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Abstract

We consider branching processes consisting of particles (individuals) of two types (type L and type S)

in which only particles of type L have offspring, proving estimates for the survival probability and the

(tail of) the distribution of the total number of particles. Such processes are in some sense closer to single-

than to multi-type branching processes. Nonetheless, the second, barren, type complicates the analysis

significantly. The results proved here (about point and survival probabilities) are a key ingredient in the

analysis of bounded-size Achlioptas processes in a recent paper by the last two authors.
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1. Introduction

Throughout the paper we consider branching processes in which every particle is of one of

two types, called (for compatibility with the notation in [21]), ‘type L’ and ‘type S’. Particles of

type S may be thought of as barren: they have no children. Each particle of type L will have some

random number of children of each type; as usual, we have independence between the children

of different particles, but the numbers Y and Z of type-L and type-S children of one particle

need not be independent. The formal definition is as follows.
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Definition 1.1. Let (Y, Z ) and (Y 0, Z0) be probability distributions on N
2. We write X

1 = X
1
Y,Z

for the Galton–Watson branching process started with a single particle of type L , in which each

particle of type L has Y children of type L and Z of type S. Particles of type S have no children,

and the children of different particles are independent. We write X = XY,Z ,Y 0,Z0 for the branching

process defined as follows: start in generation one with Y 0 particles of type L and Z0 of type S.

Those of type L have children according to X
1
Y,Z , independently of each other and of the first

generation. Those of type S have no children. We write |X| (|X1|) for the total number particles

in X (X1).

These branching processes are in some sense essentially single-type: one could first generate

the tree of type-L particles as a classical single-type Galton–Watson process, and then consider

particles of type S. However, since the numbers of type-S and type-L children are not necessarily

independent, this two-stage description does not seem particularly easy to work with.

The motivation for considering such processes (and in particular for allowing a different rule

for the first generation) comes from the application to studying the phase transition in Achlioptas

processes in [21]. Achlioptas processes are evolving random graph models that have received

considerable attention (see, e.g., [1,18,4,23,13,19,14,3,20] and the references therein). We shall

say nothing further about these random graph processes here, aiming to keep the paper self-

contained, and purely about branching processes.

We shall prove two main results. Firstly, in Section 2, we consider an individual branching pro-

cess of the type above, giving an asymptotic formula for the point probability pN = P(|X| = N )

under certain conditions on the distributions (Y, Z ) and (Y 0, Z0). This formula is proved in

Sections 2.1–2.3, which are the heart of the paper. Then, in Section 3, we consider families

of processes where the offspring distribution varies analytically in an additional parameter t .

Roughly speaking, we show that the key quantities in the formula in Section 2 then vary

analytically in t . This result (which in particular implies properties of the near-critical case)

is needed in [21]. Finally, in Section 4, we prove corresponding results for the survival

probability P(|X| = ∞). Here the barren type plays no role, so the results effectively concern

single-type processes and are much simpler.

Remark 1.2. Although the definition of sesqui-type branching processes is adapted to the

application in [21], the results here are applicable, at least in principle, to a more general class of

branching processes. Consider a finite-type Galton–Watson process in which there is one special

type (type L), and all other types are ‘doomed’ (lead to finite trees of descendants a.s.). Such a

process may be transformed into a sesqui-type process in a natural way: for each type-L particle

replace its children of all doomed types, and their (necessarily doomed) descendants, by type-S

children (keeping the same total number of particles). For our results to apply to the transformed

process we need further conditions, roughly speaking that the ‘doomed’ subtrees are not too close

to critical; but in outline, all processes with (at most) one type that can potentially survive are

covered. Branching processes of this type (with one doomed type) have been studied by several

authors, giving various results different from ours; see for example [22,25,7].

1.1. Some notation and conventions

Throughout we write N := {0, 1, 2, . . .} for the non-negative integers.

Given a two-dimensional random variable (Y, Z ) taking values in N
2, we denote its bivariate

probability generating function by
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gY,Z (y, z) := E(yY zZ ) =
∑

k,l⩾0

P(Y = k, Z = l)yk zl , (1.1)

for all complex y and z such that the expectation (or sum) converges absolutely. We will also

consider the bivariate moment generating function

fY,Z (y, z) := gY,Z

(
ey, ez

)
= E

(
eyY+zZ

)
. (1.2)

When considering a particular branching process as in Definition 1.1, we often write g = gY,Z

and f = fY,Z for brevity.

We denote the coefficient of yk zl in a power series G(y, z) by [yk zl]G(y, z).

We say that a function f defined on I ⊆ C is analytic if for every x0 ∈ I there is an r > 0

and a power series g(x) =
∑

j⩾0a j (x − x0) j with radius of convergence at least r such that f

and g coincide on (x0 − r, x0 + r ) ∩ I . A function f defined on some domain including I is

analytic on I if f |I is analytic. The definitions for functions of several real or complex variables

are analogous.

If f is an analytic function of d variables, defined in an open set U ⊆ C
d , we denote its

derivative by D f , and its mth derivative by Dm f . Note that Dm f is an analytic function from

U to the linear space of all (symmetric) m-linear forms Cd → C. In particular, for each z ∈ U ,

D f (z) is a linear form, which can also be regarded as a vector (the usual gradient); we write

Di f := ∂
∂xi

f , so D f (z) =
(
D1 f (z), . . . , Dd f (z)

)
. Similarly, D2 f (z) is a bilinear form, which

may be regarded as a d × d matrix with entries Di j f (z), where Di j = Di D j . We denote its

determinant by Det(D2 f (z)). (This is known as the Hessian of f .)

For a vector x ∈ C
d , let Dm f (z)[x] denote Dm f (z)(x, . . . , x), where the vector x is repeated

m times. When using coordinates x = (u, v) in the case d = 2, we write [u, v] for [(u, v)], so,

regarding D2 f as a matrix and x as a (column) vector, we have

D2 f (z)[u, v] = (u v) D2 f (z)

(
u

v

)
. (1.3)

We denote the usual Euclidean norm of vectors by |·|. For operators and the multilinear forms

Dm f we use ∥ · ∥ for the usual norm (any other norm would do as well).

For real symmetric matrices, A ⩽ B means that B − A is positive semi-definite, i.e., that

vtr(B − A)v ⩾ 0 for all real vectors v. In particular, if A is a d × d symmetric matrix and c ∈ R,

then

A ⩾ cI ⇐⇒ vtr Av ⩾ c|v|2 for all v ∈ R
d . (1.4)

Remark 1.3. We adopt the following notational convention regarding constants. c and C are

used ‘locally’ (within a single proof), while numbered constants c1, C1 etc. retain their meaning

throughout the paper. The constants ci , which are numbered in the order they are introduced,

obey the inequalities

c1 ⩽ c8 ⩽ c7 ⩽ c6 ⩽ c5 and c4 ⩽ c2.

We write y, z, w for complex variables, and u, v, α, β for real variables. All constants ci , Ci etc.

are positive.

2. Point probabilities of a single branching process

In this section we study the point probabilities P(|X| = N ) of the branching process X =
XY,Z ,Y 0,Z0 from Definition 1.1. To formulate our main result we need some further definitions

(which encapsulate fairly mild and natural conditions for the offspring distributions).
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Definition 2.1. Suppose that R > 1, M < ∞, k1, k2 ∈ N and δ > 0.

(i) Let K0 = K0(R,M, δ) be the set of probability distributions ν on N
2 such that if

(Y, Z ) ∼ ν, then

ERY+Z
⩽ M, (2.1)

EY ⩾ δ. (2.2)

(ii) Let K1 = K1(k1, k2, δ) be the set of probability distributions ν = (πi, j )i, j⩾0 on N
2 such

that

πk1,k2
⩾ δ, πk1+1,k2

⩾ δ, πk1,k2+1 ⩾ δ. (2.3)

(iii) Let K = K(R,M, k1, k2, δ) := K0(R,M, δ) ∩ K1(k1, k2, δ).

We write (Y, Z ) ∈ K0 if the distribution of (Y, Z ) is in K0, and similarly for K1 and K. The

key condition here is the (uniform) bound (2.1) on the probability generating functions. The

condition (2.3) is needed, roughly speaking, to ensure that (Y, Z ) is not essentially supported on

a sublattice of N2. Note that (Y, Z ) ∈ K1 trivially implies

EZ ⩾ P(Z = k2 + 1) ⩾ δ, (2.4)

and similarly EY ⩾ δ.

The following theorem gives the qualitative behaviour of the size-N point probabilities of

the branching process X = XY,Z ,Y 0,Z0 from Definition 1.1. The statement of Theorem 2.2 is

not self contained since the parameters Ψ , Φ and x∗ are defined (in a rather involved way)

from the generating functions of (Y, Z ) and (Y 0, Z0), see (2.43)–(2.44) and Lemma 2.15 in

Section 2.3. A key feature of the result is that the estimates and error-terms are uniform over

all distributions (Y 0, Z0) ∈ K0 and (Y, Z ) ∈ K, i.e., the explicit and implicit constants depend

only on R,M, k1, k2 and δ. Note that, from (2.8) below, ξ = 0 if and only if EY = 1, and that

P(|X| = N ) decays exponentially in Θ(ε2 N ) in the near-critical case EY = 1 ± ε.

Theorem 2.2 (Point Probabilities of X). Suppose that R > 1, M < ∞, k1, k2 ∈ N, and δ > 0.

Writing K0 = K0(R,M, δ) and K = K(R,M, k1, k2, δ), there exists a constant c1 > 0 such that

if (Y 0, Z0) ∈ K0, (Y, Z ) ∈ K, and |EY − 1| ⩽ c1, then for all N ⩾ 1 we have

P(|X| = N ) = N−3/2e−Nξ
(
θ + O(N−1)

)
, (2.5)

where, defining Ψ and Φ as in (2.43)– (2.44) and x∗ as in Lemma 2.15, we have

ξ = ξY,Z := −Ψ (x∗) ⩾ 0, (2.6)

θ = θY 0,Z0,Y,Z :=
√

2π/|Ψ ′′(x∗)| Φ(x∗) = Θ(1), (2.7)

and

ξ = Θ(|EY − 1|2). (2.8)

Moreover, the implicit constants in (2.5)–(2.8) depend only on R,M, k1, k2 and δ.

The remainder of this section is devoted to the proof of Theorem 2.2. To this end we fix R > 1,

M < ∞, k1, k2 ∈ N, and δ > 0, and write K0 = K0(R,M, δ) and K = K(R,M, k1, k2, δ) to

avoid clutter. Let |XL | and |XS| denote the total numbers of type-L and type-S particles in X, so

|X| = |XL | + |XS|, and set

pn,m := P(|XL | = n, |XS| = m). (2.9)
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Of course, pn,m depends on the distributions of (Y, Z ) and (Y 0, Z0). In Section 2.1 we establish a

simple integral formula for pn,m . Then, in Section 2.2 we use a version of the saddle point method

to estimate this integral asymptotically. Finally, in Section 2.3 we prove (2.5) by summing all

pn,m with n + m = N .

2.1. An integral formula for pn,m

In this section we derive an explicit integral formula for pn,m , see (2.14). We start with a

simple conditional version of the classical Otter–Dwass formula (see e.g. Dwass [8]), which

hinges on the random walk representation of a branching process and a well-known random-walk

hitting time result.

Lemma 2.3. For all integers n ⩾ 1 and m, n0,m0 ⩾ 0,

P
(
|XL | = n, |XS| = m

⏐⏐ Y 0 = n0, Z0 = m0

)

=
n0

n
P

(
n0 +

∑

1⩽ j⩽n

Y j = n, m0 +
∑

1⩽ j⩽n

Z j = m

)
. (2.10)

Proof. Let (Y j , Z j ) j⩾1 be independent with each pair having the same distribution as (Y, Z ).

Since particles of type S do not have any children, by exploring the branching process X in the

usual way (i.e., revealing the offspring of the particles of type L one-by-one until none are left

to explore), we have

P
(
|XL | = n, |XS| = m

⏐⏐ Y 0 = n0, Z0 = m0

)

= P

(
n0 + min

0⩽n′<n

∑

1⩽ j⩽n′

(Y j − 1) > 0, n0 +
∑

1⩽ j⩽n

(Y j − 1) = 0, m0 +
∑

1⩽ j⩽n

Z j = m

)
.

That the right-hand side of the above expression equals (2.10) is surely folklore (by conditioning

on
∑

1⩽ j⩽n Z j = m − m0 this also follows directly from [16, Theorem 7]); we include a

short argument. Namely, by a version of the well-known Cyclic Lemma (sometimes also called

Spitzer’s combinatorial lemma), see, e.g., [12, Lemma 15.3] or [17, Lemma 6.1], for any

sequence (y1, . . . , yn) with yi ∈ {−1, 0, 1, 2, . . .} and n0 +
∑

1⩽i⩽n yi = 0, there are exactly n0

cyclic shifts of (y1, . . . , yn) for which all corresponding partial sums si = y1 + · · ·+ yi of length

i ⩽ n −1 satisfy n0 +si > 0. Hence, taking a uniformly random cyclic shift of the n independent

variables (Y j − 1, Z j ), the formula (2.10) follows. □

Remark 2.4. This two-type version of the Otter–Dwass formula is a simple variation of the

usual one-type case; this is because one type is barren and can essentially be ignored. For a much

more complicated formula in the general multi-type case, see Chaumont and Liu [5].

The probability on the right-hand side of (2.10) can be expressed using generating functions

as

[yn−n0 zm−m0 ]
(
g(y, z)n

)
= [ynzm]

(
yn0 zm0 g(y, z)n

)
. (2.11)

For n ⩾ 1 and m ⩾ 0, recalling the notation (2.9) and summing (2.10) over all n0,m0, we thus

obtain

npn,m =
∑

n0,m0⩾0

P(Y 0 = n0, Z0 = m0)n0[ynzm]
(
yn0 zm0 g(y, z)n

)

= [ynzm]
(
g̃0(y, z)g(y, z)n

)
,

(2.12)
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where

g̃0(y, z) :=
∑

n0,m0⩾0

P(Y 0 = n0, Z0 = m0)n0 yn0 zm0 = y
∂

∂y
gY 0,Z0 (y, z).

For later use, we also define

f̃0(y, z) := g̃0(ey, ez) =
∂

∂y
fY 0,Z0 (y, z) = E

(
Y 0eyY 0+zZ0)

. (2.13)

Remark 2.5. Let G(y, z) := E
(
y|XL |z|XS |

)
be the bivariate generating function for the size of

the branching process X, and let G1(y, z) := E
(
y|X1,L |z|X1,S |

)
be the corresponding generating

function when starting with a single particle of type L . Then G(y, z) = g0(G1(y, z), z) and

G1(y, z) = yg(G1(y, z), z), and the formula (2.12) can alternatively be obtained by the Lagrange

inversion formula in the Bürmann form, see e.g. [9, A.(14)], regarding the generating functions

as (formal) power series in y with coefficients that are power series in z. We omit the details.

The extraction of coefficients in (2.12) can be performed by complex integration in the

usual way (e.g., using Cauchy’s integral formula to evaluate ∂n+m

∂yn∂zm

(
g̃0(y, z)g(y, z)n

)⏐⏐
y=z=0

=

n! m! npn,m as in the textbook proof of Cauchy’s estimates), yielding the formula

npn,m =
1

(2π i)2

∮ ∮
y−nz−m g̃0(y, z)g(y, z)n dy

y

dz

z
,

where we integrate (for example) over two circles with centre 0 and radii such that g̃0(y, z) and

g(y, z) are defined. In particular, if (Y, Z ) and (Y 0, Z0) are both in K0, then for any α, β < log R

we can integrate over |y| = eα and |z| = eβ , and the standard change of variables y = eα+iu ,

z = eβ+iv then yields

npn,m =
1

4π2

∫ π

−π

∫ π

−π

e−n(α+iu)−m(β+iv) f̃0(α + iu, β + iv)

× f (α + iu, β + iv)n du dv. (2.14)

Remark 2.6. Alternatively, (2.14) can be obtained from (2.10) by first considering suitably tilted

versions of the random variables (cf. Cramér [6]), and then passing to characteristic functions

and making a Fourier inversion.

Remark 2.7. It is not hard to write an integral formula for the final probability pN =∑
m+n=N pn,m that we are aiming to estimate. For example, multiplying (2.12) by xn/n and

summing we see that pn,m = [xn ynzm]H (x, y, z), where H (x, y, z) = −g̃0(y, z) log(1 −
xg(y, z)). Thus one can find pN by extracting the coefficient of w0t N in H (w, t/w, t). However,

the corresponding integral does not obviously lend itself to asymptotic evaluation by methods

such as those used here. Still, a direct estimate of pN may perhaps be possible by appropriate

singularity analysis.

2.2. An asymptotic estimate of pn,m

In this section we estimate the integral (2.14) asymptotically (see Theorem 2.11), using

parameters defined in terms of the moment generating function f (y, z) = fY,Z (y, z) =
E

(
eyY+zZ

)
. Whenever f is defined and non-zero, let

ϕ(y, z) = ϕY,Z (y, z) := log fY,Z (y, z) = log f (y, z), (2.15)
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taking the principal value of the logarithm; we shall only consider ϕ on domains on which

| f − 1| ⩽ 1/2. The next lemma simply states that in suitable domains, f , ϕ and their (partial)

derivatives are all bounded.

Lemma 2.8. There exist constants 0 < c2 ⩽ (log R)/2 and C1
(m), m ∈ N, such that if

(Y, Z ) ∈ K0 and m ∈ N, then the following hold.

(i) If α, β, u, v ∈ R with |α|, |β| ⩽ c2, then ∥Dm f (α + iu, β + iv)∥ ⩽ C1
(m).

(ii) If, in addition, |u|, |v| ⩽ c2, then ϕ(α+ iu, β+ iv) is defined, and ∥Dmϕ(α+ iu, β+ iv)∥ ⩽

C1
(m).

(iii) If |α|, |β| ⩽ c2, then ∂
∂y

f (α, β) ⩾ δ/2.

Proof. (i) When |y|, |z| ⩽ R, then |g(y, z)| = |E(yY zZ )| ⩽ E(|y|Y |z|Z ) ⩽ ERY+Z , which is at

most M by assumption. Thus | f (y, z)| ⩽ M when Re(y) ⩽ log R and Re(z) ⩽ log R. Recall

that R > 1 by assumption, so log R > 0. For any c2 ⩽ (log R)/2, say, for suitable C1
(m) > 0

statement (i) follows by standard Cauchy estimates

(ii) Let C = C
(1)
1 denote the constant from the above proof of (i). Set c2 := min{(log R)/2,

1/(8C)}. Since f (0, 0) = g(1, 1) = 1, it follows from (i) that if |α|, |β|, |u|, |v| ⩽ c2, then

⏐⏐ f (α + iu, β + iv) − 1
⏐⏐ ⩽ (|α + iu| + |β + iv|)C ⩽ 4c2C ⩽ 1/2, (2.16)

so ϕ(α + iu, β + iv) is defined and bounded. Furthermore, after decreasing c2 and increasing

C1
(m), if necessary, the bounds for the derivatives now again follow by Cauchy’s estimates.

(iii) Let f̃ = ∂
∂y

f . By our assumption (2.2), f̃ (0, 0) = EY ⩾ δ. Furthermore, D f̃ (α, β) =

DD1 f (α, β) = O(1) for |α|, |β| ⩽ c2 by part (i). Consequently, after reducing c2 if necessary,

we have f̃ (α, β) ⩾ 1
2
δ for |α|, |β| ⩽ c2. □

The next lemma expresses, in a quantitative form, the unsurprising fact that if we evaluate the

probability generating function g(y, z) = gY,Z (y, z) = E(yY zZ ) at y, z which are not positive

real numbers, then there is significant cancellation, i.e., |g(y, z)| is significantly smaller than

g(|y|, |z|). It will be more convenient to write this in terms of the moment generating function

f = fY,Z rather than g.

Lemma 2.9. There exists a constant c3 > 0 such that if (Y, Z ) ∈ K and α, β, u, v ∈ R with

|α|, |β| ⩽ c2 and |u|, |v| ⩽ π , then

⏐⏐ f (α + iu, β + iv)
⏐⏐ ⩽ f (α, β)e−c3(u2+v2). (2.17)

Proof. Let πk,l := P(Y = k, Z = l). Then

f (α + iu, β + iv) =
∑

k,l⩾0

πk,le
k(α+iu)+l(β+iv),

and thus f (α, β) > 0. Then

f (α, β)2 − | f (α + iu, β + iv)|2 =
∑

k,l,m,n

πk,lπm,ne(k+m)α+(l+n)β
(

1 − Re ei(k−m)u+i(l−n)v
)
.
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Each term on the right-hand side is non-negative, and considering just the cases (k, l,m, n) =

(k1, k2, k1 + 1, k2) and (k1, k2, k1, k2 + 1), recalling (2.3) we obtain

f (α, β)2 − | f (α + iu, β + iv)|2

⩾ δ2e(2k1+1)α+2k2β(1 − cos u) + δ2e2k1α+(2k2+1)β(1 − cos v)

= Ω (u2 + v2),

since 1−cos x = Ω (x2) for |x | ⩽ π . Moreover, by Lemma 2.8(i), f (α, β) = O(1). Consequently

1 − | f (α + iu, β + iv)|2/ f (α, β)2
⩾ 2c3(u2 + v2)

for some constant c3 > 0, and thus

| f (α + iu, β + iv)|2/ f (α, β)2
⩽ 1 − 2c3(u2 + v2) ⩽ e−2c3(u2+v2),

establishing (2.17) since f (α, β) > 0. □

We next establish that the symmetric bilinear form D2ϕ(α, β) is positive-definite; a variant

of the lower bound (2.18) could also be proved by first considering D2ϕ(0, 0) and then using

continuity. For the interpretation of D2ϕ(α, β)[u, v], see (1.3).

Lemma 2.10. If (Y, Z ) ∈ K and α, β ∈ R with |α|, |β| ⩽ c2, then D2ϕ(α, β) ⩾ c3 I , i.e.,

D2ϕ(α, β)[u, v] ⩾ c3(u2 + v2), u, v ∈ R. (2.18)

In particular, Det(D2ϕ(α, β)) ⩾ c2
3.

Proof. We first consider only |u|, |v| ⩽ c2, so Lemma 2.8(ii) applies. Then the estimate (2.17)

can be written

Reϕ(α + iu, β + iv) ⩽ ϕ(α, β) − c3(u2 + v2). (2.19)

A Taylor expansion yields

ϕ(α + iu, β + iv) = ϕ(α, β) + iDϕ(α, β)[u, v] − 1
2

D2ϕ(α, β)[u, v] + O
(
(|u| + |v|)3

)
.

Since ϕ(α, β) is real for real α and β, all derivatives Dmϕ(α, β) are real. Hence, when taking the

real part, the linear term vanishes, and (2.19) implies

1
2

D2ϕ(α, β)[u, v] ⩾ c3(u2 + v2) + O
(
(|u| + |v|)3

)
.

Exploiting bilinearity, by replacing (u, v) with (tu, tv) and letting t → 0, we now obtain (2.18)

for all u, v ∈ R, with room to spare.

Finally, by (1.4), note that (2.18) can be written D2ϕ(α, β) ⩾ c3 I . This says that both

eigenvalues are ⩾ c3, and thus the determinant is ⩾ c2
3. □

For |α|, |β| ⩽ c2, define

ψ(α, β) := ϕ(α, β) − αD1ϕ(α, β) − βD2ϕ(α, β). (2.20)

We are now ready to estimate the integral (2.14) for pn,m using a (two-dimensional) version of the

saddle point method (see, e.g., [9, Chapter VIII]). We defer the problem of finding suitable (α, β)

satisfying equation (2.21) to Section 2.3. Recall that f̃0(y, z) = ∂
∂y

fY 0,Z0 (y, z) = E
(
Y 0eyY 0+zZ0)

,

see (2.13).
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Theorem 2.11. Suppose that (Y 0, Z0) ∈ K0 and (Y, Z ) ∈ K. Suppose further that n ⩾ 1, m ⩾ 0

are integers and that α, β are real numbers with |α|, |β| ⩽ c2 such that

Dϕ(α, β) = (1,m/n). (2.21)

Then

pn,m = n−2enψ(α,β)
(

(2π )−1 f̃0(α, β) Det
(
D2ϕ(α, β)

)
−1/2 + O(n−1)

)
, (2.22)

where the implicit constant depends only on the parameters R,M, k1, k2, δ of K0 and K.

Proof. We write (2.14) as

pn,m =
1

4π2n
e−nα−mβ f (α, β)n I1, (2.23)

where

I1 :=

∫ π

−π

∫ π

−π

e−inu−imv f̃0(α + iu, β + iv)

(
f (α + iu, β + iv)

f (α, β)

)n

du dv. (2.24)

Using assumption (2.21) we have ψ(α, β) = ϕ(α, β) − α − βm/n, so

e−nα−mβ f (α, β)n = e−nα−mβ+nϕ(α,β) = enψ(α,β). (2.25)

We shall estimate (2.24) using Laplace’s method (in two dimensions), cf. e.g. [9, Appendix B.6].

Roughly speaking, the idea is as follows. We view the integrand as a product of a term

independent of n with a term that is exponential in n. As we shall see, the condition (2.21)

ensures that the exponent has a stationary point, in fact a maximum, at u = v = 0. It turns out

that the main contribution is near to this point, and here the exponent may be approximated by a

quadratic, leading to a (two-dimensional) Gaussian integral.

Applying Lemma 2.8(i) to (Y 0, Z0) shows that f̃0(α, β) = O(1). Since Det
(
D2ϕ(α, β)

)
=

Ω (1) by Lemma 2.10, and ψ(α, β) = O(1) by (2.20) and Lemma 2.8(ii), the conclusion (2.22)

holds for any fixed n simply by taking the implicit constant large enough. Thus we may assume

that n is at least any given constant n0, and in particular that n−0.4 ⩽ c2.

Applying Lemma 2.8(i) to (Y 0, Z0) also shows that f̃0(α + iu, β + iv) = O(1). Hence, if

|u| ⩾ n−0.4 or |v| ⩾ n−0.4, then by Lemma 2.9 the integrand in (2.24) is O
(
e−c3n·n−0.8)

=

O
(
e−c3n0.2)

= O
(
n−99

)
. On the other hand, if |u|, |v| ⩽ n−0.4 then, since n−0.4 ⩽ c2,

Lemma 2.8(ii) shows that ϕ(α + iu, β + iv) is defined and we obtain

I1 = O
(
n−99

)
+ I2, (2.26)

with

I2 :=

∫ n−0.4

−n−0.4

∫ n−0.4

−n−0.4

f̃0(α + iu, β + iv)en(ϕ(α+iu,β+iv)−ϕ(α,β))−inu−imv du dv. (2.27)

Considering a Taylor expansion of ϕ around (α, β), and noting that the linear terms cancel by

our assumption (2.21), we have

n(ϕ(α + iu, β + iv) − ϕ(α, β)) − inu − imv

= −n 1
2

D2ϕ(α, β)[u, v] − n i
6

D3ϕ(α, β)[u, v] + O
(
n(|u| + |v|)4

)
, (2.28)

where we used Lemma 2.8(ii) to bound the error term. For |u|, |v| ⩽ n−0.4, note that

Lemma 2.8(ii) implies nD3ϕ(α, β)[u, v] = O(n(|u| + |v|)3) = O(n−0.2) = O(1), and
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O(n(|u| + |v|)4) = O(n−0.6) = O(1). Hence, writing for brevity

Q := D2ϕ(α, β),

the exponential factor in (2.27) is

e
−

1
2

nQ[u,v]
exp

(
−n i

6
D3ϕ(α, β)[u, v] + O

(
n(|u| + |v|)4

))

= e
−

1
2

nQ[u,v]
(

1 − n i
6

D3ϕ(α, β)[u, v] + O
(
n(u4 + v4)

)
+ O

(
n2(u6 + v6)

))
. (2.29)

Recalling f̃0 = ∂
∂y

fY 0,Z0 , using Lemma 2.8(i) we also have the Taylor expansion

f̃0(α + iu, β + iv) = f̃0(α, β) + iD f̃0(α, β)[u, v] + O
(
(|u| + |v|)2

)
. (2.30)

Multiplying together (2.29) and (2.30), the integrand in (2.27) is thus

e
−

1
2

nQ[u,v]
(

f̃0(α, β) + iD f̃0(α, β)[u, v] − n f̃0(α, β) i
6

D3ϕ(α, β)[u, v]

+ O
(
u2 + v2

)
+ O

(
n(u4 + v4)

)
+ O

(
n2(u6 + v6)

))
. (2.31)

When we integrate, the terms with D f̃0 and D3ϕ are odd functions of (u, v) so their integrals

vanish. Hence,

I2 =

∫ n−0.4

−n−0.4

∫ n−0.4

−n−0.4

e
−

1
2

nQ[u,v]
(

f̃0(α, β) + O
(
u2 + v2

)

+ O
(
n(u4 + v4)

)
+ O

(
n2(u6 + v6)

))
du dv.

Recalling that Q = D2ϕ(α, β), by Lemma 2.10 we have Q[u, v] = Ω (u2 + v2). Since for

k ∈ {1, 2, 3} we have
∫∫

R2 e−a(u2+v2)(u2 + v2)k du dv = O(a−(k+1)), it follows that

I2 = f̃0(α, β)

∫ n−0.4

−n−0.4

∫ n−0.4

−n−0.4

e
−

1
2

nQ[u,v]
du dv + O(n−2).

Since Q = D2ϕ(α, β) is symmetric and positive-definite by Lemma 2.10, we have the following

standard Gaussian integral over R2:
∫∫

R2

e−nQ[u,v]/2 du dv = n−1 · 2π (Det(Q))−1/2. (2.32)

Since Q[u, v] = Ω (u2 + v2), the contribution of the range max{|u|, |v|} ⩾ n−0.4 to the above

integral (2.32) is again exponentially small. Hence

I2 = f̃0(α, β) · n−12π (Det(Q))−1/2 + O(n−2). (2.33)

The result follows by combining (2.23), (2.25), (2.26) and (2.33). □

We next estimate the exponent in (2.22), without assuming that Eq. (2.21) holds.

Lemma 2.12. There exists a constant 0 < c4 ⩽ c2 such that if (Y, Z ) ∈ K and α, β ∈ R with

|α|, |β| ⩽ c4, then

ψ(α, β) ⩽ − 1
4
c3(α2 + β2). (2.34)

Moreover, ψ(0, 0) = 0, Dψ(0, 0) = 0 and D2ψ(0, 0) ⩽ −c3 I .
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Proof. We have ψ(0, 0) = ϕ(0, 0) = 0. Furthermore, differentiating (2.20) yields

D1ψ(α, β) = −αD11ϕ(α, β) − βD12ϕ(α, β),

D2ψ(α, β) = −αD12ϕ(α, β) − βD22ϕ(α, β),

and thus Dψ(0, 0) = (0, 0). Differentiating again shows that Di jψ(0, 0) = −Di jϕ(0, 0) for all

i, j ∈ {1, 2}. Hence, using Lemma 2.10,

D2ψ(0, 0) = −D2ϕ(0, 0) ⩽ −c3 I.

Moreover, it follows from Lemma 2.8(ii) that ∥D3ψ(α, β)∥ = O(1) for |α|, |β| ⩽ c2.

Consequently, a Taylor expansion yields (2.34) for c4 sufficiently small. □

2.3. Summing pn,m: proof of Theorem 2.2

In this section we prove Theorem 2.2 by summing several different estimates of the point

probabilities in

P(|X| = N ) =

N∑

n=0

pn,N−n. (2.35)

Throughout we consider, as in (2.22), only real inputs α, β for the various functions f , ϕ etc.

Thus, all relevant functions are treated as mapping from (subdomains in) Rn to R
m for suitable

n, m.

An individual of type L has on average EY children of type L and EZ children of type S. So,

in the near-critical case EY ≈ 1, we expect that the overall fraction of type L individuals in X

should be close to

x0 := 1/(1 + EZ ).

This suggests that the contribution from terms in (2.35) with n/N far from x0 will be negligible,

and we shall later confirm this by standard Chernoff-like estimates. Below our main focus is thus

on the terms where n/N is close to x0. Here the plan is to rewrite the asymptotic estimate (2.22)

for pn,N−n using the following version of the inverse function theorem, where we explicitly state

uniformity for a set of functions. We define

Bd
r := {x ∈ R

d : |x | < r} and Br := B2
r = {x ∈ R

2 : |x | < r}.

Lemma 2.13 (Inverse Function Theorem). Let d ⩾ 1 be an integer and r > 0 a real number.

For every 0 < A < ∞, there exist σ > 0 and 0 < r1 < r , both depending only on A, r , such

that if F : Bd
r → R

d is twice continuously differentiable and satisfies

(i) F(0) = 0,

(ii) DF(0) is invertible and ∥DF(0)−1∥ ⩽ A, and

(iii) ∥D2 F(x)∥ ⩽ A for all x ∈ Bd
r ,

then there exists a twice continuously differentiable function G : Bd
σ → Bd

r with G(0) = 0 and

F(G(y)) = y for y ∈ Bd
σ . Furthermore, for each y ∈ Bd

σ , x = G(y) is the unique x ∈ R
d with

|x | ⩽ r1 such that F(x) = y. Moreover, ∥DG(y)∥ = O(1) and ∥D2G(y)∥ = O(1), uniformly

for y ∈ Bd
σ and all such F, and if F is infinitely differentiable or (real) analytic, then so is G.
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Proof. This follows by a standard proof of the inverse function theorem; we give some details

for completeness.

First, let r1 := 1
2

min{r, A−2}. If |x | ⩽ r1, then by the mean-value theorem ∥DF(x) −

DF(0)∥ ⩽ A|x | ⩽ Ar1. Hence, ∥DF(0)−1 DF(x) − I∥ ⩽ A2r1 ⩽ 1
2
, and thus DF(0)−1 DF(x)

is invertible and its inverse has norm at most 2 (e.g., by the von Neumann series representation

of the inverse). Consequently, DF(x) is invertible and

∥DF(x)−1∥ ⩽ ∥DF(0)−1∥ · ∥(DF(0)−1 DF(x))−1∥ ⩽ 2A for |x | ⩽ r1. (2.36)

Next, let σ := r1/(2A). If |y| < σ , define inductively x0 := 0 and xn+1 := Γ (xn), where

Γ (x) := x + DF(0)−1(y − F(x)).

Using ∥DF(0)−1∥ ⩽ A and that ∥DΓ (x)∥ = ∥I − DF(0)−1 DF(x)∥ ⩽ 1
2

if |x | ⩽ r1, it is

easy to show by induction that |xn| ⩽ (1 − 2−n)r1 and |xn+1 − xn| ⩽ 2−n Aσ ⩽ 2−n−1r1.

Hence xn is defined for all n ⩾ 0, and converges to some x with |x | ⩽ r1 < r . Furthermore,

y − F(xn) = DF(0)(xn+1 − xn) → 0 as n → ∞, and thus by continuity F(x) = y. Define

G(y) := x .

This shows that the inverse function G exists in Bd
σ . The uniqueness statement is immediate,

since any x ∈ R
d satisfying F(x) = y is a fixed point of Γ (x), which is a contraction for |x | ⩽ r1.

Differentiability (and analyticity when F is analytic) follows in the usual way (or by appealing to

a standard version of the inverse function theorem, locally at G(y)). Finally, DG(y) = DF(x)−1,

and thus ∥DG(y)∥ ⩽ 2A by (2.36). Another differentiation (using the chain rule) then yields

∥D2G(y)∥ = O(1). □

Our next aim is to construct an (implicit) solution (α, β) = h(n/N ) to Eq. (2.21) when

N = n + m and n/N is close to x0 = 1/(1 + EZ ). We start by applying Lemma 2.13 to

the function F : Bc4
→ R

2 defined by

F(α, β) :=
(
EY − D1ϕ(α, β),

1

1 + D2ϕ(α, β)
− x0

)
. (2.37)

Note that D2ϕ(α, β) = D2 f (α, β)/ f (α, β) ⩾ 0, and thus F(α, β) is well-defined. Furthermore,

Dϕ(0, 0) = (EY,EZ ), and thus F(0, 0) = (0, 0). Moreover, using matrix form (where the first

column is ∂
∂α

of the vector valued function F and the second is ∂
∂β

), we have

DF =

(
−1 0

0 −(1 + D2ϕ)−2

)
D2ϕ. (2.38)

It follows from Lemma 2.10 that
(D2ϕ(α, β))−1

 = O(1), and then (2.38) together with

Lemma 2.8 yields

∥DF(α, β)−1∥ = O(1). (2.39)

Lemma 2.8 also implies ∥D2 F(α, β)∥ = O(1). Consequently, Lemma 2.13 applies (with d = 2)

and yields a constant σ = c5 > 0 and a function G : Bc5
→ Bc4

such that

F(G(y)) = y for y ∈ Bc5
. (2.40)

Recall that x0 = 1/(1 + EZ ). Since EZ = D2 f (0, 0) = O(1) by Lemma 2.8 and EZ ⩾ δ > 0

by (2.4), there exists a constant c > 0 such that c ⩽ x0 ⩽ 1 − c. Let

c6 := 1
2

min{c5, c}.
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Suppose that |EY − 1| < c6. If also |x − x0| < c6, then
(
EY − 1, x − x0

)
∈ Bc5

; we then define

h(x) := G(EY − 1, x − x0) ∈ Bc4
. (2.41)

Furthermore, |x − x0| < c6 ⩽ 1
2
c ⩽ 1

2
x0 implies x ⩾ 1

2
x0 ⩾ c6 and 1 − x ⩾ c6. Now suppose

that 0 < n ⩽ N and that |n/N − x0| < c6, and let m := N − n and (α, β) := h
(
n/N

)
. Then, by

(2.41) and (2.40),

F(α, β) =
(
EY − 1,

n

N
− x0

)
=

(
EY − 1,

1

1 + m/n
− x0

)
. (2.42)

Definition (2.37) shows that (2.21) holds. Hence, by Theorem 2.11, (2.22) holds. For |x−x0| < c6

define

Ψ (x) := xψ(h(x)), (2.43)

Φ(x) := (2π )−1x−2 f̃0(h(x)) Det
(
D2ϕ(h(x))

)
−1/2. (2.44)

Recall that h(x) ∈ Bc4
⊆ Bc2

, and note that Lemma 2.10 implies Det
(
D2ϕ(h(x))

)
⩾ c2

3;

thus Ψ (x) and Φ(x) are well-defined. Then, still assuming |EY − 1| < c6, |n/N − x0| < c6

and (α, β) := h
(
n/N

)
, we see that (2.22) can be written

pn,N−n = N−2eNΨ (n/N )
(
Φ(n/N ) + O(N−1)

)
. (2.45)

(Here, we use |n/N − x0| < c6 ⩽ x0/2 to bound n ⩾ c6 N , so an O(n−1) error term is O(N−1).)

We next show that, in the relevant domains, the functions Φ, Ψ and their (partial) derivatives

are all bounded.

Lemma 2.14. For each m ⩾ 0, there exists a constant C2
(m) such that if |EY − 1| < c6 and

|x − x0| < c6, then ∥DmΦ(x)∥ ⩽ C2
(m) and ∥DmΨ (x)∥ ⩽ C2

(m).

Proof. We saw in the proof of Lemma 2.13 that DG(y) =
(
DF(G(y))

)
−1, which is bounded for

y ∈ Bc5
by (2.36). By further differentiations, using the chain rule, Lemma 2.8(ii) and induction,

it follows that for each m ⩾ 0,

∥Dm G(EY − 1, x − x0)∥ = O(1) (2.46)

when |EY −1| < c6 and |x − x0| < c6. Hence the definition (2.41) yields |Dmh(x)| = O(1), and

the result follows by (2.43)–(2.44) together with the chain rule and Lemmas 2.8 and 2.10. □

Note for later than since G(0) = 0 and ∥DG(y)∥ = O(1) in Bc6
, we have

|G(w, x − x0)| = O(|(w, x − x0)|) (2.47)

if (w, x − x0) ∈ Bc6
.

We now analyse the exponential term eNΨ (n/N ) of the formula (2.45) for pn,N−n , which is

valid for |n/N − x0| < c6. The next result in particular implies that Ψ (x) ⩽ 0 is a concave

function with a unique maximizer x∗ close to x0. As we shall see, this essentially means that

the dominant contribution to the sum of the pn,N−n comes from the terms with n/N close to x∗,

which is in turn close to x0.

Lemma 2.15. There exist constants c7, c8 > 0 with c8 ⩽ c7 <
1
3
c6 such that if |EY − 1| ⩽ c8,

then the following hold.
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(i) If x ∈ R with |x − x0| ⩽ 3c7, then

Ψ (x) = −Ω
(
|EY − 1|2 + |x − x0|

2
)
. (2.48)

(ii) There exists x∗ ∈ R with |x∗ −x0| = O(|EY −1|) and |x∗ −x0| < c7 such that Ψ ′(x∗) = 0.

(iii) Ψ ′′(x) = −Ω (1) for every x with |x − x0| ⩽ 3c7.

(iv) Φ(x∗) = Ω (1).

As a consequence, x∗ is the unique maximum point of x ↦→ Ψ (x) in [x0 − 3c7, x0 + 3c7].

Proof. For |w|, |x − x0| ⩽ c6, let

Ψ̂ (w, x) := xψ(G(w, x − x0)), (2.49)

so that Ψ (x) = Ψ̂ (EY −1, x). In the proofs below we assume that c7 and c8 are positive constants,

chosen later, with c8 ⩽ c7 <
1
3
c6, and that |w| ⩽ c8 and |x − x0| ⩽ 3c7.

(i) Since |w| + |x − x0| ⩽ 4c7 < 2c6 ⩽ c5, and G maps Bc5
into Bc4

, we have

|G(w, x − x0)| < c4. (2.50)

Since F(0) = 0 and ∥DF(y)∥ = O(1) in Bc4
, using (w, x − x0) = F(G(w, x − x0)) we also

have |(w, x − x0)| = O(|G(w, x − x0)|). This and Lemma 2.12 imply

ψ(G(w, x − x0)) = −Ω (|G(w, x − x0)|2) = −Ω (|(w, x − x0)|2).

Furthermore, as remarked above, |x − x0| ⩽ 3c7 < c6 implies x ⩾ c6. Hence, recalling (2.49),

Ψ̂ (w, x) = −Ω (|(w, x − x0)|2) = −Ω
(
w2 + (x − x0)2

)
, (2.51)

which yields (2.48) since Ψ (x) = Ψ̂ (EY − 1, x).

(iii) Using G(0) = 0, which is shorthand for G(0, 0) = (0, 0), we have

Ψ̂ (0, x0) = x0ψ(G(0, 0)) = x0ψ(0, 0) = 0. (2.52)

Together with (2.51), it follows that, for some constant c > 0,

DΨ̂ (0, x0) = 0, (2.53)

D2
Ψ̂ (0, x0) ⩽ −cI. (2.54)

The same proof as for Lemma 2.14 shows that

Dm
Ψ̂ (w, x) = O(1) (2.55)

for every fixed m ⩾ 0. Using (2.55) with m = 3 and (2.54), we see that if c7 and hence c8 ⩽ c7

is small enough, then

D2
Ψ̂ (w, x) ⩽ − c

2
I

when |w| ⩽ c8 and |x − x0| ⩽ 3c7. In particular, recalling Ψ (x) = Ψ̂ (EY − 1, x), by taking

w = EY − 1 we have

Ψ
′′(x) ⩽ − c

2
. (2.56)

(ii) Similarly, (2.53) and (2.55) with m = 2 imply that DΨ̂ (w, x) = O(|w| + |x − x0|). In

particular, Ψ ′(x0) = D2Ψ̂ (EY − 1, x0) = O(|EY − 1|). Hence we may choose c8 sufficiently

small such that |EY −1| ⩽ c8 implies |Ψ ′(x0)| ⩽ cc7/3. Then the mean value theorem and (2.56)
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imply Ψ ′(x0 − c7) > 0 and Ψ ′(x0 + c7) < 0, so Ψ ′(x∗) = 0 for some x∗ ∈ (x0 − c7, x0 + c7).

Moreover, by the mean value theorem and (2.56) we also have |x∗ − x0| ⩽ 2
c
|Ψ ′(x0)|, so (ii)

holds.

(iv) Since |x∗ − x0| ⩽ c7 < c6, by (2.50) and the definition (2.41) of h we have |h(x∗)| ⩽

c4 ⩽ c2, so Lemma 2.8(iii) applied to (Y 0, Z0) gives f̃0(h(x∗)) ⩾ 1
2
δ. The other factors in (2.44)

are bounded below, using x∗ ⩽ x0 + c7 ⩽ 1 + c7 and Hadamard’s inequality together with

Lemma 2.8(ii), and thus (iv) follows. □

The following technical lemma will be useful for expanding the sum of the pn,N−n

estimates (2.45) around n/N ≈ x∗ (it is easy to give a much more precise formula for T2 j ,

but we do not need this).

Lemma 2.16. For a > 0, y ∈ R and an integer j ⩾ 0, let

T j = T j (a, y) :=
∑

n∈Z

(n − y) j e−a(n−y)2
. (2.57)

Then, uniformly for all 0 < a ⩽ 1 and y ∈ R,

T0 =

√
π

a
+ O

(
a−1/2e−π2/a

)
, (2.58)

and for every fixed integer i ⩾ 0,

T2i = O
(
a−i−1/2

)
, (2.59)

T2i+1 = O
(
a−i−3/2e−π2/a

)
. (2.60)

Proof. We first consider T0 =
∑

n∈Ze−a(n−y)2
. Applying the well-known Poisson summation

formula [26, (II.13.4) or (II.13.14)] and then using the Gaussian integral
∫ ∞

−∞
e−(ax2+bx+c) dx =√

π
a

eb2/(4a)−c, a short standard calculation yields the identity

T0 =
∑

n∈Z

∫ ∞

−∞

e−a(x−y)2
e−2π inx dx =

√
π

a

∑

n∈Z

e−π2n2/a−2π iny, (2.61)

which for a ⩽ 1, say, implies (2.58). (In fact, (2.61) is equivalent to a well-known identity for

the theta function θ3, see [15, (20.7.32)].)

Moreover, taking the partial derivative of (2.57) with respect to y we obtain

∂

∂y
T j (a, y) = − jT j−1 + 2aT j+1. (2.62)

In particular, 2aT1 = ∂
∂y

T0, and termwise differentiation of the right-hand side in (2.61) (noting

that the main term, n = 0, is constant) yields

T1 = O
(
a−3/2e−π2/a

)
.

Repeated differentiation of (2.62) and induction now yield (2.59) and (2.60). □

We also have to estimate the sum of the pn,N−n in (2.35) where n/N is far from x0. Based on

simple Chernoff-type arguments, the next result shows that their contribution is negligible.

Lemma 2.17. If |n/N − x0| ⩾ c7, then pn,N−n ⩽ e−Ω(N ).
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Proof. For any u, v > 0, from (2.12) we have

npn,m ⩽ u−nv−m g̃0(u, v)g(u, v)n. (2.63)

Take u = 1 and v = et , with |t | ⩽ log R, and define

γ (t) := e−tEZ g(1, et ) = Eet(Z−EZ ).

For any 0 ⩽ n ⩽ N , (2.63) yields

npn,N−n ⩽ et(n−N )+tnEZ g̃0(1, et )γ (t)n. (2.64)

Note that γ (0) = 1 and γ ′(0) = 0. Since g(1, et ) = f (0, t) and EZ = D2 f (0, 0), by

Lemma 2.8(i) there is a constant C3 > 0 such that γ ′′(t) ⩽ C3 whenever |t | ⩽ c2, and so

γ (t) ⩽ 1 + C3t2
⩽ eC3t2

. (2.65)

By assumption, |n − N x0| ⩾ c7 N . Recalling that x0 = 1/(1 + EZ ) and EZ ⩾ 0, it follows that

|t(n − N + nEZ )| = |t | · |n(1 + EZ ) − N | ⩾ |t | · c7 N (1 + EZ ) ⩾ c7|t |N . (2.66)

We now choose t = ±c where c := min{ 1
2
c7/C3, c2}, and the sign is such that t(n − N + nEZ )

< 0. Using (2.64)–(2.66) and n ⩽ N , we infer

npn,N−n ⩽ g̃0(1, et ) · e−c7|t |N+C3t2 N
⩽ O(1) · e−c7cN/2,

completing the proof for n ⩾ 1.

Finally, in the remaining case n = 0 we have |XS| = Z0, since |XL | = 0 if and only if Y 0 = 0.

Hence

p0,N = P(Y 0 = 0, Z0 = N ) ⩽ gY 0,Z0 (1, R) · R−N = O(1) · R−N ,

completing the proof (since R > 1). □

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We suppose throughout that c1 ⩽ c8 and that |EY − 1| ⩽ c1.

We start by considering the quantities ξ and θ defined in (2.6) and (2.7). By Lemma 2.15,

Ψ (x) has a local maximum point x∗ ∈ (x0 − c7, x0 + c7). As in (2.6) and (2.7), let

ξ := −Ψ (x∗) and θ :=
√

2π/|Ψ ′′(x∗)| Φ(x∗).

By Lemmas 2.14 and 2.15(iii), Ψ ′′(x∗) = −Θ(1). By (2.48) we have ξ = −Ψ (x∗) =

Ω (|EY − 1|2). Recalling that Ψ (x∗) = Ψ̂ (EY − 1, x∗), see (2.49), by combining (2.52), (2.53)

and (2.55) (with m = 2) together with Lemma 2.15(ii), it follows that

ξ = |Ψ̂ (EY − 1, x∗)| = O
(
|EY − 1|2 + |x∗ − x0|

2
)

= O
(
|EY − 1|2

)
. (2.67)

Hence ξ = Θ
(
|EY − 1|2

)
, as claimed. That θ = Θ(1) follows from the bound |Ψ ′′(x∗)| = Θ(1)

above and Lemmas 2.14 and 2.15(iv), which give Φ(x∗) = Θ(1).

Since ξ and θ , which do not depend on N , are both O(1), for any fixed N , (2.5) holds

trivially simply by taking the implicit constant large enough. Thus we may assume throughout

that N−0.4 ⩽ c7.

We have P(|X| = N ) =
∑N

n=0 pn,N−n . We estimate this sum by Laplace’s method, similarly

to the argument in the proof of Theorem 2.11, but now for a sum instead of a two-dimensional

integral.
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We consider first n such that |n/N − x∗| < N−0.4, which includes the main terms in the sum.

Suppose that |x − x∗| < N−0.4. Using Lemma 2.14, a Taylor expansion then yields, cf. (2.28),

NΨ (x) + Nξ = NΨ (x) − NΨ (x∗) = N 1
2
Ψ

′′(x∗)(x − x∗)2

+ N 1
6
Ψ

′′′(x∗)(x − x∗)3 + O
(
N |x − x∗|4

)
,

which by exponentiation and a Taylor expansion of Φ(x) yields, cf. (2.31),

eNΨ (x)
Φ(x) = e

−Nξ+N
1
2
Ψ

′′(x∗)(x−x∗)2
(
Φ(x∗) + Φ

′(x∗)(x − x∗)

+ NΦ(x∗) 1
6
Ψ

′′′(x∗)(x − x∗)3

+ O
(
|x − x∗|2 + N |x − x∗|4 + N 2|x − x∗|6

))
.

Similar, but simpler, reasoning also shows that if |x − x∗| < N−0.4, then

eNΨ (x) N−1 = e
−Nξ+N

1
2
Ψ

′′(x∗)(x−x∗)2

· O(N−1).

Consequently, since Ψ ′′(x∗) ⩽ 0, if we define

S j :=
∑

|n/N−x∗|<N−0.4

( n

N
− x∗

) j

e− 1
2
|Ψ ′′(x∗)|(n−N x∗)2/N , (2.68)

then (2.45) yields

∑

|n/N−x∗|<N−0.4

pn,N−n = N−2e−Nξ
(
Φ(x∗)S0 + Φ

′(x∗)S1 + NΦ(x∗) 1
6
Ψ

′′′(x∗)S3

+ O
(
S2 + N S4 + N 2S6

)
+ O

(
N−1S0

))
. (2.69)

(The odd sums S1 and S3 do not vanish as the corresponding integrals in the proof of

Theorem 2.11 do, but we shall see that they are exponentially small.) Recall (from the start

of the proof) that Ψ ′′(x∗) = −Θ(1). It follows that if we extend the summation in the definition

(2.68) to all n ∈ Z, and denote the result by S′
j , then S j − S′

j is O
(
e−Ω(N0.2)

)
for each fixed j .

Let a = |Ψ ′′(x∗)|/2N . In the notation of Lemma 2.16, S′
j = N− j T j (a, N x∗). The error terms of

the form O(a−O(1)e−π2/a) in the conclusion of Lemma 2.16 are e−Θ(N ) and so negligible. Thus,

from Lemma 2.16 and (2.69), recalling the definitions (2.6) and (2.7) of ξ and θ , we find

∑

|n/N−x∗|<N−0.4

pn,N−n = N−2e−Nξ
(
N 1/2θ + O(N−1/2)

)
. (2.70)

Next, consider n such that N−0.4 ⩽ |n/N − x∗| ⩽ 2c7, and recall that 3c7 < c6. If

N−0.4 ⩽ |x − x∗| ⩽ 2c7, then Lemma 2.15 implies that |x − x0| ⩽ 3c7 and Ψ (x) ⩽

Ψ (x∗)−Ω ((x−x∗)2) ⩽ Ψ (x∗)−Ω (N−0.8) = −ξ−Ω (N−0.8). Hence, by (2.45) and Lemma 2.14,

if N−0.4 ⩽ |n/N − x∗| ⩽ 2c7, then Lemma 2.15 implies that

pn,N−n = N−2e−Nξ−Ω(N0.2) · O(1).

The sum over such n is easily absorbed into the error term we are aiming for: we have, say,

∑

N−0.4⩽|n/N−x∗|⩽2c7

pn,N−n = O(N−5/2) · e−Nξ . (2.71)
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Finally, since |x∗ − x0| ⩽ c7 by Lemma 2.15(ii) and 0 ⩽ n ⩽ N , using Lemma 2.17 there

exists a constant c > 0 such that, say,
∑

|n/N−x∗|>2c7

pn,N−n ⩽
∑

|n/N−x0|>c7

pn,N−n ⩽ O(N ) · e−2cN = O(N−5/2) · e−cN . (2.72)

Recalling that |EY − 1| ⩽ c1, by (2.67) we may choose c1 ⩽ c8 sufficiently small so that ξ < c,

and then (2.5) follows from (2.70), (2.71) and (2.72). □

3. Application to branching process families

In this section we apply the main result of Section 2 (Theorem 2.2) to a family of branching

processes. The goal is to prove Theorem 3.4 below, giving estimates for the point probabilities

P(|X| = N ) in a form suitable for the application to Achlioptas processes in [21].

3.1. Properties of general parameterized families

By a branching process family (XYu ,Zu ,Y
0
u ,Z

0
u
)u∈I we simply mean a family of branching

processes of the type in Definition 1.1, one for each u in some interval I ⊂ R. Given such a

family, we write

gu(y, z) := gYu ,Zu (y, z) = E(yYu zZu ) and g0
u(y, z) := gY 0

u ,Z
0
u
(y, z) = E(yY 0

u zZ0
u )

for the corresponding probability generating functions. Note that the branching process family is

fully specified by the interval I and the functions gu and g0
u .

The following auxiliary result shows that the associated parameters ξu = ξYu ,Zu and θu =

θYu ,Zu ,Y
0
u ,Z

0
u

defined as in Theorem 2.2 vary smoothly in u. This will later allow us to compare the

parameters ξY,Z and θY,Z ,Y 0,Z0 resulting from different probability distributions (Y 0, Z0) ∈ K0

and (Y, Z ) ∈ K (by integrating linear mixtures that interpolate between them); here the extra

|EYu − 1| = O(1) factor in (3.2) is crucial.

Lemma 3.1. Suppose that R > 1, M < ∞, k1, k2 ∈ N, and δ > 0. Set K0 = K0(R,M, δ) and

K = K(R,M, k1, k2, δ). Let (Xu)u∈I = (XYu ,Zu ,Y
0
u ,Z

0
u
)u∈I be a branching process family such

that, for every u ∈ I , we have (Y 0
u , Z0

u) ∈ K0, (Yu, Zu) ∈ K, and |EYu − 1| ⩽ c1, where c1 > 0

is the constant appearing in Theorem 2.2. Suppose that gu(y, z) and g0
u(y, z) are analytic as

functions of (u, y, z) in the domain

DI,R := I × {(y, z) ∈ C : |y|, |z| < R} ⊂ R × C
2,

and that for some λ,

max
{⏐⏐⏐ ∂
∂u

gu(y, z)

⏐⏐⏐,
⏐⏐⏐ ∂
∂u

g0
u(y, z)

⏐⏐⏐
}
⩽ λ (3.1)

for all (u, y, z) ∈ DI,R . Let

ξu := ξYu ,Zu and θu := θYu ,Zu ,Y
0
u ,Z

0
u

be defined as in Theorem 2.2. Then ξu and θu are (real) analytic as functions of u ∈ I .

Furthermore,

d

du
ξu = O

(
λ|EYu − 1|

)
, (3.2)



3646 S. Janson et al. / Stochastic Processes and their Applications 128 (2018) 3628–3655

d

du
θu = O(λ), (3.3)

where the implicit constants in (3.2) and (3.3) depend only on R,M, k1, k2, δ.

Proof. By assumption, the conditions of Theorem 2.2 hold for each u ∈ I . For any of the

quantities or functions defined in previous sections for a single branching process, we use a

subscript u to denote the corresponding quantity or function associated to Xu . As in previous

sections, α and β always denote real numbers.

The idea of the proof is as follows. For a given u, the functions defined in the previous sections

are defined, either explicitly or implicitly, in terms of gu and g0
u (or their reparameterizations fu

and f 0
u ). Roughly speaking, since gu and g0

u vary analytically in u by assumption (and with

u-derivative O(λ)), it follows that the same is true for the derived quantities. There are various

steps where we must be slightly careful; for example, when taking logs (there is no problem as

we stick to the domain |z − 1| ⩽ 1
2
), or dividing by the square root of a certain determinant

(there is no problem since this determinant is Ω (1) by Lemma 2.10). We must also be careful

with the implicit definitions of Gu and x∗
u ; the hardest part of the argument is to establish (3.2)

with O(λ|EYu − 1|) instead of O(λ).

Turning to the details, from (3.1) and standard Cauchy estimates we see that for each fixed m

we have
Dm ∂

∂u
gu(y, z)

 = O(λ) and

Dm ∂

∂u
g0

u(y, z)

 = O(λ) (3.4)

whenever |y|, |z| ⩽ R1/2, say. (Here and below, D does not include derivatives with respect to u.)

Since c4 ⩽ c2 ⩽ (log R)/2, the same estimates hold for the derivatives of fu(y, z) = gu(ey, ez)

and f 0
u (y, z) = g0

u(ey, ez) in the domain Bc4
⊂ R

2; from now on we work over the reals.

Recalling the definition (2.37) and ϕu = log fu , from (3.4) it follows that ∥ ∂
∂u

Fu(α, β)∥ = O(λ)

for (α, β) ∈ Bc4
.

From the definition (2.37), the function Fu(α, β) is a (real) analytic function of (u, α, β) ∈

I × Bc4
. For each u ∈ I , by (2.40) we have an inverse Gu : Bc5

→ Bc4
of the 2-variable function

Fu . Applying a standard version of the implicit function theorem locally, we see that Gu(α, β) is

analytic as a function of (u, α, β) ∈ I × Bc5
.1

Noting EYu = ∂
∂y

gu(y, z)
⏐⏐

y=z=1
, by definition (2.41) and |EYu − 1| ⩽ c1 it follows that hu(x)

is an analytic function of u, x for u ∈ I and |x − x0,u | < c6; we consider in the sequel only

such u and x . Inspecting the definitions (2.43) and (2.44), using Lemma 2.10 (to ensure that the

determinant is not degenerate), we see that Ψu(x) and Φu(x) are well-defined compositions of

analytic functions, and thus analytic as functions of u, x .

Since Fu(Gu(y)) = y is independent of u, writing x = Gu(y) and differentiating yields
∂
∂u

Fu(x) + DFu(x)( ∂
∂u

Gu(y)) = 0 and thus, recalling (2.39), for y ∈ Bc5
,

 ∂
∂u

Gu(y)

 ⩽

DFu(x)−1
 ·

 ∂
∂u

Fu(x)

 = O(λ). (3.5)

Recalling the definition (2.41), note that (3.5) implies ∥ ∂
∂u

hu(x)∥ = O(λ). Since ψu is defined

in terms of ϕu = log fu = log fYu ,Zu and its derivatives, see (2.20), using (Yu, Zu) ∈ K it

follows that ∥Dψu(α, β)∥ = O(1). Furthermore, since estimates analogous to (3.4) also hold

1 Fix u0 and y0 = (α0, β0) in the relevant domain. By (2.36), DFu is invertible at x0 = Gu0
(y0), so there is an analytic

function Ĝu (y) defined in a neighbourhood of (u0, y0) such that Fu (Ĝu (y)) = y. By local uniqueness, Gu (y) = Ĝu (y)

near (u0, y0), so G is indeed analytic at this point.
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for fu = fYu ,Zu , we have ∂
∂u
ψu(y) = O(λ). Hence, recalling (2.43) and writing y = hu(x), we

have

∂

∂u
Ψu(x) = x

(
∂

∂u
ψu(y) + Dψu(y)

( ∂
∂u

hu(x)
))

= O(λ). (3.6)

Recalling the definitions (2.43) and (2.44), and the estimates in Section 2.3, we similarly deduce
∂
∂u
Φu(x) = O(λ), ∂

∂u
Ψ ′

u(x) = O(λ) and ∂
∂u
Ψ ′′

u (x) = O(λ).

Since x∗
u is defined by Ψ ′

u(x∗
u ) = 0, we have ( ∂

∂u
Ψ ′

u)(x∗
u ) + Ψ ′′

u (x∗
u ) d

du
x∗

u = 0. It follows, using

the lower bound Ψ ′′
u (x∗

u ) = −Ω (1) from Lemma 2.15(iii) and the implicit function theorem, that

x∗
u is an analytic function of u, and that

d

du
x∗

u =
−( ∂

∂u
Ψ ′

u)(x∗
u )

Ψ ′′
u (x∗

u )
= O(λ). (3.7)

As (3.5) implies ∥ ∂
∂u

hu(x)∥ = O(λ), and ∥h′
u(x)∥ = O(1) by (2.46), it follows that

 d

du
hu(x∗

u )

 ⩽


( ∂
∂u

hu

)
(x∗

u )

 +
h′

u(x∗
u )

 ·
⏐⏐⏐ d

du
x∗

u

⏐⏐⏐ = O(λ). (3.8)

Similarly, from the definitions (2.6) and (2.7), using (3.7) and the bounds above on ∂
∂u
Ψu ,

∂
∂u
Ψ ′′

u and ∂
∂u
Φu it follows that ξu and θu are analytic functions of u, with d

du
ξu = O(λ) and

d
du
θu = O(λ). It remains only to establish (3.2).

For this final step, recalling (2.20) and ϕu(α, β) = log fu(α, β) = log gu(eα, eβ), note that

∥D ∂
∂u
ψu(x)∥ = O(λ) follows from (3.4). Since ∂

∂u
ψu(0) = 0, we thus have ∂

∂u
ψu(x) = O

(
λ|x |

)
.

Similarly, as a consequence of Lemma 2.12, ψu(x) = O
(
|x |

)
and ∥Dψu(x)∥ = O

(
|x |

)
. Writing

y∗
u for hu(x∗

u ), it follows from the definition (2.43) and (3.7)–(3.8) that

−
d

du
ξu =

d

du
Ψu(x∗

u ) =
d

du

(
x∗

uψu(y∗
u )

)

=

(
d

du
x∗

u

)
ψu(y∗

u ) + x∗
u

(
∂

∂u
ψu(y∗

u ) + Dψu(y∗
u )

( d

du
hu(x∗

u )
))

= O
(
λ|y∗

u |
)
.

Since y∗
u = hu(x∗

u ), from the definition (2.41) of hu , the bound (2.47), and, for the final step,

Lemma 2.15(ii), it follows that

d

du
ξu = O

(
λ
(
|EYu − 1| + |x∗

u − x0,u |
))

= O
(
λ|EYu − 1|

)
,

completing the proof of the lemma. □

3.2. A specific result suitable for application to Achlioptas processes

In this section we use Theorem 2.2 and Lemma 3.1 to prove the case pR = 1, K = 0 of

Theorem A.10 of [21], used there for the analysis of Achlioptas processes. To formulate this main

application, i.e., our point probability result for certain (perturbed) branching process families,

we need some further definitions.

Definition 3.2. Let t0 < tc < t1 be real numbers. The branching process family (Xt )t∈(t0,t1) =

(XYt ,Zt ,Y
0
t ,Z

0
t
)t∈(t0,t1) is tc-critical if the following hold:
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(i) There exist δ > 0 and R > 1 with (tc − δ, tc + δ) ⊆ (t0, t1) such that the probability

generating functions

gt (y, z) := gYt ,Zt (y, z) = E
(
yYt zZt

)
and

g0
t (y, z) := gY 0

t ,Z
0
t
(y, z) = E

(
yY 0

t zZ0
t
) (3.9)

are defined and analytic on the domain

{(t, y, z) ∈ R × C
2 : |t − tc| < δ and |y|, |z| < R}.

(ii) We have

EYtc = 1, EY 0
tc
> 0 and

d

dt
EYt

⏐⏐⏐⏐
t=tc

> 0. (3.10)

(iii) There exists some k0 ∈ N such that

min
{
P
(
Ytc = k0, Z tc = k0

)
, P

(
Ytc = k0 + 1, Z tc = k0

)
,

P
(
Ytc = k0, Z tc = k0 + 1

)}
> 0. (3.11)

Definition 3.3. Let (Xt )t∈(t0,t1) be a tc-critical branching process family, and let δ, R and k0 be as

in Definition 3.2. Given t, η ⩾ 0 with |t − tc| < δ, we say that the branching process XY,Z ,Y 0,Z0

is of type (t, η) (with respect to (Xt ), δ, R, and k0) if the following hold:

(i) Writing N := {(y, z) ∈ C
2 : |y|, |z| < R}, the expectations

g̃(y, z) := gY,Z (y, z) = E
(
yY zZ

)
and

g̃0(y, z) := gY 0,Z0 (y, z) = E
(
yY 0

zZ0) (3.12)

are defined (i.e., the expectations converge absolutely) for all (y, z) ∈ N .

(ii) For all (y, z) ∈ N we have

⏐⏐g̃(y, z) − gt (y, z)
⏐⏐ ⩽ η and

⏐⏐g̃0(y, z) − g0
t (y, z)

⏐⏐ ⩽ η. (3.13)

Note that Xt = XYt ,Zt ,Y
0
t ,Z

0
t

is itself of type (t, η) for any η ⩾ 0. The following result relates

the point probabilities from Xt with those from branching processes X of type (t, η). A key

feature is the form of the uniform O(η|t − tc| + η2) error term in (3.15). In (3.14) and (3.15)

below, we have ξYt ,Zt = ψ(t) = Θ((t − tc)2) and θYt ,Zt ,Y
0
t ,Z

0
t

= θ (t) = Θ(1) for X = Xt (using

η = 0), and ξY,Z ∼ ψ(t) and θY,Z ,Y 0,Z0 ∼ θ (t) for any branching process X of type (t, η) with

η ≪ |t − tc| ⩽ ε0. In the near-critical case t = tc ± ε, the size-N point probabilities of Xt and X

thus both decay exponentially in Θ(ε2 N ).

Theorem 3.4 (Point Probabilities of X of Type (t, η)). Let (Xt )t∈(t0,t1) be a tc-critical branching

process family. Then there exist constants ε0, η0 > 0 and analytic functions θ , ψ on the interval

I = [tc − ε0, tc + ε0] such that

P(|X| = N ) = (1 + O(1/N ))N−3/2θY,Z ,Y 0,Z0 e−ξY,Z N (3.14)

uniformly over all N ⩾ 1, t ∈ I , 0 ⩽ η ⩽ η0 and all branching processes X = XY,Z ,Y 0,Z0 of

type (t, η) (with respect to (Xt )), where the parameters ξY,Z and θY,Z ,Y 0,Z0 , which depend on the

distributions of (Y, Z ) and of (Y 0, Z0), satisfy
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ξY,Z = ψ(t) + O(η|t − tc| + η2) and θY,Z ,Y 0,Z0 = θ (t) + O(η). (3.15)

Moreover, θ (t) > 0, ψ(t) ⩾ 0, ψ(tc) = ψ ′(tc) = 0, and ψ ′′(tc) > 0.

Proof. Fix a tc-critical branching process family (Xt )t∈(t0,t1), and let δ > 0 and R > 1 be

as in the definitions above. We pick 0 < ε0 < δ, and decrease R slightly, keeping R > 1.

Then g(t, y, z) = gt (y, z) and g0(t, y, z) = g0
t (y, z) are continuous on the compact domain

|t − tc| ⩽ ε0, |y|, |z| ⩽ R and so bounded, say by M1. Let M = M1 + 1. Then, provided

|t − tc| ⩽ ε0, by (3.13) any X of type (t, η) with η ⩽ 1 satisfies

max
{⏐⏐g̃(y, z)

⏐⏐,
⏐⏐g̃0(y, z)

⏐⏐
}
⩽ M whenever |y|, |z| ⩽ R.

For any integers k, ℓ, we have

P(Yt = k, Z t = ℓ) =
1

k!ℓ!
·
∂k+ℓ

∂yk∂zℓ
gt (y, z)

⏐⏐⏐⏐
y=z=0

.

Since gt (y, z) is analytic in t, y, z, this probability varies continuously in t . Moreover, since

P(Y = k, Z = ℓ) can analogously be written as a derivative of g̃ evaluated at (0, 0), using

standard Cauchy estimates and (3.13) we infer
⏐⏐P(Y = k, Z = ℓ) − P(Yt = k, Z t = ℓ)

⏐⏐ = O(η).

A similar argument shows that EYt = ∂
∂y

gt (y, z)
⏐⏐

y=z=1
is continuous in t , and that Cauchy’s

estimates imply

⏐⏐EYt − EY
⏐⏐ = O(η). (3.16)

Analogous reasoning applies to EY 0
t and EY 0.

By definition of a tc-critical branching process family, there is some δ > 0 such that for t = tc
all of EY 0

t , P(Yt = k0, Z t = k0), P(Yt = k0 + 1, Z t = k0) and P(Yt = k0, Z t = k0 + 1) are at

least 2δ, say. Furthermore, at t = tc we have EYt = 1. From the argument above these quantities

all vary continuously in t , and change by O(η) when we move from Xt to some X of type (t, η).

It follows that there is a constant η0 > 0 such that, after reducing ε0 if necessary, whenever

|t − tc| ⩽ ε0 and η ⩽ η0, then any X of type (t, η) satisfies the conditions of Theorem 2.2,

namely that (Y 0, Z0) ∈ K0, (Y, Z ) ∈ K and |EY − 1| ⩽ c1.

Now, applying Theorem 2.2 to each branching process in the family (Xt )t∈[tc−ε0,tc+ε0], and

Lemma 3.1 to the family itself, establishes the η = 0 case of Theorem 3.4 with θ (t) = θt and

ψ(t) = ξt . Indeed, Theorem 2.2 gives that θ = Θ(1), so we do have θ (t) > 0, while (2.8)

gives ψ(t) = ξt = Θ(|EYt − 1|2), which is Θ(|t − tc|
2) since (3.10) implies, after reducing ε0 if

necessary, that

⏐⏐EYt − 1
⏐⏐ = Θ(|t − tc|). (3.17)

It follows that ψ(tc) = ψ ′(tc) = 0 and ψ ′′(tc) > 0.

To complete the proof, assume now that X = XY,Z ,Y 0,Z0 is of type (t, η), with 0 ⩽ η ⩽ η0

and |t − tc| ⩽ ε0. As noted above, Theorem 2.2 applies to X, giving (3.14); it remains to

establish (3.15). We do this by interpolating between X and Xt , and applying Lemma 3.1.

Consider the branching process family (Ȳu, Z̄u, Ȳ 0
u , Z̄0

u)u∈[0,1] defined by the mixtures

ḡu(y, z) := (1 − u)gt (y, z) + ug̃(y, z) and

ḡ0
u(y, z) := (1 − u)g0

t (y, z) + ug̃0(y, z).
(3.18)



3650 S. Janson et al. / Stochastic Processes and their Applications 128 (2018) 3628–3655

(As noted earlier, the probability generating functions ḡu , ḡ0
u and the interval I = [0, 1] fully

specify the family.) Since the assumptions of Theorem 2.2 are preserved by taking mixtures,

every branching process in this family satisfies these assumptions. (In fact, they are all clearly of

type (t, η) too.) Moreover, the assumption (3.13) implies that (3.1) holds with λ = η, and since

EȲu = ∂
∂y

ḡu(y, z)
⏐⏐

y=z=1
we have

|EȲu − 1| ⩽ |EYt − 1| + u|EY − EYt | = O(|t − tc| + η) (3.19)

by (3.16) and (3.17). Thus we may apply Lemma 3.1, and, by integrating (3.2) with ξu = ξȲu ,Z̄u
,

we infer

ξ − ξt = ξȲ1,Z̄1
− ξȲ0,Z̄0

= O
(
η|t − tc| + η2

)
. (3.20)

Finally, θ − θt = O(η) follows similarly by integrating (3.3). □

Theorem 3.4 immediately implies the key case pR = 1, K = 0 of Theorem A.10 of [21]

with any positive value of the constant c. Indeed, after reducing ε0 if necessary, the assumption

η ⩽ c|t − tc| in the latter theorem implies the assumption η ⩽ η0 of Theorem 3.4. Moreover, the

same assumption η ⩽ c|t − tc| together with (3.15) implies the bound ξY,Z = ψ(t)+ O(η|t − tc|)

in Theorem A.10 of [21].

4. The survival probability

In this section we study the survival probability of the branching process X = XY,Z ,Y 0,Z0

from Definition 1.1 and the branching process family (Xu)u∈I from Section 3. The goal is to

prove Theorem 4.5 below, i.e., to give estimates for P(|X| = ∞) suitable for the application to

Achlioptas processes in [21].

Our strategy mimics the general approach used in Sections 2–3 for point probabilities, though

the technical details are much simpler. In Section 4.1 we first prove a technical result for the

survival probability P(|X| = ∞) of a single branching process (Lemma 4.2). Then we show that

in a branching process family (Xu)u∈I certain parameters related to the survival probability vary

smoothly in u (Lemma 4.4). Finally, in Section 4.2 we combine these two auxiliary results to

prove Theorem 4.5.

4.1. Properties of a single process and general parameterized families

As far as the survival of XY,Z ,Y 0,Z0 is concerned, particles of type S are irrelevant and may

be ignored, so we may consider a standard single-type Galton–Watson branching process with

offspring distribution Y and initial distribution Y 0, which we henceforth denote by XY,Y 0 . Thus

P(|XY,Z ,Y 0,Z0 | = ∞) = P(|XY,Y 0 | = ∞) =: ρY,Y 0 . (4.1)

Writing 1 as shorthand for the distribution with constant value one, it similarly follows that

P(|X1
Y,Z | = ∞) = P(|XY,1| = ∞) =: ρY . (4.2)

Throughout this section, we shall work with the univariate probability generating functions

gY (y) := EyY = gY,Z (y, 1) and gY 0 (y) := gY 0,Z0 (y, 1). By standard branching process

arguments (see, e.g., [10, Theorem 5.4.5]), we have

1 − ρY,Y 0 = gY 0 (1 − ρY ), (4.3)



S. Janson et al. / Stochastic Processes and their Applications 128 (2018) 3628–3655 3651

where the extinction probability 1 − ρY is the smallest non-negative solution to

1 − ρY = gY (1 − ρY ). (4.4)

Fix R > 1, M , k1, k2 and δ > 0. We henceforth assume that (Y, Z ) ∈ K = K(R,M, k1, k2, δ)

and (Y 0, Z0) ∈ K0 = K0(R,M, δ). Since (Y, Z ) ∈ K, by (2.1) the function gY (y) is analytic

in {y ∈ C : |y| < R}, with gY (1) = 1. A Taylor expansion of gY (y) at y = 1 yields, for

|x | < R − 1,

gY (1 − x) = E(1 − x)Y =

∞∑

n=0

(−1)n
E

(
Y

n

)
xn

= 1 − EY x + E

(
Y

2

)
x2 − E

(
Y

3

)
x3 + · · · . (4.5)

Define

hY (x) :=
1 − gY (1 − x)

x
, (4.6)

removing the removable singularity at x = 0. Then hY is analytic in {x ∈ C : |x | < R − 1}, and

hY (x) =

∞∑

n=0

(−1)n
E

(
Y

n + 1

)
xn = EY − E

(
Y

2

)
x + E

(
Y

3

)
x2 + · · · . (4.7)

Observe that if ρY > 0, then (4.4) is equivalent to hY (ρY ) = 1. Furthermore,

hY (0) = EY = g′
Y (1), −h′

Y (0) = E

(
Y

2

)
=

E(Y (Y − 1))

2
. (4.8)

We next derive bounds on the derivatives of hY valid for small x .

Lemma 4.1. Suppose that R > 1, M < ∞, k1, k2 ∈ N, and δ > 0. There exist constants

0 < c9 ⩽ min{R − 1, 1}/3 and C4
(m) such that if (Y, Z ) ∈ K = K(R,M, k1, k2, δ), then the

following hold.

(i) If m ∈ N and |x | ⩽ c9, then |DmhY (x)| ⩽ C4
(m).

(ii) If EY ⩾ 1 − δ, then h′
Y (0) ⩽ −δ and P(Y ⩾ 2) > 0.

(iii) If EY ⩾ 1 − δ and |x | ⩽ c9, then h′
Y (x) ⩽ −δ/2.

Proof. (i) By (4.6) and (2.1), h(x) = O(1) if |x | = (R − 1)/2, say. Hence the result, with

c9 := min{R − 1, 1}/3, say, follows by Cauchy’s estimates.

(ii) If (2.3) holds with k1 ⩾ 1, then P(Y ⩾ 2) ⩾ P(Y = k1 + 1) ⩾ πk1+1,k2
⩾ δ, and thus

E(Y (Y − 1)) ⩾ 2δ.

If instead (2.3) holds with k1 = 0, then P(Y = 0) ⩾ πk1,k2
+ πk1,k2+1 ⩾ 2δ. Since

EY ⩾ 1 − δ, then Y ∈ N implies E(1{Y⩾2}(Y − 1)) = E(Y − 1) + P(Y = 0) ⩾ δ, and

thus E(Y (Y − 1)) ⩾ 2E(1{Y⩾2}(Y − 1)) ⩾ 2δ.

In both cases, h′
Y (0) ⩽ −δ follows by (4.8), and P(Y ⩾ 2) > 0 holds, too.

(iii) Follows by (ii) and (i) (with m = 2), replacing c9 by min{c9, δ/2C
(2)
4 }. □

We next characterize the survival probability ρY in terms of the (unique) solution to

hY (ρ̂) = 1.
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Lemma 4.2. Suppose that R > 1, M < ∞, k1, k2 ∈ N, and δ > 0. There exists a constant

0 < c10 ⩽ δ such that the following holds. If (Y, Z ) ∈ K(R,M, k1, k2, δ) and |EY − 1| < c10,

then there is a unique ρ̂ = ρ̂Y ∈ {x ∈ R : |x | < c9} such that

hY (ρ̂) = 1.

Furthermore, ρY = max{ρ̂, 0}, sign(ρ̂) = sign(EY − 1), and |ρ̂| = Θ(|EY − 1|), where the

implicit constants depend only on R,M, k1, k2 and δ.

Proof. We apply the inverse function theorem, Lemma 2.13, with d = 1, r = c9 and

F(x) := hY (x) − EY,

using (4.8) and Lemma 4.1 to verify the assumptions; we shall ensure that c10 ⩽ δ, so

|EY − 1| < c10 implies EY ⩾ 1 − δ. Writing Br = B1
r = {x ∈ R : |x | < r} to avoid clutter (as

before), Lemma 2.13 shows the existence of a constant c10 > 0, which we may assume to be at

most δ, and an inverse function G : Bc10
→ Bc9

with F(G(x)) = x and G(0) = 0. We define

ρ̂ := G(1 − EY ),

so that hY (ρ̂) = F(ρ̂) + EY = 1. Since ∥DG(y)∥ = O(1) in Bc10
by Lemma 2.13 and

∥DF(x)∥ = O(1) in Bc9
by Lemma 4.1(i), using G(0) = F(0) = 0 we have |ρ̂| = |G(1−EY )| =

O(|EY − 1|) and |EY − 1| = |F(ρ̂)| = O(ρ̂), establishing |ρ̂| = Θ(|EY − 1|).

We relate ρ̂ and ρY by a variant of the usual fixed point analysis of gY (x) = x in [0, R]. Since

P(Y ⩾ 2) > 0 by Lemma 4.1(ii), gY is strictly convex on [0, R], which implies that gY (x) = x

has at most two solutions in this interval, and exactly one solution if EY = 1, since gY (1) = 1

and g′
Y (1) = EY . Now x = 1 and x = 1−ρY ∈ [0, 1] are solutions. Since hY (ρ̂) = 1, x = 1− ρ̂

is also a solution (see (4.6)); since |ρ̂| < c9 < min{R − 1, 1}, we have 1 − ρ̂ ∈ (0, R).

If ρ̂ > 0, then 1 − ρ̂ ∈ (0, 1) and 1 are two distinct solutions; thus 1 − ρY = 1 − ρ̂, and

g′
Y (1) > 1 by strict convexity. Similarly, if ρ̂ < 0, then 1 − ρ̂ ∈ (1, R) and thus 1 − ρY = 1,

and g′
Y (1) < 1 by strict convexity. Finally, if ρ̂ = 0, then EY = hY (0) = hY (ρ̂) = 1 by (4.8),

so that 1 − ρY = 1 (since then x = 1 is the only solution to gY (x) = x in [0, R]). Hence

ρY = max{ρ̂, 0} in all cases. It follows also that ρ̂ is unique, and that ρ̂ has the same sign as

EY − 1 = g′
Y (1) − 1. □

Remark 4.3. Since F ′(0) = h′
Y (0) = −E(Y (Y − 1))/2, when EY > 1 it follows easily that

ρY = 2(EY−1)

E(Y (Y−1))
+ O(|EY − 1|2). In particular ρY ∼ 2(EY−1)

E(Y (Y−1))
as EY ↘ 1, assuming, as always

here, that (Y, Z ) ∈ K. This holds under much weaker conditions on Y , see [11] and [2] for precise

conditions; see also [24, Section 3].

We next consider a branching process family (Xu)u∈I = (XYu ,Zu ,Y
0
u ,Z

0
u
)u∈I as in Section 3;

as there we indicate the parameter u by subscripts. Thus, for example, ρ̂u = ρ̂Yu is defined as

in Lemma 4.2, with (Y, Z ) replaced by (Yu, Zu). Furthermore, in analogy to (4.3), we also define

1 − ρ̂Yu ,Y
0
u

:= gY 0
u
(1 − ρ̂u). (4.9)

Thus, by combining (4.3) with Lemma 4.2, when EYu ⩾ 1 we have ρ̂u = ρYu and ρ̂Yu ,Y
0
u

=

ρYu ,Y
0
u
. Mimicking Lemma 3.1, the following auxiliary result shows that ρ̂u and ρ̂Yu ,Y

0
u

both vary

smoothly in u.
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Lemma 4.4. Suppose that R > 1, M < ∞, k1, k2 ∈ N, and δ > 0. Set K0 = K0(R,M, δ)

and K = K(R,M, k1, k2, δ). Let (Xu)u∈I = (XYu ,Zu ,Y
0
u ,Z

0
u
)u∈I be a branching process family

satisfying the assumptions of Lemma 3.1, with |EYu − 1| ⩽ c1 replaced by |EYu − 1| ⩽ c10.

Let ρ̂u and ρ̂Yu ,Y
0
u

be defined as in Lemma 4.2 and (4.9). Then ρ̂u and ρ̂Yu ,Y
0
u

are analytic functions

of u ∈ I . Furthermore,

d

du
ρ̂u = O(λ),

d

du
ρ̂Yu ,Y

0
u

= O(λ), (4.10)

where the implicit constants depend only on R,M, k1, k2 and δ.

Proof. Let hu(x) = hYu (x) := (1 − gu(1 − x))/x be the equivalent of (4.6) for Xu , again

removing the removable singularity at x = 0. Then hu(x) is an analytic function of (u, x) ∈

I × {x ∈ C : |x | < R − 1}. Note that (3.1) implies | ∂
∂u

hu(x)| = O(λ) if |x | = (R − 1)/3, say.

Since c9 ⩽ (R − 1)/3, by the maximum modulus principle (applied with u fixed) it follows that
⏐⏐⏐ ∂
∂u

hu(x)

⏐⏐⏐ ⩽ Cλ (4.11)

for all u ∈ I and |x | ⩽ c9.

By Lemma 4.2, for every u ∈ I there is a unique ρ̂u ∈ R with |ρ̂u | < c9 such that

hu(ρ̂u) = 1. (4.12)

Since |h′
u(ρ̂u)| ⩾ δ/2 by Lemma 4.1(iii) and |EYu − 1| ⩽ c10 ⩽ δ, the implicit function

theorem shows that ρ̂u is an analytic function of u ∈ I . That ρ̂Yu ,Y
0
u

is analytic then follows

from (4.9) and the assumption that g0
u(y, z) is analytic. By differentiating (4.12) we obtain

∂hu

∂u
(ρ̂u) + h′

u(ρ̂u) · d
du
ρ̂u = 0. So, using |h′

u(ρ̂u)| ⩾ δ/2 and (4.11),

d

du
ρ̂u = −h′

u(ρ̂u)−1 ·
∂hu

∂u
(ρ̂u) = O(1) · O(λ) = O(λ). (4.13)

Finally, g′

Y 0
u
(1 − ρ̂u) = O(1) follows from (2.1) and Cauchy’s estimates (recall that |ρ̂u | <

c9 ⩽ (R − 1)/3). By differentiating (4.9) and then using (3.1) and (4.13), we obtain

d

du
ρ̂Yu ,Y

0
u

= −
( ∂
∂u

gY 0
u

)
(1 − ρ̂u) + g′

Y 0
u
(1 − ρ̂u) ·

d

du
ρ̂u = O(λ) + O(1) · O(λ) = O(λ),

completing the proof. □

4.2. A specific result suitable for application to Achlioptas processes

We are now ready to prove our main result, concerning the t-dependence of the survival

probability of Xt when (Xt )t∈I is a tc-critical branching process family, as well as the survival

probability of branching processes X = XY,Z ,Y 0,Z0 of type (t, η); see Section 3.2 for the relevant

definitions. Two key features are the convergent power series expansion (4.14), and the uniform

O(η) error term in (4.15). In particular, we have ρ̃ ∼ ρ(tc + ε) = Θ(ε) for any branching

process X of type (tc + ε, η) with η ≪ ε ⩽ ε0. In the supercritical case t = tc + ε, the survival

probabilities of Xt and X thus both grow linearly in ε.

Theorem 4.5 (Survival Probabilities). Let (Xt )t∈(t0,t1) = (XYt ,Zt ,Y
0
t ,Z

0
t
)t∈(t0,t1) be a tc-critical

branching process family. Then there exist constants ε0, c > 0 with the following properties.

Firstly, the survival probability ρ(t) := P(|Xt | = ∞) is zero for tc − ε0 ⩽ t ⩽ tc, and is positive
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for tc < t ⩽ tc + ε0. Secondly, ρ(t) is analytic on [tc, tc + ε0]. More precisely, there are constants

ai with a1 > 0 such that

ρ(tc + ε) =

∞∑

i=1

aiε
i (4.14)

for 0 ⩽ ε ⩽ ε0. Thirdly, for any t, η with |t−tc| ⩽ ε0 and η ⩽ c|t−tc|, and any branching process

X = XY,Z ,Y 0,Z0 of type (t, η) (with respect to (Xt )), the survival probability ρ̃ := P(|X| = ∞) is

zero if t ⩽ tc, and is positive and satisfies

ρ̃ = ρ(t) + O(η) (4.15)

if t > tc, where the implicit constant depends only on the family (Xt ), not on t or X.

Moreover, analogous statements hold for the survival probabilities ρ1(t) := P(|X1
Yt ,Zt

| = ∞)

and ρ̃1 := P(|X1
Y,Z | = ∞).

Proof. We argue as in the proof of Theorem 3.4. In particular, we may assume that (Y, Z ) ∈ K

and (Y 0, Z0) ∈ K0 for some R,M, k1, k2, δ. We shall also assume that c ⩽ 1.

We consider only t with |t − tc| ⩽ ε0; we may assume that ε0 is small enough that this implies

t ∈ (t0, t1), and, by (3.10), that EY 0
t > 0, and that

sign(EYt − 1) = sign(t − tc) and |EYt − 1| = Θ(|t − tc|) < c10. (4.16)

By (4.2) and Lemma 4.2 and it follows that ρ1(t) = ρYt is zero for tc − ε0 ⩽ t ⩽ tc, and positive

for tc < t ⩽ tc + ε0. Since P(Y 0
t ⩾ 1) > 0, now (4.1) and (4.3) imply an analogous statement for

ρ(t) = ρYt ,Y
0
t
. Lemmas 4.2 and 4.4 also imply that

ρ1(t) = ρ̂Yt and ρ(t) = ρ̂Yt ,Y
0
t

(4.17)

are both analytic for tc ⩽ t ⩽ tc + ε0. Hence (4.14) holds if ε0 is sufficiently small.

Next, for a branching process of type (t, η), by (3.16) we have |EYt −EY | = O(η). Since η ⩽

c|t − tc|, it follows from (4.16) that if c is small enough, then sign(EY − 1) = sign(t − tc).

Moreover, since η ⩽ c|t − tc| ⩽ |t − tc| ⩽ ε0, using (4.16) we also have |EY − 1| < c10

if ε0 is small enough. Mimicking the above reasoning for ρ1(t) and ρ(t), using (4.1)–(4.3) and

Lemma 4.2 it follows for η ⩽ c|t − tc| that ρ̃1 = ρY and ρ̃ = ρY,Y 0 satisfy ρ̃1 = ρ̃ = 0

if tc − ε0 ⩽ t ⩽ tc, and ρ̃1, ρ̃ > 0 if tc < t ⩽ tc + ε0; furthermore,

ρ̃1 = ρ̂Y and ρ̃ = ρ̂Y,Y 0 (4.18)

for tc ⩽ t ⩽ tc + ε0 and η ⩽ c|t − tc|.

Finally, we consider the interpolating branching process family (Ȳu, Z̄u, Ȳ 0
u , Z̄0

u)u∈[0,1] defined

by (3.18), for which, as noted in Section 3.2, (3.1) holds with λ = η and I = [0, 1]. Note

that (3.19) and η ⩽ |t − tc| ⩽ ε0 imply |EȲu − 1| < c10 provided ε0 is small enough.

Integrating (4.10) of Lemma 4.4 over u ∈ [0, 1] similarly to (3.20) in the proof of Theorem 3.4,

using the identities (4.17)–(4.18) we infer ρ̃1 − ρ1(t) = ρ̂Y − ρ̂Yt = O(η) and ρ̃ − ρ(t) =

ρ̂Y,Y 0 − ρ̂Yt ,Y
0
t

= O(η) for tc ⩽ t ⩽ tc + ε0 and η ⩽ c|t − tc|, completing the proof. □

Theorem 4.5 immediately implies the key case pR = 1, K = 0 of Theorem A.11 of [21],

used there for the analysis of Achlioptas processes.
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