remark 4.1. Proposition 4.1 indicates that we can minimize IC1 (R) to consistently estimate R0. To implement the

information criterion, one needs to choose the penalty coefficient ρ1NT . Following the lead of Bai and Ng (2002), we suggest

setting ρ1NT = N+τ̄
N τ̄

ln
(

N τ̄
N+τ̄

)

or ρ1NT = N+τ̄
N τ̄

ln η2
N τ̄ with ηN τ̄ = min{

√
τ̄ ,

√
N} and τ̄ = T/(J + 1), and evaluate the

performance of these two information criteria in our simulation studies. Define

IC1a(R) = log(V (R)) + R
N + τ̄

N τ̄
ln

(

N τ̄

N + τ̄

)

,

IC1b(R) = log(V (R)) + R
N + τ̄

N τ̄
ln η2

N τ̄ . (4.2)

Let R̂1a = argminRIC1a(R) and R̂1b = argminRIC1b(R). When the number of breaks,m, is fixed, it appears that one can choose

J such that J ≍ τ̄ , in which case J/m + η2
N τ̄ ≍ η2

N τ̄ provided τ̄ = O(N).

4.2. Choice of the tuning parameter γ

We now discuss the choice of the tuning parameter γ , which is an important issue when the penalized objective function

in (2.2) is used in practice. (2.2) suggests that a too large value of γ tends to under-estimate the true number of breaks,

denoted as m0 hereafter; similarly, a too small value of γ tends to over-estimate m0. Therefore it is sensible to choose a

data-driven γ such thatm0 can be identified.
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To proceed, we assume the existence of a closed interval, namely, Γ ≡ [γmin, γmax], such that when γ = γmin, one can

identify at mostmmax ≥ m0 breaks, and when γ = γmax, one does not identify any break. If one believes that the number of

breaks is fixed when (N, T ) → ∞ as in many applications, it is reasonable to conjecture a finite value for mmax. Then γmin

and γmax can be easily pinned down from the data.

Given γ ∈ [γmin, γmax], we can apply the three-step procedure in Section 2 to obtain the break point estimates t̂κ (γ ) ,

κ = 1, . . . , m̂γ , where we make the dependence of t̂κ (γ ) and m̂γ on γ explicit. Let Îκ (γ ) = [t̂κ−1 (γ ) , t̂κ (γ )) for

κ = 1, . . . , m̂γ + 1, where t̂0 (γ ) = 1 and t̂m̂γ +1 (γ ) ≡ T + 1. On segment Îκ (γ ), we estimate the factors and their

loadings as

(α̂κ (γ ) , {F̂t (γ )}) = arg min
ακ ,{Ft }

∑

t∈Îκ (γ )

(Xt − ακFt )
⊺(Xt − ακFt )

subject to the constraints that N−1α⊺
κακ = IR and F

⊺

Îκ (γ )
FÎκ (γ )

= diagonal. Let T̂m̂γ
(γ ) = {t̂1 (γ ) , . . . , t̂m̂γ

(γ )}. Define

σ̂ 2
(

T̂m̂γ
(γ )
)

= 1

NT

m̂γ +1
∑

j=1

t̂j(γ )−1
∑

t=t̂j(γ )

[

Xt − α̂j (γ ) F̂t (γ )

]⊺ [

Xt − α̂j (γ ) F̂t (γ )

]

.

Following the lead of Li et al. (2016), we propose to select γ ∈ Γ to minimize the following information criterion

IC2(γ ) = log
[

σ̂ 2
(

T̂m̂γ
(γ )
)]

+ ρ2NT

(

m̂γ + 1
)

, (4.3)

where ρ2NT is a predetermined tuning parameter that satisfies certain conditions. Let γ̂ = argminγ∈Γ IC2(γ ). We add the

following assumption.

Assumption A10. (i) For any 0 ≤ m < m0, there exists a positive non-increasing sequence c1NT and a positive constant cλ

such that

plim(N,T )→∞ min
Tm

min
{

αj: N−1α
⊺

j
αj=IR

}

c−1
1NT

1

NT

m+1
∑

j=1

tj−1
∑

t=tj−1

F 0
t

⊤(αj−λ0t )⊤Mαj (αj−λ0t )F 0
t ≥ cλ,

where Tm = {t1, . . . , tm} with 1 < t1 < · · · < tm < T , and Mαj
= IN − αj(α

⊤
j αj)

+α⊤
j .

(ii) As (N, T ) → ∞, c1NTηNImin
→ ∞ and c−1

1NTρ2NTm
0 → 0.

(iii) As (N, T ) → ∞, ρ2NT c
−1
2NT → ∞ where c2NT = N−1 + I−1

min + mmaxT
−1.

Assumptions A10(i) and (ii) impose conditions to avoid the selection of γ to yield fewer breaks than the true number by

using IC2(γ ) in (4.3). A10(iii) specifies conditions to avoid the selection of γ to yield more breaks than the true number. The

remark after the proof of Lemma A.8 in the online Appendix B discusses cases where c1NT = 1 when them0 is fixed and Imin

is proportional to T .

Proposition 4.2. Suppose that Assumptions A1–A8 and A10 hold. Then P(m̂γ̂ = m0) → 1 as (N, T ) → ∞.

Remark 4.2. Proposition 4.2 indicates that by minimizing IC2 (γ ) we can obtain a data-driven γ̂ that ensures the correct

determination of the number of breaks asymptotically. When we minimize IC2(γ ) in (4.3), we do not restrict γ to satisfy

Assumption A6(ii). If A6(ii) is satisfied, we know from Proposition 3.3 that m̂γ is given by the true number of breaks (m0)

w.p.a.1. But in practice, it is hard to ensure such an assumption is satisfied and Proposition 4.2 becomes handy.

To implement IC2(γ ) in practice, it is often reasonable to assume that m0 and mmax are fixed and Imin ∝ T . In this case,

Assumption A10 holds with c1NT = 1 and c2NT = N−1 + T−1 under some weak conditions. Then one can specify ρ2NT as

follows

ρ2NT = c log (min (N, T ))

min (N, T )
, (4.4)

where c is a positive constant. Following Hallin and Liska (2007) and Li et al. (2016), one can also apply a data-driven

procedure to determine c.

5. Monte Carlo simulations

In this section, we conduct simulation studies to assess the finite-sample performance of our proposed break detection

procedure.
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5.1. Data generating processes

We generate data under the framework of high dimensional factor models with R = 2 common factors:

Xit = λ
⊺

itFt + eit , i = 1, . . . ,N, t = 1, . . . , T ,

where Ft = (F1t , F2t )
⊺, F1t = 0.6F1,t−1 + u1t , u1t are i.i.d. N(0, 1 − 0.62), F2t = 0.3F2,t−1 + u2t , u2t are i.i.d. N(0, 1 − 0.32) and

independent of u1t . We consider the following setups for the factor loadings λit and error terms eit .

DGP1: (Single structural break)

λit =
{

αi1 for t = 1, 2, . . . , t1 − 1

αi2 for t = t1, t1 + 1, . . . , T
,

where αi1 are from i.i.d. N((0.5b, 0.5b)⊺, ((1, 0)⊺, (0, 1)⊺)) and αi2 are from i.i.d. N((b, b)⊺, ((1, 0)⊺, (0, 1)⊺)) and independent

of αi1 . The error terms eit are generated in two ways: (1) (IID) eit are i.i.d. N(0, 2), and (2) (CHeter) eit = σivit , where σi are

i.i.d. U(0.5, 1.5), vit are from i.i.d. N(0, 2), and CHeter denotes cross-sectional heterogeneity in the error terms. Let b = 1,2.

DGP2: (Multiple structural breaks)

λit =
{

αi1 for t = 1, 2, . . . , t1 − 1

αi2 for t = t1, t1 + 1, . . . , t2 − 1

αi3 for t = t2, t2 + 1, . . . , T
,

where αi1 are from i.i.d. N((0.5b, 0.5b)⊺, ((1, 0)⊺, (0, 1)⊺)), αi2 are from i.i.d. N((b, b)⊺, ((1, 0)⊺, (0, 1)⊺)), αi3 are from i.i.d.

N((1.5b, 1.5b)⊺, ((1, 0)⊺, (0, 1)⊺)), and they are mutually independent of each other. The error terms eit are generated in

two ways: (1) (IID) eit are i.i.d. N(0, 2), and (2) (AR(1)) eit = 0.2eit−1 + uit , where uit are i.i.d. N(0, 2(1 − 0.22)). Let b = 1,2.

DGP3: (No breaks) λit = αi and αi are i.i.d. N((1, 1)⊺, ((1, 0)⊺, (0, 1)⊺)). The error terms eit are i.i.d. N(0, 2).

For each DGP, we simulate 1000 datasets with sample sizes T = 250, 500 and N = 50. Since the factor loadings are

assumed to be nonrandom,we generate them once and fix them across the 1000 replications.We use J+1 = 10 subintervals

for T = 250 and use J + 1 = 10, 15 subintervals for T = 500 in the piecewise constant estimation in Step I.

In DGP1, we consider two cases:

(Case 1) we set the break date t1 = T/2, so that t1 = 125 and 250 for T = 250 and 500, respectively;

(Case 2) we set t1 = T/2+⌊0.5T/(J + 1)⌋, so that t1 = 137 for T = 250 and t1 = 275, 266 for J +1 = 10, 15 and T = 500.

It is worth noting that when T = 250, t1 = 125 is in the boundary of some subinterval and t1 = 137 is located in the

interior of the subinterval. When T = 500, t1 = 250 and 266 are in the boundary of some subinterval, respectively, for

J + 1 = 10 and 15, and t1 = 275 and 250 are in the interior of some subinterval, respectively, for J + 1 = 10 and 15.

In DGP2, we consider two cases:

(Case 1) we set the breaks t1 = 0.3T and t2 = 0.7T , so that t1 = 75 and 150 for T = 250 and 500, and t2 = 175 and 350

for T = 250 and 500;

(Case 2) we let t1 = 0.3T and t2 = 0.6T +⌊0.5T/(J + 1)⌋, so that t2 = 162 for T = 250 and t2 = 325, 316 for J +1 = 10,15

and T = 500.

Similarly to DGP1, some breaks are located in the boundary of an interval and some are in the interior of an interval.

5.2. Determination of the number of factors

First, we assume that the true number of factors is unknown. We select the number of factors by the two information

criteria IC1a(R) and IC1b(R) given in (4.2) of Section 4.1 . Since the information criteria also depend on J and J plays the

role of the trimming parameter ϵ in Assumption A4(ii) of Bai and Perron (1998, BP hereafter), we follow Bai and Perron’s

(2003) recommendation and consider 5–25% of observations within each subinterval (i.e., ϵ ∈ [0.05, 0.25]). Recall that BP

requires that each regime has at least ϵT observations, and the larger value ϵ takes, the smaller number of breaks are allowed.

Specifically, when T = 250, we set J + 1 = 10 which corresponds to BP’s ϵ = 0.1; when T = 500, we set J + 1 = 10 and

15, which correspond to BP’s ϵ = 0.1 and 0.0667, respectively.

Table 1 presents the average selected number of factors (AVE) and the empirical probability of correct selection (PROB)

by the two information criteria for DGP1-3 with b = 1. We observe that the AVE is equal to or close to two, which is the

true number of factors, and the PROB is equal to or close to one for all cases. The results in Table 1 demonstrate the selection

consistency of the two information criteria established in Section 4.1.

To illustrate the relationship between the IC values and the number of factors, Fig. 1 shows the average value of IC1a(R)

(thin line) and IC1b(R) (thick line) among 1000 replications against the number of factors for (a) DGP1-Case1 with T = 250

and cross-sectionally heteroskedastic error terms; (b) DGP2-Case1 with T = 250 and autoregressive error terms; and (c)

DGP3. We observe that the average IC value reaches its minimum at R = 2 in these three plots. In addition, we find that

IC1b(R) has steeper slope than IC1a(R) when R > 2 so that it helps to avoid overselecting the number of factors.
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Table 1

Performance of the two information criteria in determining the number of factors: DGPs 1–3 with b = 1.

(T , J + 1) IC1a IC1b

(250, 10) (500, 10) (500, 15) (250, 10) (500, 10) (500, 15)

Average selected number of factors

DGP1-IID

Case 1 2.000 2.000 2.000 2.000 2.000 2.000

Case 2 2.000 2.000 2.000 2.000 2.000 2.000

DGP1-CHeter

Case 1 2.000 2.000 2.000 2.000 2.000 2.000

Case 2 2.003 2.001 2.000 2.000 2.000 2.000

DGP2-IID

Case 1 2.000 2.000 2.000 2.000 2.000 2.000

Case 2 2.001 2.000 2.000 2.000 2.000 2.000

DGP2-AR

Case 1 2.000 2.000 2.000 1.998 2.000 2.000

Case 2 2.000 2.000 2.000 2.000 2.000 2.000

DGP3 2.000 2.000 2.000 2.000 2.000 2.000

Empirical probability of correct selection

DGP1-IID

Case 1 1.000 1.000 1.000 1.000 1.000 1.000

Case 2 1.000 1.000 1.000 1.000 1.000 1.000

DGP1-CHeter

Case 1 1.000 1.000 1.000 1.000 1.000 1.000

Case 2 0.997 0.999 1.000 1.000 1.000 1.000

DGP2-IID

Case 1 1.000 1.000 1.000 1.000 1.000 1.000

Case 2 0.999 1.000 1.000 1.000 1.000 1.000

DGP2-AR

Case 1 1.000 1.000 1.000 0.998 1.000 1.000

Case 2 1.000 1.000 1.000 1.000 1.000 1.000

DGP3 1.000 1.000 1.000 1.000 1.000 1.000

5.3. Estimation of the break points

Following the literature on adaptive Lasso, we set ~ = 2 and 4 to determine the adaptive weight in the adaptive fused

Lasso penalty given in Section 2.2.2. For a larger value of ~ , more sparsity is induced. We select the tuning parameter γ

by minimizing the information criterion (4.4) given in Section 4.2. We set c = 0.15 as suggested in Hallin and Liska (2007).

To examine the break detection performance, we calculate the percentages of correct estimation (C) of m, and conditional

on the correct estimation of m, the accuracy of break date estimation, which is measured by average Hausdorff distance of

the estimated and true break points divided by T (HD/T ). Let D(A, B) ≡ supb∈Binfa∈A|a − b| for any two sets A and B. The

Hausdorff distance between A and B is defined as max{D(A, B),D(B, A)}.
The results for DGP 1–2 are shown in Tables 2 and 3 for ~ = 2 and 4, respectively. All figures in the tables are in

percentages (%). We observe that the percentage of correct estimation is closer to 100% for the larger signal of b = 2. By

using the same number of subintervals with J + 1 = 10, the C value for T = 500 is larger than that for T = 250, and the

HD/T value for T = 500 is smaller than that for T = 250 for all cases. Moreover, for the same T = 500, the break detection

procedure performs better by using J + 1 = 10 subintervals than J + 1 = 15 subintervals by observing larger C values for

most cases. Furthermore, the HD/T value for breaks located at the boundaries of the subintervals is smaller than that for

breaks in the interior of the subintervals. For example, for DGP1-IID with T = 500, for J + 1 = 10, the 100×HD/T value for

Case 1 (0.029) is smaller than that (0.154) for Case 2, since the break is in the boundary for Case 1 and it is in the interior of

some subinterval for Case 2. However, the result is reversed for J + 1 = 15 by observing 0.288 and 0.025, respectively, for

Case 1 and Case 2, since the break is in the boundary for Case 2 for this scenario.

To further evaluate the three-step break detection procedure for DGP1 with one break point, we calculate the frequency

for all identified break points among 1000 replications. Since the percentage of correct estimation for ~ = 4 is higher than

that for ~ = 2 for each case, in the following we just report the results for ~ = 2 to save spaces. Figs. 2–4 show the plots

of the frequency of the identified breaks among 1000 replications for DGP1 and for T = 250 and J + 1 = 10, and T = 500

and J + 1 = 10,15, respectively. The blue shaded line with angle=135 is for b = 1 and the red shaded line with angle=45

is for b = 2. For plots (a) and (b) of Fig. 2, the true break is at t1 = 125, and for plots (c) and (d) of Fig. 2, the true break

is at t1 = 137. We see that the height of the frequency bar around the true break is close to 1000. This indicates that the

three-step procedure can identify the true break or some neighborhood point as a break with a high chance. For the stronger

signal with b = 2, the identified breaks are more concentrated around the true break than those for the weaker signal with
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Fig. 1. Plots of the IC1a (thin line) and IC1b (thick line) against the number of factors with b = 1 for (a) DGP1-Case1 with T = 250 and cross-sectional

heteroscedastic errors, (b) DGP2-Case1 with T = 250 and autoregressive errors. and (c) DGP3.

b = 1. Moreover, by using the same number of subintervals with J + 1 = 10, when we increase the T value from 250 to 500,
the frequency bar around the true break is closer to 1000 as shown in Fig. 3. For T = 500, when we increase J + 1 from 10
to 15, more points are identified as breaks, especially for the weaker signal with b = 1 as shown in Figs. 3 and 4. Figs. 5–7
show the plots of the frequency of the identified breaks among 1000 replications for DGP2. We see that the two true breaks
can be identified well. We can observe similar patterns as the frequency plots for DGP1. For example, for larger T value, the
frequency bars around the true breaks have height closer to 1000.

For DGP3with no breaks, the false detection proportion among 1000 replication by using ~ = 4 is 0.021, 0.000 and 0.008,
respectively, for the three cases: T = 250 with J + 1 = 10, T = 500 with J + 1 = 10, and T = 500 with J + 1 = 15. There is
no break detected for T = 500 and J + 1 = 10, while the false detection proportion is close to zero for the other two cases.
This result indicates that our method works well when no break exists in the model.

6. Application

In this section, we apply our proposed method to the U.S. Macroeconomic DataSet (Stock and Watson, 2009) to detect
possible structural breaks in the underlying factor model. The dataset consists of N = 108 monthly macroeconomic time-
series variables including real economic activity measures, prices, interest rates, money and credit aggregates, stock prices,
exchange rates, etc. for the United States, spanning 1959m01–2006m12. Following the literature, we transform the data by
taking the first order difference, so that we obtain a total of T = 575monthly observations for eachmacroeconomic variable.
The data have been centered and standardized for the analysis. We refer to Stock and Watson (2009) for the detailed data
description.

We use J + 1 = 10 subintervals for the piecewise constant estimation, since as demonstrated in the simulation studies
that the method works well for T = 500 by using J +1 = 10 subintervals. We let ~ = 4 in the fused penalization procedure.
We first determine the appropriate number of common factors. We select the number of factors by the information criteria
IC2(R) given in (4.2) of Section 4.1. As a result, the number of selected factors is 6. In Fig. 8, we plot the values of IC2(R) against
the number of factors. We observe that the IC value reaches its minimum at R = 6.

Next, we apply our proposed break detection procedure with the numbers of factors of R = 6. The tuning parameter in
the fused penalization procedure is selected by the information criterion described in Section 4.2 with c = 0.15. Ourmethod
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Table 2

Percentage of correct detection of the number of breaks (C) and accuracy of break-point estimation (100×HD/T ): DGP1-2 with ~ = 2.

(T , J + 1) (250, 10) (500, 10) (500, 15)

C 100×HD/T C 100×HD/T C 100×HD/T

b = 1

DGP1-IID

Case 1 66.9 0.071 81.4 0.029 68.2 0.288

Case 2 65.7 0.661 77.0 0.154 73.1 0.025

DGP1-CHeter

Case 1 66.6 0.101 79.6 0.031 67.0 0.290

Case 2 64.1 0.672 75.8 0.165 71.9 0.034

DGP2-IID

Case 1 84.3 0.118 89.4 0.042 76.2 0.180

Case 2 81.8 0.190 88.4 0.058 74.8 0.140

DGP2-AR

Case 1 78.6 0.187 85.2 0.078 67.5 0.232

Case 2 72.7 0.217 82.0 0.086 66.5 0.238

b = 2

DGP1-IID

Case 1 93.6 0.019 98.2 0.007 95.0 0.135

Case 2 93.5 0.173 98.0 0.019 94.4 0.006

DGP1-CHeter

Case 1 94.6 0.025 98.0 0.008 94.0 0.148

Case 2 93.4 0.212 98.1 0.018 94.2 0.008

DGP2-IID

Case 1 96.2 0.065 97.9 0.012 95.1 0.130

Case 2 93.5 0.145 97.2 0.023 95.0 0.085

DGP2-AR

Case 1 84.2 0.158 95.3 0.035 88.3 0.188

Case 2 82.4 0.211 92.2 0.044 87.4 0.134

Table 3

Percentage of correct detection of the number of breaks (C) and accuracy of break-point estimation (100×HD/T ): DGP1-2 with ~ = 4.

(T , J + 1) (250, 10) (500, 10) (500, 15)

C 100×HD/T C 100×HD/T C 100×HD/T

b = 1

DGP1-IID

Case 1 86.4 0.033 91.5 0.018 76.4 0.769

Case 2 82.6 0.832 89.3 0.546 77.3 0.014

DGP1-CHeter

Case 1 85.0 0.040 91.7 0.016 76.1 0.798

Case 2 81.1 0.887 88.2 0.570 77.4 0.013

DGP2-IID

Case 1 92.7 0.082 96.4 0.018 87.5 0.643

Case 2 90.5 0.538 96.2 0.126 86.8 0.589

DGP2-AR

Case 1 91.6 0.102 95.8 0.030 86.5 0.742

Case 2 88.9 0.702 95.3 0.182 83.4 0.618

b = 2

DGP1-IID

Case 1 98.1 0.015 99.4 0.005 94.0 0.502

Case 2 92.8 0.577 99.0 0.420 99.6 0.006

DGP1-CHeter

Case 1 97.9 0.016 99.3 0.007 94.1 0.585

Case 2 92.1 0.624 98.8 0.462 99.5 0.008

DGP2-IID

Case 1 99.7 0.034 100.0 0.008 93.2 0.356

Case 2 95.5 0.325 99.8 0.121 94.5 0.318

DGP2-AR

Case 1 99.4 0.056 100.0 0.020 98.0 0.334

Case 2 95.3 0.452 99.2 0.138 97.2 0.292
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Fig. 2. Plots of the frequency of the estimated breaks among 1000 replications for DGP1 and T = 250 and for (a) Case 1 and IID errors, (b) Case 1 and CHeter

errors, (c) Case 2 and IID errors, and (d) Case 2 and CHeter errors. The blue shaded line with angle = 135 is for b = 1 and the red shaded line with angle =
45 is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is able to identify five break dates in 1979m09, 1984m07, 1990m03, 1995m06, and 2002m01, respectively. The year of 1984

was considered as a potential break date by Stock and Watson (2009). As shown in a recent paper of Chen et al. (2014),

their Sup-Wald test detected one break date around 1979–1980 (second oil price shock). This break date is also found by our

proposed method. They mentioned that one possible explanation could be the impact on monetary policy in the US by the

Iranian revolution in the beginning of 1979. Moreover, by using the U.S. labor productivity time-series data, Hansen (2001)

plotted the sequence of Chow statistics for testing structural changes as a function of candidate break dates as shown in

Figure 1 of page 120. It shows that the curve of the Chow test statistic has two peaks around the years of 1991 and 1995

which indicates that breaks may happen at these time points if any. By using our proposed method, we detected two break

dates in 1990m03 and 1995m06, respectively. For the break date in the year of 2002, it may be attributed to the early 2000s

recession (Kliesen, 2003).

7. Conclusion

In this paper, we propose a novel three-step procedure by utilizing nonparametric local estimation, shrinkage methods

and grid search to determine the number of breaks and to estimate the break locations in large dimensional factor models.

Based on the first-stage piecewise constant estimation of the factor loadings, we also propose a BIC-type information

criterion to determine the number of factors. The proposed procedure is easy to implement, computationally efficient, and

theoretically reliable.We show that the information criterion can consistently estimate the number of factors and our three-

step procedure can consistently estimate the number of breaks and the break locations. Simulation studies demonstrate good

performance of the proposedmethod. An application to U.S. macroeconomic dataset further illustrates the usefulness of our

method.
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Fig. 3. Plots of the frequency of the estimated breaks among 1000 replications for DGP1 and T = 500, J + 1 = 10 and for (a) Case 1 and IID errors, (b) Case

1 and CHeter errors, (c) Case 2 and IID errors, and (d) Case 2 and CHeter error. The blue shaded line with angle = 135 is for b = 1 and the red shaded line

with angle = 45 is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Mathematical appendix

This appendix provides the proofs of Propositions 3.2–3.3 in Section 3 and 4.1–4.2 in Section 4. The proof of Proposition 3.4

as well as that of some technical lemmas are available in the online supplementary material.

Appendix A. Proofs of the Propositions in Section 3

A.1. Proof of Proposition 3.2

Let Vκ , Υκ , and Qκ be as defined in Proposition 3.1. We first state the following three lemmas that are used in proving

Proposition 3.2. The proofs of these three lemmas are provided in the online Supplementary Material.

Lemma A.1. Suppose that Assumptions A1–A4 hold. Suppose that Sj contains a break point t0κ for some κ = κ (j) and j ∈ S2a.

Then

(i) N−1
∆̂

⊤
j

[

(

Nτj
)−1

XSjX
⊺

Sj

]

∆̂j = VN,j = Vκ−1 + OP (η
−1
Nτj

+ τj2/τj),

(ii) N−1
∆̂

⊤
j α0

κ−1 = Qκ−1 + OP (η
−1
Nτj

+ τj2/τj),

(iii) Hj,1 = Σ
1/2

F Υκ−1V
−1/2

κ−1 + OP (η
−1
Nτj

+ τj2/τj),

(iv) 1
N



∆̂j − α0
κ−1Hj,1





2 = 1
N

∑N

i=1






∆̂ij − H

⊺

j,1α
0
i,κ−1







2

= OP (η
−2
Nτj

+ (τj2/τj)
2),

(v) F̂t = 1
N
∆̂

⊤
j α∗

κF
∗
t + OP (N

−1/2 + η−1
Nτj

(η−1
Nτj

+ τj2/τj)) for each t ∈ Sj,

(vi) 1
τj






F̂Sj − F0SjH

⊤−1
j,1







2

= OP (N
−1 + η−2

Nτj
(η−1

Nτj
+ τj2/τj)

2).
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Fig. 4. Plots of the frequency of the estimated breaks among 1000 replications for DGP1 and T = 500, J + 1 = 15 and for (a) Case 1 and IID errors, (b) Case

1 and CHeter errors, (c) Case 2 and IID errors, and (d) Case 2 and CHeter errors. The blue shaded line with angle = 135 is for b = 1 and the red shaded line

with angle = 45 is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Lemma A.2. Suppose that Assumptions A1–A4 hold. Suppose that Sj contains a break point t0κ for some κ = κ (j) and j ∈ S2b.

Then

(i) N−1
∆̂

⊤
j

[

(

Nτj
)−1

XSjX
⊺

Sj

]

∆̂j = VN,j = Vκ + OP (η
−1
Nτj

+ τj1/τj),

(ii) N−1
∆̂

⊤
j α0

κ = Qκ+ OP (η
−1
Nτj

+ τj1/τj),

(iii) Hj,2 = Σ
1/2

F ΥκV
−1/2
κ + OP (η

−1
Nτj

+ τj1/τj),

(iv) 1
N



∆̂j − α0
κHj,2





2 = 1
N

∑N

i=1






∆̂ij − H

⊺

j,2α
0
i,κ







2

= OP (η
−2
Nτj

+ (τj1/τj)
2),

(v) F̂t = 1
N
∆̂

⊤
j α∗

κF
∗
t + OP (N

−1/2 + η−1
Nτj

(η−1
Nτj

+ τj1/τj)) for each t ∈ Sj,

(vi) 1
τj






F̂Sj − F0SjH

⊤−1
j,2







2

= OP (N
−1 + η−2

Nτj
(η−1

Nτj
+ τj1/τj)

2).

Lemma A.3. Suppose that Assumptions A1–A4 hold. Suppose that Sj contains a break point t0κ for some κ = κ (j) and j ∈ S2c .

Then

(i) N−1
∆̂

⊤
j

[

(

Nτj
)−1

XSjX
⊺

Sj

]

∆̂j = VN,j = Vκ∗ + OP (η
−1
Nτj

),

(ii) N−1
∆̂

⊤
j α∗

κ = Qκ∗ + OP (η
−1
Nτj

),

(iii) Hj∗ = Σ
1/2

F Υκ∗V
−1/2
κ∗ + OP (η

−1
Nτj

),

(iv) 1
N



∆̂j − α∗
κHj∗





2 = 1
N

∑N

i=1






∆̂ij − H

⊺

j∗α
∗
iκ







2

= OP (η
−2
Nτj

),

(v) F̂t = 1
N
∆̂

⊤
j α∗

κF
∗
t + OP (N

−1/2 + τ−1
j ) for each t ∈ Sj and j ∈ S2c,

(vi) 1
τj






F̂Sj − F∗

Sj

1
N
α∗⊤

κ ∆̂j







2

= OP (N
−1 + τ−2

j ),
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Fig. 5. Plots of the frequency of the estimated breaks among 1000 replications for DGP2 and T = 250 and for (a) Case 1 and IID errors, (b) Case 1 and AR

errors, (c) Case 2 and IID errors, and (d) Case 2 and AR errors. The blue shaded line with angle = 135 is for b = 1 and the red shaded line with angle = 45

is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where Vκ∗ is the diagonal matrix consisting of the R largest eigenvalues of Σ
1/2

F∗
κ

ΣΛ∗
κ
Σ

1/2

F∗
κ

in descending order with Υκ∗ being the

corresponding (normalized) 2R × R eigenvector matrix, Qκ∗ = V
1/2
κ∗ Υ ⊺

κ∗Σ
−1/2

F∗
κ

, ΣF∗
κ

=diag
(

cjΣF , (1 − cj)ΣF

)

, cj = τj1/τj, and

ΣΛ∗
κ

= limN→∞N−1α∗⊤
κ α∗

κ .

The first part of Proposition 3.2(i) follows from Lemma A.1(iv). For the second part of Proposition 3.2(i), we have by the
Cauchy–Schwarz inequality and the submultiplicative property of Frobenius norm,

1

N
∥∆̂jVN,j − α0

κ−1ΣFQ
⊤
κ−1∥2

≤ 2

N
∥(∆̂j − α0

κ−1Hj,1)VN,j∥2 + 2

N
∥α0

κ−1

(

Hj,1VN,j − ΣFQ
⊤
κ−1

)

∥2

≤ 2

N
∥∆̂j − α0

κ−1Hj,1∥2


VN,j





2 + 2

N



α0
κ−1





2 ∥Hj,1VN,j − ΣFQ
⊤
κ−1∥2

= OP (η
−2
Nτj

+ (τj2/τj)
2),

where the last equality follows from Lemma A.1(i), (iii) and (iv). Analogously, we can apply Lemma A.2 to prove
Proposition 3.2(ii).

The first part of Proposition 3.2(iii) follows from Lemma A.3(iv). For the second part of Proposition 3.2(iii), noting that

α∗
κH

∗
j = (Nτj)

−1(α0
κ−1F

⊺

Sj,1
FSj,1α

0⊺

κ−1+α0
κF

⊺

Sj,2
FSj,2α

0⊺
κ )∆̂jV

−1
Nτ ,j by thedefinitions ofα

∗
κ andH∗

j ,wehave for any t ∈ Sj and j ∈ S2c

1

N






∆̂jVN,j − (Nτj)

−1(α0
κ−1F

⊺

Sj,1
FSj,1α

0⊺

κ−1 + α0
κF

⊺

Sj,2
FSj,2α

0⊺
κ )∆̂j







2

= 1

N






(∆̂j − α∗

κH
∗
j )VN,j







2

≤ 1

N






∆̂j − α∗

κH
∗
j







2 
VN,j





2 = OP (η
−2
Nτj

)

by Lemma A.3(i) and (iv).
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Fig. 6. Plots of the frequency of the estimated breaks among 1000 replications for DGP2 and T = 500, J + 1 = 10 and for (a) Case 1 and IID errors, (b) Case

1 and AR errors, (c) Case 2 and IID errors, and (d) Case 2 and AR errors. The blue shaded line with angle = 135 is for b = 1 and the red shaded line with

angle = 45 is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A.2. Proof of Proposition 3.3

Recall Ẑjt = N−1/2


∆̂jVN,j



 V−1
N,j F̂t and ẐSj = (Ẑjt , t ∈ Sj) = N−1/2F̂SjV

−1
N,j



∆̂jVN,j



 (a τj×Rmatrix), where F̂Sj = (F̂t , t ∈ Sj)

. Let aj be defined as in Proposition 3.3 . Let

∆̄j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α0
κΣFQ

⊤
κ if j ∈ S1

α0
κ−1ΣFQ

⊤
κ−1 if j ∈ S2a

α0
κΣFQ

⊤
κ if j ∈ S2b

α∗
κHκ∗Vκ∗ if j ∈ S2c

, H̄j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ΣFQ
⊤
κ V−1

κ if j ∈ S1

ΣFQ
⊤
κ−2V

−1
κ−1 if j ∈ S2a

ΣFQ
⊤
κ V−1

κ if j ∈ S2b

H̄κ∗ = Σ
1/2

F∗ Υκ∗V
−1/2
κ∗ = ΣF∗Q⊤

κ∗V
−1
κ∗ if j ∈ S2c

,

V̄j =

⎧

⎪

⎨

⎪

⎩

Vκ if j ∈ S1

Vκ−1 if j ∈ S2a

Vκ if j ∈ S2b

Vκ∗ if j ∈ S2c

for some κ = κ (j) .

Note that ∆̄j and V̄j denote the probability limits of ∆̂jVN,j and VN,j, respectively. Let

ZSj =
(

Zjt , t ∈ Sj
)

=
{

N−1/2F0Sj H̄
⊤+
j V̄−1

j



∆̄j



 if j ∈ S1 ∪ S2a ∪ S2b

N−1/2F∗
Sj
Q⊤

κ∗V
−1
κ∗


∆̄j



 if j ∈ S2c

,

where Zjt = N−1/2V̄−1
j H̄+

j Ft


∆̄j



 if j ∈ S1 ∪ S2a ∪ S2b, and = N−1/2V−1
κ∗ Qκ∗F∗

t



∆̄j



 if j ∈ S2c . Let Θ∗
j ≡ N1/2

∆̄j/


∆̄j



 .

To prove Proposition 3.3, we need a lemma.

Lemma A.4. Let E∗
Sj

= XSj − Θ∗
j Z

⊤
Sj
. Let ϑj =

(

ϑj,1, . . . , ϑj,R

)

, an N × R matrix, for j = 0, 1, . . . , J. Let ϑj = N−1/2vec
(

ϑj

)

and

J1 = J + 1. Suppose that the conditions in Proposition 3.3 hold. Then for each j ∈ S, we have
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Fig. 7. Plots of the frequency of the estimated breaks among 1000 replications for DGP2 and T = 500, J + 1 = 15 and for (a) Case 1 and IID errors, (b) Case

1 and AR errors, (c) Case 2 and IID errors, and (d) Case 2 and AR errors. The blue shaded line with angle = 135 is for b = 1 and the red shaded line with

angle = 45 is for b = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Plots of the values of IC1b against the number of factors for the real data application.



S. Ma, L. Su / Journal of Econometrics 207 (2018) 1–29 21

(i) 1

τja
2
j






ẐSj − ZSj







2

= OP (1) and 1
J1

∑J

j=0
1

τja
2
j






ẐSj − ZSj







2

= OP (1),

(ii) 1

N1/2τjaj






E∗
Sj
(ẐSj − ZSj )






= OP (1) and 1

J1

∑J

j=0
1

N(τjaj)
2






E∗
Sj
(ẐSj − ZSj )







2

= OP (1),

(iii) 1

N1/2τjaj






E∗
Sj
ZSj






= OP (1) and 1

J1

∑J

j=0
1

N(τjaj)
2






E∗
Sj
ZSj







2

= OP (1),

(iv) 1
Nτj

tr

[

ϑj

(

ẐSj Ẑ
⊤
Sj

− ZSjZ
⊤
Sj

)

ϑ⊤
j

]

= oP (1)


ϑj





2
,

(v) 1
Nτjaj

tr

[

(XSj − Θ∗
j Ẑ

⊤
Sj
)⊺ϑjẐ

⊤
Sj

− (XSj − Θ∗
j Z

⊤
Sj
)⊺ϑjZ

⊤
Sj

]

= OP (1)


ϑj



 .

Proof of Proposition 3.3. (i) Let Θj = Θ∗
j + ajϑj. Let

ΓNT ,γ

(

{Θj}
)

= 1

2N

J
∑

j=0

1

τj

∑

t∈Sj

(Xt − ΘjẐjt )
⊺(Xt − ΘjẐjt ) + γ

J
∑

j=1

wj



Θj − Θj−1





= 1

2N

J
∑

j=0

1

τj
tr

[

(XSj − ΘjẐ
⊤
Sj
)⊺(XSj − ΘjẐ

⊤
Sj
)

]

+ γ

J
∑

j=1

wj



Θj − Θj−1



 .

Let cj, j = 0, 1, . . . , J be arbitrary positive constants that do not depend on (N, T ) . Our aim is to show that for any given

ϵ > 0, there exists a large constant L such that for sufficiently large (N, T ) we have

P

{

inf
N−1/2∥ϑj∥=cjL, j=0,1,...,J

ΓNT ,γ

({

Θ∗
j + ajϑj

})

> ΓNT ,γ

({

Θ∗
j

})

}

≥ 1 − ϵ. (A.1)

This implies thatw.p.a.1 there is a localminimum
{

Θ̃j

}

such that the estimator
{

Θ̃j

}

lies inside the ball
{{

Θ∗
j + ajϑj

}

: N−1/2



ϑj



 ≤ cjL
}

. Then we have N−1/2


Θ̃j − Θ∗
j



 = OP (aj) for j = 0, 1, . . . , J.

Let D
({

ϑj

})

= ΓNT ,γ ({Θ∗
j + ajϑj}) − ΓNT ,γ

(

{Θ∗
j }
)

. Noting that XSj − ΘjẐ
⊤
Sj

= (XSj − Θ∗
j Ẑ

⊤
Sj
) − ajϑjẐ

⊤
Sj
, we have

D
({

ϑj

})

= 1

2N

J
∑

j=0

1

τj
tr

[

(XSj − ΘjẐ
⊺

Sj
)⊺(XSj − ΘjẐ

⊺

Sj
) − (XSj − Θ∗

j Ẑ
⊺

Sj
)⊺(XSj − Θ∗

j Ẑ
⊺

Sj
)

]

+ γ

J
∑

j=1

wj

{


Θj − Θj−1



−


Θ∗
j − Θ∗

j−1





}

= 1

2N

J
∑

j=0

a2j

τj
tr

[

ẐSjϑ
⊺

j ϑjẐ
⊺

Sj

]

− 1

N

J
∑

j=0

aj

τj
tr

[

(XSj − Θ∗
j Ẑ

⊺

Sj
)⊺ϑjẐ

⊺

Sj

]

+ γ

J
∑

j=1

wj

{


Θj − Θj−1



−


Θ∗
j − Θ∗

j−1





}

= 1

2N

J
∑

j=0

a2j

τj
tr

[

ϑjZ
⊺

Sj
ZSjϑ

⊺

j

]

− 1

N

J
∑

j=0

aj

τj
tr

[

(XSj − Θ∗
j Z

⊤
Sj
)⊺ϑjZ

⊺

Sj

]

+ 1

2N

J
∑

j=0

a2j

τj
tr

[

ϑj

(

Ẑ
⊺

Sj
ẐSj − Z

⊺

Sj
ZSj

)

ϑ
⊺

j

]

− 1

N

J
∑

j=0

aj

τj
tr

[

(XSj − Θ∗
j Ẑ

⊺

Sj
)⊺ϑjẐ

⊺

Sj
− (XSj − Θ∗

j Z
⊤
Sj
)⊺ϑjZ

⊺

Sj

]

+ γ
∑

j=1

wj

{

Θj − Θj−1



−


Θ∗
j − Θ∗

j−1





}

≡ D1

({

ϑj

})

− D2

({

ϑj

})

+ D3

({

ϑj

})

− D4

({

ϑj

})

+ D5

({

ϑj

})

, say.

Recall that ϑj = N−1/2vec
(

ϑj

)

and E∗
Sj

= XSj − Θ∗
j Z

⊺

Sj
. Let Aj = 1

τj
Z
⊺

Sj
ZSj and Bj = 1

N1/2τjaj
vec(E∗

Sj
×ZSj ). Appar-

ently,


Aj



 = OP (1) . By Lemma A.4(iii),


Bj



 = OP (1) for j ∈ S. Noting that tr(B1B2) = vec
(

B
⊺

2

)⊺
vec(B1) and

tr(B1B2B3) =vec(B1)
⊺ (B2 ⊗ I)vec

(

B
⊺

3

)

for any conformable matrices B1, B2, B3 and an identity matrix I (see, e.g., Bernstein
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(2005, p. 247 and p. 253)), we have

D1

({

ϑj

})

= 1

2N

J
∑

j=0

a2j

τj
tr

[

ϑjZ
⊺

Sj
ZSjϑ

⊺

j

]

= 1

2

J
∑

j=0

a2j ϑ
⊺

j

(

Aj ⊗ IR

)

ϑj, and

D2

({

ϑj

})

= 1

N

J
∑

j=0

a2j

τjaj
tr

[

ϑjZ
⊺

Sj
E

∗⊺
Sj

]

=
J
∑

j=0

a2j B
⊺

j ϑj.

By Lemma A.4(iv)–(v),

D3

({

ϑj

})

= 1

2N

J
∑

j=0

a2j

τj
tr

[

ϑj

(

ẐSj Ẑ
⊺

Sj
− ZSjZ

⊺

Sj

)

ϑ
⊺

j

]

=
J
∑

j=0

oP
(

a2j
) 

ϑj





2
, and

D4

({

ϑj

})

= 1

N

J
∑

j=0

a2j

τjaj
tr

[

(XSj − Θ∗
j Ẑ

⊺

Sj
)⊺ϑjẐ

⊺

Sj
− (XSj − Θ∗

j Z
⊺

Sj
)⊺ϑjZ

⊺

Sj

]

=
J
∑

j=0

OP

(

a2j
)


ϑj



 .

To study D5

({

ϑj

})

, we define the event ENT = {j − 1, j ∈ S : j − 1 ∈ S2 and j ∈ S2}. Let E
c
NT denote the complement of ENT .

Noting that T/(J + 1) ≪ |Imin|, we have P
(

E
c
NT

)

→ 1 as (N, T ) → ∞. Conditional on the event Ec
NT ,

D5

({

ϑj

})

= γ
∑

j∈S1,j−1∈S1

wj



Θj − Θj−1



+ γ

⎧

⎨

⎩

∑

j∈S1,j−1∈S2a∪S2c

+
∑

j∈S1,j−1∈S2b

+
∑

j∈S2a,j−1∈S1

+
∑

j∈S2b∪S2c ,j−1∈S1

⎫

⎬

⎭

wj

{

Θj − Θj−1



−


Θ∗
j − Θ∗

j−1





}

≡ D5,1

({

ϑj

})

+
5
∑

l=2

D5,l

({

ϑj

})

, say,

where, e.g.,
∑

j∈S1,j−1∈S1 =
∑J

j=1, j∈S1,j−1∈S1 . Apparently,D5,1

({

ϑj

})

≥ 0.Noting thatwhen j ∈ S1 and j−1 ∈ S2b,Θ
∗
j = Θ∗

j−1

and D5,3

({

ϑj

})

= γ
∑

j∈S1,j−1∈S2bwj



Θj − Θj−1



 ≥ 0. Similarly, when j − 1 ∈ S1 and j ∈ S2a, Θ∗
j = Θ∗

j−1 and

D5,4

({

ϑj

})

= γ
∑

j∈S2a,j−1∈S1

wj



Θj − Θj−1



 ≥ 0.

When j ∈ S1, j − 1 ∈ S2a ∪ S2c, Θ∗
j − Θ∗

j−1 ̸= 0 and

⏐

⏐D5,2

({

ϑj

})⏐

⏐ ≤ γ
∑

j∈S1,j−1∈S2a∪S2c

ajwj



ϑj − ϑj−1





≤ 2γ max
j∈S1,j−1∈S2a∪S2c

wj

J
∑

j=0

aj


vec
(

ϑj

)

 = OP ((Nτ)1/2γ )

J
∑

j=0

a2j



ϑj



 ,

where we use the fact that maxj∈S1,j−1∈S2a∪S2c
wj = OP (1) and a−1

j = O
(

τ 1/2
)

. By the same token, we can show that
⏐

⏐D5,5

({

ϑj

})
⏐

⏐ = OP ((Nτ)1/2γ )
∑J

j=0a
2
j



ϑj



 .

Consequently, we have show that

D
({

ϑj

})

≥ 1

2

J
∑

j=0

a2j ϑ
⊺

j

(

Aj ⊗ IR
)

ϑj −
J
∑

j=0

a2j B
⊺

j ϑj

−OP ((Nτ)1/2γ + 1)

J
∑

j=0

a2j



ϑj



+ s.m.

≥
J
∑

j=0

a2j

{

1

2
µmin

(

Aj

) 

ϑj





2 − [


Bj



+ OP (1)]


ϑj





}

+ s.m.,
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where s.m. denotes terms that are of smaller order than the preceding displayed terms. Noting that µmin

(

Aj

)

≥ c > 0 and


Bj



 = OP (1) , by allowing


ϑj



 = N−1/2


ϑj



 sufficiently large, the linear term [


Bj



 + OP (1)]


ϑj



 will be dominated

by the quadratic term 1
2
µmin

(

Aj

)


ϑj





2
. This implies that N−1/2



ϑj



 has to be stochastically bounded for each j in order

for D
({

ϑj

})

to be minimized. That is, (A.1) must hold for some large positive constant L and N−1/2


Θ̃j − Θ∗
j



 = OP (aj) for

j = 0, 1, . . . , J.

(ii) Let ϑ̃j = a−1
j (Θ̃j − Θ∗

j ). Then we can follow the analysis of (i) and show that

0 ≥ 1

J1
D({ϑ̃j})

≥ 1

J1

J
∑

j=0

a2j

{

1

2
µmin

(

Aj

)






ϑ̃j







2

− [


Bj



+ OP (1)]





ϑ̃j







}

+ s.m.,

where OP (1) holds uniformly in j. Then by the Cauchy–Schwarz inequality, we have

0 ≥ 1

2
min
0≤j≤J

µmin

(

Aj

) 1

J1

J
∑

j=0

a2j






ϑ̃j







2

−

⎧

⎨

⎩

1

J1

J
∑

j=0

a2j [


Bj



+ OP (1)]2
⎫

⎬

⎭

1/2⎧

⎨

⎩

1

J1

J
∑

j=0

a2j






ϑ̃j







2

⎫

⎬

⎭

1/2

+ s.m.

It follows that

1

NJ1

J
∑

j=0



Θ̃j − Θ∗
j





2 = 1

J1

J
∑

j=0

a2j






ϑ̃j







2

= OP (
1

J1

J
∑

j=0

a2j



Bj





2
) + OP (

1

J1

J
∑

j=0

a2j )OP (1).

Note that

1

J1

J
∑

j=0

a2j



Bj





2 = 1

J1

∑

j∈S1

a2j



Bj





2 + 1

J1

∑

j∈S2

a2j



Bj





2

= OP

(

η−2
Nτ

) 1

J1

∑

j∈S1



Bj





2 + OP (m/J)

= OP

(

η−2
Nτ + m/J

)

.

Analogously, we can show that 1
J1

∑J

j=0a
2
j = OP

(

η−2
Nτ + m/J

)

. It follows that 1
NJ1

∑J

j=0



Θ̃j − Θ∗
j





2 = OP

(

η−2
Nτ + m/J

)

.

(iii) Define S =
{

j ∈ S : Θ∗
j − Θ∗

j−1 ̸= 0
}

and S
c =

{

j ∈ S : Θ∗
j − Θ∗

j−1 = 0
}

. We focus on the case where |S| ≥ 1 which

implies that [1, T ] contains at least one break. We will show that

Pr
{

Θ̃j − Θ̃j−1



 = 0 for all j, j − 1 ∈ S1

}

→ 1 as (N, T ) → ∞. (A.2)

Suppose that to the contrary, β̃j = Θ̃j − Θ̃j−1 ̸= 0 for some j such that j, j − 1 ∈ S1 for sufficiently large (N, T ) . Then

exists r ∈ {1, 2, . . . , R} such that ∥β̃j,r∥ = max{∥β̃j,l∥, l = 1, . . ., R}, where β̃j,r denotes the rth column of β̃j. Without loss

of generality (Wlog), we assume that r = R. Then ∥β̃j,R∥/∥β̃j∥ ≥ 1/
√
R. To consider the first order condition (FOC) with

respect to (wrt) Θj, j = 1, . . . , J, we distinguish three cases: (a) 2 ≤ j ≤ J − 1, (b) j = J, and (c) j = 1. For j = 1, . . . , J, let

ϱj =
(

ϱj,1, . . . , ϱj,R

)

where

ϱj,r = β̃j,r/


β̃j+1



 if


β̃j+1



 ̸= 0 for r = 1, . . . , R, and


ϱj



 ≤ 1 otherwise. (A.3)

In case (a), we consider two subcases: (a1) j + 1 ∈ S2b ∪ S2c and (a2) j + 1 ∈ S1 ∪ S2a. In either subcase, the FOC wrt Θj,R

for the minimization problem in (2.2) is given by

0N×1 = aj√
N
(XSj − Θ̃jẐ

⊺

Sj
)ẐSj,R − ajτjN

1/2γwjβ̃j,R/


β̃j



+ ajτjN
1/2γwj+1ϱj+1,R

= aj√
N

[

(Θ∗
j − Θ̃j)Z

⊺

Sj
+ Θ̃j(Z

⊺

Sj
− ẐSj ) + E∗

Sj

]

ẐSj,R − ajτjN
1/2γwjβ̃j,R/



β̃j





+ ajτjN
1/2γwj+1ϱj+1,R
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= aj√
N
(Θ∗

j − Θ̃j)Z
⊺

Sj
ZSj,R + aj√

N
E∗
Sj
ZSj,R + aj√

N
(Θ∗

j − Θ̃j)Z
⊺

Sj
(ẐSj,R − ZSj,R)

+ aj√
N

Θ̃j(Z
⊺

Sj
− ẐSj )ẐSj,R + aj√

N
E∗
Sj
(ẐSj,R − ZSj,R) + ajτjN

1/2γwjβ̃j,R/


β̃j





+ ajτjN
1/2γwj+1ϱj+1,R

≡ B1,j (R) + B2,j (R) + B3,j (R) + B4,j (R) + B5,j (R) − B6,j (R) + B7,j (R) , say, (A.4)

where ẐSj,R and ZSj,R denote the R -th columns of ẐSj and ZSj , respectively. By part (i),


B1,j(R)


 ≤ τja
2
j (N

−1/2a−1
j ∥Θ∗

j −
Θ̃j∥)∥ 1

τj
Z
⊺

Sj
ZSj,R∥ = OP (1) where we use the fact aj = η−1

Nτj
= O(τ

−1/2

j ) for j ∈ S1 under Assumption A6(i). Similarly, by

Lemma A.4(iii),


B2,j(R)


 = OP (1) . By the submultiplicative property of the Frobenius norm, part (i) and Lemma A.4(i)–(ii),

we have that for j ∈ S1,



B3,j(R)


 ≤ (τja
3
j )(N

−1/2a−1
j )



Θ∗
j − Θ̃j



 τ
−1/2

j



ZSj



 τ
−1/2

j a−1
j






ẐSj,R − ZSj,R







= OP (τja
3
j ) = oP (1) ,



B4,j(R)


 ≤ (τja
2
j )N

−1/2


Θ̃j



 τ
−1/2

j






ẐSj,R






τ

−1/2

j a−1
j






ZSj − ẐSj






= OP (τja

2
j ) = OP (1) ,



B5,j(R)


 ≤ (τja
2
j )N

−1/2τ−1
j a−1

j






E∗
Sj
(ẐSj,R − ZSj,R)






= OP (τja

2
j ) = OP (1) .

In addition,



B6,j(R)


 ≥ ajτjN
1/2γwj



β̃j,R



 /


β̃j



 ≥ ajτjN
1/2γwj/

√
R, (A.5)

which is explosive in probability at rate (Nτ)1/2γ η~
Nτ under Assumption A6(ii).

To determine the probability order of B7,j(R), we consider two subcases. In subcase (a1) j+1 ∈ S2b ∪S2c , N
−1/2∥β̃j+1∥

P→
limN→∞N−1/2∥Θ∗

j+1 − Θ∗
j ∥ ̸= 0, implying that wj+1 = OP (1) and



B7,j(R)


 ≤ ajτjN
1/2γwj+1 = OP ((Nτ)1/2γ ) = OP (1).

Consequently,


B6,j(R)


 ≫
∑5

l=1



Bl,j(R)


+


B7,j(R)


 and (A.4) cannot hold for sufficiently large (N, T ) . Then we conclude

that w.p.a.1 β̃j = Θ̃j − Θ̃j−1 must lie in a position where


Θj − Θj−1



 is not differentiable with respect to Θj in subcase

(a1). In this case we can apply the subdifferential calculus and the fact that 0 belongs to the subdifferential of the objective

function wrt Θj to obtain

0N×R = aj√
N
(XSj − Θ̃jẐ

⊺

Sj
)ẐSj − ajτjN

1/2γwjϱj + ajτjN
1/2γwj+1ϱj+1

= aj√
N
(Θ∗

j − Θ̃j)Z
⊺

Sj
ZSj +

aj√
N
E∗
Sj
ZSj +

aj√
N
(Θ∗

j − Θ̃j)Z
⊺

Sj
(ẐSj − ZSj )

+ aj√
N

Θ̃j(Z
⊺

Sj
− ẐSj )ẐSj +

aj√
N
E∗
Sj
(ẐSj − ZSj ) − ajτjN

1/2γwjϱj + ajτjN
1/2γwj+1ϱj+1

≡ B1,j + B2,j + B3,j + B4,j + B5,j − B6,j + B7,j, say, (A.6)

for some ϱj and ϱj+1 that are defined as in (A.3).2 Following the above analyses of Bl,j(R) for l = 1, 2, 3, 4, 5 and 7, we have
∑5

l=1



Bl,j



+


B7,j



 = OP (1) . Then (A.6) implies that we must have


B6,j



 = ajτjN
1/2γwj



ϱj



 = OP (1) .

In subcase (a2) j + 1 ∈ S1 ∪ S2a. First, we observe that in order for the FOC wrt Θj,R in (A.4) to hold, ∥B7,j(R)∥ =
ajτjN

1/2γwj+1∥ϱj+1,R∥must be explosive at the same rate as


B6,j(R)


 . In addition, wemust have


B7,j(R)


=


B6,j(R)


+OP (1)

and hence


B7,j(R)


 /


B6,j(R)




P→ 1 as (N, T ) → 1. Next, we consider the FOC wrt Θj+1,R:

0N×1 = aj+1√
N
(XSj+1

− Θ̃j+1Ẑ
⊺

Sj+1
)ẐSj+1,R − aj+1τj+1N

1/2γwj+1ϱj+1,R + aj+1τj+1N
1/2γwj+2ϱj+2,R

= B1,j+1 (R) + B2,j+1 (R) + B3,j+1 (R) + B4,j+1 (R) + B5,j+1 (R) − B6,j+1 (R) + B7,j+1 (R) . (A.7)

Noting that B6,j+1(R) = aj+1τj+1

ajτj
B7,j(R) ≍ aj+1

aj
B7,j(R) and



B7,j(R)


 /


B6,j(R)




P→ 1, this implies that both


B6,j+1(R)




and


B7,j+1(R)


 must explode at the same rate,


B7,j+1(R)


=


B6,j+1(R)


 + OP (1) , and


B7,j+1(R)


 /


B6,j+1(R)




P→ 1 if

j + 2 ∈ S1 ∪ S2a. Deducting this way until j + ı ∈ S1 ∪ S2a but j + ı + 1 ∈ S2b ∪ S2c for some ı ≥ 1. By assumption, if

the interval Sj+ı+1 contains a break so that j + ı + 1 ∈ S2b ∪ S2c , then the intervals Sj+ı−1 and Sj+ı cannot contain a break (so

2 Here we abuse the notation slightly for B6,j: its rth column is given by ajτjN
1/2γwjβ̃j,R/∥β̃j∥ as long as ∥β̃j∥ ̸= 0 and ajτjN

1/2γwjϱj,r for some ϱj,r with

∥ϱj∥ ≤ 1 otherwise. Similarly for B7,j. We can regard Bℓ,J as the matrix version of Bℓ,J (R) : Bℓ,J =
(

Bℓ,J (1) , . . . , Bℓ,J (R)
)

where ℓ = 1, 2, . . . , 7, and Bℓ,J (r)

are defined analogously to Bℓ,J (R) in (A.4) by considering the FOC wrt to Θj,r instead.
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that we must have j + ı − 1, j + ı ∈ S1). In addition, for j′ = 1, . . . , ι we have



B7,j+j′ (R)


 ≥


B6,j+j′ (R)


−
5
∑

l=1



Bl,j+j′ (R)


 = aj+j′τj+j′

aj+j′−1τj+j′−1



B7,j+j′−1 (R)


−
5
∑

l=1



Bl,j+j′ (R)




≥ aj+j′τj+j′

aj+j′−1τj+j′−1

(

aj+j′−1τj+j′−1

aj+j′−2τj+j′−2



B7,j+j′−2 (R)


−
5
∑

l=1



Bl,j+j′−1 (R)




)

−
5
∑

l=1



Bl,j+j′ (R)




≥ · · ·

≥
(

Π
j+j′
i=j+1

aiτi

ai−1τi−1

)



B7,j (R)


−
j′−1
∑

s=1

(

Π
j+j′
i=j+j′+1−s

aiτi

ai−1τi−1

) 5
∑

l=1



Bl,j+j′−s (R)




−
5
∑

l=1



Bl,j+j′ (R)


 .

Noting that Π
j+ι

i=j+1
aiτi

ai−1τi−1
= aj+ιτj+ι

ajτj
≥ C and max1≤s≤ι−1Π

j+ι

i=j+ι+1−s
aiτi

ai−1τi−1
= max1≤s≤ι−1

aj+ιτj+ι

aj+ι−sτj+ι−s
≤ C̄ for some constants

C, C̄ > 0, we have

1

J1



B7,j+ı (R)


 ≥ 1

J1

(

C


B7,j (R)


−
(

C̄ + 1
)

ι
∑

s=1

5
∑

l=1



Bl,j+s (R)




)

→ ∞ in probability

because


B7,j(R)


 /J1 is divergent in probability at the same speed as


B6,j(R)


 /J1 under Assumption A8(ii) andwe can readily

show that 1
J1

∑ι

s=1

∑5

l=1



Bl,j+s(R)


 ≤ 1
J1

∑J

s=1

∑5

l=1



Bl,j+s



 = O
P
(1) . Butwhen j+ı−1, j+ı ∈ S1, and j+ı+1 ∈ S2b∪S2c , the

analysis in subcase (a1) applies to the FOC wrt Θj+ı,R –(A.6) holds with j replaced by j+ ıwhich forces


B6,j+ı (R)


 = aj+ıτj+ı

N1/2γwj+ı∥ϱj+ı,R∥ = OP (1) . In short, a contradiction would arise unless there is no point after j+1 that belongs to S2b ∪S2c .

Similarly, if there is a point in {j + 1, . . . , J} that belongs to S2a, we denote it as j + ı for some ı ≥ 1. Then by assumption,

j + ı − 2, j + ı − 1, j + ı + 1, j + ı + 2 ∈ S1, and we can apply arguments as used in subcase (a1) to derive a contradiction

based on the FOC wrt Θj+ı. Hence Sj+1, . . . , SJ cannot contain any break as long as (A.5) holds. Third, we consider the FOC

wrt Θj−1,R, i.e., (A.7) holds with j + 1 replaced by j − 1. Noting that B6,j(R) = ajτj

aj−1τj−1
B7,j−1(R) ≍ aj

aj−1
B7,j−1(R) and B6,j(R) is

explosive by (A.5), we must have:


B6,j−1(R)


 and


B7,j−1(R)


 explode the same rate,


B7,j−1(R)


 =


B6,j−1(R)


 + OP (1) ,

and


B7,j−1(R)


 /


B6,j−1(R)




P→ 1 if j−2 ∈ S1 ∪S2b. Deducting this way until j− ı ∈ S1 ∪S2b but j− ı−1 ∈ S2a∪S2c for some

ı ≥ 2. Again, when j − ı − 1 ∈ S2a ∪ S2c, the interval Sj−ı−1 contains a break so that the neighboring intervals Sj−ı and Sj−ı+1

cannot contain a break. So the FOC wrt Θj−ı,R suggests that


B6,j−ı(R)


 and


B7,j−ı(R)


 are explosive at the same rate such

that


B7,j−ı(R)


 =


B6,ı−1(R)


+ OP (1) and


B7,ı−1(R)


 /


B6,ı−1(R)




P→ 1. Similarly, the FOC wrt Θj−ı−1 suggests that in the

latter case


B6,j−ı−1(R)


 = OP ((Nτ)1/2γ ) = OP (1) but


B7,j−ı−1(R)


 = aj−ı−1τj−ı−1

aj−ıτj−ı



B6,j−ı(R)


 is explosive. So the FOC in this

last case cannot be satisfied and a contradiction would arise unless there is no break point before j− 1 for j ≥ 2. But if there

is no point before j − 1 and after j that belongs to S , there will be no break point in the time interval [1, T ] , contradicting

to the requirement that we have at least one break contained in [1, T ] . Consequently, w.p.a.1 β̃j = Θ̃j − Θ̃j−1 must lie in a

position where


Θj − Θj−1



 is not differentiable with respect to Θj in subcase (a2).

Now, we consider case (b). Note that only one term in the penalty component (γ
∑J

j=1wj ∥ Θj −Θj−1 ∥) is involved with

ΘJ . Suppose that β̃J ̸= 0 for sufficiently large (N, T ) (note that J ∈ S1 under our assumption) and wlog ∥β̃J,R∥/∥β̃J∥ ≥ 1/
√
R.

Then the FOC wrt ΘJ,R is given by

0N×1 = aJ√
N
(XSJ − Θ̃J Ẑ

⊺

SJ
)ẐSJ ,R − aJτJN

1/2γwJ β̃J,R/


β̃J





= B1,J (R) + B2,J (R) + B3,J (R) + B4,J (R) + B5,J (R) − B6,J (R) . (A.8)

As in case (a), we can readily show that
∑5

l=1



Bl,J (R)


 = OP (1) and


B6,J (R)


 is explosive in probability at the

rate (Nτ)1/2γ η~
Nτ . So the above FOC cannot hold and β̃J = Θ̃J − Θ̃J−1 must be in a position where



ΘJ − ΘJ−1



 is not

differentiable with respect to ΘJ . Analogously, we can show that in case (c), β̃1 = Θ̃1 − Θ̃0 must be in a position where

∥Θ1 − Θ0∥ is not differentiable with respect to Θ0

In the casewhere |S| = 0 so that [1, T ] contains no break. First, suppose that β̃J = Θ̃J −Θ̃J−1 ̸= 0 andwlog ∥β̃J,R∥/∥β̃J∥ ≥
1/

√
R. Then the FOC wrt ΘJ,R is given by (A.8); following the above analysis for case (b), we have

∑5

l=1∥Bl,J (R) ∥ = OP (1)

and ∥B6,J (R) ∥ is explosive in probability at the rate (Nτ)1/2γ η~
Nτ . This implies that the equality in (A.8) cannot occur in large
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samples and Pr{∥Θ̃J − Θ̃J−1∥ = 0} → 1 as (N, T ) → ∞. In this case, by the subdifferential calculus, 0N×1 belongs to the
subdifferential of the objective function wrt ΘJ :

0N×R = aJ√
N
(XSJ − Θ̃J Ẑ

⊺

SJ
)ẐSJ − aJτJN

1/2γwJϱJ

= B1,J + B2,J + B3,J + B4,J + B5,J − B6,J , (A.9)

for some ϱJ with


ϱJ



 ≤ 1. In particular, the rth column of B6,J is now given by aJτJN
1/2γwJϱJ,r . Since

∑5

l=1



Bl,J



 =
OP (1) , we must have



B6,J



 = OP (1) . Next, we consider the FOC wrt ΘJ−1:

0N×R = aJ−1√
N

(XSJ−1
− Θ̃J−1Ẑ

⊺

SJ−1
)ẐSJ−1

− aJ−1τJ−1N
1/2γwJ−1ϱJ−1 + aJ−1τJ−1N

1/2γwJϱJ

= B1,J−1 + B2,J−1 + B3,J−1 + B4,J−1 + B5,J−1 − B6,J−1 + B7,J−1. (A.10)

Noting that B7,J−1 = aJ−1τJ−1

aJ τJ
B6,J = OP (1) and

∑5

l=1



Bl,J−1



 = OP (1), we must have



B6,J−1



 ≤


B7,J−1



+
5
∑

l=1



Bl,J−1



 = aJ−1τJ−1

aJτJ



B6,J



+
5
∑

l=1



Bl,J−1



 = OP (1)

in order for the first equality in (A.10) to hold. Then β̃J−1 = Θ̃J−1 − Θ̃J−2 must be in a position where


ΘJ−1 − ΘJ−2



 is not
differentiable with respect to ΘJ−1. Deducting this way until j = 1, we must have



B6,j



 ≤


B7,j



+
5
∑

l=1



Bl,j



 = ajτj

aj+1τj+1



B6,j+1



+
5
∑

l=1



Bl,j





≤ ajτj

aj+1τj+1

(

aj+1τj+1

aj+2τj+2



B6,j+2



+
5
∑

l=1



Bl,j+1





)

+
5
∑

l=1



Bl,j





≤ · · ·

≤
(

Π
J−1

i=j

aiτi

ai+1τi+1

)



B6,J



+
J−j−1
∑

s=1

(

Π
j+s

i=j+1

aiτi

ai+1τi+1

) 5
∑

l=1



Bl,j+s



+
5
∑

l=1



Bl,j





for j = J − 2, . . . , 1.

Noting that when |S| = 0, ajτj = η−1
Nτj

τj = max(N−1/2, τ
−1/2

j )τj and τj−1 = ⌊Tj/J1⌋ − ⌊T (j − 1)/J1⌋ for j = 1, . . . , J1, it is

easy to argue that both max1≤j≤J−2Π
J−1

i=j
aiτi

ai+1τi+1
and max1≤j≤J−2max1≤s≤J−j−1Π

j+s

i=j
aiτi

ai+1τi+1
are bounded above by a constant

C . [E.g., if τj−1 = T/J1 for each j, C = 1.] Then

1

J
max

1≤j≤J−1



B6,j



 ≤ (C + 1)
1

J

J
∑

j=1

5
∑

l=1



Bl,J−j



+ C

J



B6,J



 = OP (1)

because we can readily show that 1
J

∑J

j=1

∑5

l=1



Bl,J−j



 = OP (1) . Under Assumption A8(ii), it is still true that (Nτ)1/2γ η~
Nτ/J

→ ∞ as (N, T ) → ∞. This implies that all j = J − 2, J − 3, . . . , 1, β̃j = Θ̃j − Θ̃j−1 must be in a position where


Θj − Θj−1





is not differentiable with respect to Θj and thus (A.2) also holds in this case. ■

A.3. Proof of Proposition 4.1

Let S, S1, S2a, S2b, and S2c be as defined in Section 3.1. Recall that α∗
κ = (α0

κ−1, α
0
κ ), F∗

Sj
= (F∗

vj
, . . . , F∗

vj+1
)⊺, and

F∗
t = (F

0⊺
t 1jt , F

0⊺
t 1̄jt )

⊺, where 1t = 1
{

vj ≤ t < t0κ
}

, 1̄t = 1
{

t0κ ≤ t < vj+1

}

. Define H
(R)

j ≡ ( 1
τj
F
0⊺

Sj
F0Sj ) ×( 1

N
α0⊺

κ ∆̂
(R)

j ), an

R0 × R matrix, and H
(R)

j∗ ≡ ( 1
τj
F

∗⊺
Sj
F∗
Sj
) ×( 1

N
α∗⊺

κ ∆̂
(R)

j ), an 2R0 × R matrix. Similarly, let H
(R)

j,ℓ ≡ ( 1
τj
F
0⊺

Sj,ℓ
F0Sj,ℓ)(

1
N
α
0⊺

κ+ℓ−2∆̂
(R)

j ) for

ℓ = 1, 2. Let J1 = J + 1 and τ = min0≤j≤Jτj. Define

∆̄
(R)

j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

α0
κH

(R)

j if j ∈ S1

α0
κ−1H

(R)

j,1 if j ∈ S2a

α0
κH

(R)

j,2 if j ∈ S2b

α∗
κH

(R)

j∗ if j ∈ S2c

and∆
0
j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α0
κ if j ∈ S1

α0
κ−1 if j ∈ S2a

α0
κ if j ∈ S2b

α∗
κ if j ∈ S2c

for some κ = κ (j) . (A.11)

To prove Proposition 3.3, we need the following three lemmas. More precisely, Lemmas A.5 and A.6 are used in the
proof of Lemma A.7, which is used to prove Proposition 4.1. The proofs of these three lemmas are provided in the online
Supplementary Material.
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Lemma A.5. Suppose that Assumptions A1–A4 and A8 hold. Then for any R ≥ 1, there exist R0 ×Rmatrices {H(R)

j ,H
(R)

j,1 ,H
(R)

j,2 } and
2R0 ×R matrices {H(R)

j∗ } with rank(H
(R)

j ) = min {R, R0} , rank(H
(R)

j,ℓ ) = min {R, R0} with ℓ = 1, 2, and rank(H
(R)

j∗ ) = min {R, 2R0}
such that

(i)
∑

j∈S1N
−1






∆̆

(R)

j − ∆̄
(R)

j







2

= OP

(

η−2
Nτ |S1|

)

,

(ii)maxj∈S1N
−1






∆̆

(R)

j − ∆̄
(R)

j







2

= OP

(

η−2
Nτ ln T

)

,

(iii)maxj∈S1






N−1

∆̆
(R)⊺

j ∆̆
(R)

j − N−1
∆̄

(R)⊤
j ∆̄

(R)

j






= OP (η

−1
Nτ (ln T )1/2),

where H
(R)

j ,H
(R)

j,1 , H
(R)

j,2 and H
(R)

j∗ are implicitly defined in ∆̄
(R)

j in (A.11).

Lemma A.6. Suppose that Assumptions A1–A4 and A8 hold and R > R0. Write the Moore–Penrose generalized inverse of H
(R)

j

as H
(R)+
j =

(

H
(R)+
j

(1)

H
(R)+
j

(2)

)

, where H
(R)+
j (1) and H

(R)+
j (2) are R0 × R0 and (R − R0) × R0 matrices, respectively. Let V

(R)

N,j denote

an R × R diagonal matrix consisting of the R largest eigenvalues of the N × N matrix
(

Nτj
)−1

X SjX
⊺

Sj
where the eigenvalues are

ordered in decreasing order along the main diagonal line. Write ∆̂
(R)

j = [∆̂(R)

j (1) , ∆̂
(R)

j (2)] and H
(R)

j = [H(R)

j (1) ,H
(R)

j (2)],
where ∆̂

(R)

j (1) , ∆̂
(R)

j (2) , H
(R)

j (1) , and H
(R)

j (2) are N × R0, N × (R − R0) , R0 × R0, and R0 × (R − R0) matrices, respectively.

Write V
(R)

N,j = diag(V
(R)

N,j (1) , V
(R)

N,j (2)), where V
(R)

N,j (1) denotes the upper left R0 × R0 submatrix of V
(R)

N,j . Then

(i)maxj∈S1N
−1






∆̂

(R)

j (1) − α0
κH

(R)

j (1) V
(R)

N,j (1)
−1






2

= OP

(

η−2
Nτ ln T

)

andmaxj∈S1






H

(R)

j (2)







2

= OP

(

τ−1 ln T + N−1
)

,

(ii)maxj∈S1






H

(R)+
j (1)






= OP (1) andmaxj∈S1






H

(R)+
j (2)






= OP (τ

−1/2(ln T )1/2 + N−1/2),

(iii) |S1|−1
∑

j∈S1
(

Nτj
)−1

tr{F0SjH
(R)+⊺

j (∆̆
(R)

j − α0
κH

(R)

j )⊺ESj} = OP

(

η−2
Nτ

)

,

(iv) |S1|−1
∑

j∈S1
(

Nτj
)−1






(∆̆

(R)

j − α0
κH

(R)

j )H
(R)+
j F

0⊺

Sj







2

= OP

(

η−2
Nτ

)

.

Lemma A.7. Suppose that Assumptions A1–A4 and A8 hold. Then

(i) V

(

R, {∆̆(R)

j }
)

− V

(

R, {∆̄(R)

j }
)

= OP

(

η−1
Nτ (ln T )1/2 + mJ−1

)

for each R with 1 ≤ R ≤ R0,

(ii) there exists a constant cR > 0 such that plim inf (N,T )→∞
[

V

(

R, {∆̄(R)

j }
)

− V
(

R,
{

∆
0
j

})

]

≥ cR for each R with

1 ≤ R < R0,

(iii) V

(

R, {∆̆(R)

j }
)

− V

(

R0, {∆̆(R0)

j }
)

= OP

(

mJ−1 + η−2
Nτ

)

for each R with R ≥ R0,

where∆0
j , j = 0, 1, . . . , J, are defined in (A.11).

Proof of Proposition 4.1. Let V (R) = V (R, {∆̆(R)

j }) for all R. Note that IC1 (R)− IC1 (R0) = ln [V (R) /V (R0)]+ (R − R0) ρ1NT .

We discuss two cases: (i) R < R0, and (ii) R > R0.
In case (i), V (R) /V (R0) > 1 + ϵ0 for some ϵ0 > 0 w.p.a.1 by Lemma A.7(i) and (ii). It follows that ln [V (R) /V (R0)] ≥

ϵ0/2 w.p.a.1. Noting that (R − R0) ρ1NT → 0 under Assumption A6, this implies that IC1 (R) − IC1 (R0) ≥ ϵ0/4 w.p.a.1.
Consequently, we have P (IC1 (R) − IC1 (R0) > 0) → 1 for any R < R0 as (N, T ) → ∞. In case (ii), we apply Lemma A.7 (iii)
and Assumption A6 to obtain

P (IC1 (R) − IC1 (R0) > 0) = P {ln [V (R) /V (R0)] + (R − R0) ρ1NT > 0}
= P

{

OP (1) + (R − R0) ρ1NT/(mJ−1 + η−2
Nτ ) > 0

}

→ 1

for any R > R0 as (N, T ) → ∞. Consequently, the minimizer of IC1 (R) can only be achieved at R = R0 w.p.a.1. That is,

P(R̂ = R0) → 1 for any R ∈ [1, Rmax] as (N, T ) → ∞. ■

A.4. Proof of Proposition 4.2

Let T
0

m0 = {t01 , . . . , t0m0}, the collection of the true m0 break dates. Let Tm consist of Tm = {t1, . . . , tm} such that

2 ≤ t1 < · · · < tm ≤ T , t0 = 1 and tm+1 = T + 1; and let T̄m consist of Tm = {t1, . . . , tm} such that T
0

m0 ⊂ Tm,

2 ≤ t1 < · · · < tm ≤ T for m0 < m ≤ mmax. As in Section 4.2, we define

σ̂ (Tm) = 1

NT

m+1
∑

j=1

tj−1
∑

t=tj−1

[

Xt − α̂j (Tm) F̂t (Tm)

]⊺ [

Xt − α̂j (Tm) F̂t (Tm)

]

,

where (α̂κ (Tm) , {F̂t (Tm)}) = argminακ ,{Ft }
∑

t∈Iκ (Xt − ακFt )
⊺(Xt − ακFt ) subject to the constraints that N−1α⊺

κακ = IR and

F
⊺

Iκ
FIκ = diagonal. To prove Proposition 4.2, we need the following two lemmas.
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Lemma A.8. Suppose that the conditions in Proposition 4.2 hold. Then there exists a positive constant cλ such that

min
0≤m<m0

inf
Tm∈Tm

c−1
1NT

[

σ̂ 2(Tm) − σ̂ 2(T 0

m0 )
]

≥ cλ + oP (1) .

Lemma A.9. Suppose that the conditions in Proposition 4.2 hold. Then we have

max
m0<m≤mmax

sup
Tm∈T̄m

c−1
2NT

⏐

⏐σ̂ 2(Tm) − σ̂ 2(T 0

m0 )
⏐

⏐ = OP (1)

where c2NT = N−1 + I−1
min + mmaxT

−1.

Proof of Proposition 4.2. Let σ̄ 2
NT = 1

NT

∑N

t=1e
⊺

t et . Denote Γ = [0, γmax], which is divided into three subsets Γ0, Γ− and Γ+
as follows

Γ0 =
{

γ ∈ Γ : m̂γ = m0
}

, Γ− =
{

γ ∈ Γ : m̂γ < m0
}

, and Γ+ =
{

γ ∈ Γ : m0 < m̂γ ≤ mmax

}

.

Let γ 0 ≡ γ 0
NT denote an element in Γ0 that also satisfies the conditions on γ in Assumption A6(ii). Let t̂j(γ ) be the estimates

of the break dates in the third stage when the tuning parameter γ is applied in the second stage Lasso procedure. By

Propositions 3.3 and 3.4, for any γ 0 ∈ Γ0 we have m̂γ 0 = m0 w.p.a.1. and lim(N,T )→∞ Pr(t̂j(γ
0) = t0j , j = 1, . . .,m0) = 1. It

is easy to show that σ̂ 2(T 0

m0 ) = σ̄ 2
NT + OP

(

η−2
Nτ

) P→ σ 2
0 , and IC2

(

γ 0
)

= log σ̂ 2(T̂m̂
γ 0
(γ 0)) + ρ2NT

(

m0 + 1
) P→ ln(σ 2

0 ), where

σ 2
0 = lim(N,T )→∞

1
NT

∑N

t=1E(e
⊺

t et ) and the second convergence holds because ρ2NT

(

m0 + 1
)

= o (1) by Assumption A10(ii)

and T̂m̂
γ 0
(γ 0) = T

0

m0 w.p.a.1. We next consider the cases of under- and over-fitted models separately.

Case 1 (Under-Fitted Model with m̂γ < m0): By Lemma A.8 and Assumption A10(ii),

Pr

(

inf
γ∈Γ−

IC2 (γ ) > IC2

(

γ 0
)

)

= Pr

(

inf
γ∈Γ−

c−1
1NT

[

ln
(

σ̂ 2(T̂m̂γ
(γ ))/σ̂ 2(T 0

m0 )
)

+ ρ2NT

(

m̂γ − m0
)]

> 0

)

≥ Pr
(

cλ/2 + oP (1) > 0
)

→ 1.

Case 2 (Over-Fitted Model with m̂γ > m0): For given Tm = {T1, . . . , Tm} ∈ Tm, we let T̄m∗+m0 =
{

T̄1, T̄2, . . . , T̄m∗+m0

}

denote the union of Tm and T
0

m0 with elements ordered in non-descending order: 2 ≤ T̄1 < T̄2 < · · · < T̄m∗+m0 ≤ T for

some m∗ ∈ {0, 1, . . . ,m}. In view of the fact that σ̂ 2(T̄m∗+m0 ) ≤ σ̂ 2(Tm) for all Tm ∈ Tm, c−1
2NT

[

σ̂ 2(T̄m∗+m0 ) − σ̄ 2
NT

]

= OP (1)

uniformly in Tm ∈ Tm by Lemma A.9, and c−1
2NTρ2NT → ∞ by Assumption A10(iii), we have

Pr

(

inf
γ∈Γ+

IC2 (γ ) > IC2(γ
0)

)

≥ Pr

(

min
m0<m≤mmax

inf
Tm∈Tm

{

c−1
2NT

[

ln
(

σ̂ 2(Tm)/σ̂
2(Tm0 )

)]

+ c−1
2NTρ2NT

(

m − m0
)}

> 0

)

≥ Pr

(

min
m0<m≤mmax

inf
Tm∈Tm

{

c−1
2NT

[

ln
(

σ̂ 2(T̄m∗+m0 )/σ̂
2(Tm0 )

)]

+ c−1
2NTρ2NT

(

m − m0
)}

> 0

)

→ 1.

We have completed the proof of Proposition 4.2. ■

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.06.019.
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