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Abstract—Channel estimation at millimeter wave (mmWave)
carrier frequencies is challenging when large antenna arrays are
used. Prior work has leveraged the sparse nature of millimeter
wave channels via compressed sensing-based algorithms for chan-
nel estimation. Most of these algorithms, though, assume perfect
synchronization and are vulnerable to phase errors that arise due
to carrier frequency offset and phase noise. Recently sparsity-
aware, non-coherent beamforming algorithms that are robust to
phase errors were proposed for narrowband phased array sys-
tems with full resolution analog-to-digital converters. Such energy
based algorithms, however, are not robust to heavy quantization
at the receiver. In this paper, we develop a joint carrier frequency
offset and wideband channel estimation algorithm that is scalable
across different hardware architectures. Our method exploits the
sparse nature of millimeter wave channels in the angle-delay
domain, in addition to compressibility of the phase error vector.
We formulate the joint estimation as a quantized sparse bilinear
optimization problem and then use message passing for recovery.
We also give an efficient implementation of a generalized bilinear
message passing algorithm for the joint estimation in one-bit
receivers. Simulation results show that our method is able to
estimate the frequency offset and the channel compressively, even
in the presence of phase noise.

Index Terms—Wideband channel estimation, carrier frequency
offset, compressed sensing, message passing, one-bit receivers,
mm-Wave

I. INTRODUCTION

Millimeter wave (mmWave) communication introduces new
challenges in the design of multiple-input multiple-output
(MIMO) communication systems [1]. For instance, large an-
tenna arrays at the transmitter (TX) and the receiver (RX)
are necessary to meet the link budget requirements [2]. As a
result, the channel has a higher dimension compared to what
is typical in lower frequency MIMO systems, and must be
estimated more frequently thanks to the smaller coherence
time [3]. Furthermore, cost and power consumption are major
issues at the larger bandwidths that accompany mmWave,
primarily due to high resolution analog-to-digital converters
(ADCs) [4]. Typical mmWave hardwares that limit power
consumption at large bandwidths introduce compression in
the channel measurements. For example, the one-bit ADC
architecture [4] allows access to the output of every antenna
at the expense of heavy quantization. The compression of
channel measurements and the use of large antenna arrays
complicate signal processing at mmWave.
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Compressed sensing (CS) [5] [6] is an efficient technique to
recover sparse high-dimensional signals with few projections.
As MIMO channel matrices at mmWave are sufficiently sparse
when expressed in an appropriate dictionary, applying tools
from CS to mmWave channel estimation can potentially reduce
the training overhead. CS-based sparse channel estimation
algorithms have been proposed for various hardware architec-
tures [7]–[9]. Recent developments in approximate message
passing [10] [11] have enabled channel estimation algorithms
in low resolution receivers [12]. Most CS-based channel es-
timation algorithms, however, assume perfect synchronization
and may fail when there is any residual carrier frequency offset
(CFO) or phase noise [13].

CFO and phase noise are hardware impairments that corrupt
the phase of the channel measurements. The mismatch be-
tween the carrier frequencies of the local oscillators at the TX
and the RX results in CFO. Phase noise in the system arises
due to short-term random fluctuations in the frequency of the
oscillators. Both these non-idealities are larger at mmWave
due to the high carrier frequency and ignoring them can
result in significant channel estimation error [14]. Correcting
for the CFO and then performing channel estimation seems
like a possible solution. The disadvantage, however, is that
prior to beamforming or channel estimation, mmWave systems
operate at very low signal-to-noise ratio (SNR), which can
result in significant error in the CFO estimate. Prior work
has considered joint CFO and channel estimation [15] [16] in
lower frequency systems. These joint estimation algorithms,
however, cannot be applied to typical mmWave systems due
to differences in the hardware architectures. Furthermore, they
are not designed to incorporate the sparse nature of mmWave
channels. Therefore, there is a need to design either phase
error robust channel estimation algorithms, or joint CFO and
channel estimation algorithms that can exploit the sparsity of
mmWave channel.

Recent work on phase error robust channel estimation is
limited to narrowband systems and has focussed on specific
mmWave hardware. In [13], [17] and [18], phase error robust
compressive beamforming algorithms were proposed for the
analog beamforming architecture. In [13], phase tracking fol-
lowed by phase error compensated compressive beamforming
was proposed. The compensation, however, was done prior
beamforming and therefore suffers from low SNR. The non-
coherent algorithms in [17] and [18] are not robust to heavy
quantization at the receiver. These algorithms cannot be used
in standard one-bit receivers because the amplitude informa-
tion in the channel measurements is completely lost due to
one-bit quantization with a zero threshold.
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Recent joint CFO and sparse narrowband channel estima-
tion algorithms in [14] and [19] require high computational
complexity when extended to wideband systems. In [14], we
proposed a joint CFO and narrowband channel estimation
algorithm using third-order tensors [20]. We also developed
a sparsity-aware joint estimation algorithm for the one-bit
ADC architecture in [19]. The main idea underlying our
approach in [19] was to use the lifting technique [21] along
with message passing for the joint estimation with one-bit
channel measurements. Extending the narrowband solutions
in [14] or [19] to typical wideband mmWave systems would
require optimization over millions of variables, which may be
prohibitive in a practical setting.

In this paper, we propose a quantized sparse bilinear for-
mulation of the joint CFO and wideband channel estimation
problem, and solve it using message passing. We assume that
a unique CFO and a unique phase noise process corrupt the
channel measurements. We also assume that there is perfect
frame timing synchronization between the TX and the RX. We
summarize the main contributions in this paper as follows.

• We formulate the joint CFO and wideband channel estima-
tion problem as a noisy quantized sparse bilinear optimiza-
tion problem. Our framework leverages the sparse nature of
the wideband channel in the angle and delay domains, and
also exploits the compressibility of the phase error vector
in the frequency domain.

• To solve the non-convex problem at hand, we use the
vector variance version of the Parametric Bilinear General-
ized Approximate Message Passing (PBiGAMP) algorithm
[22]. As a naive implementation of PBiGAMP can be
computationally expensive for typical mmWave settings, we
derive a low complexity version of PBiGAMP by exploiting
structure in the joint estimation problem.

• We propose the concept of “CFO propagation” for the
joint CFO and channel estimation using circulant training.
Although circulant training allows fast message passing with
the channel variables, it results in a non-identifiable joint
estimation problem due to CFO propagation. We prove
that any circulant training-based joint CFO and channel
estimation technique that exploits channel sparsity in a DFT-
based dictionary suffers from CFO propagation.

• We evaluate the performance of our joint estimation algo-
rithm assuming a digital receiver architecture with one-bit
ADCs and compare it with the hypothetical full resolution
case. Simulation results show that the proposed approach is
able to recover both the channel and the CFO compressively
with IID Gaussian- and IID QPSK-based training matrices,
even in the presence of phase noise uncertainity.

Our algorithm is advantageous over the existing sparsity-aware
methods for joint estimation or phase error robust channel
estimation in terms of the capability to efficiently handle
frequency selective channels and scalability to other mmWave
architectures.

Notation: A is a matrix, a is a column vector and a, A
denote scalars. Using this notation AT ,A and A∗ represent
the transpose, conjugate and conjugate transpose of A. The

matrices |A| and |A|2 contain the element-wise magnitude and
squared magnitude of the entries of A. We use A(i) and A(j)
to denote the ith row and j th column of A. We use diag (a)
to denote a diagonal matrix with entries of a on its diagonal.
The scalar am denotes the mth element of a. The symbols
⊗ and � are used to denote the Kronecker product and the
Hadamard product. vec (A) is a vector obtained by stacking
all the columns of A and vecm (A) denotes the mth element of
vec (A). We define Ai, j = veci

(
A(j)

)
. We use IN to denote the

set {1, 2, 3, ..N}. The matrix UN ∈ C
N×N denotes the unitary

discrete Fourier transform matrix. N(m,R) is the probability
density function of complex Gaussian random vector with
mean m and covariance R. We define e`,N ∈ RN×1 as the
N dimensional canonical basis vector with its `th coordinate
as 1. The function sign(a) is 1 for a ≥ 0 and is −1 for a < 0.
We define sinc(a) = sin(πa)/(πa).

II. SYSTEM AND CHANNEL MODELS

In this section, we describe the underlying hardware ar-
chitecture, CFO and phase noise model, and the wideband
mmWave channel model used for our simulations. In par-
ticular, we focus on the digital receiver architecture with
one-bit ADCs to highlight the differences with the existing
non-coherent algorithms. Nevertheless, our algorithm can be
extended to other mmWave architectures as the underlying
joint estimation problem is bilinear in nature.

A. System Model

Fig. 1. A MIMO system with local oscillators operating at f1 and f2. Each
receive antenna is associated with a radio frequency chain and a pair of q-bit
ADCs. In this paper, we consider the extreme cases of q = 1 and q = ∞.

We consider a MIMO system with uniform linear array of
Ntx antennas at the TX and Nrx antennas at the RX, as shown
in Fig. 1. We use linear arrays for a concise representation
of the simplifications involved in PBiGAMP; our framework
can be extended to other array geometries using appropriate
array response vectors in the formulation. We do not impose
constraints on the number of radio frequency (RF) chains or
the resolution of the digital-to-analog converters (DACs) at
the TX. The resolution of the Nrx ADCs at the RX, however,
is assumed to be limited. We assume that all the RF chains
at the TX are driven by a single oscillator that operates at
a carrier frequency of f1. In a practical mmWave system,
multiple oscillators may be employed at the TX as the use
of a single oscillator can result in a higher insertion loss
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[23]. Even in such settings, our assumption is reasonable from
a mathematical perspective as multiple colocated mmWave
oscillators at the TX can be synchronized to the same f1
through calibration [24], [25]. The use of a single oscillator
at the RX can be justified using a similar argument. The RX
downconverts the received RF signal using a carrier frequency
f2, that slightly differs from f1. After downconversion at the
RX, the output at each antenna is sampled using a pair of q-
bit ADCs, one each for the in-phase and the quadrature phase
components. We use Qq (·) to represent the q-bit quantization
function corresponding to the ADCs. In this paper, we consider
the extreme case of q = 1 and provide a performance
comparison relative to q = ∞. The quantization functions for
the two cases are Q1 (x) = sign (real (x)) + j sign (imag (x))
and Q∞ (x) = x. Note that the functions sign (·) , real (·) and
imag (·) are applied element-wise on the vector.

The impact of CFO on channel estimation algorithms is
more significant in one-bit receivers than the full resolution
ones. The mismatch in the carrier frequencies, i.e., | f2 − f1 | is
typically in the order of several parts per millions (ppms) of f1
or f2. Due to the high carrier frequencies at mmWave, even
such small differences can significantly perturb the channel
estimate when ignored [13]. For a symbol duration of T sec-
onds, we define the digital domain CFO as ε = 2π ( f1 − f2)T .
CFO results in unknown phase errors in the received samples
that linearly increase with time. Hence, the impact of CFO
on standard channel estimation algorithms is determined by
the length of training. As one-bit receivers relatively need a
longer training for channel estimation when compared to the
full resolution ones, channel estimation algorithms that ignore
phase errors are more vulnerable to the CFO in one-bit systems
than the full resolution ones.

Phase noise in wireless systems arises due to jitter in the
frequency of the oscillators. In this paper, we assume that
phase noise occurs only at the receiver. Such an assumption is
reasonable in broadcasting applications where a high quality
oscillator is used at the TX [26]. As is common in prior work,
we model phase noise at the receiver as a Wiener process
with an innovation variance of β2 [27], [28]. Let φk denote
the phase error introduced in the k th received sample due to
phase noise at the RX. In a Wiener process, the innovations in
the phase error, i.e., φk − φk−1, are modeled as IID Gaussian
random variables with zero mean and variance β2. For such a
process, it can be observed that the variance of φk linearly
increases with k. As β2 is proportional to f 2

2 [13], phase
noise is higher at mmWave carrier frequencies for a given
quality of oscillator. We assume a unique phase noise process
at the receiver. Such an assumption is valid only when a
single oscillator drives all the RF chains at the receiver. When
multiple oscillators are used at the RX, the impact of phase
noise on the received signal is more complicated. Although
calibration of multiple oscillators at the RX can achieve local
carrier frequency synchronization [24], [25], it may not result
in the same random phase noise process across all the RF
chains. Our assumption regarding a unique phase noise process
is perhaps simplistic, but we leave the development of new
joint estimation techniques that account for multiple phase
noise processes to future work.

Now, we describe the received signal model in the digital
receiver architecture. Let t [n] ∈ CNtx×1 be the nth transmit
symbol satisfying the power constraint E [t∗ [n] t [n]] = P. The
discrete time baseband representation of the MIMO channel
is assumed to be limited to L taps. Let H [`] ∈ CNrx×Ntx

be the `th tap of the equivalent baseband channel, where
` ∈ {0, 1, 2, ..., L − 1}. Under the perfect frame timing syn-
chronization assumption, the sampled baseband vector in the
nth symbol duration can be given by

Y(n) = Qq

(
e j(εn+φn)

L−1∑̀
=0

H [`] t [n − `] + V(n)

)
, (1)

where V(n) ∼ N(0, σ2INrx ) is additive white Gaussian noise.
In this paper, we develop an algorithm to estimate ε and
{H [`]}L−1

`=0 from the series of observations Y(n). Our joint
estimation algorithm can be extended to any q-bit ADC ar-
chitecture by defining appropriate output likelihood functions
in message passing.

B. Channel Model

We consider a clustered channel model for the frequency se-
lective mmWave MIMO channel. The channel consists of Ncs
clusters with Mn rays in the nth cluster. Let γn,m, τn,m, θr,n,m
and θt,n,m denote the complex gain, delay, angle-of-arrival
(AoA) and angle-of-departure (AoD) of the mth ray in the nth

cluster. We assume that the transmitted signal is bandlimited
to 1/T Hz. With ωr,n,m = π sin θr,n,m, ωt,n,m = π sin θt,n,m, and
the Vandermonde vector

aN (∆) =
[
1 , e j∆ , e j2∆ , · · · , e j(N−1)∆

]T
, (2)

the `th tap of the wideband MIMO channel for a half wave-
length spaced uniform linear array is given by

H [`] =
Ncs∑
n=1

Mn∑
m=1

γn,maNrx

(
ωr,n,m

)
a∗

Ntx

(
ωt,n,m

)
sinc

(
` −

τn,m

T

)
.

(3)
The wideband channel can be represented using NrxNtxL com-
plex entries, and the matrix in (3) is large in typical mmWave
systems. The channel impulse response in (3) is represented
using a linear combination of bandlimited sinc(·) functions.
Notice that each of these sinc(·) functions is delayed by the
normalized delay spread, i.e, τn,m/T and evaluated at periodic
time instants to obtain the discrete time representation in (3).
Other filtering functions could also be used to incorporate the
effect of pulse shaping at the TX or filtering at the RX [29].

The mmWave MIMO channel is aproximately sparse in an
appropriate dictionary due to the propagation characteristics
of the environment at mmWave frequencies. Compared to
the lower frequency channels, mmWave channels comprise
of fewer clusters [4]. Each of the channel taps H [`], is
approximately sparse in the spatial Fourier basis at mmWave
[12]. Furthermore, the channel is approximately sparse along
the time dimension as the delays of the propagation rays are
heavily clustered within the delay spread. As the delays τn,m
may not necessarily be an integer multiple of T , there is a
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leakage effect along the time dimension. Let C [`] ∈ CNrx×Ntx

be the 2-D Fourier transform of H [`], such that

H [`] = UNrxC [`]U∗Ntx
, ∀` ∈ {0, 1, 2, ..., L − 1} . (4)

The matrix C [`] is defined as the beamspace matrix corre-
sponding to the `th channel tap. The approximate sparsity
of the mmWave MIMO channel along the angle and delay
domains [30] is directly reflected in the matrices {C [`]}L−1

`=0 .
A higher resolution dictionary can be used for the angle
and delay dimensions to increase sparsity of the mmWave
channel at the expense of higher dimensionality and higher
frame coherence [31]. Our GAMP-based approach will be
robust to leakage effects that arise due to approximate sparsity.
Therefore, we use the terms sparsity and approximate sparsity
interchangeably throughout this paper.

III. DEMYSTIFYING JOINT CFO AND CHANNEL
ESTIMATION AT MMWAVE

In this section, we propose a quantized sparse bilinear
formulation for the joint estimation problem. We also identify
existing techniques to solve the problem and describe their
limitations in terms of scalability to other mmWave architec-
tures and computational complexity.

A. Bilinear formulation

We consider a single-carrier with frequency-domain equal-
ization (SC-FDE) system [3] and derive a compact form for the
received signal model in (1). In wireless standards like IEEE
802.11ad, SC-FDE is preferred over orthogonal frequency
division multiplexing (OFDM) due to its advantages like lower
peak-to-average power ratio and robustness to CFO [32]. Let
T ∈ CNtx×Np be a training block of length Np such that T(k) =
t [k]. The TX transmits a training sequence with a cyclic prefix
of length L − 1, i.e.,

[
T(Np−L+2),T(Np−L+3), ...,T(Np),T

]
. The

cyclic prefix padded transmission gets convolved with the
frequency selective MIMO channel before sampling at the
receiver. As usual, the first L − 1 samples of the received
block that experience interference from the previous transmit
block are discarded [3]. Let Y ∈ CNrx×Np be the received
block obtained after discarding the first L−1 received vectors.
We define an ` circulant delay matrix J` ∈ CNp×Np , such
that its first column is the canonical basis vector e1+`,Np . We
define a vector d(ε) ∈ CNp such that its nth entry has the
phase error corresponding to the received vector Y(n), i.e.,
dn(ε) = e j(εn+φn). The received samples corresponding to the
transmit block defined by T can be expressed using (1) as

Y = Qq

(
L−1∑̀
=0

H [`]TJ`diag (d(ε)) + V

)
. (5)

The phase errors in (5) are invariant along any column of the
unquantized received block as there is a unique CFO and a
phase noise process in the system. The representation in (5)
can be further simplified to capture the structure in the phase
errors and the channel.

We exploit the structure in the joint estimation problem
using sparsity of the channel and the phase error vector

in appropriate dictionaries. A compact representation of (5)
can be obtained by following the same steps in [12], except
for the diagonal matrix containing the phase errors. We use
b to denote the DFT of the phase error vector d(ε), i.e.,
b = UNpd(ε). With Z used to denote the noiseless unquantized
version of Y in (5) such that Y = Qq (Z + V), we have

Z =
L−1∑̀
=0

H [`]TJ` diag (d(ε))

=

L−1∑̀
=0

UNrxC [`]U∗Ntx
TJ` diag

(
U∗Np

b
)

= UNrx [C [0] C [1] · · ·C [L − 1]]︸                            ︷︷                            ︸
∆
=C


U∗Ntx

TJ0
U∗Ntx

TJ1
...

U∗Ntx
TJL−1

︸          ︷︷          ︸
∆
=F

diag
(
U∗Np

b
)
.

(6)

The matrix C ∈ CNrx×NtxL is just a concatenation of the angle
domain representation in (4) corresponding to each tap of
the MIMO channel and is approximately sparse at mmWave.
Furthermore, the vector b, i.e., the DFT of d(ε), can be
considered to be approximately sparse. To explain the sparsity
of b, we define a vector p ∈ CNp to contain phase errors due to
phase noise, i.e., p[n] = e jφn , and write d(ε) = p � aN (ε). By
the multiplication-convolution duality of the Fourier transform,
it follows that the DFT of d(ε) is a circular convolution of
the DFTs of p and aN (ε). As p models a slowly varying
random phase error process, it has significant low frequency
components and negligible high frequency components [33].
Therefore, the DFT of p is approximately sparse. The DFT
of aN (ε) is approximately sparse due to its Vandermonde
structure [14]. As circular convolution of sparse signals results
in a sparse signal, it can be concluded that b is approximately
sparse.

Now, we derive a quantized sparse bilinear formulation for
the joint estimation problem. Using (6), the quantized received
block Y in (5) can be expressed as

Y = Qq

(
UNrxCFdiag

(
U∗Np

b
)
+ V

)
. (7)

We define the NpNrx × 1 vectors y = vec (Y), z = vec (Z) and
v = vec (V), and the NrxNtxL × 1 vector c = vec (C). In vector
notation, (6) can be written as

z = diag
(
U∗Np

b ⊗ aNrx (0)
)

vec
(
UNrxCF

)
. (8)

Notice that aNrx (0) is just the all ones vector in Nrx dimen-
sion. Using the property vec (PQR) =

(
RT ⊗ P

)
vec (Q), the

received vector y is expressed as

y = Qq

(
diag

(
U∗Np

b ⊗ aNrx (0)
) (

FT ⊗ UNrx

)
c + v

)
. (9)

We define the matrices G = U∗Np
⊗ aNrx (0) and A =(

F ⊗ UNrx

)T to rewrite (9) as

y = Qq (diag (Gb)Ac + v) . (10)
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Estimating the phase errors and the channel is equivalent to
estimating b and c from y in (10). The joint estimation problem
in (10) can be observed to be a noisy quantized bilinear
problem in b and c, subject to the sparsity of b and c.

B. Limitations of existing techniques

1) CFO robust methods: Existing sparse channel estima-
tion methods that are robust to CFO discard the phase of
the channel measurements. A hashing technique based non-
coherent beam alignment algorithm was proposed in [17] for
analog beamforming systems. This method, however, assumes
fine control over the phase shifters, which is not necessarily
the case with mmWave systems. The received signal strength-
based method in [18] accounts for the limited phase control
and uses pseudo-random phase shifts for compressive beam-
training. The solutions in [17] and [18] assume a narrowband
mmWave system and perform beam-alignment with just the
magnitude of the channel measurements. These methods,
however, cannot be used in standard one-bit receivers that use
a zero threshold, as energy detection with undithered one-bit
ADCs is not feasible unless additional circuit components are
used. For example, Q1 (r) and Q1 (α r) are the same for any
α > 0. As the only information provided by an undithered
one-bit ADC is phase quantized to 4 levels, discarding it due
to phase errors leaves no information.

2) Joint estimation using lifting: Lifting [21] [34] is a con-
vex relaxation technique that transforms a bilinear problem to
a higher dimensional one and then recovers the original vectors
by solving the higher dimensional problem. We describe the
lifting technique applied to the joint estimation problem in
(10). With M denoting the number of entries in y or z, i.e.,
M = NrxNp, the mth entry of z can be written as

zm = vecm (diag (Gb)Ac) (11)

= G(m)bA(m)c (12)

= G(m)bcT
(
A(m)

)T
(13)

=
(
A(m) ⊗ G(m)

)
vec

(
bcT

)
, ∀m ∈ IM . (14)

We define a lifted variable x = vec
(
bcT

)
and a measurement

matrix Φ ∈ CM×NpNrxNtxL , such that Φ(m) = A(m) ⊗ G(m).
Hence, the quantized measurements in (10) can be expressed
as

y = Qq (Φx + n) . (15)

The lifted vector x in (15) is sparse as it is just an outer
product [20] of the sparse vectors b and c. Several CS-based
algorithms [6] [35] can be used to recover x from the possibly
under-determined noisy quantized system in (15). Using the
SVD of the higher dimensional matrix estimate, the vectors
in the joint estimation problem can be estimated upto a scale
factor.

Lifting followed by the SVD was applied to joint CFO and
narrowband channel estimation for one-bit receivers in our
previous work [19]. The main issue in extending our method
in [19] to wideband systems arises due to the large dimen-
sionality of the lifted problem. For instance, the dimension of
x to perform joint CFO and channel estimation in wideband

systems would be NrxNtxNpL. Using lifting necessarily implies
solving for millions of variables for typical wideband mmWave
systems, due to the large number of antennas and the need for
additional pilots to compensate for the heavy quantization in
low resolution systems.

The limitations of the existing phase error robust and joint
estimation solutions in terms of architectural scalability and
computational complexity, motivate the need to develop new
low complexity joint estimation algorithms that can be applied
to wideband systems and low resolution receivers.

IV. MESSAGE PASSING BASED JOINT CFO AND CHANNEL
ESTIMATION

In this section, we give a brief introduction to PBiGAMP
[22] and discuss its application to the quantized sparse bilinear
problem in (10). We exploit the inherent structure in our
problem to derive a low complexity and memory efficient
implementation of PBiGAMP for the joint estimation. Fur-
thermore, we explain the CFO propagation effect induced by
circulant training matrices that prevents further reduction in
the computational complexity.

A. Introduction to PBiGAMP

The joint estimation problem in (10) can be solved using
PBiGAMP [22] by considering b, c, z and y of (8) and (10)
as realizations of random vectors, say b, c, z and y. Let bi ,
ck , zm and ym be the elements of these random vectors. In
general, deriving the closed form Minimum Mean-Squared
Error (MMSE) estimates [36] of b and c is difficult as it
requires marginalizing the joint PDF of b and c conditioned
on y = y. Using ideas from message passing, PBiGAMP
can obtain the MMSE estimates of both the vectors in the
quantized sparse bilinear problem.

We explain message passing using the factor graph [37] in
Fig. 2, which shows the dependency between y, the random
vectors (b, c) and their prior distributions. The circular nodes
in the factor graph are called as variable nodes as they
represent the random variables. The rectangular nodes in the
factor graph are called as factor nodes and they contain
the prior distribution of a random variable or the likelihood
function associated with an observation. The messages in
message passing are essentially probability distributions, also
called as beliefs. The idea underlying message passing is to
perform belief flows iteratively between the factors and the
variables until all the variable nodes reach a consensus on their
marginal probability distributions [37]. As the factor graph
for joint estimation is strongly connected, standard message
passing can be computationally intractable.

Using ideas from Approximate Message Passing [10],
PBiGAMP simplifies the messages by assuming a large num-
ber of variable nodes. Simulation results in [22], that show that
PBiGAMP outperforms the lifting technique for IID Gaussian
measurement matrices, motivate applying it to our problem.
Furthermore, PBiGAMP performs optimization over the same
number of variables in the problem, unlike lifting [21] that
solves the problem in a higher dimensional space. For the joint
estimation problem in typical wideband mmWave systems,
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PBiGAMP is memory efficient over lifting by several orders
of magnitude.
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Fig. 2. The factor graph of quantized sparse bilinear message passing for
joint CFO and channel estimation. The rectangular nodes, called as factors,
contain the likelihood functions corresponding to the received samples or the
sparse priors. Messages are sent between the factor nodes and the variable
nodes until the marginal probability distributions of the variables converge.

B. PBiGAMP for joint estimation

In this section, we explicitly state PBiGAMP [22] for joint
estimation in (10) and describe the information contained in
the factor nodes of Fig. 2. To be consistent with the notation
used in [22], we rewrite the random variable dependency
corresponding to (11) in the tensor notation as

zm =
Nb∑
i=1

Nc∑
k=1

z(i,k)m bick, (16)

where Nb = Np, Nc = NrxNtxL, and z(i,k)m is an element of a
third order tensor given by

z(i,k)m = Gm,iAm,k . (17)

As ym = Qq(zm + vm), the output likelihood function corre-
sponding to the mth channel measurement, i.e., pym |zm (ym | z),
can be expressed as

pym |zm (ym | z) =
F

(√
2sign(Re{ym })Re{z }

σ

)
F

(√
2sign(Im{ym })Im{z }

σ

)
q = 1

1
πσ2 e−

‖ym−z ‖
2

σ2 q = ∞
,

(18)

where F (·) is the cumulative distribution function of the
standard normal distribution. The factor nodes in Fig. 2, that
contain likelihood functions in (18), ensure that the solution
to the bilinear problem is faithful to the observed channel
measurements.

The sparsity of the vectors b and c is incorporated by
assuming parametrized Bernoulli-Gaussian (BG) distributions
for their priors pb (b) and pc (c). Prior work on linear CS has
shown that message passing with BG distributions can perform
better sparse recovery than LASSO in many settings [38]. In
GAMP-based channel estimation [12], the BG distribution was

successfully used as a generative prior for mmWave channels
that are approximately sparse. For simplicity, it is assumed
that each entry of b is independent of the other and identically
distributed as pb. Similarly, the entries of c are assumed to
be IID, with pc as the distribution. Furthermore, the vectors
b and c are assumed to be independent of each other. Let λb
and λc denote the sparsity fraction of b and c. Let σ2

b and
σ2

c be the variances of the coefficients corresponding to the
non-zero support of the vectors b and c. With δ (x) used to
represent the Dirac-delta function, the BG distributions pb and
pc can be given as

pb (x) = λbδ (x) + (1 − λb)N(0, σ2
b ), (19)

pc (x) = λcδ (x) + (1 − λc)N(0, σ2
c ). (20)

It can be observed from (19) that each entry of b is 0 with
a probability of λb and is distributed as Gaussian otherwise.
As a result, the BG priors in (19) and (20) can model sparse
vectors for an appropriate λb and λc.

The PBiGAMP algorithm from [22] to obtain the MMSE
estimates of b and c in (10) is summarized in Table I. The like-
lihood defined in (18), and the priors defined in (19) and (20),
are used in (D1)-(D3) of Table I. In practice, the parameters
governing pb and pc, i.e., λb, λc, σb and σc, are not known
apriori. To overcome this problem, PBiGAMP is embedded
within an Expectation Maximization (EM) algorithm [22]. EM
considers b and c as hidden variables, and maximizes the
likelihood that y = y over the unknown parameters. To do so,
the marginal posterior probabilities of the hidden variables,
i.e., pbi | y=y and pci | y=y are needed [22]. As it is difficult
to compute the true marginal posteriors, PBiGAMP marginal
estimates, i.e., pbi |qi

(b | q̂i(t); νqi (t)) and pck |rk(c | r̂k(t); νrk (t))
in Table I, are used instead of the true marginals [22]. For
a detailed description on how to use EM with P-BiGAMP,
we refer the interested reader to Section III-J of [22]; the
embedding is based on EM-GAMP algorithm in [11].

The channel and the phase error vector can be derived using
appropriate transformations over the PBiGAMP estimates.
Due to the bilinear nature of the underlying problem in (10),
the vector ĉ obtained from PBiGAMP is an estimate of the
vectorized version of C, the angle-delay domain channel in
(7), upto a scale factor. Let Ĉ ∈ CNrx×NtxL denote the angle-
delay domain estimate of the wideband channel, such that
vec

(
Ĉ
)
= ĉ. It can be observed from (6) that C is just a

concatenation of the angle domain representation of all the
L taps of the MIMO channel. Therefore, the `th tap of the
antenna domain MIMO channel, upto a scale factor, can be
derived as

Ĥ [`] = UNrx

[
Ĉ(`Ntx+1), Ĉ(`Ntx+2), . . ., Ĉ(`Ntx+Ntx)

]
U∗Ntx .

(21)
The vector b̂ derived from PBiGAMP is an estimate of b, the
DFT of the phase error vector d(ε) upto a scale factor. The
magnitude of the scaling can be estimated from the observation
that ‖d(ε)‖2 =

√
Np. The phase of the scale factor, however,

cannot be estimated as (̂be jΩ, ĉe−jΩ) is a solution to (10) for
any Ω ∈ [0, 2π). We define κ =

√
Np/‖b̂‖2 and the phase error
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Definitions:
pzm |pm

(
z | p̂;νp

)
,

pym |zm(ym | z)N(z ;p̂,νp )∫
z′ pym |zm(ym | z

′)N(z′;p̂,νp ) (D1)

pck |rk(c | r̂ ;νr ) , pc(c)N(c;r̂,νr )∫
c′ pc(c′)N(c′;r̂,νr )

(D2)

pbi |qi(b | q̂;νq ) , pb(b)N(b;q̂,νq )∫
b′ pb(b

′)N(b′;q̂,νq ) (D3)

Initializations:
∀m : ŝm(0) = 0 (I1)

∀i, k : choose b̂i (1), νbi (1), ĉk (1), ν
c
k
(1) (I2)

for t = 1, . . .Tmax

∀m, i : ẑ(i,∗)m (t) =
∑Nc

k=1 z
(i,k)
m ĉk (t) (R1)

∀m, k : ẑ(∗,k)m (t) =
∑Nb

i=1 b̂i (t)z
(i,k)
m (R2)

∀m : ẑ(∗,∗)m (t) =
∑Nb

i=1 b̂i (t)ẑ
(i,∗)
m (t) or

∑Nc
k=1 ĉk (t)ẑ

(∗,k)
m (t) (R3)

∀m : νpm(t) =
∑Nb

i=1 ν
b
i (t) |ẑ

(i,∗)
m (t) |2 +

∑Nc
k=1 ν

c
k
(t) |ẑ

(∗,k)
m (t) |2 (R4)

∀m : νpm(t) =ν
p
m(t) +

∑Nb
i=1 ν

b
i (t)

∑Nc
k=1 ν

c
k
(t) |z

(i,k)
m |2 (R5)

∀m : p̂m(t) = ẑ
(∗,∗)
m (t) − ŝm(t−1)νpm(t) (R6)

∀m : νzm(t) = var{zm | pm = p̂m(t);νpm(t)} (R7)
∀m : ẑm(t) = E{zm | pm = p̂m(t);νpm(t)} (R8)
∀m : νsm(t) = (1 − νzm(t)/ν

p
m(t))/ν

p
m(t) (R9)

∀m : ŝm(t) = (ẑm(t) − p̂m(t))/ν
p
m(t) (R10)

∀k : νr
k
(t) =

( ∑M
m=1 ν

s
m(t) |ẑ

(∗,k)
m (t) |2

)−1
(R11)

∀k : r̂k (t) = ĉk (t) + νrk (t)
∑M

m=1 ŝm(t)ẑ
(∗,k)
m (t)∗

− νr
k
(t)ĉk (t)

∑M
m=1 ν

s
m(t)

∑Nb
i=1 ν

b
i (t) |z

(i,k)
m |2 (R12)

∀i : νqi (t) =
( ∑M

m=1 ν
s
m(t) |ẑ

(i,∗)
m (t) |2

)−1
(R13)

∀i : q̂i (t) = b̂i (t) + ν
q
i (t)

∑M
m=1 ŝm(t)ẑ

(i,∗)
m (t)∗

− ν
q
i (t)b̂i (t)

∑M
m=1 ν

s
m(t)

∑Nc
k=1 ν

c
k
(t) |z

(i,k)
m |2(R14)

∀k : νc
k
(t+1) = var{ck | rk = r̂k (t);νrk (t)} (R15)

∀k : ĉk (t+1) = E{ck | rk = r̂k (t);νrk (t)} (R16)
∀i : νbi (t+1) = var{bi | qi = q̂i (t);ν

q
i (t)} (R17)

∀i : b̂i (t+1) = E{bi | qi = q̂i (t);ν
q
i (t)} (R18)

if
∑M

m=1 |ẑ
(∗,∗)
m (t) − ẑ

(∗,∗)
m (t−1) |2 ≤ τstop

∑M
m=1 |ẑ

(∗,∗)
m (t) |2, stop (R19)

end
Output: b̂ = b̂ (t) , ĉ = ĉ (t) , T = t .

TABLE I
THE PBIGAMP ALGORITHM FROM [22].

vector estimate as d̂ = κU∗Np
b̂. As d̂ and d can differ in a

global phase, i.e., Ω, the nth entry of d̂ can be modeled as

d̂[n] = e j(εn+φn+Ω) + w[n], (22)

where w[n] is a zero mean IID noise process. We use the
scalar variance approximation in PBiGAMP [22] to compute
the variance of w[n] as vw = κ2 ∑Nb

i=1 vi
b(T)/Np. Now, ε and Ω

in (22) are considered as state space variables to be estimated
from d̂ [39]. The phase error in (22), i.e., εn + φn + Ω, is a
linear function of the state space variables that is perturbed by
an unknown Wiener phase noise. The nth observation in (22)
is a noisy non-linear function of the phase error. For the state
space definitions and the model in (22), we use an extended
Kalman filter (EKF) [39] to estimate ε from d̂. A detailed
treatment on how to apply EKF to (22) can be found in [13].

In this paper, we exploit the compressibility of the phase
error vector in the DFT basis for joint estimation. It is possible,
however, to incorporate the statistics of the phase noise by
replacing the nodes corresponding to b in Fig. 2 with the phase
error variables and adding factors corresponding to the phase
noise process. In such case, the message passing algorithm
must handle the non-linear dependence of z on the phase
errors.

C. PBiGAMP: From theory to practice

A standard implementation of the algorithm in Table I is
memory and computationally intensive as it involves repeated
operations over a third order tensor [22]. In this section, we
provide insights into the key equations of Table I, and describe
our low complexity implementation for joint CFO and channel
estimation.

The equations in PBiGAMP are essentially determined by
the belief flows from the factor nodes to the variable nodes,
and vice versa. Without loss of generality, we describe the
message flow between the variable node b1 and the factor
node y1 in Fig. 2. In standard message passing, the message
sent from a factor node to b1 essentially represents the PDF of
b1 presumed by that factor node. In a fully connected factor
graph, the node b1 receives messages from all the M factor
nodes ({yi}Mi=1) in addition to its prior distribution pb. As b1
receives several beliefs from different factors, the belief sent
by b1 to y1 is just a normalized product of all the beliefs
received by b1 except the one from y1. For generic priors and
likelihood functions in the factor graph, performing standard
message passing can be difficult as the belief flows are flows
of PDFs that are functions.

PBiGAMP simplifies standard message passing using the
central limit theorem (CLT) and the Taylor series approxima-
tion. Notice that y1 receives beliefs from all its neighbouring
variable nodes and contains the likelihood function in itself.
The belief sent from y1 to b1 is computed by multiplying
the likelihood function, with all the incoming beliefs to y1
except the one from b1, and then integrating over all the
random variables except b1. The multiplication followed by
integration essentially yields the PDF of b1 presumed by the
factor node y1. The integration is often multidimensional and
can be difficult to compute. If y1 depends on a large number
of independent variable nodes through a linear function, then
the linear combination can be approximated as a Gaussian
random variable using the CLT [10]. In such case, the variable
nodes can send just the mean and variances of the PDFs to
the factors and this information is sufficient to compute the
mean and variance of the Gaussian random variable, as seen
in (R3) and (R5) of Table I. The message sent from y1 to b1
can now be computed by multiplying the likelihood at y1 with
the compound Gaussian PDF, and marginalizing the product
with respect to b1. In general, the likelihood function can be
non-linear in nature and can yield a complicated PDF of b1
[22]. Using a second order Taylor series expansion for the
log PDF [10], PBiGAMP simplifies the belief sent from y1 to
b1 to a Gaussian whose mean and variance can be computed
from (R7)-(R9) of Table I. For q-bit ADCs, the closed form
expressions for the conditional mean and variance in (R7)
and (R8) can be found in [40, Appendix A]. Unlike standard
message passing, PBiGAMP is computationally tractable as
the messages contain just the mean and variances of the PDFs.

After several approximate message flows between the factor
nodes and the variable nodes, PBiGAMP is expected to
converge. The MMSE of b1 is computed as the expectation of
the effective marginal, i.e., the normalized product of all the M
Gaussian PDFs received by b1 from the factor nodes and the
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Operation Complexity

UNrx Ĉ (t)F O
(
NrxNtxLNp

)
U∗Np

b̂ (t) O
(
NplogNp

)
(R3), (R13) O

(
NrxNp

)
(R4), (R5), (R11) O

(
NtxLNp

)
(R12), (R14) O

(
NrxNtxLNp

)
TABLE II

COMPLEXITY OF A SINGLE PBIGAMP ITERATION USING A FAST
IMPLEMENTATION.

prior distribution on b1. Notice that the normalization has to
be done to ensure that the PDF integrates to 1. The expectation
step for the MMSE of b1 is given in (R18) using (R11) and
(R12) as the intermediate steps. Similarly, the expectation for
the MMSE of c1 is given in (R16) using (R13) and (R14) as
the intermediate steps. Thus, PBiGAMP provides estimates of
the vectorized sparse channel and the DFT of the phase error
vector.

The generic implementation of PBiGAMP is computation-
ally expensive primarily due to (R1), (R2), (R5), (R12) and
(R14) in Table I. It can be verified that each of these operations
have a complexity of O

(
N2

rxN2
p NtxL

)
for a single PBiGAMP

iteration to perform joint estimation. For instance, (R1) re-
quires computing the scalar ẑ(i,∗)m (t) for every m ∈ IM and
i ∈ INb , Therefore, (R1) demands O(MNbNc) computations,
as each scalar computation requires Nc multiplications. As
M = NrxNp, Nb = Np and Nc = NrxNtxL for the joint
estimation, (R1) has a complexity of O

(
N2

rxN2
p NtxL

)
for

every PBiGAMP iteration. By exploiting the structure in the
joint estimation problem, the complexity of PBiGAMP can
be significantly reduced. A detailed description on our low
complexity implementation can be found in the Appendix. Our
implementation exploits the Kronecker product structure of G
and A in (17), and the fast Fourier transform.

The complexity of PBiGAMP operations in our implemen-
tation is summarized in Table II. The entries in Table II
are found using the complexity of matrix multiplications
and FFTs. It can be noticed that the overall complexity
of PBiGAMP using our implementation is O

(
NrxNpNtxL

)
,

thereby achieving a speedup factor of NpNrx compared to the
generic implementation. After all possible simplifications of
PBiGAMP for joint estimation, training design is possibly
the only frontier that can be exploited to further reduce the
computational complexity.

D. CFO propagation effect: A barrier to complexity reduction
with circulant training

In this section, we explain how a reasonable training so-
lution that allows a low complexity implementation does not
permit joint estimation. For simplicity of exposition, we con-
sider a narrowband system, i.e., L = 1. We define H ∈ CNrx×Ntx

as the narrowband channel and C = U∗Nrx
HUNtx as its angle

domain representation.
The complexity of our PBiGAMP implementation is deter-

mined by matrix multiplications with F, a matrix constructed
from the Ntx×Np training matrix T. For the narrowband setting,

it can be observed from (6) that F = U∗Ntx
T. For a generic

matrix M ∈ CNrx×Ntx , standard matrix multiplication in MF
requires a complexity of O(NrxNtxNp). A possible approach
to reduce this complexity is to set Np = Ntx, and choose T
as an Ntx × Ntx circulant training matrix [12]. When T is
a circulant matrix, it can be diagonalized using the DFT as
U∗Ntx

TUNtx = ΛT, where ΛT is a diagonal matrix. Equivalently,
U∗Ntx

T = ΛTU∗Ntx
or F = ΛTU∗Ntx

. The matrix MF is then
MΛTU∗Ntx

. As a result, the fast Fourier transform can be used
to compute MF for a complexity of O(NrxNtxlogNtx). In this
section, we show that circulant training is not suitable for
the joint estimation problem in (10) as it results in CFO
propagation.

The CFO propagation effect results in a class of sparse
channels and CFOs that are consistent with the observed
channel measurements. To explain this effect, we define Λε =

diag(d(ε)) and consider the noiseless unquantized received
block in (6), i.e.,

Z = UNrxCU∗NtxTdiag(d(ε)) (23)
= UNrxCΛTU∗NtxΛε . (24)

For our analysis, we assume that there is no phase noise, i.e.,
β = 0, and choose the CFO (ε) to be an integer multiple of
2π/Np. We define an integer d = Npε/2π to interpret Λε as a
matrix that contains eigenvalues of the d circulant delay matrix
Jd ∈ C

Np×Np , i.e., JdUNtx = UNtxΛε . As Λ∗ε = Λ−ε , it can be
shown that JNtx−dUNtx = UNtxΛ∗ε . Furthermore, as JNtx−d is a
real matrix and UNtx = U∗Ntx

, we have U∗Ntx
Λε = JNtx−dU∗Ntx

.
Therefore, Z in (24) can be expressed as

Z = UNrxCΛTJNtx−dU∗Ntx . (25)

From a channel recovery perspective, T must be full rank. As
a result, Λ−1

T exists and is well defined. We define C(ε) =
CΛTJNtx−dΛ−1

T to rewrite (25) as

Z = UNrxCΛTJNtx−dΛ−1
T ΛTU∗Ntx (26)

= UNrxC(ε)ΛTU∗Ntx (27)
(a)
= UNrxC(ε)ΛTU∗NtxΛ0, (28)

where (a) follows from the observation that Λ0 is an identity
matrix. Comparing (28) with (24), it can be observed that
the beamspace matrix C and a CFO of ε , result in the
same received samples as the matrix C(ε) and a zero CFO.
Furthermore, C(ε) has the same sparsity as that of C, as
scaling and circulant shifting operations due to ΛTJNtx−dΛ−1

T
do not change the sparsity of a signal. Therefore, (C(ε), 0)
is also a solution to the sparse quantized bilinear problem
that is consistent with the observed channel measurements.
In general, it can be shown that for any ξ that is an integer
multiple of 2π/Np, C(ξ) and ε − ξ are candidate solutions for
the beamspace channel and CFO. As a result, it is not possible
to determine the true channel and CFO with circulant training-
based joint estimation. We call this as the CFO propagation
effect as circulant training propagates CFO into the channel
in an inseparable manner.

In this work, we consider circulantly shifted Zadoff-Chu
(ZC) sequences proposed in [12] to illustrate the CFO prop-
agation effect. It must be noted, however, that this effect can
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be observed with other circulant training blocks. Designing
structured training blocks that exploit fast transforms and
ensure a unique optimal point under a sparse prior is an
interesting direction for future work.

V. SIMULATIONS

In this section, we provide simulation results for the pro-
posed quantized sparse bilinear message passing-based joint
CFO and channel estimation algorithm. We consider a hard-
ware architecture in Fig. 1 that uses a uniform linear array of
antennas and choose Ntx = Nrx = 32. In this paper, we assume
that the receiver is equipped with one-bit ADCs, i.e., q = 1.
To obtain a performance benchmark for one-bit receivers,
we evaluate our algorithm for full resolution receivers, i.e.,
q = ∞, although they may not be practical at large bandwidths
due to high power consumption. We consider a mmWave
carrier frequency of 38 GHz and an operating bandwidth of
W = 100 MHz [41], which corresponds to a symbol duration
of T = 10 ns.

We describe the simulation parameters of the clustered
mmWave channel model in (3). We consider L = 16 taps
to model the mmWave channel in the 100 MHz bandwidth.
Such model is good enough for RMS delay spreads upto 33 ns,
assuming L = 5Wτrms. Our assumption is reasonable as 95%
of the measured RMS delay spreads at 38 GHz were found
to be less than 37.8 ns [42]. The measurements in [42] were
made in a UMi-LoS environment using a resolution of 2 ns. We
assume Ncs = 4 clusters, each comprising of 10 rays and the
complex ray gains as IID standard normal random variables.
Furthermore, the AoAs and AoDs of the rays within a cluster
are chosen from a laplacian distribution corresponding to an
angle spread of 15◦. The wideband channel is scaled so that
E

[∑
` ‖H [`]‖2F

]
= E

[
‖C‖2F

]
= NrxNtx, where the expectation

is taken across several channel realizations. The channel matrix
generated with the aforementioned parameters is practical at
mmWave and the angle-delay domain representation, i.e., C,
can be verified to be approximately sparse.

Our PBiGAMP-based approach exploits compressibility of
the phase error vector in the Fourier basis. To evaluate the
worst case performance of our algorithm, we choose a CFO
that is maximally off grid and within the practical limits.
As the resolution of the DFT grid is 2π/Np, we choose
ε = 45π/1024 for a training block of Np = 1024 pilots.
The corresponding analog domain CFO can be verified to
be 2.2 MHz, which is about 58 ppm of the carrier frequency.
We set β = 0.067 rad as the standard deviation of the
effective Wiener phase noise process at the RX. This parameter
translates to a phase noise level of about −82 dBc/Hz at 1 MHz
offset for the RX oscillator [27], and meet the specifications
of a 38 GHz oscillator [43].

The performance of our joint estimation algorithm is evalu-
ated using the Normalised Mean Square Error (NMSE) of the
channel estimate and the mean square error (MSE) of the CFO
estimate ε . For a given SNR, the variance of the IID Gaussian
noise, i.e., σ2 in (1), is chosen such that

SNR = 10log10

(
‖T‖2F
Npσ2

)
. (29)

For our simulations, we consider training blocks comprising
of IID QPSK entries, IID Gaussian entries, and shifted ZC
sequences proposed in [12]. For mmWave systems, the IID
QPSK training is more practical than the IID Gaussian one,
as it can be generated using a TX architecture that is as simple
as analog-beamforming with 2-bit phase shifters.

A. NMSE of the channel estimate

Due to the bilinear nature of the underlying problem, we can
only estimate the wideband channel or equivalently C upto
a scale factor. Furthermore, any positive amplification of C
results in the same received block in one-bit receivers at high
SNR. Therefore, the NMSE of the channel estimate is defined
as

NMSE = E





C − γĈ




2

F

‖C‖2F

 , (30)

where γ is a scalar such that γ = arg min
a




C − aĈ





F
for a given

C and Ĉ. The matrix γĈ can be considered as the normalized
angle-delay domain estimate of the wideband channel. The
function E[.] denotes the empirical expectation and is taken
across several channel and training realizations. For a given
realization of the channel and its estimate, we define the

Normalized Squared Error (NSE) as



C − γĈ




2

F
/‖C‖2F.

For a sequence of Np = 1024 pilots, our joint estimation
algorithm recovered the channel within acceptable limits with
a probability greater than 0.95, at a SNR of 0 dB using
IID QPSK training. The number of outliers in this case
is determined by the phase-transition region of PBiGAMP
[22]. It can be observed from Fig. 3 that the probability
of successful recovery monotonically increases as a function
of the training length and quickly approaches 1. To ignore

-15 -12.5 -10 -7.5 -5 -2.5 0

x(dB)
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Np = 512
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Np = 4096

Fig. 3. The empirical CDF of the Normalized Squared Error of the channel
estimate obtained using an IID QPSK training, at a SNR of 0 dB in a one-bit
receiver. The reconstruction performance in terms of the recovery probability
and the mean monotonically improve with the number of pilots.

the effect of outliers, the channel NMSE and CFO MSE
results we report are averages over 95% of the realizations
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for Np = 1024. In practice, the failure probability can be
lowered by increasing the training length or by designing a
retransmission protocol that accounts for the failure. As seen in

512 1024 2048 3072 4096 5120

Number of pilots (Np)

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

N
M
S
E
(d
B
)

IID QPSK, 1-bit
IID QPSK, ∞-bit

Fig. 4. The NMSE of the channel estimate as a function of the training
length, for an IID QPSK training at a SNR of 0 dB. The NMSE monotonically
decreases with the training length for one-bit and full resolution receivers. Due
to the quantization noise in one-bit receivers, NMSE in the one-bit case is
higher than the full resolution one.

Fig. 4, the NMSE monotonically decreases with the number of
pilots. In practical wireless systems, the choice of the number
of pilots is determined by the channel coherence time [3].

In Fig. 5, we plot the NMSE as a function of the SNR
for various training sequences. It can be observed that the
reconstruction error is approximately the same for IID QPSK
training and IID Gaussian training matrices. For the one-bit
case, the NMSE saturates at high SNR because the recovery
performance is limited by the quantization noise. As shown in
Fig. 4, the channel reconstruction error in one-bit receivers can
be further decreased by using a higher number of pilots for the
training. It can be noticed from Fig. 5 that joint estimation with
circulantly shifted ZC sequences proposed in [12] performs
poorly. The failure due to such structured matrices can be
attributed to the CFO propagation effect and confirms with
our analysis in Section IV-D.

B. MSE of the CFO estimate

The CFO in our algorithm is obtained using an Extended
Kalman Filter [39] on the inverse DFT of b̂. If ε̂ is the estimate
of the CFO in the digital domain, the MSE of the CFO estimate
is given by E

[
(ε − ε̂)2

]
. For a sequence of 1024 pilots, the

MSE of ε̂ is shown as a function of the SNR in Fig. 6, for IID
QPSK and IID Gaussian training matrices. It can be noticed
from Fig. 6 that the MSE of the CFO estimate saturates even
for the full resolution case because the performance of the EKF
is limited by the phase noise at high SNR [44]. Similar to the
NMSE of the channel estimate, the MSE of ε̂ is expected to
saturate at high SNR for one-bit receivers due to quantization
noise. The CFO estimation error, however, is determined by
the phase noise [44] because the CFO MSE for the one-bit
case approaches that of the full resolution one. As expected,
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Fig. 5. NMSE of the channel estimate obtained with one-bit and full resolution
channel measurements for Np = 1024. Joint estimation is possible with IID
Gaussian and IID QPSK training, but not with shifted ZC training due to the
CFO propagation effect discussed in Section IV-D. It can be observed that the
NMSE for the one-bit case saturates at high SNR due to quantization noise.
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Fig. 6. MSE of the CFO estimate as a function of SNR for a training length
of 1024. A maximally off-grid CFO of ε = 45π/1024 was chosen to evaluate
the performance. At high SNR, the MSE saturates for both the one-bit case
and the infinite resolution case due to phase noise [44].

the CFO MSE decreases with the number of pilots and is
shown in Fig. 7.

C. Performance invariance with the CFO

In this section, we show that the performance of our joint
estimation approach is invariant to the CFO within practical
limits. As an example, we evaluate our algorithm for different
values of the CFO in the range [−40 ppm, 40 ppm] of f1.
These limits were chosen according to the IEEE 802.11ad
specifications. From Fig. 8, we see that the reconstruction
errors in the channel is constant across the practical range
of the CFO. The invariance arises due to the use of Bernoulli-
Gaussian prior for the synchronization variables, that achieves
robustness against off-grid leakage effects.
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Fig. 7. MSE of the CFO estimate as a function of the training length for a
SNR of 0 dB. Here, the CFO in the system was fixed to ε = 45π/1024, and
the phase noise standard deviation to β = 0.067 rad. The MSE decreases with
the number of pilots and the performance gap between the one-bit case and
the full-resolution case is negligible. The sharp decrease in the CFO MSE
can be attributed to the phase-transition effect of PBiGAMP [22].
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Fig. 8. For a SNR of 0 dB, the plot shows the invariance of the channel NMSE
over the practical range of the CFO. The phase noise standard deviation was
set to 0.067 rad, and 1024 pilots were used for the joint estimation. It can be
observed from the plot that our joint estimation algorithm is robust to leakage
effects that arise due to an off-grid CFO.

VI. CONCLUSIONS

Most sparsity-aware channel estimation algorithms for
mmWave systems assume perfect synchronization and perform
poorly in the presence of such errors. In this paper, we
propose a message passing based algorithm that can leverage
the sparsity of the wideband mmWave channel in addition
to the compressibility of the phase error vector. We exploit
the structure in the joint estimation problem to provide a low
complexity implementation of a parametric bilinear message
passing algorithm. Unlike the existing methods that are spe-
cific to certain hardware architectures or use non-coherent
techniques, our technique can be adapted to perform joint
estimation with other mmWave architectures.

Simulation results show that it is possible to perform joint

CFO and channel estimation using IID QPSK and IID Gaus-
sian training matrices. The CFO propagation effect proposed
in this paper shows that the use of circulant training results
in a continuum of optimum solutions for the joint estimation
problem. Extending our joint estimation algorithm to a multi-
user setting is an interesting research direction. In our future
work, we will also consider frame synchronization while
ensuring low complexity and scalability of our algorithm to
different mmWave architectures.

ACKNOWLEDGMENT

The authors would like to thank Jianhua Mo and Philip
Schniter for helping them in getting started with the GAMP
algorithm.

APPENDIX : FAST IMPLEMENTATION OF PBIGAMP
We describe our fast implementation of PBiGAMP for the

joint estimation in the following sub-sections. The tth iteration
variables of PBiGAMP are defined as b̂ (t) ∈ CNp×1, Ĉ (t) ∈
CNrx×NtxL and Ẑ (t) ∈ CNrx×Np , such that b̂i (t) , ĉk (t) and ẑm (t)
are the ith, k th and mth entries of b̂ (t) , vec(Ĉ(t)) and vec(Ẑ(t)).

1) Operations (R1)-(R3): For an io ∈ INp , we have

ẑ(io,∗)m (t) =
Nc∑
k=1

z(io,k)m ĉk(t) (31)

=

Nb∑
i=1

Nc∑
k=1

z(i,k)m eio,Np
i ĉk(t) (32)

= vecm
(
UNrxĈ(t)Fdiag(U∗Np

eio,Np )

)
(33)

= vecm
(
UNrxĈ(t)Fdiag(U∗Np(io )

)

)
, (34)

where the compact form in (34) is obtained by going back
from the tensor formulation to the original bilinear model in
(6). Likewise, for a ko ∈ INc , we have

ẑ(∗,ko )m (t) =
Nb∑
i=1

Nc∑
k=1

z(i,k)m b̂i(t)e
ko,Nc
k

(35)

= vecm
(
UNrxero,Nrx (eco,NtxL)TFdiag(U∗Np

b̂(t))
)
(36)

= vecm
(
UNrx (ro )

F(co )diag(U∗Np
b̂(t))

)
, (37)

where (ro, co) correspond to the row and column of the Nrx ×
NtxL matrix version of eko,Nc , with

ko = (co − 1)Nrx + ro . (38)

Similarly, (R3) can be computed as

ẑ(∗,∗)m (t) = vecm
(
UNrxĈ(t)Fdiag(U∗Np

b̂(t))
)
. (39)

To evaluate (39), the product Ĉ(t)F can be found using
NrxNtxLNp computations. Using the FFT over the resultant
product, UNrxĈ(t)F can be computed with an additional com-
plexity of O(NpNrxlogNrx). Finally, the complexity to multi-
ply the resultant Nrx × Np matrix with the IFFT of b̂(t) is
O(NplogNp)+NrxNp. Therefore, the computational complexity
of (39) is O(NrxNtxNpL), unlike O(N2

rxN2
p NtxL) of the generic

implementation using (R1)-(R3).



12

2) Operations (R4) , (R5): It can be noticed from (34) that���̂z(i,∗)m (t)
��� is invariant with respect to i and is given by���̂z(i,∗)m (t)

��� = 1√
Np

vecm
(���UNrxĈ(t)F

���) . (40)

Using the invariance property in (40), a compact version of
the first summand in (R4) can be expressed as

Np∑
i=1

vbi

���̂z(i,∗)m (t)
���2 = ∑Np

i=1 v
b
i

Np
vecm

(���UNrxĈ(t)F
���2) . (41)

For the second summand in (R4), it can be shown from (37)
that���̂z(∗,ko )m (t)

��� = 1
√

Nrx
vecm

(���F(co )diag
(
U∗Np

b̂(t)
)��� ⊗ aNrx (0)

)
.

(42)

Furthermore, as co denotes the column number corresponding
to ko (see (38)),

���̂z(∗,k)m (t)
��� is invariant ∀k ∈ IaNrx \ I(a−1)Nrx ,

where a ∈ INtxL . To use this invariance for efficient com-
putation of the second summand in (R4), we define a row
vector µc(t) ∈ R1×NtxL containing the column-wise mean
corresponding to Nrx × NtxL matrix version of

{
vc
k
(t)

}
k∈INcas

µcn(t) =
1

Nrx

∑
vck (t)

k∈InNrx\I(n−1)Nrx

. (43)

With some algebraic manipulation, the second summand in
(R4) can be simplified as
Nc∑
k=1

vck (t)
���̂z(∗,k)m (t)

���2= vecm
[(
µc(t)

���Fdiag(U∗Np
b̂(t))

���2)⊗aNrx (0)
]
.

(44)
To simplify the computations involved in (R5), we expand the
summand using (17) as

Nb∑
i=1

Nc∑
k=1

vbi (t)v
c
k (t)

���z(i,k)m

���2 = Nb∑
i=1

Nc∑
k=1

vbi (t)v
c
k (t)

��Gm,iAm,k

��2
(45)

=

∑Np
i=1 v

b
i (t)

Np

Nc∑
k=1

vck (t)
���AT

k,m

���2 , (46)

where (46) follows from (45) as
��Gm,i

�� = 1√
Np
, ∀m, i. Besides,

as AT = F ⊗ UNrx , the entries of
��AT

�� are invariant within
blocks of size Nrx × Nrx . With arguments similar to the
simplifications involved in the second summand of (R4), (R5)
can be efficiently evaluated as

Nb∑
i=1

Nc∑
k=1

vbi (t)v
c
k (t)

���z(i,k)m

���2 = ∑Np
i=1 v

b
i (t)

Np
×

vecm
[(
µc(t) |F|2

)
⊗ aNrx (0)

]
. (47)

3) Operations (R11) , (R13): From (42), it can be observed

that
���̂z(∗,k)m (t)

���2 is fixed for m ∈ IaNrx \ I(a−1)Nrx and k ∈
IbNrx \ I(b−1)Nrx , where a ∈ INp and b ∈ INtxL . The invariance

of
���̂z(∗,k)m (t)

���2 with respect to m and k arise because of the

Kronecker product with aNrx (0) and the column invariance in
(38). To exploit this property in computing vr

k
(t) of (R11),

we construct a vector µz(t) ∈ RNp×1 to contain the column-
wise mean corresponding to the Nrx × Np matrix version of{
vsm(t)

}
m∈INpNrx

, i.e.,

µz
k
(t) =

1
Nrx

∑
vsm(t)

m∈IkNrx\I(k−1)Nrx

. (48)

With the above definitions, a simplified version of
(
vrj (t)

)−1

in (R11) can be given as
M∑
m=1

vsm(t)
���̂z(∗,k)m

���2 = veck
[(���Fdiag(U∗Np

b̂)
���2 µz(t)

)
⊗ aNrx (0)

]
.

(49)
From (40), we rewrite

(
v
q
i (t)

)−1 in (R13) as(
v
q
i (t)

)−1
=

M∑
m=1

vsmvecm
(���UNrxĈ(t)F

���2)
= vsvec

(���UNrxĈ(t)F
���2) , ∀i ∈ INp .

4) Operations (R12) , (R14): We define F̂(t) =

Fdiag
(
U∗Np

b̂(t)
)

and consider the term in the second
summand of (R12) for k = ko. From (37) and (38), we have

M∑
m=1

ŝm(t )̂z
(∗,ko )
m (t)∗ =

M∑
m=1

ŝm(t)vecm
[
UNrx(ro )F̂(t)

(co )
]
. (50)

With Ŝ(t) ∈ CNrx×Np defined such that ŝm(t) = vecm
(
Ŝ(t)

)
,

(50) can be expressed as,
M∑
m=1

ŝm(t )̂z
(∗,ko )
m (t)∗ =

〈
Ŝ(t),UNrx(ro )F̂(t)

(co )
〉

(51)

=
(
UNrx(ro )

)∗ Ŝ(t)
(
F̂(t)(co )

)∗
(52)

= vecko
(
U∗Nrx

Ŝ(t)F̂(t)
∗
)
. (53)

The term in the third summand of (R12) can be given by

M∑
m=1

vsm(t)
Np∑
i=1

vbi (t)
���z(i,k)m

���2 = M∑
m=1

vsm(t)

∑Np
i=1 v

b
i (t)

��Am,k

��2
Np

=

(∑Np
i=1 v

b
i (t)

Np

)
veck

(��AT
��2 vs

)
.

Once again exploiting invariance within
��AT

��, we efficiently
compute the third summand in (R12) as

M∑
m=1

vsm(t)
Np∑
i=1

vbi (t)
���z(i,k)m

���2 = ∑Np
i=1 v

b
i (t)

Np
×

veck
[(
|F|2 µz(t)

)
⊗ aNrx (0)

]
. (54)

The term in the second summand of (R14) can be rewritten
using (34) as

M∑
m=1

ŝm(t )̂z
(i,∗)∗
m =

〈
Ŝ(t),UNrxĈ(t)Fdiag(U∗Np(i)

)

〉
. (55)
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For fast implementation of (55), we first compute the column
wise inner product between Ŝ(t) and UNrxĈ(t)F and then per-
form a Fast Fourier Transform (FFT). We construct g ∈ CNp×1,

such that gk =
〈(

Ŝ(t)
)
(k)
,
(
UNrxĈ(t)F

)
(k)

〉
. Hence, the second

summand in (R14) simplifies to
M∑
m=1

ŝm(t )̂z
(i,∗)∗
m = veci

(
UNpg

)
. (56)

The term in the third summand of (R14) can be expressed as
M∑
m=1

Nc∑
k=1

vsm(t)v
c
k (t)

���z(i,k)m

���2 = M∑
m=1

Nc∑
k=1

vsm(t)v
c
k (t)

��Gm,iAm,k

��2
(57)

=
1

Np

M∑
m=1

vsm(t)
Nc∑
k=1

vck (t)
���AT

k,m

���2 .
(58)

Using the compact form of
∑Nc

k=1 v
c
k
(t)

���AT
k,m

���2 from (47), we
rewrite (58) as

M∑
m=1

Nc∑
k=1

vsm(t)v
c
k (t)

���z(i,k)m

���2 = 1
Np

M∑
m=1

(
vsm(t)×

vecm
[(
µc(t) |F|2

)
⊗ aNrx (0)

] )
.

(59)

Furthermore, exploiting the kroenecker product with aNrx (0),
we have

M∑
m=1

Nc∑
k=1

vsm(t)v
c
k (t)

���z(i,k)m

���2 = Nrx
Np

µc(t) |F|2 µz(t). (60)
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