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A fundamental assumption used in causal inference with observational
data is that treatment assignment is ignorable given measured confounding
variables. This assumption of no missing confounders is plausible if a large
number of baseline covariates are included in the analysis, as we often have
no prior knowledge of which variables can be important confounders. Thus,
estimation of treatment effects with a large number of covariates has received
considerable attention in recent years. Most existing methods require speci-
fying certain parametric models involving the outcome, treatment and con-
founding variables, and employ a variable selection procedure to identify
confounders. However, selection of a proper set of confounders depends on
correct specification of the working models. The bias due to model misspeci-
fication and incorrect selection of confounding variables can yield misleading
results. We propose a robust and efficient approach for inference about the
average treatment effect via a flexible modeling strategy incorporating pe-
nalized variable selection. Specifically, we consider an estimator constructed
based on an efficient influence function that involves a propensity score and
an outcome regression. We then propose a new sparse sufficient dimension
reduction method to estimate these two functions without making restrictive
parametric modeling assumptions. The proposed estimator of the average
treatment effect is asymptotically normal and semiparametrically efficient
without the need for variable selection consistency. The proposed methods
are illustrated via simulation studies and a biomedical application.

1. Introduction. Causal inference in observational studies is challenged by
the fact that treatment assignment may depend on some baseline covariates known
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as confounding variables that are also associated with the outcome of interest.
Most existing methods for causal inference can be cast in terms of potential out-
comes under Rubin’s causal model [Rubin (1974)]. A fundamental assumption is
that treatment assignment is strongly ignorable, that is, conditionally independent
of potential outcomes given measured confounders; see Rosenbaum and Rubin
(1983). A common approach to understanding causality is to adjust for confound-
ing in a regression model that relates the outcome to the treatment under inves-
tigation. This outcome regression (OR) approach is straightforward to implement
and its validity depends on correct specification of the OR model. In contrast,
many alternative methods require a model for the propensity score (PS), that is,
the conditional probability of being treated given the covariates [Rosenbaum and
Rubin (1983)]. The estimated PS can be used to match each member of the treated
group with one or more subjects in the untreated group, stratify the sample so
that the resulting two groups are more comparable in each stratum, or weight
each observation by the inverse of the estimated PS, or one minus it, depend-
ing on the actual treatment [Abadie and Imbens (2006), Heckman, Ichimura and
Todd (1998), Hirano, Imbens and Ridder (2003), Robins, Hernan and Brumback
(1999), Rosenbaum and Rubin (1984, 1985)]. It is of interest to note that much
of the recent research has focused on doubly robust (DR) estimation that encom-
passes both OR and PS models so that the resulting estimators are consistent and
asymptotically normal if either model is correctly specified [e.g., Bang and Robins
(2005), Cao, Tsiatis and Davidian (2009), Chan and Yam (2014), Freedman and
Berk (2008), Rotnitzky et al. (2012), Tan (2006, 2010), van der Laan and Robins
(2003), van der Laan and Rose (2011)].

For the sake of simplicity, it is often assumed that the PS and OR models are
parametric. However, parametric models may be misspecified, resulting in asymp-
totically biased estimators with poor finite sample performance. On the other hand,
the DR estimators are relatively robust against model misspecification. Yet they
would not be efficient if one of the two models is misspecified, and they could
perform rather poorly when both models are misspecified [Freedman and Berk
(2008), Kang and Schafer (2007)]. Hence, it is desirable to work with less restric-
tive PS and OR models. In practice, there can be a large collection of potential
confounding variables, of which only a few have to be adjusted. This leads to
variable selection in regression for causal inference. To this end, Belloni, Cher-
nozhukov and Hansen (2014) and Farrell (2015) proposed penalized estimation
procedures for estimating linear PS and OR models for high-dimensional data. Se-
lection of a proper set of confounding variables depends on correct specification
of the working models. With a large sample size, the bias due to model misspec-
ification and incorrect selection of confounding variables becomes pronounced in
comparison to sampling variability, and may lead to statistically significant false
findings. Thus, to conduct robust and efficient causal inference, it is essential to
employ a flexible modeling strategy that incorporates variable selection. The need
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for such a strategy is particularly crucial in analyzing big data, which frequently
involve a large number of variables measured on a large number of subjects. On
the other hand, big data, which often involve a large sample size, present an oppor-
tunity to employ state-of-the-art methods for dimension reduction and nonpara-
metric regression to achieve a good balance between flexibility and parsimony of
statistical modeling.

In this article, we propose a sparse sufficient dimension reduction (SSDR)
method to estimate the PS and OR models. It is known that sufficient dimension
reduction [Cook and Li (2002), Li (1991)] provides a general and effective way
to reduce the dimension of covariates while preserving information on regression.
We employ multiple-index models with a small number of linear combinations
of relevant covariates to estimate PS and OR. Multiple-index models are flexible
and contain various parametric and semiparametric models as special cases [Xia
(2008), Yin, Li and Cook (2008)], yet their estimation is challenging, especially in
the high-dimensional setting. To accomplish this difficult task, we show that esti-
mation of the directions in a multiple-index model is equivalent to finding vectors
that span the same subspace as the left-singular vectors of the low-rank coefficient
matrix in a sparse reduced-rank regression problem. We then use sparsity-inducing
penalization to select relevant covariates with group Lasso penalties [Yuan and Lin
(2006)], and employ an Iterative Shrinkage and Thresholding algorithm for param-
eter estimation. Our proposed method is able to identify important confounders
from a large number of candidate variables and characterize their roles in treatment
assignments and outcome predictions, without making more restrictive parametric
modeling assumptions.

To relax the assumptions on parametric forms, Hahn (1998) proposed a non-
parametric estimator of the average treatment effect (ATE) for low-dimensional
covariates. The resulting estimator attains the semiparametric information bound.
It, however, suffers from the “curse of dimensionality” with increasing dimension.
To alleviate the problem of dimensionality, Luo, Zhu and Ghosh (2017) applied
minimum average variance estimation [MAVE, Xia et al. (2002)] to recover the
OR function, and Ghosh (2011) employed a single-index model, together with suf-
ficient dimension and partial least squares methods, to estimate the PS function.
These two methods allow us to estimate ATE via a flexible modeling strategy, yet
their computational algorithms and the associated theories are developed for fixed
dimensions. Nevertheless, our proposed estimator can be used for data with both
moderate and high dimensions. Specifically, we develop a DR estimation method
for ATE by making use of the SSDR estimates for the PS and OR functions. The
resulting estimator of ATE is shown to be root-n consistent, asymptotically normal
and efficient with high-dimensional covariates. These properties hold without the
requirement of variable selection consistency and restrictive parametric modeling
assumptions, which is remarkable because post-selection inference is known to be
a challenging task in general [Berk et al. (2013), Lockhart et al. (2014), van de Geer
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et al. (2014), Wasserman and Roeder (2009), Zhang and Zhang (2014)]. In the con-
text of causal inference, Belloni, Chernozhukov and Hansen (2014) demonstrated
that standard penalized methods such as Lasso can lead to the biased estimation of
ATE. The construction of the DR estimator, based on the efficient influence func-
tion, can mitigate the bias of the Lasso estimator and allows for imperfect variable
selection.

The rest of the paper is organized as follows. Section 2 introduces the proposed
sparse sufficient dimension reduction method. Section 3 describes PS and OR,
and introduces the DR estimation. Section 4 presents the proposed estimator of
ATE. Section 5 establishes the theoretical properties of the proposed estimator and
Section 6 provides the computational algorithm. In Section 7, we evaluate the finite
sample performance via simulation studies. An empirical example is reported in
Section 8. Concluding remarks are given in Section 9, and all technical proofs are
provided in the Appendix and online Supplementary Materials [Ma et al. (2019)].

2. Sparse sufficient dimension reduction. We first introduce the follow-
ing notation which will be used frequently in this paper. For positive an and
bn, let bn � an denote a−1

n bn = o(1) and bn � an denote limn→∞ a−1
n bn =

c for a positive constant c. Moreover, let an ∨ bn = max(an, bn). For a vec-
tor a = (a1, . . . , ap)�, define ‖a‖∞ = max(|ai |). For a matrix A = (Ajk) =
(A1, . . . ,Ap)� = (A·1, . . . ,A·q) ∈ R

p×q , let ‖A‖2 =
∑∑

A2
jk , vec(A) = (A�

·1,

. . . ,A�
·q)

�, and span(A) be the subspace of Rq spanned by the columns of A. For
a subset S ⊆ {1, . . . , p}, let AS be the submatrix of A associated with the row in-
dices S . For a subset B ⊆ {1, . . . , q}, let A·B be the submatrix of A associated with
the column indices B. For a symmetric matrix A, let λmin(A) denote the smallest
eigenvalue of A. Denote |S| as the cardinality of a set S .

For DR estimation, it is essential to obtain good estimates for the PS and OR
functions. Assuming a restrictive parametric form on these two functions can lead
to large biases due to possible model misspecification. On the other hand, di-
rectly estimating them via classical nonparametric regression is difficult when
the dimension of covariates is high. To achieve modeling flexibility with high-
dimensional covariates, we propose a SSDR method to estimate them. We denote
by Z a generic response of interest and X a vector of p-dimensional covariates. Let
Xi = (Xi1, . . . ,Xip)� be a vector of covariates and let (Zi,X

�
i )�, i = 1, . . . , n, be

independent and identically distributed (i.i.d.) samples from (Z,X�)�. Our inter-
est is to estimate the conditional expectation E(Zi | Xi). To facilitate subsequent
illustrations, we assume that E(Xik) = 0 and var(Xik) = 1 for 1 ≤ k ≤ p. Denote
Xi,S = (Xik, k ∈ S)� and X·S = (X1,S, . . . ,Xn,S)�. Without loss of generality,
let Xi = (X�

i,R,X�
i,I)�, where R and I are the sets of indices of relevant and

irrelevant covariates, respectively, for E(Zi | Xi).
We consider a SSDR model in which the conditional mean E(Zi | Xi) depends

on r linear combinations of the relevant covariates, so that we have the sparse
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multiple-index model:

(1) E(Zi | Xi) = E(Zi | Xi,R) = E
(
Zi | B�

R
Xi,R

)
,

where BR is an |R| × r matrix of unknown parameters with r ≤ |R|. Model (1)
implies that the |R|-dimensional vector of relevant covariates can be replaced by
the r-dimensional vector B�

R
Xi,R without loss of information in the mean regres-

sion. Let B = (B�
R

,B�
I
)� = (B�

R
,0�

(p−|R|)×r)
�, indicating that the coefficients of

irrelevant covariates are zero. Thus model (1) can be written as

E(Zi | Xi) = E
(
Zi | B�

R
Xi,R

)
= E

(
Zi | B�Xi

)
.

We next assume that:

(A1) Xi , 1 ≤ i ≤ n, are i.i.d. observations from the multivariate normal distri-
bution N (0,�).

For the sake of shortening proofs, we make the above assumption on the distri-
bution of covariates, and it can be relaxed to the linearity condition jointly with
the constant variance condition [Cook and Lee (1999), Duan and Li (1991), Li
(1992)]. The same assumption as (A1) is also given in van de Geer et al. (2014)
for studying the de-biased Lasso estimators.

Let Z̃i = Zi − E(Zi). Under Assumption (A1), Duan and Li (1991) showed
that span{�−1E(Z̃iXi)} ⊆ span(B). Subsequently, Li (1992) and Cook and Li
(2002) employed principal Hessian directions (pHd) to further demonstrate that
span{�−1E(Z̃iXiX

�
i )} ⊆ span(B). These two results imply that span (�−1

�) ⊆
span(B), where � ≡ E(Z̃iXiX̃

�
i ) ∈ R

p×(p+1) and X̃i = (1,X�
i )�. With the cov-

erage assumption that span(�−1
�) = span(B) [Cook and Li (2002), Li (1992)],

�
−1

� is a matrix with rank r that can be written as V0A0�, where V0 and A0

are p × r and (p + 1) × r matrices, and A0 satisfies A0�A0 = I. In addition,
span(V0) = span(B) implying V0

I
= 0. Thus, we propose to recover span(B) us-

ing V0.
Note that V0 and A0 can be obtained through minimizing

E
∥∥W̃ − XVA�∥∥2

subject to A�A = I and VI = 0(p−|R|)×r , where W̃i = X̃iZ̃i , W̃ = (W̃1, . . . ,

W̃n)
�, X = (X1, . . . ,Xn)

�, and A is a (p + 1) × r matrix. In practice, we
use the empirical version of Z̃i for estimation. Estimation of V0 and A0 is a
sparse reduced-rank regression (SRRR) problem [Chen and Huang (2012)]. For
our purpose, however, we only need to obtain an estimate of V, which satisfies
span(V) = span(V0). Indeed, for any given A satisfying A�A = I, there is a ma-
trix A⊥ with orthonormal columns such that (A,A⊥) is an orthogonal matrix. Ac-
cordingly, we have

∥∥W̃ − XVA�∥∥2 = ‖W̃A − XV‖2 +
∥∥W̃A⊥∥∥2

.
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Thus, for any given A∗ satisfying A∗�A∗ = I,

V∗ = arg min
V∈Rp×r ,VI=0(p−|R|)×r

E
∥∥W̃ − XVA∗�∥∥2

= arg min
V∈Rp×r ,VI=0(p−|R|)×r

E
∥∥W̃A∗ − XV

∥∥2

= arg min
V∈Rp×r ,VI=0(p−|R|)×r

E
∥∥XV0A0�A∗ − XV

∥∥2 = V0A0�A∗.

The above equation indicates that span(V∗) = span(V0) as long as A0�A∗ is a full
rank matrix. Thus, span(V∗) = span(V0) = span(B), and

(2) E(Zi | Xi) = E
(
Zi | B�Xi

)
= E

(
Zi | V∗�Xi

)
.

Based on the above discussion, we make the following assumption for a given A∗:

(A2) (i) A∗�A∗ = I and (ii) A0�A∗ is a full rank matrix.

Assumption (A2) on A∗ is needed for model identification as explained above.
Without (A2), the column space span(V∗) is not identifiable. Since

(3) V∗ = arg min
V∈Rp×r ,VI=0(p−|R|)×r

E
∥∥W̃A∗ − XV

∥∥2
,

the estimator of V∗ can be obtained by adopting a group Lasso penalized approach
[Yuan and Lin (2006)]. Specifically, for the given A∗, we can obtain the estimator
V̂ of V∗ by minimizing

(4) (1/2)
∥∥W̃A∗ − XV

∥∥2 + λ

p∑

k=1

‖Vk‖,

where λ is a tuning parameter and Vk is the kth component of V = (V1, . . . ,Vp)�

with the dimension r ×1. Let R̂ = {k : V̂k �= 0} be the set of indices of the nonzero
estimated coefficients, and denote ŝ = |R̂| and Î = R̂c. To ameliorate the bias
caused by the penalties, we subsequently use the selected variables to obtain the
refitted unpenalized estimator of V∗, which is

Ṽ = arg min
V∈Rp×r ,V

Î
=0(p−ŝ)×r

∥∥W̃A∗ − XV
∥∥2

.

The choice of A∗ will be discussed in Section 6.

3. Propensity score, outcome regression and doubly robust method. In
this section, we introduce the DR estimator, which depends on the PS and OR
functions. Let Di denote a dummy variable such that Di = 1 when the treatment
is given to the ith individual, and Di = 0 otherwise. Let Y0i and Y1i be potential
outcomes corresponding to Di = 0 and Di = 1, respectively. Then Y1i − Y0i is
the treatment effect for the ith individual. However, individual treatment effects
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are not observed. Instead, we observe Di and Yi ≡ DiY1i + (1 − Di)Y0i . Then the
data set consists of (Di, Yi,Xi), i = 1, . . . , n. Our main interest is to estimate the
ATE:

τ ≡ E(Y1i − Y0i).

The major challenge in estimating ATE is that, for each i, we only observe either
Y1i or Y0i , but not both. The PS, defined as

(5) π(x) ≡ P(Di = 1 | Xi = x),

plays an important role in adjusting for confounding. Following Rosenbaum and
Rubin (1983, 1984), we make the following assumption about confounding.

(A3) (i) Di and (Y0i, Y1i) are independent of each other given Xi and (ii) 0 <

π(Xi) < 1 for all Xi .

Assumption (A3)(i) implies that

(6) τj (Xi) = E(Yji | Xi) = E(Yji | Di = j,Xi) = E(Yi | Di = j,Xi)

for j = 0,1, which is called the OR function [Tan (2006)]. Assumption A3(ii)
further ensures identifiability of (6).

For observational data, the PS based method and the OR approach are two com-
mon procedures used for reducing selection bias. Alternatively, one might consider
a DR estimator that makes use of both π(Xi) and τj (Xi) given in (5) and (6). The
DR estimator can be constructed based on the efficient influence function [Hahn
(1998)] given as

(7)
Di{Y1i − τ1(Xi)}

π(Xi)
−

(1 − Di){Y0i − τ0(Xi)}
1 − π(Xi)

+ τ1(Xi) − τ0(Xi).

Let τ ∗
j (Xi) and π∗(Xi) be the postulated models of τj (Xi) and π(Xi), respec-

tively, for j = 0,1. By the facts that

E(DiYi | Xi) = E(DiY1i | Xi) = E(Di | Xi)E(Y1i | Xi) = π(Xi)τ1(Xi);
E

{
(1 − Di)Yi | Xi

}
=

{
1 − π(Xi)

}
τ0(Xi),

it can be seen that the expected value of (7) equals τ when either τ ∗
j (Xi) = τj (Xi)

or π∗(Xi) = π(Xi). Then the DR estimator that is the sample average of (7) is
asymptotically unbiased if either the PS model or the OR model is correctly spec-
ified. However, the DR estimator is not semiparametrically efficient when one of
them is misspecified. Moreover, it can perform poorly when both models are mis-
specified [Kang and Schafer (2007)].

To solve the problem of model misspecification, Hahn (1998) employed non-
parametric techniques to estimate τj (Xi) and π(Xi) consistently without assum-
ing any specific model structure. Accordingly, the resulting estimator is root-n
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consistent and efficient. However, this nonparametric approach is only applica-
ble in practice for data with low dimensional covariates (generally one to three).
When p becomes large, it is known that the nonparametric regression method suf-
fers from the “curse of dimensionality.” For high-dimensional data, Belloni, Cher-
nozhukov and Hansen (2014) and Farrell (2015) proposed penalized estimation
under the postulated parametric PS and OR models. They showed that their esti-
mators perform well when the parametric models are correctly specified or have
negligible approximation errors to the true models. Analogous to the low dimen-
sional case, however, those estimators can be less efficient and more biased if the
postulated models are misspecified. In addition, model selection procedures used
in high-dimensional data analysis may fail to identify the key confounders under
misspecified models. To resolve these problems, we consider the SSDR model for
the PS and OR functions and estimate the index parameters in the SSDR model by
the method given in Section 2. In the next section, we present the estimator of the
ATE τ .

4. Estimation of the average treatment effect. To estimate the ATE τ , we
first obtain the estimator of E(Zi | Xi) given in (2) by multivariate kernel smooth-
ing. Consider a multivariate kernel density function K(u1, . . . , ur) and a band-
width vector h = (h1, . . . , hr)

�. For ease of implementation, we let h1 = · · · =
hr = h. Denote Kh(u) = h−rK(u1/h, . . . , ur/h), where u = (u1, . . . , ur)

�. For
given x = (x1, . . . , xp)�, the conditional mean E(Zi | Xi = x) = E(Zi | V∗�Xi =
V∗�x) is estimated by

Ê(Zi | Xi = x) = Ê
(
Zi | Ṽ�Xi = Ṽ�x

)

(8)

=
n∑

i=1

Kh

(
Ṽ�Xi − Ṽ�x

)
Zi

/ n∑

i=1

Kh

(
Ṽ�Xi − Ṽ�x

)
.

We let Zi = Di , and obtain the estimator π̂ (x) = Ê(Di | x) by (8). Moreover,
by the derivation in (6), we obtain the estimator τ̂j (x) = Ê(Yji | x) = Ê(Yji |
Di = j, x) of τj (x) by letting Zi = Yji and using the observations in the control
and treatment groups, respectively, for j = 0,1. Thus, for Zi = Y1i and Zi = Y0i ,
their corresponding sample sizes used for estimating E(Zi | Xi) are n1 (the sam-
ple size of the treatment group) and n0 (the sample size of the control group).
Note n1/n → E(Di), n0/n → 1 − E(Di), and E(Di) ∈ (0,1). Hence, n1 � n and
n0 � n. Since using either nj (j = 0,1) or n does not affect the asymptotic or-
der, we suppress the subscription j in nj for notational simplicity. Furthermore,
Z̃i = Yji − E(Yji | Di = j) for Zi = Yji , and thus we replace E(Yji | Di = j)

with the corresponding sample analog within the control and treatment groups,
respectively, in estimation.
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Next, we replace τ1(Xi), τ0(Xi) and π(Xi) in the influence function (7) by the
corresponding estimators given above. Then τ is estimated by

τ̂ = n−1
n∑

i=1

[
Di{Yi − τ̂1(Xi)}

π̂ (Xi)
−

(1 − Di){Yi − τ̂0(Xi)}
1 − π̂(Xi)

+ τ̂1(Xi) − τ̂0(Xi)

]
.

In the next section, we present the theoretical properties of the proposed estima-
tors. Specifically, we first establish estimation consistency for V̂ and Ṽ. We then
derive the asymptotic normality of τ̂ , based on which we can conduct statistical
inference for ATE. We also show that τ̂ achieves the semiparametric efficiency
bound. It is worth noting that τ̂ enjoys these properties without the need for vari-
able selection consistency.

5. Inference for the average treatment effect. We first establish the estima-
tion error bounds for the group Lasso estimator V̂ and the refitted unpenalized
estimator Ṽ. Under Assumption (A2)(i), V∗ = V0A0�A∗ and it is a p × r ma-
trix with |R| nonzero rows, where |R| ≤ s. Here, s is an upper bound on the row
sparsity of V∗. Both s and p can depend on the sample size n such that s ≡ sn
and p ≡ pn. For notational convenience, we suppress n in their expressions. We
assume that s � n, p ≥ 2 and logp = O(n� ) for some � ∈ (0,1).

For a matrix � = (�1, . . . ,�p)� ∈ R
p×r , let R′ be the subset of indices in

I corresponding to the s largest values of ‖�k‖. Denote R2s= R′ ∪ R. For X

satisfying (A1), we make the following assumption on �.

(R) Let κ(2s) ≡ min{‖�1/2
�‖

‖�R2s
‖ : � ∈ R

p×r\{0},
∑

k∈I ‖�k‖ ≤ 3
∑

k∈R ‖�k‖}̇.
Assume 0 < κ(2s) < ∞.

In addition, we assume that:

(A4) (i) for any a ∈Rp , there exists a constant 0 < ρ < ∞ such that a�
�a ≤

ρ‖a‖2, and (ii) for each � = 1, . . . , r , V∗�
·� V∗

·� ≤ c� for some constant 0 < c� < ∞.

It is worth noting that (R) is the Restricted Eigenvalue (RE) assumption for ran-
dom design matrices satisfying (A1) [Zhou, van de Geer and Bühlmann (2009)].
The RE assumption is needed and commonly used for establishing the esti-
mation error bound of the Lasso estimators [e.g., Bickel, Ritov and Tsybakov
(2009), Raskutti, Wainwright and Yu (2010), Zhang and Huang (2008)]. For
high-dimensional settings with p ≥ n, the matrix X�X/n is degenerate, that is,
lim�∈Rp×r\{0}

‖X�‖√
n‖�‖ = 0. As a consequence, ordinary least squares estimation

does not work in this case, since it requires lim�∈Rp×r\{0}
‖X�‖√
n‖�‖ > 0. Thus, the

Lasso estimator requires a much weaker assumption. Under Assumption (R), we
have λmin(�R,R) ≥ κ(2s) > 0, where �R,R is the submatrix of � with rows and
columns both indexed by the indices in R, so that the parameters in the sparse
regression are uniquely defined. It has been proven in Zhou, van de Geer and
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Bühlmann (2009) that (A1) and (R) together imply λmin(X
�
·RX·R/n) > 0 and the

random design matrix X behaves nicely with high probability. Moreover, Assump-
tion (A4)(i) is given below (4.5) of Zhang and Huang (2008). This, in conjunction
with Assumption (A4)(ii), ensures that V∗�

·� Xi follows a normal distribution with
finite variance.

Denote εi = Zi − E(Zi | V∗�Xi) and ε = (ε1, . . . , εn)
�. We assume that:

(A5) Zi is bounded, or its error εi satisfies

(i) the noise vector ε has sub-Gaussian tails such that P(|a�
ε| > ‖a‖x) ≤

γ exp(−Cx2) for any vector a ∈Rn and x ≥ 0, and for some positive finite con-
stants C and γ , (ii) εi and Xi are independent for each i, and (iii) supXi

|E(Zi |
V∗�Xi)| ≤ C̃ for some positive finite constant C̃.

Let φmax be the maximum eigenvalue of the matrix X�X/n. For a set S ⊆
{1, . . . , p}, denote φ(QS,S) = minδ∈R|S| δ�QSδ/‖δ‖2, where QS = X�

·SX·S/n.

The following theorem provides estimation error bounds for the estimators V̂ and
Ṽ given in Section 2.

THEOREM 1. Under Assumptions (A1), (A2), (A4), (A5) and (R), λ �√
rn log(p ∨ n) and s = o(

√
n/ log(p ∨ n)), for sufficiently large n, we have that,

with probability at least 1 − 3(p ∨ n)−1,
∥∥X

(
V̂ − V∗)∥∥ ≤ 4

√
2λ

√
s/

(
κ(2s)

√
n
)
;

p∑

k=1

∥∥V̂k − V∗
k

∥∥ ≤ 32λs/
(
κ(2s)2n

)
;

ŝ ≤ 128κ(2s)−2φmaxs;
∥∥V̂ − V∗∥∥ ≤ 4

√
2λ

√
s/

(
κ(2s)

√
n
)2

.

We further obtain that, with probability at least 1 − 3(p ∨ n)−1, ‖Ṽ − V∗‖ ≤
c∗λ

√
s/n, where c∗ = min(8

√
2φ(Q

R̂∪R, R̂ ∪ R)−1/2κ(2s)−1,2{128κ(2s)−2 ×
φmax + 1}1/2φ(Q

R̂∪R, R̂∪R)−1).

We subsequently explore the convergence rate of V̂ and Ṽ and an upper bound
of ŝ. To this end, we introduce the following assumption.

(A6) (i) Assume that r is a fixed number. (ii) With probability approaching one,
φmax ≤ Cφ for some constant Cφ ∈ (0,∞), and φ(QS,S) ≥ cφ > 0 uniformly in

S ⊆ {1, . . . , p} with |S| ≤ {128κ(2s)−2φmax + 1}s.

COROLLARY 1. Suppose Assumptions (A1), (A2), (A4)–(A6) and (R) hold.
For λ �

√
rn log(p ∨ n) and s = o(

√
n/ log(p ∨ n)), we have, as n → ∞, P (̂s ≤

C∗s) → 1, where C∗ = 128κ(2s)−2Cφ . In addition,
∥∥V̂ − V∗∥∥ = Op

(√
s log(p ∨ n)/n

)
, and

∥∥Ṽ − V∗∥∥ = Op

(√
s log(p ∨ n)/n

)
.
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The results in Corollary 1 follow immediately from Theorem 1, and they are
required for establishing the asymptotic distribution of the ATE estimator. For this
purpose, we also consider the following conditions.

(C1) The r-dimensional kernel function is a product of r univariate kernel func-
tions, that is, Kh(u) = h−rK(u1/h) · · ·K(ur/h), where h is a bandwidth and
u = (u1, . . . , ur)

�. The univariate kernel function K(·) is symmetric, has compact
support and is Lipschitz continuous on its support. Furthermore, it satisfies

∫
K(u)du = 1,

∫
uiK(u)du = 0 (i = 1, . . . ,m − 1) and

0 �=
∫

|u|mK(u)du < ∞.

Accordingly, K is a mth order kernel.
(C2) The (m− 1)th derivative of E(Z | V�X) is a locally Lipschitz continuous

function of V�X for V in a neighborhood of V∗.
(C3) (i) max{n−1/(2r)(logn)1/r , n−1/(r+2)(logn)1/(r+2)} � h � n−1/(4m),

where r < 2m and m > 1; (ii) s log(p ∨ n) = o(n1/4 + h−m+1 +
√

nhr+2/ log(n)).

Conditions (C1) and (C2) are commonly used in the kernel nonparametric
smoothing literature; see, for example, Ma and Zhu (2012). Condition (C3) states
the order requirements for the bandwidth h, the dimension of the covariates p, and
the upper bound of the number of relevant covariates s. They are needed in order to
have the root-n consistency of the ATE estimator τ̂ . Suppose that h � n−1/(2m+r).
Then h achieves the optimal order in kernel estimation. By Assumption (C3)(ii),
s and p need to satisfy s log(p ∨ n) = o(n1/4 + n(m−1)/(2m+r)/

√
log(n)). Let τ 0

be the true ATE.

THEOREM 2. Under Assumptions (A1)–(A6) and (R), and Conditions (C1)–
(C3), we have that, for λ �

√
rn log(p ∨ n), τ̂ −τ 0 = Op(n−1/2), and σ−1√n(τ̂ −

τ 0) → N(0,1), where

(9) σ 2 = E

[
σ 2

1 (Xi)

π(Xi)
+

σ 2
0 (Xi)

1 − π(Xi)
+

(
τ(Xi) − τ 0)2

]
,

σ 2
1 (Xi) = var(Y1i | Xi), σ 2

0 (Xi) = var(Y0i | Xi) and τ(Xi) = τ1(Xi) − τ0(Xi).

REMARK 1. In Theorem 2, we obtain the root-n consistency and asymptotic
normality of the estimator τ̂ without the need for variable selection consistency,
that is, that P(R̂ = R) → 1. It is worth noting that achieving selection consistency
typically requires a uniform signal strength condition [Zhang and Zhang (2014)]
under which all nonzero regression coefficients should be greater in magnitude
than a threshold value. However, this condition can be easily violated when weak
signals may exist.
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REMARK 2. The asymptotic variance σ 2 given in (9) reaches the semipara-
metric efficiency bound in Theorem 1 of Hahn (1998). Thus, τ̂ is semiparametri-
cally efficient.

REMARK 3. The asymptotic variance σ 2 given in (9) equals

E

[
Di{Yi − τ1(Xi)}

π(Xi)
−

(1 − Di){Yi − τ0(Xi)}
1 − π(Xi)

+ τ(Xi) − τ 0
]2

.

Hence, we estimate it by

(10) σ 2
n = n−1

n∑

i=1

[
Di{Yi − τ̂1(Xi)}

π̂ (Xi)
−

(1 − Di){Yi − τ̂0(Xi)}
1 − π̂(Xi)

+ τ̂ (Xi) − τ̂

]2

,

where τ̂ (Xi) = τ̂1(Xi) − τ̂0(Xi).

We next show that σ 2
n is a consistent estimator of σ 2.

THEOREM 3. Under Assumptions (A1)–(A6) and (R), and Conditions (C1)–
(C3), we have that, for λ �

√
rn log(p ∨ n), σ 2

n − σ 2 = op(1).

Using the results of Theorems 2 and 3, we obtain the distribution of σ−1
n (τ̂ −τ 0)

below.

COROLLARY 2. Under Assumptions (A1)–(A6) and (R), and Conditions

(C1)–(C3), we have that, for λ �
√

rn log(p ∨ n), σ−1
n

√
n(τ̂ − τ 0) → N(0,1).

REMARK 4. By Corollary 2, we are able to construct a (1 − α)100% confi-
dence interval for the true ATE, τ 0, given as τ̂ ± zα/2σn/

√
n, where zα/2 is the

(1 − α/2) quantile of the standard normal.

6. Computational algorithm. After studying the theoretical properties of the
proposed estimators, this section focuses on the computation of the primary es-
timator V̂ of V∗. As stated in (3), this estimator can be obtained by minimiz-
ing Qn(V;A∗) = Ln(V;A∗) + λ

∑p
k=1 ‖Vk‖, where Ln(V;A∗) = (1/2)‖W̃A∗ −

XV‖2. This is a convex optimization problem with group Lasso penalties. We
employ an Iterative Shrinkage and Thresholding (IST) algorithm, which con-
verges quickly for finding the parameter estimator with convex penalties [Beck
and Teboulle (2009)].

Specifically, for given V(m−1), the estimator V(m) in the IST algorithm is ob-
tained by solving the proximal operator problem [Gong et al. (2013)]

(11) V(m) = arg min
V

(1/2)
∥∥V − U(m)

∥∥2 + t (m)λ

p∑

k=1

‖Vk‖,
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where U(m) = V(m−1) − ∇Ln(V;A∗)t (m), ∇Ln(V;A∗) = −X�(W̃A
∗ − XV(m)),

and t (m) is the step size in the mth step. Then the minimizer in (11) has a closed

form solution V
(m)
k = (1 − λt (m)/‖U

(m)
k ‖)+U

(m)
k , for k = 1, . . . , p, where (x)+ =

x if x > 0 and 0, otherwise. We use a line search criterion considered in Gong
et al. (2013) to find the step size at step m. The step size t (m) is acceptable if the
following monotone line search criterion is satisfied:

Qn

(
V(m);A∗)

≤ Qn

(
V(m−1);A∗)

− (ζ/2)
∥∥V(m) − V(m−1)

∥∥2
/t (m),

where ζ is a constant in the interval (0,1). We let t (m) = 0.5ρ , where ρ is the
minimal value that satisfies the above criterion. Following Gong et al. (2013), we
use ζ = 0.01 in our implementation.

In the computational algorithm, we need an A∗ that satisfies Assumption
(A2). We use the convergent value of the sequence A(m) as A∗, where A(m)

and V(m) are obtained by minimizing Qn(V;A) iteratively until convergence.
For the given V(m), the minimizer of Qn(V

(m);A) is A(m) = ULU�
R , where UL

and UR are the left-singular vectors and right-singular vectors of W̃�XV(m),
respectively. In the process, we use the following strategy to find an initial
value V(0) of V. We fit the Lasso regression for each column of W̃ on X,
and obtain the union set of all selected variables, denoted by R̂(0). Let b̂(0) =
arg minb∈Rp×(p+1),b

(R̂(0))c
=0

(p−|R̂(0)|)×(p+1)
‖W̃ − Xb‖2. The initial value V(0) is the

r left-singular vectors of b̂(0) multiplied by the corresponding singular values.
From the penalized estimator V̂, we are able to compute the refitted unpenal-

ized estimator Ṽ. Then we obtain the estimator Ê(Zi | Ṽ�x) in (8) by using the
Gaussian kernel for estimation and employing the leave-one-out cross validation
approach for the selection of bandwidth h. Finally, we apply the five-fold cross
validation (CV) method to choose the tuning parameter λ and the order r . It is
worth noting that different methods have been proposed for the determination of r .
Some popular approaches with good statistical properties include the sequential
test methods [Bura and Cook (2001), Li (1991)], the BIC-type methods [Feng et al.
(2013)] and the cross-validation type approaches [Xia (2008), Xia et al. (2002)].
Furthermore, Luo and Li (2016) proposed a new procedure through exploiting a
special eigenvalue-eigenvector pattern to assist order determination. In our frame-
work, the estimation of parameters is essentially a SRRR problem, so we adopt
the same method as given in Chen and Huang (2012) by using the five-fold CV to
select r .

7. Simulation studies.

7.1. Background and methods used. In this section, we illustrate the finite
sample performance of our proposed method via simulations in which we gen-
erate data from different PS and OR models.
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We call our proposed estimator of ATE as the sparse sufficient dimension re-
duction (sparse_dim) estimator. We compare it with six other estimators. Three
are feasible estimators, (a) the “sparse_linear” estimator from fitting a sparse lo-
gistic linear model and a sparse linear regression model to PS and OR, respec-
tively, where the variables are selected by Lasso and the estimated coefficients
are obtained by refitting the models with the selected variables; (b) the “full_dim”
estimator from fitting PS and OR with all covariates using the pHd method for
sufficient dimension reduction without variable selection; (c) the “kernel” esti-
mator from fitting PS and OR with all covariates using the nonparametric kernel
regression. For comparison purposes, we also consider three infeasible estimators
obtained by using the true covariates with nonzero coefficients, namely (d) the “or-
acle_linear” estimator from correspondingly fitting the linear models with the true
covariates to PS and OR; (e) the “oracle_dim” estimator from fitting PS and OR
with the true covariates using the sufficient dimension reduction approach; (f) the
“oracle” estimator from fitting the data with the true PS and OR models. For meth-
ods involving kernel estimation, we use the leave-one-out cross validation to select
the bandwidth. It is expected that the oracle estimate should perform the best.

7.2. Data generation mechanism and settings. We consider three models,
namely:

Model 1: logit
{
E(Di | Xi)

}
= (Xi1 + Xi2)(Xi3 + 1)/2,

E(Yi | Di,Xi) = Di + X2
i1 + X2

i2;
Model 2: logit

{
E(Di | Xi)

}
= (Xi1 + Xi2 + Xi3)/2,

E(Yi | Di,Xi) = Di + (Xi1 + 2)(Xi2 + Xi3 + 2);
Model 3: logit

{
E(Di | Xi)

}
= (Xi1 + 2Xi2 − Xi3)/2,

E(Yi | Di,Xi) = Di(Xi1 + Xi2 + 1) + Xi1 + Xi2 + Xi3 + Xi4,

where Yi = E(Yi | Di,Xi) + εi , Xi are generated from N (0,�), � = {σjj ′},
σjj ′ = 0.5|j−j ′| for 1 ≤ j, j ′ ≤ p, and εi are independently generated from the
standard normal distribution for i = 1, . . . , n.

In Model 1, both PS and OR are nonlinear models with r = 2. In Model 2, PS
is a linear model with r = 1, while OR is a nonlinear model with r = 2. In Model
3, both PS and OR are linear models with r = 1.

We consider p = 20,40,100 and n = 1500,3000,5000. All simulation results
are based on 500 realizations. Observational studies often have large sample sizes,
so we focus on studying the performance of the proposed estimator with moder-
ately large p and large n in different model settings. This consideration is consis-
tent with the data setting in our empirical applications. For the sake of illustration,
we also provide simulations for ultra high-dimensional data in Section S.3 of the
supplemental materials Ma et al. (2019).
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7.3. Results. Tables 1–3 report the empirical coverage rates (rate) of the 95%
confidence intervals, and the absolute values of biases (bias) and the average
values of the estimated standard deviations (est_sd) of the seven estimated ATE
for p = 20, 40 and 100, respectively, based on 500 simulation realizations. For
Model 1 and Model 2, we observe that, as n increases, the coverage rates of the
sparse_dim estimate and the oracle_dim estimate become closer to the nominal
rate 95%, the est_sd values of these two estimates are similar to that of the oracle
estimate, and their estimation biases are close to zero. These findings indicate that
the sparse_dim estimate performs similarly to the oracle_dim estimate by knowing
the true covariates and the oracle estimate by knowing the true models. In contrast,
the sparse_linear and oracle_linear estimates for Model 1 have zero coverage rates
and yield large estimation biases and est_sd values. This implies that when both
PS and OR models are nonlinear, the estimates obtained from the parametric lin-
ear model fittings can be very biased and inefficient due to the model misspecifi-
cation. Although both the sparse_linear and oracle_linear estimates for Model 2

TABLE 1
The empirical coverage rates (rate), and the absolute values of biases (bias) and the average of the

estimated standard deviations (est_sd) of the estimated ATE for p = 20

Model 1 Model 2 Model 3

n rate bias est_sd rate bias est_sd rate bias est_sd

1500 sparse_linear 0.000 0.882 0.187 0.958 0.019 0.274 0.982 0.001 0.078
oracle_linear 0.000 0.858 0.188 0.958 0.019 0.273 0.984 0.002 0.077
full_dim 0.643 0.066 0.084 0.624 0.181 0.107 0.944 0.060 0.108
oracle_dim 0.914 0.013 0.065 0.912 0.019 0.062 0.976 0.030 0.096
sparse_dim 0.912 0.013 0.064 0.910 0.019 0.062 0.960 0.029 0.095
kernel 0.020 0.331 0.086 0.000 1.530 0.102 0.000 0.837 0.109
oracle 0.960 0.001 0.067 0.960 0.001 0.063 0.978 0.001 0.077

3000 sparse_linear 0.000 0.858 0.130 0.950 0.009 0.203 0.996 0.003 0.055
oracle_linear 0.000 0.843 0.130 0.952 0.009 0.203 0.992 0.003 0.055
full_dim 0.738 0.038 0.063 0.790 0.071 0.066 0.968 0.047 0.072
oracle_dim 0.920 0.010 0.050 0.924 0.006 0.043 0.992 0.025 0.070
sparse_dim 0.918 0.010 0.050 0.924 0.008 0.044 0.994 0.025 0.069
kernel 0.000 0.318 0.054 0.000 1.458 0.064 0.000 0.810 0.070
oracle 0.950 0.003 0.048 0.956 0.004 0.044 0.992 0.004 0.055

5000 sparse_linear 0.000 0.874 0.103 0.960 0.014 0.161 0.980 0.001 0.043
oracle_linear 0.000 0.846 0.102 0.964 0.013 0.161 0.978 0.001 0.042
full_dim 0.766 0.020 0.037 0.726 0.052 0.045 0.974 0.030 0.054
oracle_dim 0.938 0.004 0.038 0.940 0.001 0.033 0.982 0.022 0.050
sparse_dim 0.936 0.001 0.038 0.940 0.001 0.033 0.962 0.025 0.050
kernel 0.000 0.260 0.037 0.000 1.365 0.047 0.000 0.763 0.052
oracle 0.948 0.004 0.041 0.948 0.002 0.034 0.976 0.001 0.042
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TABLE 2
The empirical coverage rates (rate), and the absolute values of biases (bias) and the average of the

estimated standard deviations (est_sd) of the estimated ATE for p = 40

Model 1 Model 2 Model 3

n rate bias est_sd rate bias est_sd rate bias est_sd

1500 sparse_linear 0.000 0.886 0.187 0.960 0.025 0.274 0.980 0.005 0.078
oracle_linear 0.000 0.858 0.188 0.958 0.022 0.273 0.984 0.002 0.077
full_dim 0.522 0.159 0.091 0.012 0.966 0.121 0.928 0.002 0.126
oracle_dim 0.914 0.013 0.065 0.912 0.019 0.062 0.976 0.030 0.096
sparse_dim 0.904 0.015 0.064 0.906 0.020 0.069 0.930 0.027 0.090
kernel 0.000 0.398 0.094 0.000 2.261 0.112 0.000 1.231 0.112
oracle 0.960 0.001 0.067 0.960 0.001 0.063 0.978 0.005 0.077

3000 sparse_linear 0.000 0.865 0.130 0.976 0.009 0.203 0.992 0.001 0.055
oracle_linear 0.000 0.843 0.130 0.952 0.009 0.203 0.992 0.003 0.055
full_dim 0.648 0.066 0.055 0.578 0.177 0.086 0.946 0.055 0.078
oracle_dim 0.920 0.010 0.050 0.924 0.010 0.044 0.992 0.025 0.069
sparse_dim 0.918 0.014 0.050 0.920 0.009 0.050 0.978 0.026 0.069
kernel 0.000 0.320 0.054 0.000 2.118 0.087 0.000 1.138 0.074
oracle 0.950 0.003 0.048 0.956 0.004 0.044 0.992 0.004 0.055

5000 sparse_linear 0.000 0.863 0.103 0.968 0.005 0.156 0.984 0.001 0.043
oracle_linear 0.000 0.846 0.102 0.964 0.013 0.161 0.978 0.001 0.042
full_dim 0.714 0.036 0.039 0.624 0.077 0.061 0.964 0.038 0.057
oracle_dim 0.938 0.004 0.038 0.940 0.001 0.033 0.982 0.022 0.050
sparse_dim 0.932 0.001 0.037 0.934 0.003 0.033 0.974 0.023 0.050
kernel 0.000 0.268 0.040 0.000 2.055 0.059 0.000 1.085 0.053
oracle 0.948 0.002 0.041 0.948 0.001 0.034 0.976 0.001 0.042

have better coverage rates, their est_sd values are quite large. This indicates that,
for the nonlinear OR model, the linear estimates are inefficient even though they
are unbiased. In Model 3, both models are linear. The sparse_dim estimate and
the oracle_dim estimate perform reasonably well, and they are slightly inferior to
the linear estimates as expected. Moreover, we find that the nonparametric kernel
estimate has very small coverage rates that are close to zero for all cases and it
has large biases. The performance of both the full_dim and nonparametric kernel
estimates deteriorates sharply as the dimension p becomes larger. This suggests
that using all covariates with the sufficient dimension reduction approach or non-
parametric kernel estimation may not yield a reliable estimate of ATE. In sum, the
proposed sparse_dim estimate performs well in estimating ATE with a large set of
covariates even when the true model structure is not known a priori.

To further illustrate the bias and variance of the estimated ATE, τ̂ , calculated
from the oracle, sparse_dim, full_dim and sparse_linear estimates, Figure 1 de-
picts the kernel density plots of τ̂ for Model 1 and Model 2 when p = 20,40,100
and n = 5000. Figure 1 demonstrates that both sparse_dim and oracle estimates
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TABLE 3
The empirical coverage rates (rate), and the absolute values of biases (bias) and the average of the

estimated standard deviations (est_sd) of the estimated ATE for p = 100

Model 1 Model 2 Model 3

n rate bias est_sd rate bias est_sd rate bias est_sd

1500 sparse_linear 0.000 0.890 0.186 0.958 0.036 0.276 0.970 0.003 0.079
oracle_linear 0.000 0.858 0.188 0.958 0.019 0.273 0.984 0.002 0.077
full_dim 0.192 0.309 0.098 0.000 2.404 0.164 0.002 0.939 0.149
oracle_dim 0.914 0.013 0.065 0.912 0.019 0.062 0.976 0.030 0.096
sparse_dim 0.902 0.014 0.065 0.904 0.016 0.066 0.920 0.034 0.096
kernel 0.004 0.423 0.104 0.000 2.518 0.168 0.000 1.427 0.150
oracle 0.960 0.001 0.067 0.960 0.001 0.063 0.978 0.001 0.077

3000 sparse_linear 0.000 0.878 0.131 0.952 0.007 0.202 0.990 0.001 0.055
oracle_linear 0.000 0.843 0.130 0.952 0.009 0.203 0.992 0.003 0.055
full_dim 0.192 0.193 0.059 0.000 1.655 0.095 0.786 0.053 0.089
oracle_dim 0.920 0.010 0.050 0.924 0.008 0.044 0.992 0.025 0.070
sparse_dim 0.908 0.016 0.050 0.904 0.012 0.046 0.972 0.022 0.073
kernel 0.000 0.322 0.058 0.000 2.447 0.094 0.000 1.330 0.082
oracle 0.960 0.002 0.048 0.956 0.004 0.044 0.992 0.004 0.055

5000 sparse_linear 0.000 0.876 0.102 0.942 0.006 0.156 0.978 0.001 0.043
oracle_linear 0.000 0.846 0.102 0.964 0.013 0.161 0.978 0.001 0.042
full_dim 0.358 0.097 0.045 0.000 0.775 0.060 0.894 0.042 0.067
oracle_dim 0.938 0.004 0.038 0.940 0.001 0.033 0.982 0.022 0.050
sparse_dim 0.918 0.006 0.038 0.930 0.001 0.034 0.976 0.022 0.050
kernel 0.000 0.272 0.050 0.000 2.365 0.064 0.000 1.302 0.068
oracle 0.948 0.004 0.041 0.948 0.002 0.034 0.976 0.001 0.042

are symmetrically distributed around 1, which is the true ATE. However, the
sparse_linear estimate shows a large bias in Model 1, and exhibits large variances
in Model 2. As for the full_dim estimate, it becomes a more biased and less effi-
cient estimate as p increases. This implies that the redundant variables included in
the model can significantly affect the estimation accuracy of ATE when p is large.

We next demonstrate the impact of different methods on the test statistic
ϑn ≡ σ−1

n

√
n(τ̂ − τ 0). Accordingly, Figure 2 depicts the kernel density plots of ϑn

with four different ATE estimates in Model 1 discussed above for p = 20,40,100
and n = 5000. It shows that the density plots of ϑn calculated from the oracle
and sparse_dim estimates exhibit a similar pattern, being symmetric around zero.
This indicates that these two estimates yield a reliable test statistic. In contrast,
the density plot of ϑn computed from the sparse_linear estimate exhibits a large
bias due to the misspecification of both PS and OR models. As for the plot of ϑn

calculated from the full_dim estimate, it becomes more biased and less efficient
as p increases. Based on our Monte Carlo studies, we finally conclude that the
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FIG. 1. The kernel density plots of the estimated average treatments effects, τ̂ , calculated using the

oracle estimate (red thick curves), the sparse_dim estimate (blue thin curves), the full_dim estimate

(black dashed curves) and the sparse_linear estimate (magenta dotted curves); the upper and lower

panels correspond to Model 1 and Model 2.

proposed sparse_dim estimate performs well in estimating and testing the average
treatment effect when the true model is not known a priori.

Lastly, we compare our proposed method “sparse_dim” with several other pop-
ular methods for estimating ATE. These methods include the “MAVE” estimator
proposed in Luo, Zhu and Ghosh (2017) using MAVE to recover the OR function,
the “IPW” estimator which is an inverse probability weighting estimator with the

FIG. 2. The kernel density plots of the statistic, ϑn ≡ σ−1
n

√
n(τ̂ − τ0), for Model 1, where the

estimated average treatments effects are calculated using the oracle estimate (red thick curves),
the sparse_dim estimate (blue thin curves), the full_dim estimate (black dashed curves) and the

sparse_linear estimate (magenta dotted curves).



CAUSAL INFERENCE VIA SPARSE SUFFICIENT DIMENSION REDUCTION 1523

TABLE 4
The biases (“bias”) and empirical standard deviations (emp_sd) of the estimated ATE by the seven

methods for p = 20,40,100 when data are generated from Model 2

sparse_dim MAVE IPW Matching TMLE RF GAM

p = 20 bias 0.019 0.072 1.572 1.059 0.040 −0.108 0.664
emp_sd 0.065 0.087 0.184 0.196 0.070 0.080 0.125

p = 40 bias 0.020 0.092 1.582 1.074 0.455 −0.128 0.664
emp_sd 0.072 0.093 0.188 0.211 0.088 0.082 0.115

p = 100 bias 0.016 0.215 1.603 1.152 – −0.182 0.653
emp_sd 0.068 0.105 0.178 0.197 – 0.081 0.125

propensity score estimated by the method given in Imai and Ratkovic (2014), the
“Matching” estimator obtained based on one-to-one matching using the R pack-
age Matching [Sekhon (2008)], the “TMLE” estimator which is the targeted max-
imum likelihood estimator proposed in van der Laan and Rubin (2006), and the
“RF” and “GAM” estimators from applying random forest and the generalized
additive model (GAM), respectively, in G-computation [Robins (1986), Snowden,
Rose and Mortimer (2011)]. Random forest [van der Laan, Polley and Hubbard
(2007)] and GAM [Hastie and Tibshirani (1986)] are two popular nonparamet-
ric methods for estimating regression models. We refer to Luo, Zhu and Ghosh
(2017) for the detailed descriptions of the above methods. Table 4 reports the bi-
ases and the empirical standard deviations (emp_sd) of the estimated ATE by the
seven methods for p = 20,40,100 and n = 1500 when the data are generated from
Model 2. We exclude the “TMLE” estimate for p = 100 due to its computational
burden for large p. We observe that our proposed sparse_dim estimator has the
smallest bias and emp_sd values among all the estimators. It is of interest to note
that the MAVE estimator performs better than the other five estimates, whereas its
performance deteriorates as p becomes larger.

8. Application. In this section, we consider the NIH-AARP Study of Diet and
Health [Schatzkin et al. (2001)]. We employ our proposed method to investigate
the causal effect of smoking on body mass index (BMI). The confounding vari-
ables are dietary pattern scores for nutritional intakes, which were calculated by
using the U.S. Department of Agriculture’s (USDA’s) Healthy Eating Index-2005
(HEI-2005, http://www.cnpp.usda.gov/Healthy EatingIndex.htm). The HEI-2005
comprises 12 distinct component scores. Intakes of each food or nutrient, repre-
sented by one of the 12 components and adjusted for caloric intake (energy), are
assessed and given a score. A higher score represents a better dietary quality. All
confounding variables are centered and standardized in the analysis.

The data consist of 7432 African American women aged 55–70 who had not
been diagnosed with any cancer at baseline and who did not have missing BMI. In
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our analysis, let Yi =BMI, Di =indicator for smoking, and Xi1, . . . ,Xi12 be the
dietary scores of Total Fruit (TF), Whole Fruit (WF), Total Grains (TG), Whole
Grains (WG), Total Vegetables (TV), DOL Vegetables (DV), Dairy (D), Meat and
Beans (MB), Oils, Sodium (S), Saturated Fat (SF) and Empty Calories (EC), re-
spectively, for i = 1, . . . ,7432.

We apply our proposed sparse sufficient dimension reduction (sparse_dim)
method to estimate PS and OR, respectively. By employing the five-fold CV
method, we obtain the estimated number of indices, which is r̂ = 1, in model (1)
for PS and OR, respectively. For comparison, we also consider the sparse_linear
method discussed in simulation studies.

Table 5 reports the variables selected by these two methods for estimating PS,
OR in the smoking group, and OR in the nonsmoking group. The results show
that our approach captures the variables that would be missed by the sparse_linear
method. For example, it is evident in other studies that fruit, vegetable and whole
grain intakes influence BMI [Charlton et al. (2014), Heo et al. (2011), Steffen et al.
(2003)]. However, fruit and vegetable intakes are not selected by the sparse_linear
method for OR of the smoking group and whole grain intake is not selected by the
sparse_linear method for both smoking and nonsmoking groups.

To examine the relationship between BMI and dietary intakes, Figure 3 depicts
the estimated conditional means τ̂1(·) and τ̂0(·) versus the estimated index value
V̂�Xi for the smoking and nonsmoking groups, respectively. It is of interest to note
that the estimated conditional mean in the smoking group is smaller than that in
the nonsmoking group at the same index value. Both plots in Figure 3 clearly show

TABLE 5
The selected variables among the 12 dietary intakes by the sparse_linear and sparse_dim methods

for PS, OR in the smoking group (OR_smoke), and OR in the nonsmoking group (OR_nonsmoke).
“
√

” means that the variable is selected

PS OR_smoke OR_nonsmoke

sparse_linear sparse_dim sparse_linear sparse_dim sparse_linear sparse_dim

TF
√ √ √ √ √

WF
√ √

TG
√ √

WG
√ √

TV
DV

√ √ √

D
√ √

MB
√ √

Oils
S
SF

√ √ √ √

EC
√ √
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FIG. 3. The plots of τ̂1 for the smoking group and τ̂0 for the nonsmoking group, respectively, versus

the estimated index value V̂�Xi .

a nonlinear relationship between BMI and the estimated index value. Specifically,
the plot for the smoking group exhibits a nonlinear increasing pattern along with
index value and the slope becomes flatter as the index value becomes larger. The
plot for the nonsmoking group displays a quadratic pattern. It shows that the BMI
of nonsmokers decreases along with the index value in the beginning and then it
increases after the index exceeds certain value.

To further illustrate the relationship between BMI and the dietary score of each
nutrient intake, Figure 4 depicts τ̂1(·) and τ̂0(·) versus the dietary score for Total
Fruit, respectively, by fixing the dietary scores of other nutrient intakes at their
means. We use this dietary score for illustration because it is selected as relevant
dietary intakes for OR by the sparse_dim method. In the smoking group, it shows a
positive relationship between BMI and the Total Fruit score, and the slope becomes
flatter as the score increases. In the nonsmoking group, the plot shows a quadratic
pattern with the Total Fruit score. Overall, Figure 4 indicates that a better dietary

FIG. 4. The plots of τ̂1 for the smoking group and τ̂0 for the nonsmoking group, respectively, versus

the dietary score of total fruit.
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TABLE 6
The estimates (“est.”) and standard errors (“s.e.”) of ATE obtained by four different methods:

sparse_dim, sparse_linear, linear_dim, and dim_linear

sparse_dim sparse_linear linear_dim dim_linear

est. −1.218 −1.147 −1.195 −1.236
s.e. 0.179 0.189 0.188 0.184

score of Total Fruit can increase BMI for smokers, and the Total Fruit score is
inversely associated with BMI when the score is less than 3 and their association
becomes positive as the score becomes larger.

Next, we compare our proposed sparse_dim estimator of ATE with three other
estimators: (a) the “sparse_linear” estimator; (b) the “linear_dim” estimator from
fitting the sparse logistic linear model to PS and using the proposed sparse dimen-
sion reduction method to estimate OR; (c) the “dim_linear” estimator from using
the proposed sparse dimension reduction method to estimate PS and fitting the
sparse linear model to OR.

Table 6 reports the estimated values (“est.”) of ATE and their associated stan-
dard errors (“s.e.”) by these four different methods. It shows that all four methods
have negative values for the estimated ATE. This result confirms the earlier finding
that current smokers have significantly lower BMI than nonsmokers [see Kaufman,
Auguston and Patrick (2012)]. Furthermore, the linear_dim and dim_linear meth-
ods yield the estimates of ATE that are close to that obtained from the sparse_dim
method, but they produce larger standard errors. This is because both linear_dim
and dim_linear methods can lead to asymptotically unbiased but not efficient es-
timates due to possible misspecification of either the PS or the OR model. More-
over, we compare our sparse_dim estimator with the six estimators, MAVE, IPW,
Matching, TMLE, RF and GAM, given in Section 7. Table 7 reports the “est.”
and “s.e.” values of these estimators. The sparse_dim estimator has the smallest
standard error value. We also observe that the MAVE and TMLE methods have
estimated values close to that obtained from the sparse_dim estimator.

TABLE 7
The estimates (“est.”) and standard errors (“s.e.”) of ATE obtained by seven different methods:

sparse_dim, MAVE, IPW, Matching, TMLE, RF and GAM

sparse_dim MAVE IPW Matching TMLE RF GAM

est. −1.218 −1.173 −1.154 −1.082 −1.189 −0.946 −1.086
s.e. 0.179 0.197 0.185 0.207 0.186 0.193 0.195
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9. Discussion. In this paper, we consider an estimator of ATE constructed
based on an efficient influence function, which involves a PS function and an OR
function. We propose a sparse sufficient dimension reduction method to estimate
these two functions, without making restrictive parametric modeling assumptions.
Theoretically, we show that the proposed estimator is asymptotically normal and
semiparametric efficient without the need for variable selection consistency. Prac-
tically, we illustrate the proposed method through a number of simulation studies
and an empirical example. The numerical studies support our theoretical findings.
Our method provides a new flexible strategy for efficient inference of ATE with
big data which often involve a large number of variables measured on a large
number of subjects. Our proposed method can be extended to estimate quantile,
heterogeneous and longitudinal treatment effects in observational studies. In sum,
these three avenues can shed light on areas of future research that deserve a thor-
ough study. It is worth noting that in practice one can also apply other popular ap-
proaches such as MAVE [Luo, Zhu and Ghosh (2017)] and machine learning meth-
ods [van der Laan, Polley and Hubbard (2007), van der Laan and Rose (2011)] to
estimate the working models without imposing restrictive modeling assumptions.
However, careful and thorough investigations are needed to develop the computa-
tional algorithms and establish the theoretical properties of the resulting estimators
in high-dimensional settings.

APPENDIX

This Appendix contains the technical proofs of Theorems 2 and 3. The proof of
Theorem 1 is given in the online Supplementary Materials Ma et al. (2019).

A.1. Proof of Theorem 2. Let τj (x) = E(Yji |Xi = x) and gj (x) = E(Dji |
Xi = x) for j = 0 and 1, where D1i = Di and D0i = 1 − Di . In addition, let
τ̂j (x) and ĝj (x) be the estimators of τj (x) and gj (x), respectively, and let Ti =
(Di, Yi,Xi) be the ith individual observation. Denote

mj (Ti, τj , gj ) =
Dji{Yi − τj (Xi)}

E(Dji |Xi)
+ τj (Xi) =

Dji{Yi − τj (Xi)}
gj (Xi)

+ τj (Xi).

To prove this theorem, we will show that

(A.1) n−1
n∑

i=1

m1(Ti, τ̂1, ĝ1) = n−1
n∑

i=1

m1(Ti, τ1, g1) + op

(
n−1/2)

.

Employing the same techniques as those for obtaining the above result, we can
demonstrate that

n−1
n∑

i=1

m0(Ti, τ̂0, ĝ0) = n−1
n∑

i=1

m0(Ti, τ0, g0) + op

(
n−1/2)

.
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By the central limit theorem, we have

σ−1√n

[
n−1

n∑

i=1

{
m1(Ti, τ1, g1) − m0(Ti, τ0, g0)

}
− τ 0

]
→ N(0,1),

where σ 2 is defined in (9). This, together with the Slutsky’s theorem and τ̂ =
n−1 ∑n

i=1{m1(Ti, τ̂1, ĝ1) − m0(Ti, τ̂0, ĝ0)}, yields the asymptotic result of τ̂ in
Theorem 2. Furthermore, by the weak law of large numbers, we obtain that

n−1
n∑

i=1

{
m1(Ti, τ1, g1) − m0(Ti, τ0, g0)

}
− τ 0 = Op

(
n−1/2)

,

which implies τ̂ − τ 0 = Op(n−1/2).
To complete the proof, we demonstrate (A.1) below. By the Taylor series ex-

pansion, we have

m1(Ti, τ̂1, ĝ1) − m1(Ti, τ1, g1)

= −g−2
1 D1i(Yi − τ1)(ĝ1 − g1) +

(
−g−1

1 D1i + 1
)
(τ̂1 − τ1)(A.2)

+ g̃−2
1 D1i(ĝ1 − g1)(τ̂1 − τ1) + g̃−3

1 D1i(Yi − τ̃1)(ĝ1 − g1)
2

for some g̃1 between g1 and ĝ1 and τ̃1 between τ1 and τ̂1. Then

n−1
n∑

i=1

m1(Ti, τ̂1, ĝ1) − n−1
n∑

i=1

m1(Ti, τ1, g1)

(A.3)
= ϕn1 + ϕn2 + ϕn3 + ϕn4,

where

ϕn1 = n−1
n∑

i=1

[
−g1(Xi)

−2D1i

{
Yi − τ1(Xi)

}]{
ĝ1(Xi) − g1(Xi)

}
,

ϕn2 = n−1
n∑

i=1

(
−g1(Xi)

−1D1i + 1
){

τ̂1(Xi) − τ1(Xi)
}
,

ϕn3 = n−1
n∑

i=1

g̃1(Xi)
−2D1i

{
τ̂1(Xi) − τ1(Xi)

}{
ĝ1(Xi) − g1(Xi)

}
and

ϕn4 = −n−1
n∑

i=1

g̃1(Xi)
−3Di1

{
Yi − τ̃1(Xi)

}{
ĝ1(Xi) − g1(Xi)

}2
.

It is worth noting that, by definitions of ĝ1(Xi) and g1(Xi), we have

ĝ1(Xi) − g1(Xi) = Ê
(
Di1|Ṽ�Xi

)
− E

(
Di1|V∗�Xi

)

=
{
Ê

(
Di1|Ṽ�Xi

)
− Ê

(
Di1|V∗�Xi

)}
(A.4)

+
{
Ê

(
Di1|V∗�Xi

)
− E

(
Di1|V∗�Xi

)}
.
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Furthermore, let ξi = −g1(Xi)
−2D1i{Yi −τ1(Xi)}. Then, under Assumption (A3),

E(ξi |Xi) = 0.
Applying (A.4) and Lemmas S.1 and S.2 presented in the supplemental materi-

als Ma et al. (2019), we have ϕn1 = op(n−1/2). Employing the same approach, we
can show that ϕn2 = op(n−1/2).

By Condition (C2) and the results of (S.17) and (S.18) in the proof of
Lemma S.2, we obtain that

sup
Xi

∣∣Ê
(
Di1|Ṽ�Xi

)
− Ê

(
Di1|V∗�Xi

)∣∣

≤ sup
Xi

∣∣E(1)(Di1|V∗�Xi

)∣∣ × ‖Xi‖∞
√∣∣R∗∣∣∥∥ṼR∗ − V∗

R∗
∥∥{

1 + o(1)
}

= Op

(√
log(p ∨ n)

)
Op(

√
s)Op

(√
s log(p ∨ n)/n

)

= Op

(
log(p ∨ n)sn−1/2)

.

Then employing the uniform convergence rate in Mack and Silverman (1982), we
have

sup
Xi

∣∣Ê
(
Di1|V∗�Xi

)
− E

(
Di1|V∗�Xi

)∣∣ = Op

{
hm +

(
nhr)−1/2

√
logn

}
.

The above two results, together with (A.4), imply that

sup
Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣

(A.5)
= Op

{
hm +

(
nhr)−1/2

√
logn + log(p ∨ n)sn−1/2}

.

Analogously, we can show that

sup
Xi

∣∣τ̂1(Xi) − τ1(Xi)
∣∣

(A.6)
= Op

{
hm +

(
nhr)−1/2

√
logn + log(p ∨ n)sn−1/2}

.

As a result, (A.5), (A.6) and Condition (C3) imply that there exist constants c̃ and
˜̃c ∈ (0,∞) such that, with probability approaching 1,

|ϕn3| ≤ c̃ sup
Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣ sup

Xi

∣∣τ̂1(Xi) − τ1(Xi)
∣∣

= O
{
h2m +

(
nhr)−1

(logn) +
{
log(p ∨ n)

}2
s2n−1}

= o
(
n−1/2)

,

|ϕn4| ≤ ˜̃c sup
Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣2

= O
{
h2m +

(
nhr)−1

(logn) +
{
log(p ∨ n)

}2
s2n−1}

= o
(
n−1/2)

.

The above results, in conjunction with (A.3), lead to (A.1), which completes the
proof.
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A.2. Proof of Theorem 3. Let m̂ji = mj (Ti, τ̂j , ĝj ) and mji = mj (Ti, τj , gj )

for j = 0 and 1. Based on the results of (A.1) and Theorem 2, we have
n−1 ∑n

i=1(m̂1i − m1i) = op(n−1/2) and τ̂ − τ0 = Op(n−1/2), respectively. The
above results, together with the definitions of σ 2 and σ 2

n in (9) and (10), imply that

σ 2
n − σ 2 = n−1

n∑

i=1

(m̂1i − m̂0i − τ̂ )2 − n−1
n∑

i=1

(m1i − m0i − τ0)
2

=
∑

j,j ′=0,1

n−1
n∑

i=1

(m̂ji + mji)(m̂j ′i − mj ′i) + op(1).

Below we will show that

n−1
n∑

i=1

(m̂1i + m1i)(m̂1i − m1i) = op(1).

Employing the same techniques, we can also demonstrate that n−1 ∑n
i=1(m̂ji +

mji)(m̂j ′i − mj ′i) = op(1) for j = j ′ = 0 and j �= j ′. Accordingly, we have σ 2
n −

σ 2 = op(1), which completes the proof of Theorem 3.
Note that

n−1
n∑

i=1

(m̂1i + m1i)(m̂1i − m1i)

= n−1
n∑

i=1

(m̂1i − m1i)
2 + 2n−1

n∑

i=1

(m̂1i − m1i)m1i .

Hence, we will show that

n−1
n∑

i=1

(m̂1i − m1i)
2 = op(1),(A.7)

n−1
n∑

i=1

(m̂1i − m1i)m1i = op(1).(A.8)

By (A.2), m̂1i − m1i = ϕ1i + ϕ2i + ϕ3i + ϕ4i , where

ϕ1i = −g−2
1 D1i(Yi − τ1)(ĝ1 − g1),

ϕ2i =
(
−g−1

1 D1i + 1
)
(τ̂1 − τ1),

ϕ3i = g̃−2
1 D1i(τ̂1 − τ1)(ĝ1 − g1),

ϕ4i = g̃−3
1 Di1(Yi − τ̃1)(ĝ1 − g1)

2.

Using the fact that n−1 ∑n
i=1(m̂1i − m1i)

2 ≤ 4
∑4

k=1 n−1 ∑n
i=1 ϕ2

ki . We only need
to demonstrate that n−1 ∑n

i=1 ϕ2
ki = op(1) for k = 1, . . . ,4.
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By (A.5), (A.6), |Di1| ≤ 1, and 0 < g1(Xi) < 1, it immediately follows that
n−1 ∑n

i=1 ϕ2
ki = op(1) for k = 2,3. From Assumption (A3), we have

n−1
n∑

i=1

{
−g−2

1 D1i(Yi − τ1)
}2 = n−1

n∑

i=1

{
−g−2

1 D1i(Y1i − τ1)
}2

≤ c′n−1
n∑

i=1

(Y1i − τ1)
2 = c′n−1

n∑

i=1

ε2
i

for some constant c′ ∈ (0,∞). By Assumption (A5)(i), n−1 ∑n
i=1 ε2

i = Op(1), and
hence

n−1
n∑

i=1

{
−g−2

1 D1i(Yi − τ1)
}2 = Op(1).

The above result, in conjunction with (A.5), implies that

n−1
n∑

i=1

ϕ2
1i ≤ sup

Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣2n−1

n∑

i=1

{
−g−2

1 D1i(Yi − τ1)
}2

(A.9)
= op(1)Op(1) = op(1).

Analogously, we can show that

n−1
n∑

i=1

{
g̃−3

1 Di1(Yi − τ̃1)
}2 ≤ c′′n−1

n∑

i=1

(Yi − τ̃1)
2

≤ c′′2n−1
n∑

i=1

ε2
i + c′′2 sup

Xi

∣∣τ̃1(Xi) − τ1(Xi)
∣∣2

= Op(1),

for some constant c′′ ∈ (0,∞). Accordingly,

n−1
n∑

i=1

ϕ2
4i ≤ sup

Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣4n−1

n∑

i=1

{
g̃−3

1 Di1(Yi − τ̃1)
}2

= op(1)Op(1) = op(1).

This, together with (A.9), completes the proof of (A.7).
It is worth noting that

n−1
n∑

i=1

(m̂1i − m1i)m1i

= n−1
n∑

i=1

ϕ1im1i + n−1
n∑

i=1

ϕ2im1i + n−1
n∑

i=1

ϕ3im1i + n−1
n∑

i=1

ϕ4im1i .
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To verify (A.8), we only need to show that n−1 ∑n
i=1 ϕ1im1i = op(1). This is be-

cause the proofs of n−1 ∑n
i=1 ϕkim1i = op(1) for k = 2,3,4 follow the same ar-

guments. By Assumption (A3)(ii), there exist constants c1, c2 ∈ (0,∞) such that
|−g1(Xi)

−2D1i | ≤ c1 and |g1(Xi)
−1D1i | ≤ c2. Then

∣∣∣∣∣n
−1

n∑

i=1

ϕ1im1i

∣∣∣∣∣

≤ sup
Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣n−1

n∑

i=1

∣∣−g−2
1 D1i(Yi − τ1)

∣∣
∣∣∣∣
D1i(Yi − τ1)

g1
+ τ1

∣∣∣∣

≤ c1 sup
Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣n−1

n∑

i=1

|εi |
(
c2|εi | + C̃

)

= c1 sup
Xi

∣∣ĝ1(Xi) − g1(Xi)
∣∣
{
c2n

−1
n∑

i=1

ε2
i + C̃n−1

n∑

i=1

|εi |
}

= op(1),

where C̃ is defined in Assumption (A5)(iii). This completes the whole proof.
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SUPPLEMENTARY MATERIAL

Supplement to “A robust and efficient approach to causal inference based

on sparse sufficient dimension reduction” (DOI: 10.1214/18-AOS1722SUPP;
.pdf). The supplement contains the technical proof of Theorem 1, two lemmas that
will be used in the proof of Theorem 2, and additional simulation studies.
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