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Abstract: In this paper we propose an efficient model-based sufficient dimension

reduction method to detect interactions. We introduce a new class of multivari-

ate adaptive varying index models (MAVIM) to investigate nonlinear interaction

effects of the grouped covariates on multivariate response variables. Grouping the

covariates through linear combinations in the MAVIM accommodates weak individ-

ual interaction effects as long as their joint interaction effects are strong enough to

be detectable. We estimate the joint interaction effects by a weighted-profile least

squares method that is numerically stable and computationally fast. The resultant

profile least squares estimate is root-n consistent and asymptotically normal. We

discuss how to choose an optimal weight to improve the estimation efficiency. We

determine the structural dimension with a BIC-type criterion, and establish its con-

sistency. The effectiveness of our proposal is illustrated through simulation studies

and an analysis of Framingham heart study.

Key words and phrases: Central mean subspace, dimension determination, high-

dimensionality, interaction detection, sufficient dimension reduction.

1. Introduction

With the advance of information technology, high-dimensional data are effec-

tively collected at a low cost in many scientific fields. Regression analysis is per-

haps one of the most popular tools that help us gain insight into the relationship

between two sets of high-dimensional variables. Suppose x = (X1, . . . , Xp)
T ∈ R

p

is the covariate vector and y = (Y1, . . . , Yr)
T ∈ R

r is the response vector. In gen-

eral, the goal of regression analysis is to study how the conditional mean function

of y, denoted by E(y|x), varies with x. Nonparametric regression is a flexible

and effective approach to estimating the conditional mean. However, it suffers

from the “curse of dimensionality” when the dimension of x increases. To re-

duce the covariate dimension, sufficient dimension reduction (Cook (1998)) is an

effective tool that combines the concept of sufficiency with the idea of dimen-

sion reduction. It achieves the goal of dimension reduction through replacing the
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high-dimensional x with d linear combinations, denoted as (αTx) for α ∈ R
p×d,

without losing information of (y|x). In other words, replacing x with (αTx)

is “sufficient” in the sense that E(y|x) = E(y|αTx). By the very purpose of

dimension reduction, d is assumed to be small and hence estimating E(y|αTx)

via nonparametric smoothing is straightforward. In practice, d is unknown and

needs to be estimated from the data. This differentiates the dimension reduc-

tion model E(y|x) = E(y|αTx) from the single- or multiple-index models in the

literature Ichimura (1993); Carroll et al. (1997); Ma and Zhu (2014). Seeking

for an appropriate α such that E(y|x) = E(y|αTx), is the central goal of suf-

ficient dimension reduction when estimating E(y|x) is concerned. Because α is

not identifiable, the space spanned by α, denoted as span(α), with the minimal

column dimension, is the parameter of primary interest and referred to as the

central mean space (Cook and Li (2002)) in sufficient dimension reduction.

In the present article we consider the problem of sufficient dimension reduc-

tion in the presence of high-dimensional controlling variables z = (Z1, . . . , Zq)
T.

This falls into the framework of partial mean dimension reduction (Li, Cook

and Chiaromonte (2003)), which seeks a p× d0 matrix β such that E(y|x, z) =

E(y|βTx, z). Similar to α, β is not identifiable either. Therefore, our primary

goal is to seek for the minimal column space of β, denoted by span(β), such

that E(y|x, z) = E(y|βTx, z). Following the convention of sufficient dimension

reduction (Li, Cook and Chiaromonte (2003)), we refer to the column space of

β, denoted by span(β), such that E(y|x, z) = E(y|βTx, z) as the partial central

mean dimension reduction subspace. Its column dimension, denoted by d0, is

referred to as the structural dimension of span(β). Existing methods require

r = q = 1. Specifically, if z and y are univariate and z is categorical taking a

small number of values, Li, Cook and Chiaromonte (2003) suggested applying

an existing sufficient dimension reduction method to E(y|x, z = z0) within each

category of z, say, z = z0, and sum up all estimates to form an estimate of

span(β); if y is univariate and z is continuous and low dimensional, Feng et al.

(2013) suggested discretizing z into a series of binary variables and then applying

Li, Cook and Chiaromonte (2003)’s method to form an estimate of span(β). Hi-

lafu and Wu (2017) suggest recovering span(β) through regressing ỹ
def

= (yT, zT)T

onto x. We consider a more general situation in which z and y are allowed to

be multivariate and components in z can be either categorical or continuous.

Such considerations are motivated by the Framingham Heart Study, where 304

subjects were collected to evaluate the effects of physical exercises on the blood

pressures. The Framingham Heart Study Data were downloaded from NCBI db-
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GaP with an IRB number HS-11-159. The systolic (Y1) and the diastolic blood

pressures (Y2), and several measurements of such physical exercises, as hours for

heavy, moderate and light activities per day, denoted by Z1, Z2 and Z3, respec-

tively, were recorded for each subject. There is a public health concern regarding

the developmental effects resulting from the lack of physical exercises. It is be-

lieved that a moderate amount of physical exercise helps to relieve stress, and

hence are beneficial to controlling for the blood pressures. Therefore, our goal

is to investigate whether or not the physical exercises, Z1, Z2 and Z3, affect the

blood pressures. The blood pressures are also relevant to the degree of obesity;

they are measured by weight (X1), height (X2), bi-deltoid girth (X3), right arm

girth-upper third (X4), waist girth (X5), hip girth (X6) and thigh girth (X7).

In general, to understand how the conditional mean functions of y = (Y1,

. . . , Yr)
T vary with x = (X1, . . . , Xp)

T in the presence of z = (Z1, . . . , Zq)
T, and to

simultaneously accommodate the interaction effects between x and z, we consider

a multivariate adaptive varying index model (MAVIM for short),

E(y|x, z) =

q∑

k=1

mk(β
Tx)Zk, or equivalently, (1.1)

E(Yl|x, z) =

q∑

k=1

mkl(β
Tx)Zk, for l = 1, . . . , r, (1.2)

where mk(β
Tx) = (mk1(β

Tx), . . . ,mkr(β
Tx))T, k = 1, . . . , q, β is a p×d0 matrix

with an unknown d0. All mk’s, β and d0 have to be estimated from data. All

mk’s share an identical β to ensure that span(β) is identifiable (Zhu and Zhong

(2015)). We group x through (βTx) to augment the interaction effects between

x and Zk, a useful strategy if the joint interaction effects between x and Zk are

strong enough but the individual interaction effects between Xi and Zk are too

weak to be detectable.

The functions mk accommodate nonlinear interaction effects between x and

Zk (Ma et al. (2011)). To be precise, if mk is constant, x does not interact with

Zk. In addition, if the i-th row of β is zero, Xi does not interact with z. In other

words, the i-th row of β describes the joint interaction effects between Xi and z.

Model (1.1), or equivalently, (1.2), characterizes the interaction effects between

x and z. We achieve the goal of dimension reduction through replacing x with

(βTx) in the presence of z and such a reduction is sufficient in the sense that

(1.1), or equivalently, (1.2), holds almost surely. Because we allow for a general

d0, that all mk’s share a common β in model (1.1) is a necessary assumption for

the purposes of identifiability.
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Our goal is to estimate and make inference on span(β). Towards this goal,

we recast the problem of estimating span(β) to the problem of estimating an

identifiable basis matrix β. We propose a weighted-profile least squares esti-

mation procedure for β in which each mk is approximated by the local linear

regression (Fan and Gijbels (1996)). An important methodological merit of our

approach is the ease of simultaneously approximating multiple nonparametric

functions to create a single objective function for β, so that the profile least

squares estimation can be established in a straightforward manner. The resul-

tant estimate of β is root-n consistent and asymptotically normal. We devise a

Wald chi-square testing procedure for β based on the asymptotic distribution of

the profile least squares estimate. In the Framingham Heart Study, the systolic

(Y1) and the diastolic blood pressures (Y2) are highly correlated and hence are

considered jointly to improve the efficiency of the profile least squares estimate.

We also discuss how to choose an optimal weight to improve efficiency of esti-

mating β, a particular basis matrix of span(β). Because the model structure is

assumed in (1.1), we refer to our proposal as a model-based sufficient dimension

reduction method.

This article is organized as follows. Section 2 introduces the weighted-profile

least squares estimation and presents asymptotic properties of the proposed es-

timate. We also discuss how to choose an optimal weight matrix. In Section

3 we evaluate finite sample properties of the proposed estimation and inference

procedures via comprehensive simulation studies. We also illustrate the useful-

ness of our proposals through an analysis of the Framingham Heart Study. Some

concluding remarks are given in Section 4. All technical details and additional

discussions are given in an online supplement.

2. Methodology Development

We seek β with the minimal column dimension d0 such that (1.1) holds, then

replacing x with (βTx) is sufficient to describe how E(y|x, z) varies with x and z.

We further assume that the upper d0 × d0 submatrix of β is an identity matrix.

In other words, β =
(
Id0×d0

,βT

−d0

)
T

, where Id0×d0
is a d0 × d0 identity matrix

and β−d0
is a (p − d0) × d0 matrix composed of the lower (p − d0) rows of β.

In single index models (Ichimura (1993)) where d0 = 1, there are two options to

ensure that β is identifiable. The first is to restrict that β is of unit-length and

the first entry of β is strictly positive. The second is to simply set the first entry

of β to be 1 and thus all other entries are free parameters. These options are, in
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spirit, equivalent. Requiring the upper d0 × d0 submatrix of β to be an identity

matrix is an extension of the second option. Such a parameterization is also used

by Ma and Zhu (2013) and implies that the first d0 covariates of x contribute

to model (1.1). If this is not the case, one can always rotate the order of the

entries in x to guarantee that the first d0 components of x are useful. Through

parameterizing span(β) with a particular basis matrix β =
(
Id0×d0

,βT

−d0

)
T

, we

convert the problem of estimating β into a problem of estimating the (p−d0)×d0
matrix β−d0

, the free parameters in β.

Because the structural dimension d0 of span(β) is unknown a priori, we illus-

trate our proposed estimation procedure with a working dimension d. In this sec-

tion we propose a profile least squares method to estimate β, or equivalently, β−d.

Let xd = (X1, . . . , Xd)
T and x−d = (Xd+1, . . . , Xp)

T. Hence, βTx = xd+βT

−dx−d

and mk(β
Tx) = mk(xd + βT

−dx−d). Suppose that {(xi, zi,yi), i = 1, . . . , n} is a

random sample of (x, z,y) that follows model (1.1). For a given β, we estimate

mk, k = 1, . . . , q, using the local linear approximation (Fan and Gijbels (1996)).

Specifically, for U = (βTx) in a small neighborhood of u, one can approximate

mk(U) ≈ mk(u) +m
(1)
k (u)(U − u)

def

= ak + Bk(U − u), for k = 1, . . . , q, where

m
(1)
k (u), for k = 1, . . . , q, denotes the first derivative of mk(u) with respect to u

and hence all of them are r × d matrices. The local linear estimators for mk(u)

and m
(1)
k (u) are defined as m̂k(u,β) = âk and m̂

(1)
k (u,β) = B̂k at the fixed

point β, where {(âk, B̂k), k = 1, . . . , q} minimize the sum of the weighted least

squares

n∑

i=1

[
yi −

q∑

k=1

{ak +Bk(β
Txi − u)}Zik

]2
Kh(β

Txi − u),

where Kh(·) = K(·/h)/hd is a product of d univariate kernel functions and h is

a bandwidth. By some straightforward algebraic calculations, we derive that{
m̂1(u,β), . . . , m̂q(u,β), hm̂

(1)
1 (u,β), . . . , hm̂(1)

q (u,β)
}

T

= S−1
n (u,β)ξξξn(u,β), (2.1)

where Sn(u,β)
def

=

(
Sn0(u,β) ST

n1(u,β)

Sn1(u,β) Sn2(u,β)

)
and ξξξn(u,β)

def

=

(
ξξξn0(u,β)

ξξξn1(u,β)

)
, with

Snj(u,β)
def

= n−1
n∑

i=1

ziz
T

i ⊗

(
βTxi − u

h

)j

Kh(β
Txi − u) and
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ξξξnj(u,β)
def

= n−1
n∑

i=1

zi ⊗

{(
βTxi − u

h

)j

yT

i

}
Kh(β

Txi − u).

Here A ⊗ B = (aijB) for A = (aij), and A0 = 1, A1 = A and A2 = AAT.

For a fixed β, mk is now profiled out. Subsequently, we estimate β−d through

minimizing
n∑

i=1

{
yi−

q∑

k=1

m̂k(xd,i+βT

−dx−d,i,β)Zik

}
T

W

{
yi−

q∑

k=1

m̂k(xd,i+βT

−dx−d,i,β)Zik

}
,

(2.2)

where W is a user-specified r × r positive-definite weight matrix. Let β̂−d,w be

the profile least squares estimate of β̂−d,w if the working weight matrix W is

used.

We need regularity conditions to establish the asymptotic normality property

for β̂−d,w. For notational clarity, let f(βTx) be the density function of (βTx),

m(βTx)= (m1(β
Tx),. . .,mr (βTx))T, m

(1)
k (βTx)=

(
m

(1)
k1 (β

Tx),. . .,m
(1)
kr (β

Tx)
)

T

be the first derivative of mk(β
Tx) with respect to (βTx) for k = 1, . . . , q.

(C1) (The Lipschitz Continuity) The density function f(βTx) of (βTx) is locally

Lipschitz continuous, and bounded away from zero and infinity. In addi-

tion, m(βTx), E(x|βTx) and Ω(βTx) = E(zzT|βTx) are locally Lipschitz

continuous.

(C2) (The Kernel Function) The univariate kernel function K(·) is symmetric,

has a compact support and is Lipschitz continuous. In addition,
∫
K(u)du =

1,
∫
ukK(u)du = 0, for k = 1, . . . , s − 1, and 0 6=

∫
usK(u)du < ∞. The

d-dimensional kernel is a product of d univariate kernels. We abuse the

notation of K here when it is sufficiently clear from the context.

(C3) (The Bandwidth) The bandwidth h = O
(
n−δ

)
for (4s)−1 < δ < (2d)−1.

(C4) (The Moment Condition) All the involved moments, E
[
{mk(β

Tx)}T{mk(β
T

x)}
]
, E(xTx), E{(yTy)κ1} and E

[{
m

(1)
k (βTx)

}
T
{
m

(1)
k (βTx)

}]
, exist for

so-me κ1 ≥ 3/2 and k = 1, . . . , q.

These conditions are generally regarded as mild. In particular, condition

(C1) imposes smoothness conditions on the mean and density functions that

allow us to implement such local smoothers as kernel and local polynomial re-

gressions (Fan and Gijbels (1996)). Condition (C2) states that an s-th order

kernel function is used. Condition (C3) specifies the order of the bandwidth,
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whose range is fairly wide and, more importantly, contains an optimal order.

We assume moment conditions in condition (C4) to establish the asymptotic

normality. Similar conditions appear in Ma and Zhu (2012, 2013).

Define

Aw

def

= E

[{
q∑

k=1

m
(1),T

k (βTx)Zk ⊗ x̃−d

}
W

{
q∑

k=1

m
(1)
k (βTx)Zk ⊗ x̃T

−d

}]
, and

Bw

def

= E

[{
q∑

k=1

m
(1),T

k (βTx)Zk ⊗ x̃−d

}
WΣW

{
q∑

k=1

m
(1)
k (βTx)Zk ⊗ x̃T

−d

}]
.

Theorem 1. If conditions (C1)-(C4) in the Appendix hold, then

n1/2
{
vec
(
β̂−d,w

)
− vec(β−d)

}
d

−→ N
(
0,A−1

w BwA
−1
w

)
,

where x̃−d = x−d−E(x−d|β
Tx) and “

d
−→ ” stands for “convergence in distribu-

tion”.

How to specify the working weight matrix W is an interesting issue. As long

as W is positive definite, β̂−d,w is root-n consistent and asymptotically normal.

However, choosing an appropriate W may improve the efficiency of estimating

β−d,w. We compare two options: W = Ir×r and W = Σ̂
−1

, where

Σ̂
def

= n−1
n∑

i=1

ε̂iε̂
T

i and ε̂i
def

= yi −

q∑

k=1

m̂k

(
β̂

T

Ixi, β̂I

)
Zik.

Theorem 2 indicates that using W = Σ̂
−1

yields a more efficient estimate of

β−d,w than using W = Ir×r.

Theorem 2. A−1
I

BIA
−1
I

≥ A−1
Σ−1BΣ−1A−1

Σ−1 = A−1
Σ−1 .

For the asymptotic normality of β̂−d,w to be useful, we provide a consistent

estimate for the asymptotic covariance matrix. Let β̂w

def
= (Id×d, β̂

T

−d,w)
T, where

W can be Σ̂
−1

or I. Take

̂̃x−d,i
def
= x−d,i −

∑n
j=1,j 6=iKh

(
β̂

T

wxj − β̂
T

wxi

)
x−d,i

∑n
j=1,j 6=iKh

(
β̂

T

wxj − β̂
T

wxi

) ,

Âw

def
= n−1

n∑

i=1

{
q∑

k=1

m̂
(1),T

k

(
β̂

T

wxi, β̂w

)
Zik ⊗ ̂̃x−d,i

}

W

{
q∑

k=1

m̂
(1)
k

(
β̂

T

wxi, β̂w

)
Zik ⊗ ̂̃x

T

−d,i

}
,
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B̂w

def
= n−1

n∑

i=1

{
q∑

k=1

m̂
(1),T

k

(
β̂

T

wxi, β̂w

)
Zik ⊗ ̂̃x−d,i

}

WΣ̂W

{
q∑

k=1

m̂
(1)
k

(
β̂

T

wxi, β̂w

)
Zik ⊗ ̂̃x

T

−d,i

}
.

Theorem 3. If conditions (C1)-(C4) hold, then Âw

p
−→ Aw, B̂w

p
−→ Bw, and

hence Â−1
w B̂w Â−1

w

p
−→ A−1

w BwA
−1
w .

Testing whether there exist interaction effects between Xi and z amounts to

testing whether all components of the i-th row of β in model (1.1) are simulta-

neously zero. In a general context, we consider the hypothesis testing problem

H0 : Qβ−d = q0 versus H1 : Qβ−d 6= q0,

where Q is a user-specified q0 × (p − d) matrix and q0 is another user-specified

q0 × d matrix. This problem is general enough to include a variety of hypothesis

of interest. For example, we are free to choose Q = (1, 0, . . . , 0)1×(p−d) and

q0 = 01×d, aiming to test whether there exist interaction effects between Xd0+1

and z. In general, we devise the Wald chi-square test

Tw = n
{
(Id×d ⊗Q)vec

(
β̂−d,w

)
− vec(q0)

}
T

{
(Id×d ⊗Q)Â−1

w B̂wÂ
−1
w (Id×d ⊗QT)

}−1{
(Id×d ⊗Q)vec

(
β̂−d,w

)
− vec(q0)

}
.

A direct application of Theorem 1 yields the following corollary. Its proof is

omitted.

Corollary 1. If conditions (C1)-(C4) hold, then under H0, Tw

d
−→ χ2(q0d),

where χ2(q0d) is the central chi-square distribution with (q0d) degrees of freedom.

It remains to estimate the structural dimension of span(β), the minimum

column dimension of β, such that (1.1) holds. Following Zhu, Miao and Peng

(2006) and Xu et al. (2016), we suggest a BIC-type criterion. Specifically, for a

working dimension d, we take

L(d)
def

=
∑n

i=1{yi −
∑q

k=1 m̂k(β̂
T

d,wxi, β̂d,w)Zik}
T{yi −

∑q
k=1 m̂k(β̂

T

d,wxi, β̂d,w)Zik}

{
∑n

i=1(yi − y)T(yi − y)}1/2

and L∗(d)
def

= L(d) + (pd)λn,

where β̂d,w = (Id×d, β̂−d,w)
T. The estimated structural dimension is then given

by
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d̂
def

= argmin
1≤d≤p

L∗(d). (2.3)

Theorem 4. Under the conditions of Theorem 1, if λn/ log n→∞ and λnn
−1/2

→ 0, then pr(d̂ = d0) → 1.

Thus the BIC-type criterion enables us to select the true structural dimen-

sional of span(β) consistently. The penalty term λn is allowed to vary over a wide

enough range for d̂ to be consistent. How to choose an optimal λn is challenging.

Our limited simulations show that λn = n2/5 works well. We use this choice of

λn throughout our numerical studies.

An algorithm for estimating β is as follows, starting with a working dimen-

sion d and a user-specified initial value of β.

1. Estimate mk and m
(1)
k with (2.1) for a given β.

2. Set W = Ir×r. Estimate β with (2.2) for given mk and m
(1)
k .

3. Repeat these two steps until convergence. The resultant estimate, denoted

by β̂I = (Id×d, β̂
T

−d,I)
T, is referred to as the unweighted-profile least squares

estimate.

4. We vary the working dimension d from 1 through p and repeat the above

three steps. The estimated dimension d̂ is given in (2.3).

5. Set W = Σ̂
−1

and d = d̂ in the second step. Repeat the first two steps

until convergence. The final estimate, denoted by β̂
Σ̂−1 = (I

d̂×d̂
, β̂

−d̂,Σ̂−1),

is referred to as the weighted-profile least squares estimate.

3. Numerical Studies

In this section we demonstrate the performance of our proposals through

comprehensive simulations and an application to the Framingham Heart Study.

Because existing methods cannot be used directly if y is multivariate, we only

report the simulation results of our proposal in Section 3.1 when y is multivariate.

In Section 3.2, we compare our proposal with methods proposed by Li, Cook and

Chiaromonte (2003), Ma and Song (2015) and Liu, Cui and Li (2016) when both

y and z are univariate.
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3.1. Simulation experiments for multivariate response data

We conducted simulation studies to evaluate the performance of our proposed

methodology when the response is multivariate. Throughout our simulations we

drew x and z independently from multivariate normal distribution with zero

mean and covariance matrix
(
0.5|k−l|

)
. We fixed r = 3, and generated ε =

(ε1, ε2, ε3)
T from N (0,Σ), where

Σ =



1 0 0

0 2 0

0 0 4







1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1






1 0 0

0 2 0

0 0 4


 .

We considered four simulated models.

Model I: A single-index model structure with a linear link function:



Y1 = 2(βTx)Z1 + (βTx)Z2 + ε1,

Y2 = (βTx)Z1 + 3(βTx)Z2 + ε2,

Y3 = ε3,

Model II: A single-index model structure with a nonlinear link function:



Y1 = sin(4βTx)Z1 + 2(βTx)Z2 + ε1,

Y2 = cos(2βTx)Z2 + ε2,

Y3 = 2(βTx)Z1 + sin(2βTx)Z2 + ε3.

Model III: A multiple-index model structure with a linear link function:



Y1 = {(βT

1x) + (βT

2x)}Z1 + (βT

1x)Z2 + ε1,

Y2 = (βT

2x)Z1 + {(2βT

1x)− 3(βT

2x)}Z2 + ε2,

Y3 = 2(βT

1x)Z1 + 4(βT

2x)Z2 + ε3.

Model IV: A multiple-index model structure with a nonlinear link function:




Y1 =
(βT

1x)Z1

{0.5 + (βT

2x+ 1.5)2}
+ (βT

2x)Z2 + ε1,

Y2 = sin2(βT

1x)Z1 + cos2(βT

2x)Z2 + ε2,

Y3 = {(2βT

1x)− (βT

2x)}
2 Z1 + ε3.

We set p = 10, q = 2 and β = (1, 0.8, 0.6, 0.4, 0.2,−0.2,−0.4,−0.6,−0.8, 0)T in

Models (I)-(II), and set p = 7, q = 2, β1 = (1, 0, 0.8,−0.6, 0.4,−0.2, 0)T and

β2 = (0, 1,−0.8, 0.6,−0.4, 0.2, 0)T in Models (III)-(IV). We chose the sample size

n = 200 and 500 and repeated each simulation 1,000 times. We used the Gaussian

kernel and chose the bandwidth h = (4/3n)1/(d+4)s, where s is the median of the

robust estimators of the standard deviation of (βTx).
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The average of estimation bias (“bias”), the Monte Carlo standard deviation

(“std”), the average of estimated standard deviation (“ŝtd”), and the empirical

coverage probability (“cvp”) at the nominal 95% confidence level for all free

parameter are summarized in Tables 1–4 for models (I)-(IV), respectively. These

estimates have very small biases, and the biases decrease as the sample size

increases. This phenomenon provides strong evidence that both the weighted

and the unweighted estimates are consistent, the theoretical result of Theorem 1.

In terms of the Monte Carlo standard deviation and the average of estimated

standard deviation, the weighted estimate performs competitively in comparison

with the unweighted one. The empirical coverage probabilities for the weighted

and unweighted estimators are close to the nominal level, which implies that our

inferential results are fairly reliable. The Monte Carlo standard deviations are

close to the average of the estimated standard deviations especially for large n.

This finding means that the standard deviations have been estimated precisely,

which verifies Theorem 3.

To demonstrate the performance of our proposed Wald test statistic Tw, we

tested whether X7 interacts with z in Model (IV). Towards this end we simply

chose Q = (0, . . . , 0, 1)1×5, q0 = 01×2 in our testing problem. To investigate the

size and the power performance of our proposed Wald test, we changed the last

row of β = (β1,β2) to (a, a) and reestimated all parameters, with a = −0.10 :

0.02 : 0.10. Apparently, a = 0.00 corresponds to the case that X7 does not

interact with z. The power curves at the significance level 0.05 are reported in

Figure 1 based on 1,000 replications. All the power curves increase quickly as |a|

increases, indicating that our proposed test approach can detect the interaction

effects effectively.

We evaluated the performance of the BIC-type criterion at (2.3) in estimating

the structural dimension of span(β). The structure dimension was d0 = 1 in

models (I)-(II) and d0 = 2 in models (III) and (IV). For Models (I)-(IV), the

percentages for each estimated dimension are charted in Table 5. Our proposed

BIC-type criterion works pretty well: with high probability the estimated and

the true structural dimension are equal in all models. The performance of our

BIC-type criterion also improves gradually as the sample size increases.

3.2. Comparison with existing methods for univariate response data

In this section we compare our proposal (NEW for short) with existing meth-

ods of Li, Cook and Chiaromonte (2003) (LCC for short), Ma and Song (2015)

(MS for short) and Liu, Cui and Li (2016) (LCL for short) when both y and z
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Table 1. Simulation results for Model I: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-

tion (“ŝtd”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are
multiplied by 100.

True β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

value 0.8 0.6 0.4 0.2 −0.2 −0.4 −0.6 −0.8 0
W ρ = 0.5, n = 200

I

bias 0.83 0.44 0.16 −0.00 −0.04 −0.47 −0.17 −0.55 −0.03
std 5.58 4.59 4.45 4.17 4.38 4.47 4.51 4.88 3.17

ŝtd 6.17 4.83 4.54 4.37 4.37 4.56 4.85 5.22 3.85
cvp 97.20 95.80 95.90 96.40 94.40 95.80 96.50 95.30 95.30

Σ̂
−1

bias 0.33 0.17 0.02 −0.08 −0.01 −0.13 0.03 −0.13 −0.11
std 4.43 3.74 3.56 3.31 3.36 3.55 3.71 3.76 2.84

ŝtd 4.64 3.65 3.45 3.32 3.31 3.45 3.67 3.95 2.93
cvp 95.80 94.10 94.80 94.70 94.20 93.70 95.00 96.40 95.30

W ρ = 0.5, n = 500

I

bias 0.39 0.19 0.05 0.11 −0.03 −0.25 −0.10 −0.22 −0.05
std 3.66 2.97 2.87 2.75 2.77 2.79 2.87 3.06 2.29

ŝtd 3.84 3.00 2.81 2.70 2.70 2.82 3.01 3.23 2.38
cvp 96.30 95.10 94.20 94.60 94.80 94.70 95.90 96.50 95.90

Σ̂
−1

bias 0.07 0.08 −0.04 0.03 −0.02 −0.10 −0.06 −0.01 −0.04
std 2.89 2.20 2.18 2.04 2.15 2.11 2.19 2.42 1.74

ŝtd 2.89 2.27 2.13 2.04 2.05 2.13 2.27 2.44 1.80
cvp 94.90 96.60 94.50 94.80 93.50 95.60 95.70 94.90 95.60

W ρ = 0.8, n = 200

I

bias 0.38 0.21 0.18 0.12 −0.10 −0.14 −0.19 −0.38 −0.03
std 6.28 4.95 4.52 4.60 4.41 4.48 4.92 5.29 3.95

ŝtd 6.59 5.18 4.86 4.69 4.69 4.89 5.18 5.60 4.13
cvp 96.40 96.90 96.20 95.50 96.10 96.90 96.80 96.80 96.50

Σ̂
−1

bias −0.10 0.00 0.10 −0.09 −0.01 0.05 0.06 −0.06 0.06
std 3.51 2.90 2.61 2.66 2.66 2.67 2.89 3.04 2.31

ŝtd 3.58 2.83 2.67 2.58 2.58 2.68 2.83 3.07 2.27
cvp 95.70 95.20 96.40 93.90 94.20 94.40 95.10 95.20 94.30

W ρ = 0.8, n = 500

I

bias 0.42 0.19 0.03 0.06 −0.03 −0.22 −0.12 −0.16 −0.07
std 3.96 3.18 3.05 2.96 2.93 2.95 3.07 3.24 2.39

ŝtd 4.11 3.20 3.00 2.89 2.89 3.01 3.22 3.46 2.54
cvp 96.20 95.50 94.70 94.50 95.50 95.30 95.80 96.50 96.20

Σ̂
−1

bias −0.01 0.05 −0.05 0.02 −0.03 −0.01 −0.07 0.01 −0.01
std 2.23 1.67 1.60 1.55 1.64 1.62 1.73 1.88 1.38

ŝtd 2.24 1.76 1.65 1.59 1.59 1.65 1.76 1.90 1.40
cvp 95.00 95.90 96.10 95.60 94.10 95.20 95.50 95.00 94.70



NONLINEAR INTERACTION DETECTION 929

Table 2. Simulation results for Model II: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-

tion (“ŝtd”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are
multiplied by 100.

True β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

value 0.8 0.6 0.4 0.2 −0.2 −0.4 −0.6 −0.8 0
W ρ = 0.5, n = 200

I

bias 2.18 0.87 0.49 0.32 −0.31 −0.84 −1.14 −0.81 −0.12
std 11.61 9.69 8.81 8.66 8.85 9.10 9.90 10.30 7.84

ŝtd 12.62 9.89 9.34 8.96 8.94 9.34 9.94 10.66 7.90
cvp 95.90 95.20 95.90 96.10 94.60 95.00 94.60 95.50 95.50

Σ̂
−1

bias 1.59 0.50 0.06 0.19 −0.15 −0.44 −0.83 −0.65 0.01
std 6.79 5.67 5.26 4.98 5.21 5.33 5.65 5.97 4.52

ŝtd 7.10 5.56 5.24 5.04 5.04 5.26 5.59 6.00 4.44
cvp 95.30 95.30 94.70 95.90 94.30 93.80 95.50 95.30 95.60

W ρ = 0.5, n = 500

I

bias 1.58 0.47 0.50 0.11 −0.08 −0.69 −0.24 −0.89 −0.21
std 7.54 6.23 5.71 5.57 5.52 5.84 6.18 6.52 4.96

ŝtd 8.00 6.24 5.87 5.62 5.63 5.87 6.24 6.74 4.96
cvp 96.40 95.50 95.90 95.30 94.70 94.30 95.20 95.90 94.70

Σ̂
−1

bias 1.40 0.57 0.34 0.30 −0.20 −0.48 −0.58 −0.70 −0.05
std 3.77 3.26 3.08 3.02 3.03 3.09 3.27 3.43 2.68

ŝtd 4.29 3.34 3.14 3.01 3.02 3.14 3.35 3.61 2.66
cvp 96.50 95.20 94.80 93.70 94.40 94.40 94.50 95.90 94.90

W ρ = 0.8, n = 200

I

bias 2.19 0.80 0.44 0.15 −0.40 −0.86 −0.91 −0.76 −0.25
std 12.47 10.18 9.42 9.17 9.31 9.57 10.46 10.48 8.08

ŝtd 13.25 10.38 9.80 9.39 9.37 9.80 10.43 11.19 8.29
cvp 96.10 95.00 96.20 95.80 95.30 95.90 95.10 96.20 95.40

Σ̂
−1

bias 1.53 0.45 0.21 0.22 −0.21 −0.37 −0.84 −0.61 −0.07
std 5.69 4.80 4.34 4.20 4.22 4.44 4.67 5.01 3.77

ŝtd 5.88 4.61 4.35 4.18 4.18 4.35 4.64 4.97 3.68
cvp 95.00 95.90 95.00 95.20 94.90 93.60 94.20 95.60 94.10

W ρ = 0.8, n = 500

I

bias 1.62 0.49 0.43 0.04 −0.11 −0.68 −0.24 −0.74 −0.27
std 7.82 6.49 6.00 6.04 5.91 6.13 6.41 6.63 5.06

ŝtd 8.38 6.53 6.13 5.88 5.89 6.14 6.53 7.05 5.18
cvp 96.00 94.90 96.00 94.40 94.80 95.10 95.10 96.30 95.40

Σ̂
−1

bias 1.36 0.53 0.35 0.25 −0.17 −0.43 −0.57 −0.68 −0.03
std 3.01 2.56 2.40 2.38 2.39 2.42 2.56 2.70 2.18

ŝtd 3.48 2.71 2.54 2.44 2.44 2.55 2.71 2.93 2.15
cvp 95.70 94.90 95.70 94.40 94.50 95.10 93.90 95.80 93.80
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Table 3. Simulation results for Model III: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-

tion (“ŝtd”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are
multiplied by 100.

True β̂13 β̂14 β̂15 β̂16 β̂17 β̂23 β̂24 β̂25 β̂26 β̂27

value 0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0
W ρ = 0.5, n = 200

I

bias 2.11 −1.33 0.80 −0.33 −0.12 −0.85 0.93 −0.69 0.46 −0.19
std 5.96 5.86 5.30 4.95 4.14 5.07 4.92 4.41 3.93 3.34

ŝtd 7.38 7.25 6.28 5.58 4.79 5.99 5.92 5.11 4.54 3.91
cvp 98.40 98.20 98.20 97.40 97.60 97.50 97.50 97.00 97.20 97.10

Σ̂
−1

bias 1.21 −0.92 0.56 −0.22 −0.09 −0.86 0.81 −0.52 0.30 −0.12
std 3.91 3.77 3.28 3.03 2.50 3.22 3.23 2.81 2.46 1.99

ŝtd 4.31 4.24 3.68 3.26 2.80 3.52 3.48 3.01 2.67 2.30
cvp 97.30 97.10 96.70 96.40 96.60 95.70 95.90 96.00 96.50 97.90

W ρ = 0.5, n = 500

I

bias 1.62 −1.23 0.90 −0.37 −0.04 −0.73 0.89 −0.43 0.25 0.00
std 4.27 4.27 3.68 3.22 2.93 3.59 3.47 3.09 2.76 2.40

ŝtd 5.41 5.31 4.56 4.04 3.46 4.45 4.38 3.76 3.33 2.86
cvp 98.80 98.00 97.90 98.60 97.60 98.40 98.50 97.80 98.30 97.80

Σ̂
−1

bias 0.88 −0.69 0.45 −0.24 0.02 −0.65 0.71 −0.47 0.23 0.02
std 2.72 2.77 2.43 2.05 1.91 2.32 2.17 1.88 1.71 1.39

ŝtd 3.11 3.05 2.62 2.33 1.99 2.57 2.52 2.17 1.92 1.65
cvp 96.90 96.90 96.40 96.90 96.10 96.80 97.00 97.50 97.90 97.90

W ρ = 0.8, n = 200

I

bias 2.13 −1.42 0.82 −0.38 −0.01 −0.73 0.93 −0.79 0.44 −0.23
std 6.51 6.56 5.80 5.23 4.52 5.78 5.61 4.93 4.27 3.78

ŝtd 8.07 7.93 6.89 6.11 5.24 6.56 6.46 5.57 4.96 4.27
cvp 98.30 98.00 98.60 98.30 98.20 96.80 97.30 96.60 96.50 96.30

Σ̂
−1

bias 0.89 −0.64 0.39 −0.13 −0.06 −0.52 0.46 −0.30 0.17 −0.08
std 3.27 3.21 2.74 2.57 2.11 2.41 2.42 2.11 1.85 1.51

ŝtd 3.60 3.55 3.07 2.73 2.34 2.61 2.59 2.23 1.98 1.71
cvp 97.60 96.50 97.10 95.80 96.80 95.90 95.90 96.00 96.90 97.60

W ρ = 0.8, n = 500

I

bias 1.66 −1.25 0.88 −0.32 0.04 −0.79 0.91 −0.42 0.31 −0.07
std 4.56 4.65 4.07 3.62 3.22 3.89 3.88 3.40 3.01 2.62

ŝtd 5.95 5.83 5.02 4.44 3.80 4.87 4.79 4.12 3.66 3.13
cvp 98.70 97.90 98.30 97.60 97.20 99.20 98.00 98.10 98.60 97.90

Σ̂
−1

bias 0.57 −0.39 0.26 −0.17 0.02 −0.35 0.39 −0.24 0.12 0.00
std 2.33 2.31 2.01 1.73 1.57 1.69 1.57 1.39 1.27 1.03

ŝtd 2.55 2.51 2.15 1.91 1.63 1.85 1.82 1.56 1.39 1.19
cvp 97.10 96.60 96.30 96.10 95.70 97.10 98.30 96.90 97.10 97.60
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Table 4. Simulation results for Model IV: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-

tion (“ŝtd”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are
multiplied by 100.

True β̂13 β̂14 β̂15 β̂16 β̂17 β̂23 β̂24 β̂25 β̂26 β̂27

value 0.8 −0.6 0.4 −0.2 0 −0.8 0.6 −0.4 0.2 0
W ρ = 0.5, n = 200

I

bias −0.33 0.47 −0.29 0.22 0.00 −0.21 0.54 −0.30 0.15 0.06
std 4.32 4.12 3.64 3.29 2.89 5.73 5.63 4.86 4.34 3.68

ŝtd 5.10 5.04 4.34 3.90 3.34 6.54 6.46 5.58 4.98 4.27
cvp 97.80 98.00 97.30 97.70 98.00 97.20 97.70 96.90 96.40 96.30

Σ̂
−1

bias 0.02 0.11 −0.02 0.11 −0.06 −0.24 0.43 −0.22 0.08 0.07
std 3.06 2.98 2.64 2.28 2.04 3.33 3.31 2.86 2.63 2.18

ŝtd 3.66 3.61 3.12 2.79 2.39 3.89 3.84 3.31 2.94 2.53
cvp 97.90 97.40 97.30 97.90 97.90 97.30 97.20 97.00 97.50 98.00

W ρ = 0.5, n = 500

I

bias −0.52 0.62 −0.28 0.14 −0.08 −0.31 0.57 −0.16 0.12 −0.02
std 2.91 2.90 2.55 2.16 1.96 4.25 4.15 3.53 3.03 2.67

ŝtd 3.46 3.41 2.95 2.63 2.24 4.88 4.82 4.15 3.70 3.16
cvp 97.50 97.20 97.60 98.30 96.50 97.00 97.60 98.10 98.10 97.60

Σ̂
−1

bias −0.28 0.37 −0.18 0.09 −0.05 −0.31 0.49 −0.31 0.11 0.05
std 2.06 1.99 1.69 1.51 1.36 2.44 2.30 1.98 1.83 1.60

ŝtd 2.44 2.40 2.07 1.84 1.57 2.79 2.74 2.36 2.10 1.79
cvp 97.80 97.80 98.60 98.30 97.00 97.40 97.30 98.80 97.50 97.60

W ρ = 0.8, n = 200

I

bias −0.33 0.45 −0.23 0.19 −0.05 −0.20 0.62 −0.22 0.20 −0.03
std 4.54 4.43 3.92 3.58 3.02 6.51 6.05 5.48 4.85 4.27

ŝtd 5.28 5.22 4.54 4.09 3.50 7.11 7.02 6.09 5.47 4.71
cvp 97.40 97.60 97.60 97.70 97.40 96.50 97.50 96.00 96.90 96.70

Σ̂
−1

bias −0.31 0.31 −0.18 0.15 −0.04 0.05 0.10 −0.02 −0.02 0.08
std 2.40 2.37 2.11 1.90 1.59 2.91 2.89 2.55 2.21 1.81

ŝtd 2.84 2.81 2.45 2.20 1.88 3.22 3.18 2.77 2.48 2.13
cvp 97.80 97.60 96.80 98.30 98.00 97.20 96.60 97.00 97.80 97.90

W ρ = 0.8, n = 500

I

bias −0.40 0.50 −0.30 0.11 0.02 −0.40 0.50 −0.30 0.11 0.02
std 2.98 2.99 2.70 2.34 2.03 4.44 4.50 3.88 3.41 2.79

ŝtd 3.64 3.58 3.10 2.76 2.36 5.36 5.28 4.55 4.07 3.48
cvp 98.20 98.00 97.60 98.20 97.20 97.80 98.10 98.20 98.40 98.10

Σ̂
−1

bias −0.35 0.34 −0.19 0.13 −0.03 −0.35 0.34 −0.19 0.13 −0.03
std 1.60 1.53 1.32 1.17 1.03 2.00 1.87 1.61 1.53 1.31

ŝtd 1.86 1.83 1.58 1.41 1.20 2.27 2.23 1.92 1.71 1.46
cvp 97.10 97.20 97.80 98.00 97.00 97.30 97.40 98.20 96.90 97.70
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Figure 1. The power curves of Tw for ρ = 0.5 (left panel) and ρ = 0.8 (right panel) with
n = 200 (solid line) and 500 (dot dash line).

Table 5. The frequency (%) of the estimated structural dimension d̂.

Model
d̂ = 1 d̂ = 2 d̂ ≥ 3 d̂ = 1 d̂ = 2 d̂ ≥ 3
ρ = 0.5, n = 200 ρ = 0.8, n = 200

I 95.90 4.10 0.00 95.30 4.70 0.00
II 87.20 12.80 0.00 84.90 15.10 0.00
III 0.90 99.10 0.00 0.50 99.50 0.00
IV 0.00 100.00 0.00 0.00 100.00 0.00

ρ = 0.5, n = 500 ρ = 0.8, n = 500
I 98.80 1.20 0.00 98.80 1.20 0.00
II 94.90 5.10 0.00 95.30 4.70 0.00
III 0.20 99.80 0.00 0.40 99.60 0.00
IV 0.00 100.00 0.00 0.00 100.00 0.00

are univariate. When the response is univariate, the weighted and unweighted

estimates of our proposal are identical, thus we only report the unweighted esti-

mate. The MS method yields two estimates of β. We report the MS estimate with

smaller bias and standard deviation. We compared their performance through a

single index model.

Model V: A single-index model structure with a nonlinear link function

y =2(βTx) + sin(4βTx)z+ ε,

where x is drawn independently from multivariate normal distribution with zero

mean and covariance matrix
(
0.5|k−l|

)
and ε follows standard normal distribu-

tion. We set p = 10 and β = (1, 0.8, 0.6, 0.4, 0.2,−0.2,−0.4,−0.6,−0.8, 0)T. We

considered (i) z ∼Bernoulli(0.5), and (ii) z ∼ N (0, 0.5). To implement the LCC

method when z is continuous, we discretize z into a series of binary variables
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I(z ≤ z̃), where z̃ is an independent copy of z and I(A) is an indicator function.

For each given z̃, we have an estimate of span(β). We then pool all estimates

to yield an integrated estimate of span(β). For fair comparison, we rescaled the

resulting estimate, β̂, obtained through existing methods so that the first entry

of β̂, β̂1, is one. We repeated these scenario 1,000 times and report the biases

and the Monte Carlo standard deviations of (β̂/β̂1) in Table 6. The performance

of all methods improves when the sample size n is increased from 200 to 500.

In both cases, all methods perform comparatively, although our proposed NEW

estimate has slightly smaller biases and standard deviations.

3.3. Application to Framingham Heart Study

In this section we revisit the Framingham Heart Study described in Section

1. Let y = (Y1, Y2), z = (1, Z1, Z2, Z3)
T, x = (X1, . . . , X7)

T in model (1.1).

We added a column of ones in z to include an intercept in model (1.1). The

BIC-type criterion finds d̂ = 2. The unweighted and the weighted-profile least

squares estimates, along with their standard deviations and p-values, are given

in Table 7. The weighted-profile least squares estimates have smaller standard

deviations than those of the unweighted ones. In effect, corr(Y1, Y2) = 0.4159 and

the p-value is less than 10−4 in the test for significance of Pearson’s correlation

coefficient. Thus, the systolic and diastolic blood pressures are highly correlated.

It is then not surprising to see that the weighted-profile least squares estimates

are significantly more efficient than the unweighted ones. For k = 3, . . . , 7, at

least one p-value of Xk is significant at the significance level 0.05, indicating that

the interactions between x and z are all significant. Therefore, we can conclude

that healthy daily life styles, including a moderate amount of physical exercise,

helps to control for the blood pressures. To show the interactions between x and

z graphically, the estimated surfaces m̂ij(β̂
T

x) of mij(β̂
T

x) with β̂ = (β̂1, β̂2)
T,

for i = 1, 2 and j = 2, 3, 4 are shown in Figure 2, which clearly reveals the

nonlinear modulating effect of the degree of obesity on physical exercises. Such

dynamic effects are helpful in designing a moderate amount of physical exercise

to control for the blood pressures.

4. Concluding Remarks

There are ancillary covariates z = (Z1, Z2, Z3)
T in our motivating example.

These ancillary covariates are weakly correlated in that corr(Z1, Z2) = −0.017,

corr(Z1, Z3) = −0.060 and corr(Z2, Z3) = 0.101, with p-values of 0.770, 0.297

and 0.079. Their correlations are not significant, thus we do not consider the



934 FAN, ZHU AND MA

Table 6. Simulated results for Model V when z ∼Bernoulli(0.5) and z ∼ N (0, 0.5),
respectively: the average bias (“bias”) and the Monte Carlo standard deviation (“std”)

of (β̂/β̂1). All simulation results reported below are multiplied by 100.

β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10

method n z 0.8 0.6 0.4 0.2 −0.2 −0.4 −0.6 −0.8 0
NEW 200 Bernoulli bias 0.05 0.04 0.16 0.09 −0.20 0.08 −0.21 −0.12 −0.05

std 6.97 5.75 5.08 4.94 4.93 5.19 5.61 5.88 4.32
Normal bias 0.01 0.30 −0.15 0.09 −0.06 −0.01 −0.23 −0.02 −0.07

std 6.69 5.10 5.10 4.95 4.95 5.09 5.37 5.59 4.17
500 Bernoulli bias 0.44 0.10 0.25 0.07 −0.08 −0.21 −0.08 −0.39 −0.02

std 4.37 3.41 3.27 3.15 3.17 3.28 3.48 3.72 2.80
Normal bias 0.30 0.32 −0.07 0.18 0.05 −0.20 −0.12 −0.21 0

std 4.11 3.25 3.19 2.95 3.04 3.18 3.33 3.57 2.71
LCC 200 Bernoulli bias 0.36 0.17 −0.36 0.02 0.17 −0.36 −0.16 −0.39 −0.03

std 8.18 6.15 5.85 5.72 5.60 5.94 6.39 6.76 4.79
Normal bias 0.57 0.33 0.06 0.01 0.08 −0.16 −0.05 −0.48 0.15

std 7.96 6.04 5.62 5.24 5.37 5.49 5.99 6.33 4.53
500 Bernoulli bias 0.15 −0.11 0.24 0.05 −0.17 0.00 −0.03 0.03 0.07

std 4.95 3.66 3.45 3.24 3.49 3.44 3.77 3.89 2.94
Normal bias −0.03 0.05 −0.05 −0.06 0.05 −0.00 0.11 −0.13 0.12

std 4.64 3.51 3.20 3.11 3.21 3.37 3.50 3.90 2.78
MS 200 Bernoulli bias 0.26 0.32 0.11 0.15 0.06 −0.02 −0.11 −0.24 −0.12

std 9.35 6.69 6.53 6.01 5.98 6.22 6.75 7.54 5.34
Normal bias 0.38 0.24 0.18 0.06 0.07 −0.17 −0.33 0.04 −0.13

std 8.27 6.11 5.92 5.57 5.61 5.74 6.35 6.83 5.06
500 Bernoulli bias 0.21 0.09 0.05 0.14 −0.10 −0.21 0.15 −0.15 −0.09

std 5.06 3.85 3.60 3.37 3.48 3.70 4.02 4.27 3.14
Normal bias 0.02 −0.04 0.03 −0.03 0.04 −0.08 −0.05 0.05 0.04

std 4.61 3.63 3.45 3.35 3.32 3.53 3.55 4.03 2.88
LCL 200 Bernoulli bias 0.65 0.34 −0.02 0.17 0.09 −0.28 −0.51 −0.45 6.43

std 8.37 6.10 5.91 5.58 5.40 5.89 6.37 7.05 12.22
Normal bias 0.65 0.63 0.11 0.06 −0.08 −0.29 −0.13 −0.57 3.69

std 7.89 6.16 5.84 5.61 5.31 5.65 6.13 6.73 9.41
500 Bernoulli bias 0.36 0.05 0.08 0.11 0.06 −0.23 −0.26 0.19 0.39

std 4.69 3.57 3.17 3.05 3.22 3.26 3.69 3.75 2.42
Normal bias 0.22 0.18 −0.14 −0.09 0.12 −0.12 −0.13 −0.07 0.32

std 4.67 3.50 3.21 3.20 3.26 3.38 3.65 3.94 2.21

interactions among these ancillary covariates here. In model (1.1) we assume

implicitly that the effects of the ancillary covariates are additive. Our proposed

methodology and associated theoretical results are applicable when the ancillary

covariates z are moderately correlated. If the ancillary covariates z are highly

correlated, it is recommended considering the interactions among the z as well.
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Table 7. Both the unweighted and the weighted profile least squares estimates, along
with the standard errors and the p-values.

W
X3 X4 X5 X6 X7

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

I

coef 0.4285 0.5149 1.0917 0.4939 0.9340 0.5008 0.5007 0.5024 0.2376 0.4919
std 0.3805 0.0542 0.6388 0.0925 0.2754 0.0374 0.3115 0.0470 0.3343 0.0485

p-value 0.2602 0.0000 0.0875 0.0000 0.0007 0.0000 0.1079 0.0000 0.4773 0.0000

Σ̂
−1

coef 0.3811 0.5215 0.8881 0.5140 1.0031 0.5090 0.4575 0.4732 0.4355 0.4988
std 0.3119 0.0440 0.5384 0.0741 0.2431 0.0306 0.2615 0.0382 0.2819 0.0402

p-value 0.2217 0.0000 0.0990 0.0000 0.0000 0.0000 0.0802 0.0000 0.1224 0.0000

̂ u ̂ u
̂ u

̂ u ̂ u ̂ u

Figure 2. The estimated surfaces m̂ij(β̂
T

x) of mij(β̂
T

x) with β̂ = (β̂
1
, β̂

2
), for i = 1, 2

and j = 2, 3, 4.

This leads to quite different model structures. Accordingly, new algorithms and

estimation procedures are needed. Future research along this line is warranted.

Supplementary Materials

Some related models and comments on relevant methods, additional simula-

tions and proofs of theorems can be found in the Supplementary Materials.
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