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LIDAR Data for Deep Learning-Based
mmWave Beam-Selection

Aldebaro Klautau, Nuria González-Prelcic and Robert W. Heath Jr.

Abstract—Millimeter wave communication systems can lever-
age information from sensors to reduce the overhead associated
with link configuration. LIDAR (light detection and ranging)
is one sensor widely used in autonomous driving for high
resolution mapping and positioning. This paper shows how
LIDAR data can be used for line-of-sight detection and to reduce
the overhead in millimeter wave beam-selection. In the proposed
distributed architecture, the base station broadcasts its position.
The connected vehicle leverages its LIDAR data to suggest a
set of beams selected via a deep convolutional neural network.
Co-simulation of communications and LIDAR in a vehicle-to-
infrastructure (V2I) scenario confirm that LIDAR can help
configuring mmWave V2I links.

Keywords—LIDAR, mmWave, machine learning, deep learn-
ing, convolutional networks.

I. INTRODUCTION

Millimeter wave (mmWave) is a key technology for sharing
high rate sensor data for connected and automated vehicles [1].
Prior work has shown that position information obtained from
vehicles can be used to reduce the overhead required to
establish mmWave links [1]–[5]. In this paper, we show how
LIDAR provides an additional source of information to reduce
communication overhead. The LIDAR uses a laser to scan an
area and measure the time delay from the backscattered signal.
This data is then converted into points in space and interpreted
as three-dimensional (3D) images with pixels indicating rel-
ative positions from the sensor [6]. LIDAR data can be ex-
ploited without additional cost for improved communications
when it is already used on a automated vehicle for mapping,
positioning, or obstacle detection.

Reducing the beam-selection overhead is important in cel-
lular and WiFi systems operating at mmWave frequencies [6]–
[8]. Out-of-band measurements were used for improved beam-
selection in mmWave communications in [9], [10]. The benefit
of a radar located in infrastructure was investigated in [11].
The use of position information in V2I mmWave was studied
in [1]–[5]. Some work using position, targeted only line-of-
sight (LOS) situations [3], [12]. Non-LOS (NLOS) was in-
vestigated in [2], [4] with measurement fingerprint databases.
Prior work has established that position information can reduce
mmWave beam-selection overheads, and that machine learning
(ML) is a good tool for this problem. But the performance
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of previously proposed systems is limited by the penetration
rate of connected vehicles. The use of LIDAR, which is
popular for automated cars, has not been considered, nor have
decentralized architectures for applying ML to beam-selection
problems.

In this paper, we develop a distributed architecture for
reducing mmWave beam-selection overhead. We assume the
BS broadcasts its position via a low-frequency control channel
(CC), and all processing is performed by the connected
vehicle. The vehicle uses its LIDAR data, its own position, and
the broadcasted BS position, to estimate a set of M candidate
beam pairs that are informed to the BS through the CC. The
recommended beam pairs are then trained by the BS, and the
best one is chosen for data transmission. Our system uses only
the LIDAR and position information for the prediction; fusion
with other sensors and direct performance comparison with
centralized architectures [1]–[5] is a topic of future work.

We use ML to solve two key problems in our LIDAR-
aided mmWave system. First, we develop a predictor to assess
whether the channel is in LOS or NLOS. LOS detection is
useful because beam-selection is easier in the LOS setting.
Second, we use deep learning (DL) [13] with a neural network
trained to perform top-M classification [14] conditioned on
LOS and NLOS state estimates. We take this approach instead
of alternatives such as subset ranking [15] because all M
selected beams are evaluated in the subsequent stage and,
consequently, their local rank is irrelevant.

We present simulation results obtained with a methodology
that combines a traffic simulator to model realistic mobility
scenarios with integrated (“paired”) data from ray-tracing
(for estimating mmWave channels) and LIDAR simulators.
Our results indicate that the beam-selection overhead can be
reduced by factors of 12x in LOS and 2x in NLOS, without
reduction of throughput or by larger factors if some reduction
is acceptable. Compared with prior work [1]–[5], we consider
LIDAR on the vehicle as an additional sensor. We also use
DL because of its promising results for position-based beam-
selection [16] and many other domains [13], [14]. An advan-
tage of our distributed architecture versus [1]–[5] is that it does
not depend on the penetration rate of connected vehicles, as
it only uses the LIDAR of the connecting vehicle. Because
unconnected cars do not report their positions to the BS,
the beam-selection performance in a centralized architecture
decreases with the number of unconnected vehicles [5].

II. SYSTEM MODEL

We consider a downlink OFDM mmWave system with
analog beamforming [10]. Both transmitter and receiver have
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antenna arrays with only one radio frequency (RF) chain
and fixed beam codebooks. To simulate the channel, we use
ray-tracing data and combine the ray-tracing output with a
wideband mmWave geometric channel model as, e. g., in [10].
Assuming Rc multipath components (MPC) per transmitter /
receiver pair, the information collected from the outputs for the
r-th MPC of a given pair is: complex path gain αr, time delay
τr and angles φDr , θDr , φAr , θAr , corresponding respectively to
azimuth and elevation for departure and arrival. The frequency-
selective channel model at the time instant corresponding to
the n-th symbol vector is described in detail in [Section III]
[10], which also includes the definition of the model in the
frequency domain H[k], where k is the subcarrier index.

We assume beam codebooks Ct = {f1, · · · , f|Ct|} and
Cr = {w1, · · · ,w|Cr|} at the transmitter and the receiver
sides, with no restriction on the codebook size (e. g., they
do not have to be DFT codebooks). For a given pair (p, q)
of vectors, representing precoder fp and combiner wq , the
received signal at subcarrier k is s[k] = wH

q H[k]fp, where
H denotes conjugate transpose. The beam-selection is guided
by the normalized signal power

y(p,q) =

K−1∑
k=0

|wH
q H[k]fp|2 (1)

and the optimum beam pair is (̂p, q) = argmax(p,q) y(p,q). In
this paper, the goal of beam-selection is to recommend a set
B = {(pi, qi)}Mi=1 such that (̂p, q) ∈ B.

III. MACHINE LEARNING USING LIDAR DATA

A. Information exchange protocol

We develop a ML-based beam-selection strategy for V2I
mmWave cellular communication system, assuming that the
connected vehicle is equipped with a LIDAR. The proposed
ML-based protocol is illustrated in Fig. 1. It is assumed that
the BS can broadcast its absolute position Pb = (xb, yb, zb)
for mmWave V2I beam alignment of incoming vehicles using
a CC provided by, for instance, DSRC signals or as part
of the BS CC [6]. A vehicle estimates its position Pv =
(xv, yv, zv) using for example, Global Positioning System
(GPS) or a simultaneous localization and mapping (SLAM)
algorithm [17]. The BS also broadcasts its coverage zone
Z = (xbz, y

b
z, x

e
z, y

e
z, h), which is a cuboid specified by its

height h, and points (xbz, y
b
z) and (xez, y

e
z) denoting the base.

The ML algorithm is executed at the vehicle and outputs a
set B of beam pairs. After the initialization stage (see Fig. 1),
the BS transmits using the beams specified by {pi}Mi=1 and
the M pairs of beams are evaluated at the vehicle according
to (1). The best pair is then fed back to the BS. If beam
correspondence can be assumed, the same beam pair can
be used for uplink. Once mmWave communication links
are established, the overhead information required by beam
tracking can rely on the high data rates of mmWave links.

B. LIDAR-based feature extraction and deep learning

We use ML to tackle two distinct problems. The first is
the use of only LIDAR data for LOS versus NLOS binary

Fig. 1. Timing diagram for the distributed LIDAR-based beam-selection
method. The first phase (broadcast and initialization) uses a low-frequency
CC while the second corresponds to mmWave communication.

classification. The second problem is the selection of the top-
M beam pairs based on (1) for decreasing the beam-selection
overhead, which is associated with the protocol explained in
the previous subsection. The raw input data to solve both
problems is composed of the LIDAR point cloud C collected
by the vehicle, the BS coverage zone Z and positions Pv and
Pb. The LIDAR cloud C is an array of dimension D × 3,
composed of 3D points indicating the presence of obstacles.
Typical values of D are relatively large and using an alternative
representation helps to control the computational cost.

Fig. 2. Feature extraction of 3D histogram G from LIDAR data.

We adopt a fixed grid G to represent Z, as depicted in Fig. 2.
We use G as a 3D histogram in which a bin corresponds to
a fixed region of Z. Each element of G stores the number of
elements of C within the corresponding bin. A large count
of occurrences indicates that LIDAR detected many points
within the bin. This histogram calculation was implemented
as the uniform quantization of elements of C using (bx, by, bz)
bits, with Z providing the quantizers’ dynamic ranges. Before
quantization, the relative distances of obstacles provided by C
are converted into absolute positions C + Pv . For example,
considering only the x-axis for simplicity, if xbz = 10 m,
xez = 22 m and bx = 2 bits, the four bins are represented
by values 10, 14, 18 and 22. Assuming Pv = (5, y′, z′), an
element (16, y′′, z′′) in C is mapped to (21, y′ + y′′, z′ + z′′).
The value 21 is then quantized to 22, and this point accounted
by incrementing a bin of G that corresponds to the last (4th)
position in the x-axis. We discard points that are farther from
Pv by more than a certain distance dmax. The ML input feature
is then a histogram G with dimension 2bx × 2by × 2bz .

For both problems (LOS decision and beam-selection), we
adopted neural networks with 13 layers from which 7 are 2D
convolutional layers with decreasing kernel sizes, from 13×13
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to 1×1, trained with Kera’s Adadelta optimizer [14]. We used
pooling layers and, to mitigate overfitting, regularization and
dropout. For beam-selection, the values in (1) below 6 dB from
the maximum were zeroed and normalized to have unitary
sum. For top-M classification, the output layer had a softmax
activation function and a categorical cross-entropy as loss
function [14]. For binary classification, the output layer and
loss were sigmoid and binary cross-entropy, respectively [14].
The number of parameters per network is approximately 105.
To promote reproducibility, we share code and data at [18].

As a baseline for comparing with DL applied to the LOS
decision problem, we also evaluated a simple geometric ap-
proach: given Pb and Pv , we calculate the line L connecting
them. We denote by d̂ the minimum distance between any point
in C to L. A decision stump classifier [14] uses a threshold γ
to decide for NLOS if d̂ < γ or LOS otherwise. The intuition
is that if L is far from all obstacles identified by the LIDAR
in C, the link is potentially LOS.

IV. NUMERICAL RESULTS

A. Simulation methodology

Aiming at realistic datasets, we adopted a simulation
methodology using traffic, ray-tracing and LIDAR simulators
in V2I mmWave communications [16]. We paired the sim-
ulations of the mmWave communication system and the LI-
DAR data acquisition integrating three softwares: the Blender
Sensor Simulation (BlenSor) [19], the Simulation of Urban
MObility (SUMO) traffic simulator [20], both open source, and
Remcom’s Wireless InSite for ray-tracing. In the configuration
stage, the user provides information about the objects in the
3D scenario, lanes coordinates, eletromagnetic parameters, etc.
The software execution is based on a Python orchestrator code
that invokes SUMO and converts its ouputs (vehicles positions,
orientations, etc.) to formats that can be interpreted by distinct
simulators. The orchestrator then invokes the simulators (LI-
DAR and ray-tracing in this case) to obtain paired results.

Fig. 3. a) Urban canyon 3D scenario with vehicles of distinct sizes randomly
positioned. The building color indicates height and corresponds to a range
from 0 (blue) to 101 meters (red). b) Corresponding LIDAR point cloud. The
LOS rays between the BS antenna at z = 4 m and vehicle are shown.

Fig. 3a depicts the adopted urban canyon 3D scenario,
which is part of Wireless InSite’s examples and represents
a region of Rosslyn, Virginia. The study area is a rectangle of
approximately 337× 202 m2 and the BS antenna array height
is z = 4 m. We placed receivers and LIDARs on top of all

connected vehicles (identified in red) in each scene snapshot.
Fig. 3b illustrates an example of the corresponding LIDAR
point cloud. Lines between BS and vehicle are also shown,
and suggest a LOS channel.

The ray-tracing simulations used a maximum of L = 25
MPCs per transmitter / receiver pair, isotropic antennas,
60 GHz carrier frequency, B = 100 MHz, K = 64 subcarriers,
and enabled ray-tracing diffuse scattering. Other parameters
followed the ones in [16].

The downlink mmWave massive MIMO relied on a BS
with a 16× 16 uniform planar array (UPA) and vehicles with
4 × 4 UPAs. When designing Ct and Cr, we first augmented
the conventional DFT codebook with steered codevectors,
linear combinations of codevectors and random vectors from
Grassmannian codebooks. From this large initial set, we kept
only the codevectors that were chosen as (̂p, q) more than 100
times in the training set. This procedure led to |Ct| = 20 and
|Cr| = 12, respectively. Hence, the number of classes for top-
M classification is 240.

The LIDAR simulations assumed a Velodyne model HDL-
64E2 scanner positioned at a height z = 1 m from the top-
center of the vehicle. The angle resolution was 0.1728 degrees
and the rotation speed 10 Hz. The experiments adopted bx =
by = 6 and bz = 3 bits. We eliminated from C the points
with small values in the z-axis (< 0.1 m), which correspond
to ground reflections (see Fig. 3b), and also the points with a
distance from the LIDAR larger than dmax = 25 m.

A preliminary investigation indicated consistent beam-
selection results for distinct signal-to-noise ratios and, for sim-
plicity, the results here are for a noise-free mmWave channel.
But we considered two conditions with respect to positioning
accuracy: noise-free and noisy. The LIDAR noise [19] is as-
sumed to have independent components distributed according
to a zero-mean Gaussian N (0, σ2

L/3) with variance σ2
L/3.

For the noisy condition, we adopted the HDL-64E2 default
value of σL = 0.1 m. Similarly, the accuracy of the Global
Navigation Satellite System (GNSS) technology is modeled
assuming the elements of the position error vector are inde-
pendent and identically distributed according to N (0, σ2

G/3)
(no bias). Conventional GPS may lead to errors of 3 to 5 m,
while sophisticated SLAMs can help to keep the error below
50 cm in the horizontal plane [17]. For the noisy condition,
we assumed σG = 3 m and σL = 0.1 m.

Beam-selection is harder in NLOS because the predictability
decreases considerably when compared to LOS cases. If an
experiment considers both LOS and NLOS channels, the
accuracy of ML will depend on the blockage probability,
which is heavily influenced by traffic statistics, large vehicles
(potential blockers) and antenna height. Numerical results of
distinct experiments that used mixed LOS and NLOS are
harder to compare and the ML models may be biased by the
easier LOS cases. To avoid this situation, we present separate
evaluations of beam-selection for each case. The mmWave
data is composed of NL = 6, 482 LOS and NN = 4, 712
NLOS channel examples. The beam-selection experiments
used NL and NN examples in the LOS and NLOS evaluations,
respectively, while LOS detection used all NL+NN examples.
For all experiments we created disjoint test and training sets
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with 20% and 80% of the examples, respectively.

B. Results

The accuracy of both binary and top-M classifiers improve
considerably when the elevation angle of the LIDAR is ad-
justed for communications (points to the BS antenna). We did
not perform this adjustment and used the HDL-64E2 default
elevation. This increases the chances that the LIDAR does not
detect a LOS blocker because it is obstructed by a neighbor
vehicle. For the LOS detection in noise-free condition, the
minimum achieved misclassification error with the geometry-
based stump was 24% while DL leads to 10%. For other
conditions, DL outperforms the baseline by a larger margin.
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Fig. 4. Accuracy for LOS detection (binary problem) and beam-selection
using top-M classification with M = 30 for LOS and NLOS examples. The
performance for both noise-free and noisy conditions are shown.

Fig. 4 presents the results using DL for LOS detection and
the two cases of top-M beam-selection for both (positioning)
noise scenarios. It can be seen that the adopted noisy condition
did not lead to significant loss of accuracy. As expected, the
performance in NLOS is considerably lower than for LOS.
Due to the difficulty of dealing with NLOS, the binary problem
has worse performance than top-30 LOS classification.
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Fig. 5. LOS and NLOS top-M classification for beam-selection with 240
beam pairs in noisy condition for M = 1, . . . , 120.

While Fig. 4 shows results for M = 30 only, Fig. 5
presents the top-M accuracy for M = 1, . . . , 120. Fig. 5 also
depicts the corresponding achieved throughput ratio RT =∑N

i=1 log2(1+ y(̃p,q))/
∑N

i=1 log2(1+ y(̂p,q)), where N is the

number of test examples and (̃p, q) is the best beam pair
in B. For M = 10, RT = 0.97 and 0.69 for LOS and
NLOS, respectively. In this case, while the overhead for beam-
selection decreases by a factor of 24, the corresponding RT

indicates a reduction to 69% of the achievable throughput for
NLOS. For NLOS, RT reaches e. g. 94% for M = 60.

V. CONCLUSIONS

LIDAR can be used for LOS detection and to reduce
the mmWave beam-selection overhead in V2I scenarios. The
results are promising in spite of the relatively simple adopted
features. Future work includes exploring alternative features,
using a larger amount of data, better tuning the many ML
parameters for improved NLOS performance and fusing data
from LIDAR and others sensors to maximize throughput with
a reasonable overhead and computational cost.
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[14] A. Géron, Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow. O’Reilly Media, 2017.

[15] D. Cossock and T. Zhang, “Statistical analysis of Bayes optimal subset
ranking,” IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 5140–5154, Nov.
2008.
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