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A fundamental assumption used in causal inference with observational
data is that treatment assignment is ignorable given measured confounding
variables. This assumption of no missing confounders is plausible if a large
number of baseline covariates are included in the analysis, as we often have
no prior knowledge of which variables can be important confounders. Thus,
estimation of treatment effects with a large number of covariates has received
considerable attention in recent years. Most existing methods require speci-
fying certain parametric models involving the outcome, treatment and con-
founding variables, and employ a variable selection procedure to identify
confounders. However, selection of a proper set of confounders depends on
correct specification of the working models. The bias due to model misspeci-
fication and incorrect selection of confounding variables can yield misleading
results. We propose a robust and efficient approach for inference about the
average treatment effect via a flexible modeling strategy incorporating pe-
nalized variable selection. Specifically, we consider an estimator constructed
based on an efficient influence function that involves a propensity score and
an outcome regression. We then propose a new sparse sufficient dimension
reduction method to estimate these two functions without making restrictive
parametric modeling assumptions. The proposed estimator of the average
treatment effect is asymptotically normal and semiparametrically efficient
without the need for variable selection consistency. The proposed methods
are illustrated via simulation studies and a biomedical application.

1. Introduction. Causal inference in observational studies is challenged by
the fact that treatment assignment may depend on some baseline covariates known
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as confounding variables that are also associated with the outcome of interest.
Most existing methods for causal inference can be cast in terms of potential out-
comes under Rubin’s causal model [Rubin (1974)]. A fundamental assumption is
that treatment assignment is strongly ignorable, that is, conditionally independent
of potential outcomes given measured confounders; see Rosenbaum and Rubin
(1983). A common approach to understanding causality is to adjust for confound-
ing in a regression model that relates the outcome to the treatment under inves-
tigation. This outcome regression (OR) approach is straightforward to implement
and its validity depends on correct specification of the OR model. In contrast,
many alternative methods require a model for the propensity score (PS), that is,
the conditional probability of being treated given the covariates [Rosenbaum and
Rubin (1983)]. The estimated PS can be used to match each member of the treated
group with one or more subjects in the untreated group, stratify the sample so
that the resulting two groups are more comparable in each stratum, or weight
each observation by the inverse of the estimated PS, or one minus it, depend-
ing on the actual treatment [Abadie and Imbens (2006), Heckman, Ichimura and
Todd (1998), Hirano, Imbens and Ridder (2003), Robins, Hernan and Brumback
(1999), Rosenbaum and Rubin (1984, 1985)]. It is of interest to note that much
of the recent research has focused on doubly robust (DR) estimation that encom-
passes both OR and PS models so that the resulting estimators are consistent and
asymptotically normal if either model is correctly specified [e.g., Bang and Robins
(2005), Cao, Tsiatis and Davidian (2009), Chan and Yam (2014), Freedman and
Berk (2008), Rotnitzky et al. (2012), Tan (2006, 2010), van der Laan and Robins
(2003), van der Laan and Rose (2011)].

For the sake of simplicity, it is often assumed that the PS and OR models are
parametric. However, parametric models may be misspecified, resulting in asymp-
totically biased estimators with poor finite sample performance. On the other hand,
the DR estimators are relatively robust against model misspecification. Yet they
would not be efficient if one of the two models is misspecified, and they could
perform rather poorly when both models are misspecified [Freedman and Berk
(2008), Kang and Schafer (2007)]. Hence, it is desirable to work with less restric-
tive PS and OR models. In practice, there can be a large collection of potential
confounding variables, of which only a few have to be adjusted. This leads to
variable selection in regression for causal inference. To this end, Belloni, Cher-
nozhukov and Hansen (2014) and Farrell (2015) proposed penalized estimation
procedures for estimating linear PS and OR models for high-dimensional data. Se-
lection of a proper set of confounding variables depends on correct specification
of the working models. With a large sample size, the bias due to model misspec-
ification and incorrect selection of confounding variables becomes pronounced in
comparison to sampling variability, and may lead to statistically significant false
findings. Thus, to conduct robust and efficient causal inference, it is essential to
employ a flexible modeling strategy that incorporates variable selection. The need
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for such a strategy is particularly crucial in analyzing big data, which frequently
involve a large number of variables measured on a large number of subjects. On
the other hand, big data, which often involve a large sample size, present an oppor-
tunity to employ state-of-the-art methods for dimension reduction and nonpara-
metric regression to achieve a good balance between flexibility and parsimony of
statistical modeling.

In this article, we propose a sparse sufficient dimension reduction (SSDR)
method to estimate the PS and OR models. It is known that sufficient dimension
reduction [Cook and Li (2002), Li (1991)] provides a general and effective way
to reduce the dimension of covariates while preserving information on regression.
We employ multiple-index models with a small number of linear combinations
of relevant covariates to estimate PS and OR. Multiple-index models are flexible
and contain various parametric and semiparametric models as special cases [Xia
(2008), Yin, Li and Cook (2008)], yet their estimation is challenging, especially in
the high-dimensional setting. To accomplish this difficult task, we show that esti-
mation of the directions in a multiple-index model is equivalent to finding vectors
that span the same subspace as the left-singular vectors of the low-rank coefficient
matrix in a sparse reduced-rank regression problem. We then use sparsity-inducing
penalization to select relevant covariates with group Lasso penalties [ Yuan and Lin
(2006)], and employ an Iterative Shrinkage and Thresholding algorithm for param-
eter estimation. Our proposed method is able to identify important confounders
from a large number of candidate variables and characterize their roles in treatment
assignments and outcome predictions, without making more restrictive parametric
modeling assumptions.

To relax the assumptions on parametric forms, Hahn (1998) proposed a non-
parametric estimator of the average treatment effect (ATE) for low-dimensional
covariates. The resulting estimator attains the semiparametric information bound.
It, however, suffers from the “curse of dimensionality” with increasing dimension.
To alleviate the problem of dimensionality, Luo, Zhu and Ghosh (2017) applied
minimum average variance estimation [MAVE, Xia et al. (2002)] to recover the
OR function, and Ghosh (2011) employed a single-index model, together with suf-
ficient dimension and partial least squares methods, to estimate the PS function.
These two methods allow us to estimate ATE via a flexible modeling strategy, yet
their computational algorithms and the associated theories are developed for fixed
dimensions. Nevertheless, our proposed estimator can be used for data with both
moderate and high dimensions. Specifically, we develop a DR estimation method
for ATE by making use of the SSDR estimates for the PS and OR functions. The
resulting estimator of ATE is shown to be root-n consistent, asymptotically normal
and efficient with high-dimensional covariates. These properties hold without the
requirement of variable selection consistency and restrictive parametric modeling
assumptions, which is remarkable because post-selection inference is known to be
a challenging task in general [Berk et al. (2013), Lockhart et al. (2014), van de Geer
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et al. (2014), Wasserman and Roeder (2009), Zhang and Zhang (2014)]. In the con-
text of causal inference, Belloni, Chernozhukov and Hansen (2014) demonstrated
that standard penalized methods such as Lasso can lead to the biased estimation of
ATE. The construction of the DR estimator, based on the efficient influence func-
tion, can mitigate the bias of the Lasso estimator and allows for imperfect variable
selection.

The rest of the paper is organized as follows. Section 2 introduces the proposed
sparse sufficient dimension reduction method. Section 3 describes PS and OR,
and introduces the DR estimation. Section 4 presents the proposed estimator of
ATE. Section 5 establishes the theoretical properties of the proposed estimator and
Section 6 provides the computational algorithm. In Section 7, we evaluate the finite
sample performance via simulation studies. An empirical example is reported in
Section 8. Concluding remarks are given in Section 9, and all technical proofs are
provided in the Appendix and online Supplementary Materials [Ma et al. (2019)].

2. Sparse sufficient dimension reduction. We first introduce the follow-
ing notation which will be used frequently in this paper. For positive a;, and
by, let b, < a, denote an_'bn = o(1) and b, < a, denote limn_moan_lbn =
c for a positive constant c. Moreover, let a, V b, = max(a,, b,). For a vec-
tor a = (al,...,a,,)T, define ||afloc = max(|g;]). For a matrix A = (Aj;) =
AL, ..., AT = (A4, ..., A,) e RPXY, let |A|*> = ZZA§k, vec(A) = (AT,
ey A,Z)T, and span(A) be the subspace of R? spanned by the columns of A. For
asubset S C{1,..., p}, let As be the submatrix of A associated with the row in-
dices S. Forasubset BC {1, ..., g}, let A.g be the submatrix of A associated with
the column indices B. For a symmetric matrix A, let Anin(A) denote the smallest
eigenvalue of A. Denote |S| as the cardinality of a set S.

For DR estimation, it is essential to obtain good estimates for the PS and OR
functions. Assuming a restrictive parametric form on these two functions can lead
to large biases due to possible model misspecification. On the other hand, di-
rectly estimating them via classical nonparametric regression is difficult when
the dimension of covariates is high. To achieve modeling flexibility with high-
dimensional covariates, we propose a SSDR method to estimate them. We denote
by Z a generic response of interest and X a vector of p-dimensional covariates. Let
Xi=Xi, ..., Xl-p)T be a vector of covariates and let (Z;, XZ.T)T, i=1,...,n,be
independent and identically distributed (i.i.d.) samples from (Z, X ") T. Our inter-
est is to estimate the conditional expectation E(Z; | X;). To facilitate subsequent
illustrations, we assume that £(X;z) =0 and var(X;z) =1 for 1 <k < p. Denote
Xis =Xk, k € S)T and X.s = (X1.8,--.-, X,,,S)T. Without loss of generality,
let X; = (XiTR, XII)T, where R and 7 are the sets of indices of relevant and
irrelevant covariates, respectively, for E(Z; | X;).

We consider a SSDR model in which the conditional mean E(Z; | X;) depends
on r linear combinations of the relevant covariates, so that we have the sparse
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multiple-index model:
() E(Zi |1 X)) =E(Zi | Xir) = E(Z: |BL X R),

where B is an |R| x r matrix of unknown parameters with r < |R|. Model (1)
implies that the |R|—dimensional vector of relevant covariates can be replaced by
the r-dimensional vector BRX i R without loss of information in the mean regres-
sion. Let B = (B}, BT)T (BR, 0( — |’R|)><r) , indicating that the coefficients of
irrelevant covariates are zero. Thus model (1) can be written as

E(Zi | X;)=E(Z |BrX;r)=E(Z |B"X;).
We next assume that:

(A1) X;, 1 <i <n, are ii.d. observations from the multivariate normal distri-
bution N'(0, X).

For the sake of shortening proofs, we make the above assumption on the distri-
bution of covariates, and it can be relaxed to the linearity condition jointly with
the constant variance condition [Cook and Lee (1999), Duan and Li (1991), Li
(1992)]. The same assumption as (A1) is also given in van de Geer et al. (2014)
for studying the de-biased Lasso estimators.

Let Z; = Z; — E(Z;). Under Assumption (A1), Duan and Li (1991) showed
that span{E_lE (Z,-X,-)} C span(B). Subsequently, Li (1992) and Cook and Li
(2002) employed principal Hessian directions (pHd) to further demonstrate that
span{Z_lE(Z- X; XI-T)} C span(B). These two results imply that span (T7TA) C
span(B), where A = E(ZXi}N(iT) e RP*(H+D and X; = (1, Xl.T)T. With the cov-
erage assumption that span(Z_l A) = span(B) [Cook and Li (2002), Li (1992)],
¥ 'A is a matrix with rank r that can be written as VOAYT where VO and A°
are p x r and (p + 1) x r matrices, and A satisfies A°TA? = I. In addition,
span(V%) = span(B) implying V% = 0. Thus, we propose to recover span(B) us-
ing VO,

Note that VO and A° can be obtained through minimizing

E|W—XVAT|?
sub]ect to ATA =1 and VI = 0()—|r|)xr» Where Wl = X Z,, W= (Wl,...,
W) = (Xy,...,. X ) s and A is a (p + 1) x r matrix. In practice, we

use the empmcal version of Z; for estimation. Estimation of V® and A is a
sparse reduced-rank regression (SRRR) problem [Chen and Huang (2012)]. For
our purpose, however, we only need to obtain an estimate of V, which satisfies
span(V) = span(V?). Indeed, for any given A satisfying AT A =1, there is a ma-
trix A+ with orthonormal columns such that (A, AL) is an orthogonal matrix. Ac-
cordingly, we have

[W—XVAT|> = [WA — XV|? + [WAL|%.
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Thus, for any given A* satisfying A*TA* =1,

V* =arg min E|W — XVA*T ||2
VERPT V=0(,_|Rxr

= arg min E “WA* - XV”2
VGRpxr,VIZO(p7|R\)xr

= arg min E|XVOA'TA* — XV|* = VOAT A,
VERPXTVZ=0p—R)xr

The above equation indicates that span(V*) = span(V?) as long as A°T A* is a full

rank matrix. Thus, span(V*) = span(VO) = span(B), and

) E(Zi | X)=E(Z |B"X;) = E(Z; | V*" X).

Based on the above discussion, we make the following assumption for a given A*:
(A2) (i) A*TA* =T and (ii) A°T A* is a full rank matrix.

Assumption (A2) on A* is needed for model identification as explained above.
Without (A2), the column space span(V*) is not identifiable. Since
3) V* =arg min E|WA* —XV|?,
VGRPXV,VIZO(I,_‘RDX,.

the estimator of V* can be obtained by adopting a group Lasso penalized approach
[Yuan and Lin (2006)]. Specifically, for the given A*, we can obtain the estimator
V of V* by minimizing

P
“) (1/2)[WA* = XV|* 4+ 2 3 [ Vall,
k=1
where A is a tuning parameter and Vi is the kth component of V= (V,...,V p)T

with the dimension 7 x 1. Let R = {k - Vk # 0} be the set of indices of the nonzero
estimated coefficients, and denote § = |7/€| and Z = R¢. To ameliorate the bias
caused by the penalties, we subsequently use the selected variables to obtain the
refitted unpenalized estimator of V*, which is

~

V=arg min |WA* — XVHZ.
VERPXT V=00, 5

The choice of A* will be discussed in Section 6.

3. Propensity score, outcome regression and doubly robust method. In
this section, we introduce the DR estimator, which depends on the PS and OR
functions. Let D; denote a dummy variable such that D; = 1 when the treatment
is given to the ith individual, and D; = 0 otherwise. Let Yy; and Yj; be potential
outcomes corresponding to D; = 0 and D; = 1, respectively. Then Yi; — Yy; is
the treatment effect for the ith individual. However, individual treatment effects
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are not observed. Instead, we observe D; and Y; = D;Y1; + (1 — D;)Yy;. Then the
data set consists of (D;, Y;, X;),i =1, ..., n. Our main interest is to estimate the
ATE:

t=EY; — Yoi).

The major challenge in estimating ATE is that, for each i, we only observe either
Yy; or Yy;, but not both. The PS, defined as

®) n(x)=P(D;=1]|X;=x),

plays an important role in adjusting for confounding. Following Rosenbaum and
Rubin (1983, 1984), we make the following assumption about confounding.

(A3) (i) D; and (Yy;, Y1;) are independent of each other given X; and (ii) 0 <
m(X;) <1 forall X;.

Assumption (A3)(i) implies that
(6) Ti(X)=EY;i | Xi))=EXj; | Di=j,X;)=EX; | Di =j,X;)

for j =0, 1, which is called the OR function [Tan (2006)]. Assumption A3(ii)
further ensures identifiability of (6).

For observational data, the PS based method and the OR approach are two com-
mon procedures used for reducing selection bias. Alternatively, one might consider
a DR estimator that makes use of both 77 (X;) and 7;(X;) given in (5) and (6). The
DR estimator can be constructed based on the efficient influence function [Hahn
(1998)] given as

Di{Yi —ni(X)} (= Di){Yoi — 10(Xi)}
7 (X;) 1 —nm(X;)

Let rj’F(Xi) and 7*(X;) be the postulated models of 7;(X;) and 7 (X;), respec-
tively, for j =0, 1. By the facts that

@) + 11(X;) — 10(X;).

E(D;Y; | Xi)=E(D;Y\; | X;) = ED; | X)) E(Y1; | Xi) =n(Xi)11(X;);
E{(1—DpY; | X;} ={1 —n(Xi)}r0(X)),

it can be seen that the expected value of (7) equals T when either ‘r;‘ (X)) =1;(X;)
or 7*(X;) = mw(X;). Then the DR estimator that is the sample average of (7) is
asymptotically unbiased if either the PS model or the OR model is correctly spec-
ified. However, the DR estimator is not semiparametrically efficient when one of
them is misspecified. Moreover, it can perform poorly when both models are mis-
specified [Kang and Schafer (2007)].

To solve the problem of model misspecification, Hahn (1998) employed non-
parametric techniques to estimate 7;(X;) and 7 (X;) consistently without assum-
ing any specific model structure. Accordingly, the resulting estimator is root-n



1512 S.MAET AL.

consistent and efficient. However, this nonparametric approach is only applica-
ble in practice for data with low dimensional covariates (generally one to three).
When p becomes large, it is known that the nonparametric regression method suf-
fers from the “curse of dimensionality.” For high-dimensional data, Belloni, Cher-
nozhukov and Hansen (2014) and Farrell (2015) proposed penalized estimation
under the postulated parametric PS and OR models. They showed that their esti-
mators perform well when the parametric models are correctly specified or have
negligible approximation errors to the true models. Analogous to the low dimen-
sional case, however, those estimators can be less efficient and more biased if the
postulated models are misspecified. In addition, model selection procedures used
in high-dimensional data analysis may fail to identify the key confounders under
misspecified models. To resolve these problems, we consider the SSDR model for
the PS and OR functions and estimate the index parameters in the SSDR model by
the method given in Section 2. In the next section, we present the estimator of the
ATE 7.

4. Estimation of the average treatment effect. To estimate the ATE 7, we
first obtain the estimator of E(Z; | X;) given in (2) by multivariate kernel smooth-
ing. Consider a multivariate kernel density function K (uy,...,u,) and a band-
width vector h = (&, ..., h,)T. For ease of implementation, we let Ay = --- =
hy, = h. Denote Kpy(w)=h~"K(u/h,...,u,/h), where u = (uy, ..., u,) . For
given x = (xq, ..., xp)T, the conditional mean E(Z; | X; =x) = E(Z; | V*' X; =
V*T x) is estimated by

E(Zi | Xi=x)=E(Z;|1V'X;=V"x)
(8) ; ;
=Y Ky(V'X; —V'x)Z; / ST Ku(VIX; —VTx).
i=1

i=1

We let Z; = D;, and obtain the estimator 7 (x) = E (D; | x) by (8). Moreover,
by the derivation in (6), we obtain the estimator 7;(x) = E Yji | x) = E Y |
D; = j, x) of 7j(x) by letting Z; = Y;; and using the observations in the control
and treatment groups, respectively, for j = 0, 1. Thus, for Z; = Yy; and Z; = Yy,
their corresponding sample sizes used for estimating E(Z; | X;) are n| (the sam-
ple size of the treatment group) and no (the sample size of the control group).
Note ny/n — E(D;),no/n — 1— E(D;),and E(D;) € (0,1). Hence, n| =< n and
no < n. Since using either n; (j =0, 1) or n does not affect the asymptotic or-
der, we suppress the subscription j in n; for notational simplicity. Furthermore,
Zi=Y; — E(Yj; | D; = j) for Z; = Y};, and thus we replace E(Y;; | D; = j)
with the corresponding sample analog within the control and treatment groups,
respectively, in estimation.
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Next, we replace 71(X;), to(X;) and 7 (X;) in the influence function (7) by the
corresponding estimators given above. Then 7 is estimated by
. e [Di{Yi -T1(X)} (1= Dp){Y; —70(Xi)}
2=yt 3| 2D - i
Pt T (Xi) 1 —7(Xi)

R —fo(x,-)].

In the next section, we present the theoretical properties of the proposed estima-
tors. Specifically, we first establish estimation consistency for V and V. We then
derive the asymptotic normality of T, based on which we can conduct statistical
inference for ATE. We also show that T achieves the semiparametric efficiency
bound. It is worth noting that T enjoys these properties without the need for vari-
able selection consistency.

5. Inference for the average treatment effect. We first establish the estima-
tion error bounds for the group Lasso estimator V and the refitted unpenalized
estimator V. Under Assumption (A2)@i), V* = VOAOTA* and it is a p X r ma-
trix with |R| nonzero rows, where |R| < s. Here, s is an upper bound on the row
sparsity of V*. Both s and p can depend on the sample size n such that s = s,
and p = p,. For notational convenience, we suppress n in their expressions. We
assume that s < n, p >2 and log p = O (n®) for some @ € (0, 1).

For a matrix A = (Aq, ..., Ap)—r e RP*" let R’ be the subset of indices in
T corresponding to the s largest values of ||Ag||. Denote Roy="TR’' U R. For X
satisfying (A1), we make the following assumption on X.

. 1/2 .
(R) Let «(25) = min{{FT 4 : A € RP\(0), Tyer | Akl < 3 Tyere | Al

Assume 0 < x(2s) < o0.
In addition, we assume that:

(A4) (i) for any a eRP”, there exists a constant 0 < p < oo such that a’ Xa <
pllal|?, and (ii) foreach £ =1, ..., r, Vf‘}fTVf’}Z < ¢y for some constant 0 < ¢; < 00.

It is worth noting that (R) is the Restricted Eigenvalue (RE) assumption for ran-
dom design matrices satisfying (A1) [Zhou, van de Geer and Biihlmann (2009)].
The RE assumption is needed and commonly used for establishing the esti-
mation error bound of the Lasso estimators [e.g., Bickel, Ritov and Tsybakov
(2009), Raskutti, Wainwright and Yu (2010), Zhang and Huang (2008)]. For
high-dimensional settings with p > n, the matrix XTX/ n is degenerate, that is,

lima crpxr (o) %”AAH” = (. As a consequence, ordinary least squares estimation

does not work in this case, since it requires limacrpxr\jo) \%HAA”” > (. Thus, the
Lasso estimator requires a much weaker assumption. Under Assumption (R), we
have Apin(Tr.R) = £ (25) > 0, where X%  is the submatrix of ¥ with rows and
columns both indexed by the indices in R, so that the parameters in the sparse

regression are uniquely defined. It has been proven in Zhou, van de Geer and
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Biihlmann (2009) that (A1) and (R) together imply kmln(X X.z/n) > 0 and the
random design matrix X behaves nicely with high probablhty Moreover, Assump-
tion (A4)(i) is given below (4.5) of Zhang and Huang (2008). This, in conjunction
with Assumption (A4)(ii), ensures that V,*ET X; follows a normal distribution with
finite variance.

Denote &; = Z; — E(Z; | V*TX;) and e = (¢4, ..., &,) | . We assume that:

(AS5) Z; is bounded, or its error ¢; satisfies

(i) the noise vector & has sub-Gaussian tails such that P(la’e| > |la]jx) <
y exp(—Cx?) for any vector a eR" and x > 0, and for some positive finite con-
stants C and y, (i1) ¢; and X; are 1ndependent for each 7, and (iii) supy, |E(Z; |

V*T X;)| < C for some positive finite constant C.

Let ¢max be the maximum eigenvalue of the matrix XTX/ n. For a set S C
{1,..., p}, denote ¢(Qs,S) = mingcpis| 8" Qs8/118]|%, where Qs = XsX.s/n.
The following theorem provides estimation error bounds for the estimators V and
v given in Section 2.

THEOREM 1. Under Assumptions (Al), (A2), (A4), (AS) and (R), A <
Jrulog(p VvV n) and s = o(s/n/log(p V n)), for sufficiently large n, we have that,

with probability at least 1 —3(p v n)~ !,

IX(V = V)| <4v205/ (k(25)/n):

p
IV = Vil < 32s/(x(25)%n);
k=1

§ < 128k (25) " maxs;

IV = V|| < 4v22/5/(kc(25)/n)*.

We further obtain that, with probability at least 1 — 3(p v n)~! ||V V*II <
c*AN/s/n, where c* —m1n(8f¢(QRUR,RUR) 12¢(25)71, 2{128¢ (25) 2 x

$max + 1)129(Qaur. RUR)TY).

We subsequently explore the convergence rate of V and V and an upper bound
of 5. To this end, we introduce the following assumption.

(A6) (i) Assume that r is a fixed number. (ii) With probability approaching one,
¢max < Cy for some constant Cy € (0, 00), and ¢(0s, S) > cp > 0 uniformly in
SC{l,..., p} with |S| < {128k (25) 2pmax + 1}s.

COROLLARY 1. Suppose Assumptions (Al), (A2), (A4)—-(A6) and (R) hold.

For A =< \/rnlog(p Vv n) and s = o(y/n/log(p Vv n)), we have, as n — oo, P(5 <
C*s) — 1, where C* = 128K(2S)_2C¢. In addition,

|V =V*|=0,(/slog(pvn)/n), and |V—V*|=0,(/slog(pVn)/n).
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The results in Corollary 1 follow immediately from Theorem 1, and they are
required for establishing the asymptotic distribution of the ATE estimator. For this
purpose, we also consider the following conditions.

(C1) The r-dimensional kernel function is a product of r univariate kernel func-
tions, that is, Ky(w) = h~" K@/ h)--- K(u,/h), where h is a bandwidth and
u=(ug,..., ur)T. The univariate kernel function K (-) is symmetric, has compact
support and is Lipschitz continuous on its support. Furthermore, it satisfies

/K(u)du:l, /uiK(u)du:O i=1,...,m—1) and

07&/|u|mK(u)du < 0.

Accordingly, K is a mth order kernel.

(C2) The (m — 1)th derivative of E(Z | V' X) is a locally Lipschitz continuous
function of V' X for V in a neighborhood of V*.

(C3) (i) max{n—l/(Zr) (log n)l/r’ n—l/(r+2) (lOg n) l/(r+2)} < h < n—l/(4m) ,

where r < 2m and m > 1; (i) s log(p Vv n) = o(n'/* + h="*1 +  /nh™+2/log(n)).

Conditions (C1) and (C2) are commonly used in the kernel nonparametric
smoothing literature; see, for example, Ma and Zhu (2012). Condition (C3) states
the order requirements for the bandwidth £, the dimension of the covariates p, and
the upper bound of the number of relevant covariates s. They are needed in order to
have the root-n consistency of the ATE estimator T. Suppose that / =< n~1/Cm+r)
Then & achieves the optimal order in kernel estimation. By Assumption (C3)(ii),
s and p need to satisfy slog(p v n) = o(n/* + n(m_l)/(zm“)/«/log(n)). Let 7°
be the true ATE.

THEOREM 2. Under Assumptions (A1)-(A6) and (R), and Conditions (C1)—
(C3), we have that, for » < /rnlog(p v n),T—1°= OP(n_l/Z), ando_lﬁ(?—
9 = N(0, 1), where

of(Xi) | o5 (Xi)

9) ol = E[
w(X;) 1 —n(X;)
o (X;) = var(Yy; | X;), o (X;) = var(Yo; | X;) and ©(X;) = 11(X;) — 1(X;).

+ (t(X)) — ro)z],

REMARK 1. In Theorem 2, we obtain the root-n consistency and asymptotic
normality of the estimator T without the need for variable selection consistency,
that is, that P(R = R) — 1. Itis worth noting that achieving selection consistency
typically requires a uniform signal strength condition [Zhang and Zhang (2014)]
under which all nonzero regression coefficients should be greater in magnitude
than a threshold value. However, this condition can be easily violated when weak
signals may exist.
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REMARK 2. The asymptotic variance o2 given in (9) reaches the semipara-
metric efficiency bound in Theorem 1 of Hahn (1998). Thus, T is semiparametri-
cally efficient.

REMARK 3. The asymptotic variance o' given in (9) equals

[Di{Yi —uX)} (0= Dp{Yi — (X))}
w(X;) I —nm(X;)

Hence, we estimate it by

T Di{Yi —ni(X)} (A -Dp{Yi —n(X)} . __A]Z
(10) oy =n 2[ =00 7 (%) +7T(X) - T,

where T(X;) =71(X;) — 70(X;).

+1(X;) — rOT.

We next show that o2 is a consistent estimator of o'2.

THEOREM 3. Under Assumptions (A1)-(A6) and (R), and Conditions (C1)—
(C3), we have that, for . < /rnlog(p Vv n), a,% —o2= op(1).

Using the results of Theorems 2 and 3, we obtain the distribution of o,,~ Lz =19
below.

COROLLARY 2. Under Assumptions (Al1)—(A6) and (R), and Conditions
(C1)—(C3), we have that, for A < \/rnlog(p V n), on_l\/ﬁ(?— %) = N(0, 1).

REMARK 4. By Corollary 2, we are able to construct a (1 — «)100% confi-
dence interval for the true ATE, 7°, given as T & 24/20,/ /n, where z, /2 is the
(1 — «/2) quantile of the standard normal.

6. Computational algorithm. After studying the theoretical properties of the
proposed estimators, this section focuses on the computation of the primary es-
timator V of V*. As stated in (3), this estimator can be obtained by minimiz-
ing Qn(V; A*) = L, (V; A*) + A 37_ [IVkll, where L, (V; A*) = (1/2)|WA* —
XV||2. This is a convex optimization problem with group Lasso penalties. We
employ an Iterative Shrinkage and Thresholding (IST) algorithm, which con-
verges quickly for finding the parameter estimator with convex penalties [Beck
and Teboulle (2009)].

Specifically, for given V"~ the estimator V(™ in the IST algorithm is ob-
tained by solving the proximal operator problem [Gong et al. (2013)]

P
(11) v — argmin(1/2)|[V — U 2 4103 Vel
k=1
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where U™ = V=D _ v, (V; A*)t™ VL, (V;A*) = =X (WA" — XV™),
and 1™ is the step size in the mth step. Then the minimizer in (11) has a closed
form solution V"™ = (1 — 4¢@ /U |N, U™, for k=1, ..., p, where (x)1 =
x if x > 0 and 0, otherwise. We use a line search criterion considered in Gong
et al. (2013) to find the step size at step m. The step size 1™ is acceptable if the
following monotone line search criterion is satisfied:

(V™3 A%) < Qu(V" D A%) = (/D[ VI = VD210,

where ¢ is a constant in the interval (0, 1). We let ™ = 0.57, where p is the
minimal value that satisfies the above criterion. Following Gong et al. (2013), we
use ¢{ = 0.01 in our implementation.

In the computational algorithm, we need an A* that satisfies Assumption
(A2). We use the convergent value of the sequence A" as A*, where A
and V' are obtained by minimizing Q,(V; A) iteratively until convergence.
For the given V(™| the minimizer of Q,(V/™;A) is A = ULU;, where Uy
and Ug are the left-singular vectors and right-singular vectors of WXV,
respectively. In the process, we use the following strategy to find an initial
value VO of V. We fit the Lasso regression for each column of W on X,
and obtain the union set of all selected variables, denoted by RO, Let b© =
arg minbeR,,x(,,H),b(ﬁ(o))v:i,(pflﬁ(o)MM W — Xb||2. The initial value V© is the

r left-singular vectors of b(©® multiplied by the corresponding singular values.

From the penalized estimator V, we are able to compute the refitted unpenal-
ized estimator V. Then we obtain the estimator E Z; | VTx) in (8) by using the
Gaussian kernel for estimation and employing the leave-one-out cross validation
approach for the selection of bandwidth 4. Finally, we apply the five-fold cross
validation (CV) method to choose the tuning parameter A and the order r. It is
worth noting that different methods have been proposed for the determination of r.
Some popular approaches with good statistical properties include the sequential
test methods [Bura and Cook (2001), Li (1991)], the BIC-type methods [Feng et al.
(2013)] and the cross-validation type approaches [Xia (2008), Xia et al. (2002)].
Furthermore, Luo and Li (2016) proposed a new procedure through exploiting a
special eigenvalue-eigenvector pattern to assist order determination. In our frame-
work, the estimation of parameters is essentially a SRRR problem, so we adopt
the same method as given in Chen and Huang (2012) by using the five-fold CV to
select r.

7. Simulation studies.
7.1. Background and methods used. In this section, we illustrate the finite

sample performance of our proposed method via simulations in which we gen-
erate data from different PS and OR models.
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We call our proposed estimator of ATE as the sparse sufficient dimension re-
duction (sparse_dim) estimator. We compare it with six other estimators. Three
are feasible estimators, (a) the “sparse_linear” estimator from fitting a sparse lo-
gistic linear model and a sparse linear regression model to PS and OR, respec-
tively, where the variables are selected by Lasso and the estimated coefficients
are obtained by refitting the models with the selected variables; (b) the “full_dim”
estimator from fitting PS and OR with all covariates using the pHd method for
sufficient dimension reduction without variable selection; (c) the “kernel” esti-
mator from fitting PS and OR with all covariates using the nonparametric kernel
regression. For comparison purposes, we also consider three infeasible estimators
obtained by using the true covariates with nonzero coefficients, namely (d) the “or-
acle_linear” estimator from correspondingly fitting the linear models with the true
covariates to PS and OR; (e) the “oracle_dim” estimator from fitting PS and OR
with the true covariates using the sufficient dimension reduction approach; (f) the
“oracle” estimator from fitting the data with the true PS and OR models. For meth-
ods involving kernel estimation, we use the leave-one-out cross validation to select
the bandwidth. It is expected that the oracle estimate should perform the best.

7.2. Data generation mechanism and settings. We consider three models,
namely:

Model 1:  logit{ E(D; | X))} = (Xi1 + Xi2)(Xi3 + 1)/2,
E(Y; | Di, X;) = Di + X} 4+ X%;
Model 2:  logit{ E(D; | X;)} = (Xi1 + Xi2 + Xi3)/2,
E(Y; | Di, X;) =D; + (X;1 +2)(Xi2 + X3 + 2);
Model 3: logit{E(D,- |Xl')}:(X,'1 +2Xi2 — Xi3)/2,
EY; | D, X))=D;(Xi1 +Xio+ 1)+ Xi1 + Xio + Xi3 + Xis,

where Y; = E(Y; | D;, X;) + &;, X; are generated from N (0, X), X = {0/},
ojjr = 0.57=7" for 1 < J»Jj' < p, and ¢; are independently generated from the
standard normal distribution fori =1, ..., n.

In Model 1, both PS and OR are nonlinear models with r = 2. In Model 2, PS
is a linear model with » = 1, while OR is a nonlinear model with » = 2. In Model
3, both PS and OR are linear models with r = 1.

We consider p = 20, 40, 100 and n = 1500, 3000, 5000. All simulation results
are based on 500 realizations. Observational studies often have large sample sizes,
so we focus on studying the performance of the proposed estimator with moder-
ately large p and large n in different model settings. This consideration is consis-
tent with the data setting in our empirical applications. For the sake of illustration,
we also provide simulations for ultra high-dimensional data in Section S.3 of the
supplemental materials Ma et al. (2019).
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7.3. Results. Tables 1-3 report the empirical coverage rates (rate) of the 95%
confidence intervals, and the absolute values of biases (bias) and the average
values of the estimated standard deviations (est_sd) of the seven estima