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Abstract: In this paper we propose an efficient model-based sufficient dimension
reduction method to detect interactions. We introduce a new class of multivari-
ate adaptive varying index models (MAVIM) to investigate nonlinear interaction
effects of the grouped covariates on multivariate response variables. Grouping the
covariates through linear combinations in the MAVIM accommodates weak individ-
ual interaction effects as long as their joint interaction effects are strong enough to
be detectable. We estimate the joint interaction effects by a weighted-profile least
squares method that is numerically stable and computationally fast. The resultant
profile least squares estimate is root-n consistent and asymptotically normal. We
discuss how to choose an optimal weight to improve the estimation efficiency. We
determine the structural dimension with a BIC-type criterion, and establish its con-
sistency. The effectiveness of our proposal is illustrated through simulation studies
and an analysis of Framingham heart study.
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1. Introduction

With the advance of information technology, high-dimensional data are effec-
tively collected at a low cost in many scientific fields. Regression analysis is per-
haps one of the most popular tools that help us gain insight into the relationship
between two sets of high-dimensional variables. Suppose x = (X1,...,X,)" € RP
is the covariate vector and y = (Y7,...,Y;)" € R" is the response vector. In gen-
eral, the goal of regression analysis is to study how the conditional mean function
of y, denoted by E(y|x), varies with x. Nonparametric regression is a flexible
and effective approach to estimating the conditional mean. However, it suffers
from the “curse of dimensionality” when the dimension of x increases. To re-
duce the covariate dimension, sufficient dimension reduction (Cook (1998)) is an
effective tool that combines the concept of sufficiency with the idea of dimen-
sion reduction. It achieves the goal of dimension reduction through replacing the
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high-dimensional x with d linear combinations, denoted as (a"™x) for a € RP*¢,
without losing information of (y|x). In other words, replacing x with (a™x)
is “sufficient” in the sense that F(y|x) = E(y|a"x). By the very purpose of
dimension reduction, d is assumed to be small and hence estimating F(y|a"x)
via nonparametric smoothing is straightforward. In practice, d is unknown and
needs to be estimated from the data. This differentiates the dimension reduc-
tion model E(y|x) = E(y|a™x) from the single- or multiple-index models in the
literature Ichimura (1993); Carroll et al. (1997); Ma and Zhu (2014). Seeking
for an appropriate a such that E(y|x) = E(y|a"x), is the central goal of suf-
ficient dimension reduction when estimating F(y|x) is concerned. Because « is
not identifiable, the space spanned by «, denoted as span(a), with the minimal
column dimension, is the parameter of primary interest and referred to as the
central mean space (Cook and Li (2002)) in sufficient dimension reduction.

In the present article we consider the problem of sufficient dimension reduc-
tion in the presence of high-dimensional controlling variables z = (Z1,...,Z,)".
This falls into the framework of partial mean dimension reduction (Li, Cook
and Chiaromonte (2003)), which seeks a p x dyp matrix 3 such that E(y|x,z) =
E(y|B8"x,z). Similar to a, B is not identifiable either. Therefore, our primary
goal is to seek for the minimal column space of 3, denoted by span(3), such
that E(y|x,z) = E(y|3"x,z). Following the convention of sufficient dimension
reduction (Li, Cook and Chiaromonte (2003)), we refer to the column space of
3, denoted by span(/3), such that E(y|x,z) = E(y|3"x,z) as the partial central
mean dimension reduction subspace. Its column dimension, denoted by dy, is
referred to as the structural dimension of span(3). Existing methods require
r = q = 1. Specifically, if z and y are univariate and z is categorical taking a
small number of values, Li, Cook and Chiaromonte (2003) suggested applying
an existing sufficient dimension reduction method to E(y|x,z = z¢) within each
category of z, say, z = zg, and sum up all estimates to form an estimate of
span(Q); if y is univariate and z is continuous and low dimensional, Feng et al.
(2013) suggested discretizing z into a series of binary variables and then applying
Li, Cook and Chiaromonte (2003)’s method to form an estimate of span(3). Hi-
lafu and Wu (2017) suggest recovering span(3) through regressing y = (y*,z")"
onto x. We consider a more general situation in which z and y are allowed to
be multivariate and components in z can be either categorical or continuous.
Such considerations are motivated by the Framingham Heart Study, where 304
subjects were collected to evaluate the effects of physical exercises on the blood
pressures. The Framingham Heart Study Data were downloaded from NCBI db-
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GaP with an IRB number HS-11-159. The systolic (Y7) and the diastolic blood
pressures (Y3), and several measurements of such physical exercises, as hours for
heavy, moderate and light activities per day, denoted by Z1, Zo and Z3, respec-
tively, were recorded for each subject. There is a public health concern regarding
the developmental effects resulting from the lack of physical exercises. It is be-
lieved that a moderate amount of physical exercise helps to relieve stress, and
hence are beneficial to controlling for the blood pressures. Therefore, our goal
is to investigate whether or not the physical exercises, Z1, Zo and Z3, affect the
blood pressures. The blood pressures are also relevant to the degree of obesity;
they are measured by weight (X7), height (X3), bi-deltoid girth (X3), right arm
girth-upper third (X4), waist girth (X5), hip girth (Xg) and thigh girth (X7).

In general, to understand how the conditional mean functions of y = (Y7,
..., Yp)" vary with x = (Xy,..., X,,)" in the presence of z = (Z1,...,Z,;)", and to
simultaneously accommodate the interaction effects between x and z, we consider
a multivariate adaptive varying index model (MAVIM for short),

q
E(y|x,z) = Z my(37x)Zy, or equivalently, (1.1)
k=1
q
EYx,z) =Y mp(B8"x)Zg,forl=1,...,r, (1.2)
k=1

where my(8"x) = (mg1(8"%), ..., mk-(B8"%))", k=1,...,q, B is a p X dyp matrix
with an unknown dg. All m;’s, 3 and dy have to be estimated from data. All
my,’s share an identical 3 to ensure that span(/3) is identifiable (Zhu and Zhong
(2015)). We group x through (87x) to augment the interaction effects between
x and Zj, a useful strategy if the joint interaction effects between x and Z; are
strong enough but the individual interaction effects between X; and Z; are too
weak to be detectable.

The functions m; accommodate nonlinear interaction effects between x and
Zi, (Ma et al. (2011)). To be precise, if my, is constant, x does not interact with
Zi. In addition, if the i-th row of 3 is zero, X; does not interact with z. In other
words, the i-th row of 3 describes the joint interaction effects between X; and z.
Model (1.1), or equivalently, (1.2), characterizes the interaction effects between
x and z. We achieve the goal of dimension reduction through replacing x with
(B*x) in the presence of z and such a reduction is sufficient in the sense that
(1.1), or equivalently, (1.2), holds almost surely. Because we allow for a general
do, that all my’s share a common 3 in model (1.1) is a necessary assumption for
the purposes of identifiability.
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Our goal is to estimate and make inference on span(3). Towards this goal,
we recast the problem of estimating span(83) to the problem of estimating an
identifiable basis matrix 3. We propose a weighted-profile least squares esti-
mation procedure for B in which each myj is approximated by the local linear
regression (Fan and Gijbels (1996)). An important methodological merit of our
approach is the ease of simultaneously approximating multiple nonparametric
functions to create a single objective function for 3, so that the profile least
squares estimation can be established in a straightforward manner. The resul-
tant estimate of 3 is root-n consistent and asymptotically normal. We devise a
Wald chi-square testing procedure for 8 based on the asymptotic distribution of
the profile least squares estimate. In the Framingham Heart Study, the systolic
(Y1) and the diastolic blood pressures (Y3) are highly correlated and hence are
considered jointly to improve the efficiency of the profile least squares estimate.
We also discuss how to choose an optimal weight to improve efficiency of esti-
mating (3, a particular basis matrix of span(3). Because the model structure is
assumed in (1.1), we refer to our proposal as a model-based sufficient dimension
reduction method.

This article is organized as follows. Section 2 introduces the weighted-profile
least squares estimation and presents asymptotic properties of the proposed es-
timate. We also discuss how to choose an optimal weight matrix. In Section
3 we evaluate finite sample properties of the proposed estimation and inference
procedures via comprehensive simulation studies. We also illustrate the useful-
ness of our proposals through an analysis of the Framingham Heart Study. Some
concluding remarks are given in Section 4. All technical details and additional

discussions are given in an online supplement.

2. Methodology Development
We seek 8 with the minimal column dimension dy such that (1.1) holds, then

replacing x with (37x) is sufficient to describe how E(y|x,z) varies with x and z.
We further assume that the upper dy x dy submatrix of 3 is an identity matrix.
In other words, 8 = (Idoxdo, ﬁZdO)T, where I, «q, is a do x dp identity matrix
and B_, is a (p — do) x dop matrix composed of the lower (p — dg) rows of 3.
In single index models (Ichimura (1993)) where dy = 1, there are two options to
ensure that 3 is identifiable. The first is to restrict that 3 is of unit-length and
the first entry of 3 is strictly positive. The second is to simply set the first entry
of B to be 1 and thus all other entries are free parameters. These options are, in
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spirit, equivalent. Requiring the upper dy X dy submatrix of 3 to be an identity
matrix is an extension of the second option. Such a parameterization is also used
by Ma and Zhu (2013) and implies that the first dy covariates of x contribute
to model (1.1). If this is not the case, one can always rotate the order of the
entries in X to guarantee that the first dy components of x are useful. Through
parameterizing span(8) with a particular basis matrix 8 = (Idoxdo, BZdO)T, we
convert the problem of estimating 3 into a problem of estimating the (p—dy) x dy
matrix B_; , the free parameters in 3.

Because the structural dimension dy of span(3) is unknown a priori, we illus-
trate our proposed estimation procedure with a working dimension d. In this sec-
tion we propose a profile least squares method to estimate 3, or equivalently, 8_,.
Let x4 = (X1,...,Xg)" and x_g = (Xg44+1,...,X,)". Hence, B8'x = x4+ 8 jx_q4
and my(8"x) = my(xqg + 8L Xx_q). Suppose that {(x;,2;,y:;),i =1,...,n}isa
random sample of (x,z,y) that follows model (1.1). For a given 3, we estimate
my, k =1,...,q, using the local linear approximation (Fan and Gijbels (1996)).
Specifically, for U = (3"x) in a small neighborhood of u, one can approximate
my(U) =~ my(u) + m,(:)(u)(U —u) € a;, + B(U —u), for k =1,...,q, where
m,(cl)(u), for k =1,...,q, denotes the first derivative of my(u) with respect to u
and hence all of them are r x d matrices. The local linear estimators for mg(u)
and m,(:)(u) are defined as mg(u,3) = a; and r/fl,(cl)(u,ﬂ) = By, at the fixed
point 3, where {(ay, ]§k), k =1,...,q} minimize the sum of the weighted least

squares
2

n q
> [yi = {ap +Br(B™xi — w)} Zi | Kn(B"x; —u),

=1 k=1

where Kj,(-) = K(-/h)/h% is a product of d univariate kernel functions and A is
a bandwidth. By some straightforward algebraic calculations, we derive that

{Bu(wg),.... &y (0 8) hin (uB), ..k (u, B) }
=8, (u, B)%,,(u, B). (2.1)

def SnO(uv :8) S;Fbl(ua /6) def §n0(u7 IB) :
where S,,(u,8) = (Sm(u,ﬂ) Sng(u,ﬂ)> and §,,(u,3) = <§n1 (u,,@)) , with

n Tt J
Snj(U,ﬁ) T ZZiZ;F & ('BX;LU> K,(B"x; —u) and
=1
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J
£aj(u, B) = *IZZZ {(ﬂ = )yz}mmxi—u»

Here A ® B = (a;;B) for A = (a;;), and A° = 1, A’ = A and A% = AA™.
For a fixed 8, my is now profiled out. Subsequently, we estimate 3_,; through

minimizing

n q T q
Z {Yi_z my, (Xq,; +B X _d,is ;B)Zik} W{Y@'_Z my,(Xa,;+BL gX—a,B) Zik },
=1 k=1 =1

(2.2)

where W is a user-specified r x r posmve definite weight matrix. Let ,8 dw D€
the profile least squares estimate of ,6 dw if the working weight matrix W is
used.
We need regularity conditions to establish the asymptotic normality property
for B—d,w‘ For notational clarity, let f(3%x) be the density function of (3%x),
m(87%) = (m3(87x),..,m, (8x))", m{ (87%) = (m{})(87)....., m{] <5Tx>)T
be the first derivative of my(3"x) with respect to (37x) for k =1,...,q
(C1) (The Lipschitz Continuity) The density function f(8"x) of (3"x) is locally
Lipschitz continuous, and bounded away from zero and infinity. In addi-
tion, m(8"x), E(x|8"x) and Q(B"x) = E(zz"|3"x) are locally Lipschitz

continuous.

(C2) (The Kernel Function) The univariate kernel function K(-) is symmetric,
has a compact support and is Lipschitz continuous. In addition, [ K (u)du =
1,fukK(u)du =0, fork=1,...,s —l,and 0 # [u*K(u)du < oo. The
d-dimensional kernel is a product of d univariate kernels. We abuse the
notation of K here when it is sufficiently clear from the context.

(C3) (The Bandwidth) The bandwidth h = O(n=?) for (4s)™' < § < (2d)~*

(C4) (The Moment Condition) All the involved moments, E[{my,(8"x)}"{my (3"
x)}|, E(x"x), E{(y"y)™} and E Hm,(:)(BTX)}T{mS)(,BTX)H , exist for

so-me k1 > 3/2and k=1,...,q

These conditions are generally regarded as mild. In particular, condition
(C1) imposes smoothness conditions on the mean and density functions that
allow us to implement such local smoothers as kernel and local polynomial re-
gressions (Fan and Gijbels (1996)). Condition (C2) states that an s-th order
kernel function is used. Condition (C3) specifies the order of the bandwidth,
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whose range is fairly wide and, more importantly, contains an optimal order.
We assume moment conditions in condition (C4) to establish the asymptotic
normality. Similar conditions appear in Ma and Zhu (2012, 2013).

Define

def

Ay =F

{ka X)Zj @ X_ d} {Zm X)Zp @ X° d}] and
{ka (B™%)Z), @ X d}WZW{ka (B"%)Z @ X" d}]

k=1

Theorem 1. If conditions (C1)-(C4) in the Appendiz hold, then
n1/2{vec (B—d,w) — Vec(ﬂ_d)} 4, N(O,A‘;lBWA;}),

~ d o
where X_qg = X_qg— E(x_q|3"%x) and “ — 7 stands for “convergence in distribu-
tion”.

How to specify the working weight matrix W is an interesting issue. As long
as W is positive definite, B_dw is root-n consistent and asymptotically normal.
However, choosing an appropriate W may improve the efficiency of estimating
B_4w- We compare two options: W = I, and W = f]il, where

n q
~ 3 o o~
Enly EE and g Yy - Y my, <51Xiu@1) Zi.-
i=1 k=1
o1

Theorem 2 indicates that using W = 3  yields a more efficient estimate of
chhw than using W = 1I,.,.
Theorem 2. A;'BiA;! > Ag! By ALl = ASL.

For the asymptotic normality of B_de to be useful, we provide a consistent

estimate for the asymptotic covariance matrix. Let B def (

~—1
W can be X  or 1. Take
= def Z?:Ljii Ky ('waj - IBWXi>X—d,i
—di = X—di — - — —
2 j=1jzi Kn </6jo - 5in)

gwdgnli{ 0 (B Ba) 2 % }
W{Zm,@(a;xi,aw)zik@TW},

Idxd,ﬁ dw) , where

9
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n q .
5 def g ~ (1),T (3T > =
Bw =n E E my IBWXi7 /Bw Zik ® X—d,i

q

sz{ > iy <B3vxi’ ﬂw> Zix @ X g, }
k=1

Theorem 3. If conditions (C1)-(C4) hold, then Ay, 2 Ay, By - By, and

hence K‘Tvlﬁw K‘Tvl Ly ALBRALL

Testing whether there exist interaction effects between X; and z amounts to
testing whether all components of the i-th row of 3 in model (1.1) are simulta-
neously zero. In a general context, we consider the hypothesis testing problem

Hy:QB_;=qo versus H;:QB_; # qo,
where Q is a user-specified ¢y X (p — d) matrix and qq is another user-specified
go X d matrix. This problem is general enough to include a variety of hypothesis
of interest. For example, we are free to choose Q = (1,0,...,0);y(—q) and
qo = 014, aiming to test whether there exist interaction effects between Xg, 11
and z. In general, we devise the Wald chi-square test

T = n{ (L © Q)vee(B_ g, ) = vee(ao) |

~ i~ o~ -1 -
{Taxa ® QAT BYAL Lixa © Q1) } {(Lixa © Q)vee(Bg ) = vee(an) |-
A direct application of Theorem 1 yields the following corollary. Its proof is
omitted.

Corollary 1. If conditions (C1)-(C4) hold, then under Hy, Ty N 2(qod),
where x*(qod) is the central chi-square distribution with (qod) degrees of freedom.

It remains to estimate the structural dimension of span(3), the minimum
column dimension of B, such that (1.1) holds. Following Zhu, Miao and Peng
(2006) and Xu et al. (2016), we suggest a BIC-type criterion. Specifically, for a
working dimension d, we take

L(d) =

2z {yi = Dk Mk (:@Z,wxu Bd,w)Zik}T{Yi — Dy M (B;,wxu Bd,w)Zik}
o (yi =¥ (yi —y) /2

and £*(d) = L(d) + (pd)An,

where dew = (Lixa, de,w)T‘ The estimated structural dimension is then given
by
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d ¥ argmin £*(d). (2.3)
1<d<p

Theorem 4. Under the conditions of Theorem 1, if A,/ logn— o0 and Ay~ 1/2

— 0, then pr(c?: dp) — 1.

Thus the BIC-type criterion enables us to select the true structural dimen-
sional of span(3) consistently. The penalty term A, is allowed to vary over a wide
enough range for d to be consistent. How to choose an optimal A, is challenging.

2/5 works well. We use this choice of

Our limited simulations show that A\,, = n
An throughout our numerical studies.
An algorithm for estimating 3 is as follows, starting with a working dimen-

sion d and a user-specified initial value of 3.
1. Estimate my and ml(cl) with (2.1) for a given 8.
2. Set W =1,,. Estimate 3 with (2.2) for given my, and mg).

3. Repeat these two steps until convergence. The resultant estimate, denoted
by B1 = (Tixd, ,BT_d,I)T, is referred to as the unweighted-profile least squares
estimate.

4. We vary the working dimension d from 1 through p and repeat the above
three steps. The estimated dimension d is given in (2.3).

~—1 —~
5. Set W = X  and d = d in the second step. Repeat the first two steps
until convergence. The final estimate, denoted by B¢_, = (I7,58_55-1);

is referred to as the weighted-profile least squares estimate.

3. Numerical Studies

In this section we demonstrate the performance of our proposals through
comprehensive simulations and an application to the Framingham Heart Study.
Because existing methods cannot be used directly if y is multivariate, we only
report the simulation results of our proposal in Section 3.1 when y is multivariate.
In Section 3.2, we compare our proposal with methods proposed by Li, Cook and
Chiaromonte (2003), Ma and Song (2015) and Liu, Cui and Li (2016) when both

y and z are univariate.
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3.1. Simulation experiments for multivariate response data

We conducted simulation studies to evaluate the performance of our proposed

methodology when the response is multivariate. Throughout our simulations we

drew x and z independently from multivariate normal distribution with zero

mean and covariance matrix (0.5““*”). We fixed r = 3, and generated €

(e1,€9,e3)" from N (0, X), where

100 1 pp*\ (100
X=1020 p 1 p 020
004/ \p?>p 1 00 4

We considered four simulated models.
Model I: A single-index model structure with a linear link function:

Y1 =2(8"x)Z1 + (B7x)Z2 + €1,
Y2 = (B7x)Z1 + 3(B7x)Z2 + 2,
Y3 =e3,
Model II: A single-index model structure with a nonlinear link function:
Y1 =sin(48"x)Z1 + 2(B"x) Z2 + €1,
Yy = cos(287x)Zs + €2,
Y3 =2(8"%x)Z1 + sin(28"x)Zs + 3.
Model III: A multiple-index model structure with a linear link function:
Y1 = {(B1%) + (B2%)} Z1 + (B1%) Z2 + €1,
Yo = (85%x) 21 +{(281x) — 3(B3x)} Z2 + €2,
Ys = 2(81x)Z1 + 4(B85%) Z2 + 3.

Model IV: A multiple-index model structure with a nonlinear link function:

_ (B1x) 21
{0.5 + (B3x + 1.5)?}
Yy = sin?(BTx)Z; + cos?(83x) Zo + €9,

Vs = {(281x) — (B3x)}* Z1 + e3.

Y +(B2%) 22 + €1,

We set p = 10, ¢ = 2 and 8 = (1,0.8,0.6,0.4,0.2,—0.2, —0.4, —0.6, —0.8,0)" in
Models (I)-(II), and set p = 7, ¢ = 2, B; = (1,0,0.8,-0.6,0.4, —0.2,0)" and
By =(0,1,-0.8,0.6,—0.4,0.2,0)" in Models (III)-(IV). We chose the sample size
n = 200 and 500 and repeated each simulation 1,000 times. We used the Gaussian
kernel and chose the bandwidth h = (4/3n)'/(#4) s where s is the median of the

robust estimators of the standard deviation of (37x).
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The average of estimation bias (“bias”), the Monte Carlo standard deviation
(“std”), the average of estimated standard deviation (“s/t?i”), and the empirical
coverage probability (“cvp”) at the nominal 95% confidence level for all free
parameter are summarized in Tables 1-4 for models (I)-(IV), respectively. These
estimates have very small biases, and the biases decrease as the sample size
increases. This phenomenon provides strong evidence that both the weighted
and the unweighted estimates are consistent, the theoretical result of Theorem 1.

In terms of the Monte Carlo standard deviation and the average of estimated
standard deviation, the weighted estimate performs competitively in comparison
with the unweighted one. The empirical coverage probabilities for the weighted
and unweighted estimators are close to the nominal level, which implies that our
inferential results are fairly reliable. The Monte Carlo standard deviations are
close to the average of the estimated standard deviations especially for large n.
This finding means that the standard deviations have been estimated precisely,
which verifies Theorem 3.

To demonstrate the performance of our proposed Wald test statistic Ty, we
tested whether X7 interacts with z in Model (IV). Towards this end we simply
chose Q = (0,...,0,1)1x5, 9o = 01x2 in our testing problem. To investigate the
size and the power performance of our proposed Wald test, we changed the last
row of 3 = (B,85) to (a,a) and reestimated all parameters, with a = —0.10 :
0.02 : 0.10. Apparently, a = 0.00 corresponds to the case that X; does not
interact with z. The power curves at the significance level 0.05 are reported in
Figure 1 based on 1,000 replications. All the power curves increase quickly as |a]
increases, indicating that our proposed test approach can detect the interaction
effects effectively.

We evaluated the performance of the BIC-type criterion at (2.3) in estimating
the structural dimension of span(8). The structure dimension was dy = 1 in
models (I)-(II) and dp = 2 in models (III) and (IV). For Models (I)-(IV), the
percentages for each estimated dimension are charted in Table 5. Our proposed
BIC-type criterion works pretty well: with high probability the estimated and
the true structural dimension are equal in all models. The performance of our
BIC-type criterion also improves gradually as the sample size increases.

3.2. Comparison with existing methods for univariate response data

In this section we compare our proposal (NEW for short) with existing meth-
ods of Li, Cook and Chiaromonte (2003) (LCC for short), Ma and Song (2015)
(MS for short) and Liu, Cui and Li (2016) (LCL for short) when both y and z
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Table 1. Simulation results for Model I: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-

tion (“s/ta”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are
multiplied by 100.

True B2 B3 Ba Bs Be B7 Bs Bo B1o
value 0.8 0.6 0.4 0.2 —0.2 —-04 —0.6 —0.8 0
W 5= 05,1 =200
bias 0.83 0.44 0.16 —-0.00 -0.04 -0.47 -0.17 -—-0.55 -0.03
I S/tEl 5.58 4.59 4.45 4.17 4.38 4.47 4.51 4.88 3.17
std 6.17 4.83 4.54 4.37 4.37 4.56 4.85 5.22 3.85
cvp  97.20 95.80 9590 96.40 94.40 95.80 96.50 95.30 95.30
bias 0.33 0.17 0.02 -0.08 —-0.01 -0.13 0.03 -0.13 -—-0.11
~—1 std 4.43 3.74 3.56 3.31 3.36 3.55 3.71 3.76 2.84
> std 4.64 3.65 3.45 3.32 3.31 3.45 3.67 3.95 2.93
cvp  95.80 94.10 94.80 94.70 94.20 93.70 95.00 96.40 95.30
\)\% p=0.5,n =500
bias 0.39 0.19 0.05 0.11 -0.03 -0.25 -0.10 -0.22 —-0.05
I S/tii 3.66 2.97 2.87 2.75 2.77 2.79 2.87 3.06 2.29
std 3.84 3.00 2.81 2.70 2.70 2.82 3.01 3.23 2.38
cvp  96.30 95.10 94.20 94.60 94.80 94.70 95.90 96.50 95.90
bias 0.07 0.08 —0.04 0.03 -0.02 -0.10 -0.06 —0.01 —0.04
~—1 std 2.89 2.20 2.18 2.04 2.15 2.11 2.19 2.42 1.74
% b/ta 2.89 2.27 2.13 2.04 2.05 2.13 2.27 2.44 1.80
cvp  94.90 96.60 94.50 94.80 93.50 95.60 95.70 94.90 95.60
w p=0.8,1n =200
bias 0.38 0.21 0.18 0.12 -0.10 -0.14 -0.19 -0.38 —0.03
I St/\d 6.28 4.95 4.52 4.60 4.41 4.48 4.92 5.29 3.95
std 6.59 5.18 4.86 4.69 4.69 4.89 5.18 5.60 4.13
cvp  96.40 96.90 96.20 95.50 96.10 96.90 96.80 96.80 96.50
bias —0.10 0.00 0.10 -0.09 —-0.01 0.05 0.06 —0.06 0.06
~—1 std 3.51 2.90 2.61 2.66 2.66 2.67 2.89 3.04 2.31
= S/ta 3.58 2.83 2.67 2.58 2.58 2.68 2.83 3.07 2.27
cvp  95.70 9520 96.40 93.90 94.20 94.40 95.10 95.20 94.30
\)\% p=0.8,n =500
bias 0.42 0.19 0.03 0.06 -0.03 -0.22 -0.12 -0.16 -0.07
I S/t\d 3.96 3.18 3.05 2.96 2.93 2.95 3.07 3.24 2.39
std 4.11 3.20 3.00 2.89 2.89 3.01 3.22 3.46 2.54
cvp  96.20 95.50 94.70 9450 95.50 95.30 95.80 96.50 96.20
bias —0.01 0.05 —0.05 0.02 -0.03 -0.01 -0.07 0.01 -0.01
~—1 std 2.23 1.67 1.60 1.55 1.64 1.62 1.73 1.88 1.38
% S/t\d 2.24 1.76 1.65 1.59 1.59 1.65 1.76 1.90 1.40
cvp  95.00 95.90 96.10 95.60 94.10 95.20 95.50 95.00 94.70
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Table 2. Simulation results for Model II: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-
tion (“s/ta”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are
multiplied by 100.

True B2 B3 Ba Bs Be B7 Bs Bo B1o
value 0.8 0.6 0.4 0.2 —0.2 -04 —0.6 —0.8 0
W p—=0.5,n = 200

bias  2.18 087 049 032 -031 -0.84 -1.14 -—-0.81 -0.12
std 11.61 9.69 881  8.66 8.85 9.10 9.90 10.30 7.84

! std 1262 9.89 934  8.96 8.94 9.34 9.94 10.66 7.90
cvp 95.90 9520 95.90 96.10 94.60 95.00 94.60 95.50 95.50
bias 1.59 050 0.06 0.19 -0.15 -044 -0.83 —0.65 0.01
2—1 std  6.79 567 526 498 5.21 5.33 5.65 5.97 4.52

std 7.0 556 524 5.04 5.04 5.26 5.59 6.00 4.44
cvp 9530 95.30 94.70 9590 94.30 93.80 95.50 95.30 95.60
W p=0.5,n=>500

bias 1.58 0.47 050 0.11 -0.08 -0.69 -0.24 —-0.89 —-0.21
std 754 623 571  5.57 5.52 5.84 6.18 6.52 4.96

! std 800 624 587 562 5.63 5.87 6.24 6.74 4.96
cvp 96.40 9550 9590 9530 94.70 94.30 9520 9590 94.70
bias 140 057 034 030 —-0.20 -048 -0.58 —0.70 —0.05
§—1 std 377 326 3.08 3.02 3.03 3.09 3.27 3.43 2.68

std 429 334 314 301 302 314 335 361 266
cvp 9650 9520 94.80 93.70 94.40 9440 9450  95.90  94.90
w p=0.8,n =200

bias 219 0.80 044 0.15 —0.40 —0.86 -091 —0.76 —0.25
std 1247 10.18 942 917 931 957 1046 1048  8.08

! std  13.25 10.38  9.80  9.39 9.37 9.80 1043 11.19 8.29
cvp 96.10 95.00 96.20 9580 9530 9590 95.10 96.20 95.40
bias 1.53 045 021 022 -0.21 -037 -0.84 -—-0.61 -0.07
ifl std  5.69 480 434 4.20 4.22 4.44 4.67 5.01 3.77

std  5.88 461 435 418 418 435 464 497  3.68
cvp 9500 9590 95.00 9520 9490 93.60 94.20 95.60 94.10
W p=038,n =500

bias 1.62 049 043 004 —0.11 -0.68 -024 —0.74 —0.27
std  7.82 649 600 604 591 613 641 663  5.06

! std 838 653 6.3 5.88 5.89 6.14 6.53 7.05 5.18
cvp 96.00 9490 96.00 94.40 94.80 95.10 95.10 96.30 95.40
bias 1.36 053 035 025 -0.17 -043 -0.57 —-0.68 —0.03
i\:71 std  3.01 256 240 238 2.39 2.42 2.56 2.70 2.18

std 348 271 254 244 2.44 2.55 2.7 2.93 2.15
cvp  95.70 9490 95.70 9440 9450 95.10 93.90 95.80 93.80
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Table 3. Simulation results for Model III: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-
tion (“s/ta”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are
multiplied by 100.

True B13 Bia  Pis Bie Bir B2z B2 Bas  Ba2e Bar
value 0.8 —-0.6 0.4 —-0.2 0 —0.8 0.6 —-04 0.2 0
W p=0.5,n =200

bias 2.11 -1.33 0.80 —-0.33 —-0.12 —-0.85 0.93 —0.69 0.46 —0.19
std 596 586 530 495 414 507 492 441 393 3.34

! std 738 725 628 558 479 599 592 511 454 391
cvp 9840 98.20 98.20 97.40 97.60 97.50 97.50 97.00 97.20 97.10
bias 1.21 -0.92 0.56 —-0.22 -0.09 —-0.86 0.81 —-0.52 0.30 —0.12
§71 std 391 3.77 328 3.03 250 322 323 281 246 199

std 431 424 368 326 280 352 348 301 267 2.30
cvp 97.30 97.10 96.70 96.40 96.60 95.70 95.90 96.00 96.50 97.90
w p=0.5,n =500

bias 1.62 —1.23 0.90 —0.37 —0.04 —0.73 0.89 —0.43 0.25 0.00
std  4.27 427 368 322 293 359 347 3.09 276 2.40

! std 541 531 456 4.04 346 445 438 376 3.33 2.86
cvp 98.80 98.00 97.90 98.60 97.60 98.40 98.50 97.80 98.30 97.80
bias 0.88 —0.69 045 —-0.24 0.02 -0.65 0.71 —-0.47 0.23 0.02
271 std 272 277 243 205 191 232 217 188 1.71 1.39

std 3.1 3.05 262 233 1.99 257 252 217 192 1.65
cvp 96.90 96.90 96.40 96.90 96.10 96.80 97.00 97.50 97.90 97.90
W p=0.8,n=200

bias 213 —1.42 0.82 —0.38 —0.01 —0.73 0.93 —0.79 0.44 —0.23
std 651 656 580 523 452 578 561 4.93 427 3.78

! std 807 793 689 611 524 656 646 557 4.96 4.27
cvp 98.30 98.00 98.60 98.30 98.20 96.80 97.30 96.60 96.50 96.30
bias 0.89 —-0.64 0.39 —-0.13 —-0.06 —0.52 046 —0.30 0.17 —0.08
2—1 std 3.27v 321 274 257 211 241 242 211 185 1.51

std 3.60 355 3.07 273 234 261 259 223 198 171
cvp 97.60 96.50 97.10 95.80 96.80 95.90 95.90 96.00 96.90 97.60
W p=0.8,n =500

bias 1.66 —1.25 0.88 —-0.32 0.04 —-0.79 091 —-0.42 0.31 —-0.07
std 4.56 4.65 4.07 3.62 322 389 388 340 3.01 2.62

! std 595 583 502 444 380 4.87 479 412 366 3.13
cvp 98.70 9790 98.30 97.60 97.20 99.20 98.00 98.10 98.60 97.90
bias 0.57 —-0.39 0.26 —-0.17 0.02 -0.35 0.39 —0.24 0.12 0.00
2_1 std 233 231 201 173 157 169 157 139 127 1.03

std 255 251 215 191 1.63 1.85 182 156 139 1.19
cvp 97.10 96.60 96.30 96.10 95.70 97.10 98.30 96.90 97.10 97.60
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Table 4. Simulation results for Model IV: the average bias of the estimators (“bias”), the
Monte Carlo standard deviation (“std”), the average of the estimated standard devia-

tion (“s/ta”) based on the theoretical calculation, and the empirical coverage probability
(“cvp”) at the nominal 95% confidence level. All simulation results reported below are

multiplied by 100.

True Bz B Pis  Bie  Bir Poz Paa Pas P Bor
value 0.8 —-0.6 04 -0.2 0 —0.8 0.6 —-04 0.2 0
W p=0.5,n =200
bias —0.33 047 —-0.29 0.22 0.00 —0.21 0.54 —-0.30 0.15 0.06
I S/tii 432 412 364 329 289 573 563 4.86 434 3.68
std 510 504 434 390 334 6.54 646 558 4.98 4.27
cvp 97.80 98.00 97.30 97.70 98.00 97.20 97.70 96.90 96.40 96.30
bias 0.02 0.11 -0.02 0.11 -0.06 —0.24 0.43 —-0.22 0.08 0.07
~—1 std 3.06 2.98 2.64 2.28 2.04 3.33 3.31 2.86 2.63 2.18
% S/ta 3.66 361 3.12 279 239 3.8 384 3.31 2.94 2.53
cvp 9790 97.40 97.30 97.90 97.90 97.30 97.20 97.00 97.50 98.00
W p= 05,1 =500
bias —0.52 0.62 —-0.28 0.14 —-0.08 —-0.31 0.57 —0.16 0.12 —-0.02
I S/t£1 2.91 2.90 2.55 2.16 1.96 4.25 4.15 3.53 3.03 2.67
std  3.46 3.41 295 263 224 488 4.82 415 3.70 3.16
cvp 97.50 97.20 97.60 98.30 96.50 97.00 97.60 98.10 98.10 97.60
bias —0.28 0.37 —-0.18 0.09 —-0.05 —0.31 0.49 —-0.31 0.11 0.05
~—-1 std 2.06 1.99 1.69 1.51 1.36 2.44 2.30 1.98 1.83 1.60
% b/ta 244 240 207 184 1.57 279 274 236 210 1.79
cvp 97.80 97.80 98.60 98.30 97.00 97.40 97.30 98.80 97.50 97.60
W p=0.8,n =200
bias —0.33 045 —-0.23 0.19 —0.05 —0.20 0.62 —0.22 0.20 —0.03
I S/tii 4.54 4.43 3.92 3.58 3.02 6.51 6.05 5.48 4.85 4.27
std 528 5.22 454 4.09 350 711 7.02 6.09 547 4.71
cvp 97.40 97.60 97.60 97.70 97.40 96.50 97.50 96.00 96.90 96.70
bias —0.31 0.31 —-0.18 0.15 —-0.04 0.05 0.10 —0.02 —0.02 0.08
~—-1 std 240 237 2.11 1.90 159 291 289 255 221 1.81
z S/ta 2.84 2.81 245 220 1.88 3.22 3.18 2,77 248 2.13
cvp 97.80 97.60 96.80 98.30 98.00 97.20 96.60 97.00 97.80 97.90
W p =0.8,n =500
bias —0.40 050 —-0.30 0.11 0.02 —-0.40 0.50 —0.30 0.11 0.02
I b/t£1 298 299 270 234 2.03 444 450 3.88 341 2.79
std 3.64 358 310 27 236 536 528 4.55 4.07 3.48
cvp 98.20 98.00 97.60 98.20 97.20 97.80 98.10 98.20 98.40 98.10
bias —0.35 0.34 —-0.19 0.13 —-0.03 —-0.35 0.34 —-0.19 0.13 —-0.03
~—1 std 1.60 1.53 1.32 1.17  1.03 2.00 1.87 1.61 1.53 1.31
= S/ta 1.86 1.83 1.58 1.41 1.20 2.27 2.23 1.92 1.71 1.46
cvp 97.10 97.20 97.80 98.00 97.00 97.30 97.40 98.20 96.90 97.70
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Figure 1. The power curves of Ty, for p = 0.5 (left panel) and p = 0.8 (right panel) with

n = 200 (solid line) and 500 (dot dash line).

Table 5. The frequency (%) of the estimated structural dimension d.

Model d=1 d=2 d>3 d=1 d=2 d>3
p=0.5,n =200 p=0.8,n =200

I 95.90 4.10 0.00  95.30 4.70 0.00

II 87.20 12.80 0.00  84.90 15.10 0.00

III 0.90 99.10 0.00 0.50 99.50 0.00

v 0.00 100.00 0.00 0.00  100.00 0.00
p=0.5,n =500 p = 0.8,n =500

I 98.80 1.20 0.00  98.80 1.20 0.00

II 94.90 5.10 0.00  95.30 4.70 0.00

III 0.20 99.80 0.00 0.40 99.60 0.00

v 0.00 100.00 0.00 0.00  100.00 0.00

are univariate. When the response is univariate, the weighted and unweighted
estimates of our proposal are identical, thus we only report the unweighted esti-
mate. The MS method yields two estimates of 3. We report the MS estimate with
smaller bias and standard deviation. We compared their performance through a
single index model.

Model V: A single-index model structure with a nonlinear link function

y =2(8"x) + sin(48"x)z + ¢,
where x is drawn independently from multivariate normal distribution with zero
mean and covariance matrix (0.5"“_”) and e follows standard normal distribu-
tion. We set p = 10 and 8 = (1,0.8,0.6,0.4,0.2,—0.2, —0.4, —0.6, —0.8,0)". We
~ N(0,0.5). To implement the LCC

method when z is continuous, we discretize z into a series of binary variables

considered (i) z ~Bernoulli(0.5), and (ii) z
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I(z < z), where z is an independent copy of z and I(A) is an indicator function.
For each given z, we have an estimate of span(3). We then pool all estimates
to yield an integrated estimate of span(3). For fair comparison, we rescaled the
resulting estimate, fﬂ, obtained through existing methods so that the first entry
of B, Bl, is one. We repeated these scenario 1,000 times and report the biases
and the Monte Carlo standard deviations of (3/31) in Table 6. The performance
of all methods improves when the sample size n is increased from 200 to 500.
In both cases, all methods perform comparatively, although our proposed NEW
estimate has slightly smaller biases and standard deviations.

3.3. Application to Framingham Heart Study

In this section we revisit the Framingham Heart Study described in Section
1. Let y = Y1,Y2), z = (1,21, 22,73)", x = (X1,...,X7)" in model (1.1).
We added a column of ones in z to include an intercept in model (1.1). The
BIC-type criterion finds d = 2. The unweighted and the weighted-profile least
squares estimates, along with their standard deviations and p-values, are given
in Table 7. The weighted-profile least squares estimates have smaller standard
deviations than those of the unweighted ones. In effect, corr(Y1, Y2) = 0.4159 and
the p-value is less than 10~ in the test for significance of Pearson’s correlation
coefficient. Thus, the systolic and diastolic blood pressures are highly correlated.
It is then not surprising to see that the weighted-profile least squares estimates
are significantly more efficient than the unweighted ones. For k = 3,...,7, at
least one p-value of X}, is significant at the significance level 0.05, indicating that
the interactions between x and z are all significant. Therefore, we can conclude
that healthy daily life styles, including a moderate amount of physical exercise,
helps to control for the blood pressures. To show the interactions between x and
z graphically, the estimated surfaces m;; (,BTX) of my; (EITX) with B = (,@1, EIQ)T,
for = 1,2 and j = 2,3,4 are shown in Figure 2, which clearly reveals the
nonlinear modulating effect of the degree of obesity on physical exercises. Such
dynamic effects are helpful in designing a moderate amount of physical exercise
to control for the blood pressures.

4. Concluding Remarks

There are ancillary covariates z = (21, Z2, Z3)" in our motivating example.
These ancillary covariates are weakly correlated in that corr(Z;, Z3) = —0.017,
corr(Z1,Z3) = —0.060 and corr(Zs, Z3) = 0.101, with p-values of 0.770, 0.297
and 0.079. Their correlations are not significant, thus we do not consider the
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Table 6. Simulated results for Model V when z ~Bernoulli(0.5) and z ~ A(0,0.5),
respectively: the average bias (“bias”) and the Monte Carlo standard deviation (“std”)

of (B / Bl) All simulation results reported below are multiplied by 100.

Ba B3 Bs Bs B Br Bz Bo Bio
method n 4 08 06 04 02 -02 -04 —-06 —-08 0
NEW 200 Bernoulli bias 0.05 0.04 0.16 0.09 —0.20 0.08 —0.21 —0.12 —0.05
std 6.97 5.75 5.08 494 493 5.19 561 588 4.32
Normal bias 0.01 0.30 —0.15 0.09 —0.06 —0.01 —0.23 —0.02 —0.07
std 6.69 5.10 5.10 4.95 4.95 5.09 537 5.59 4.17
500 Bernoulli bias 0.44 0.10 0.25 0.07 —0.08 —0.21 —0.08 —0.39 —0.02
std 4.37 3.41 3.27 3.15 3.17 3.28 3.48 3.72 2.80
Normal bias 0.30 0.32 —0.07 0.18 0.05 —0.20 —0.12 —0.21 0
std 4.11 3.25 3.19 295 3.04 3.18 3.33 3.,57 271
LCC 200 Bernoulli bias 0.36 0.17 —0.36 0.02 0.17 —0.36 —0.16 —0.39 —0.03
std 818 6.15 585 5.72 560 594 6.39 6.76 4.79
Normal bias 0.57 0.33 0.06 0.01 0.08 —0.16 —0.05 —0.48 0.15
std 7.96 6.04 5.62 524 537 549 599 6.33 4.53
500 Bernoulli bias 0.15 —0.11 0.24 0.05 —0.17 0.00 —0.03 0.03 0.07
std 4.95 3.66 3.45 3.24 3.49 344 3.77 3.89 294
Normal bias —0.03 0.05 —0.05 —0.06 0.05 —0.00 0.11 —0.13 0.12
std 4.64 3.51 3.20 3.11 3.21 3.37 3.50 3.90 2.78
MS 200 Bernoulli bias 0.26 0.32 0.11 0.15 0.06 —0.02 —0.11 —0.24 —0.12
std 9.35 6.69 6.53 6.01 5.98 6.22 6.75 7.54 5.34
Normal bias 0.38 0.24 0.18 0.06 0.07 —0.17 —0.33 0.04 —0.13
std 8.27 6.11 5.92 557 5.61 574 6.35 6.83 5.06
500 Bernoulli bias 0.21 0.09 0.05 0.14 —0.10 —0.21 0.15 —0.15 —0.09
std 5.06 3.85 3.60 3.37 3.48 3.70 4.02 4.27 3.14
Normal bias 0.02 —0.04 0.03 —0.03 0.04 —0.08 —0.05 0.05 0.04
std 4.61 3.63 3.45 3.35 3.32 3.53 3.55 4.03 2.88
LCL 200 Bernoulli bias 0.65 0.34 —0.02 0.17 0.09 —0.28 —0.51 —0.45 6.43
std 837 6.10 591 558 540 5.89 6.37 7.05 12.22
Normal bias 0.65 0.63 0.11 0.06 —0.08 —0.29 —0.13 —0.57 3.69
std 7.89 6.16 5.84 561 531 5.65 6.13 6.73 9.41
500 Bernoulli bias 0.36 0.05 0.08 0.11 0.06 —0.23 —0.26 0.19 0.39
std 4.69 3.57 3.17 3.05 3.22 3.26 3.69 3.75 2.42
Normal bias 0.22 0.18 —0.14 —0.09 0.12 —0.12 —0.13 —0.07 0.32
std 4.67 3.50 3.21 3.20 3.26 3.38 3.65 3.94 221

interactions among these ancillary covariates here. In model (1.1) we assume
implicitly that the effects of the ancillary covariates are additive. Our proposed
methodology and associated theoretical results are applicable when the ancillary
covariates z are moderately correlated. If the ancillary covariates z are highly

correlated, it is recommended considering the interactions among the z as well.
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Table 7. Both the unweighted and the weighted profile least squares estimates, along
with the standard errors and the p-values.

X3 Xy X5 Xs X7
B1 B2 B1 B2 B1 B2 b1 B2 B1 B2

coef 0.4285 0.5149 1.0917 0.4939 0.9340 0.5008 0.5007 0.5024 0.2376 0.4919
I std  0.3805 0.0542 0.6388 0.0925 0.2754 0.0374 0.3115 0.0470 0.3343 0.0485
p-value 0.2602 0.0000 0.0875 0.0000 0.0007 0.0000 0.1079 0.0000 0.4773 0.0000

) coef 0.3811 0.5215 0.8881 0.5140 1.0031 0.5090 0.4575 0.4732 0.4355 0.4988
s std  0.3119 0.0440 0.5384 0.0741 0.2431 0.0306 0.2615 0.0382 0.2819 0.0402
p-value 0.2217 0.0000 0.0990 0.0000 0.0000 0.0000 0.0802 0.0000 0.1224 0.0000

w

Ty (W)

200
% 100150 T

Mz (W)

Figure 2. The estimated surfaces m;; (,BTX) of my; (,@Tx) with [Ai = (31,32), fori=1,2
and j = 2,3,4.

This leads to quite different model structures. Accordingly, new algorithms and
estimation procedures are needed. Future research along this line is warranted.
Supplementary Materials

Some related models and comments on relevant methods, additional simula-
tions and proofs of theorems can be found in the Supplementary Materials.
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