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Abstract

We consider branching processes consisting of particles (individuals) of two types (type L and type )
in which only particles of type L have offspring, proving estimates for the survival probability and the
(tail of) the distribution of the total number of particles. Such processes are in some sense closer to single-
than to multi-type branching processes. Nonetheless, the second, barren, type complicates the analysis
significantly. The results proved here (about point and survival probabilities) are a key ingredient in the
analysis of bounded-size Achlioptas processes in a recent paper by the last two authors.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout the paper we consider branching processes in which every particle is of one of
two types, called (for compatibility with the notation in [21]), ‘type L’ and ‘type S’. Particles of
type S may be thought of as barren: they have no children. Each particle of type L will have some
random number of children of each type; as usual, we have independence between the children
of different particles, but the numbers Y and Z of type-L and type-S children of one particle
need not be independent. The formal definition is as follows.
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Definition 1.1. Let (Y, Z) and (Y°, Z°) be probability distributions on N?. We write X! = %; P
for the Galton—Watson branching process started with a single particle of type L, in which each
particle of type L has Y children of type L and Z of type S. Particles of type S have no children,
and the children of different particles are independent. We write X = Xy ; yo o for the branching
process defined as follows: start in generation one with Y particles of type L and Z° of type S.
Those of type L have children according to x%, ~» independently of each other and of the first
generation. Those of type S have no children. We write |X| (|X'|) for the total number particles
in X (X").

These branching processes are in some sense essentially single-type: one could first generate
the tree of type-L particles as a classical single-type Galton—Watson process, and then consider
particles of type S. However, since the numbers of type-S and type-L children are not necessarily
independent, this two-stage description does not seem particularly easy to work with.

The motivation for considering such processes (and in particular for allowing a different rule
for the first generation) comes from the application to studying the phase transition in Achlioptas
processes in [21]. Achlioptas processes are evolving random graph models that have received
considerable attention (see, e.g., [1,18,4,23,13,19,14,3,20] and the references therein). We shall
say nothing further about these random graph processes here, aiming to keep the paper self-
contained, and purely about branching processes.

We shall prove two main results. Firstly, in Section 2, we consider an individual branching pro-
cess of the type above, giving an asymptotic formula for the point probability py = P(|X| = N)
under certain conditions on the distributions (Y, Z) and (Y°, Z°). This formula is proved in
Sections 2.1-2.3, which are the heart of the paper. Then, in Section 3, we consider families
of processes where the offspring distribution varies analytically in an additional parameter ¢.
Roughly speaking, we show that the key quantities in the formula in Section 2 then vary
analytically in 7. This result (which in particular implies properties of the near-critical case)
is needed in [21]. Finally, in Section 4, we prove corresponding results for the survival
probability P(|X| = oo). Here the barren type plays no role, so the results effectively concern
single-type processes and are much simpler.

Remark 1.2. Although the definition of sesqui-type branching processes is adapted to the
application in [21], the results here are applicable, at least in principle, to a more general class of
branching processes. Consider a finite-type Galton—Watson process in which there is one special
type (type L), and all other types are ‘doomed’ (lead to finite trees of descendants a.s.). Such a
process may be transformed into a sesqui-type process in a natural way: for each type-L particle
replace its children of all doomed types, and their (necessarily doomed) descendants, by type-S
children (keeping the same total number of particles). For our results to apply to the transformed
process we need further conditions, roughly speaking that the ‘doomed’ subtrees are not too close
to critical; but in outline, all processes with (at most) one type that can potentially survive are
covered. Branching processes of this type (with one doomed type) have been studied by several
authors, giving various results different from ours; see for example [22,25,7].

1.1. Some notation and conventions

Throughout we write N := {0, 1, 2, ...} for the non-negative integers.
Given a two-dimensional random variable (Y, Z) taking values in N2, we denote its bivariate
probability generating function by
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grz(y,2) =BG =) P(Y =k Z =1y, (1.1)
k,1>0
for all complex y and z such that the expectation (or sum) converges absolutely. We will also
consider the bivariate moment generating function

fr.z(y.2) = gr.z(e”, &) = E(e? 7). (1.2)

When considering a particular branching process as in Definition 1.1, we often write g = gy z
and f = fy z for brevity.

We denote the coefficient of y*z/ in a power series G(y, z) by [y*z/1G(y, 2).

We say that a function f defined on I C C is analytic if for every xo € I thereisanr > 0
and a power series g(x) = Y 04 (x — xo)’ with radius of convergence at least r such that f
and g coincide on (xg — r, xo + ) N I. A function f defined on some domain including I is
analytic on [ if f|; is analytic. The definitions for functions of several real or complex variables
are analogous.

If f is an analytic function of d variables, defined in an open set U C C4, we denote its
derivative by Df, and its mth derivative by D™ f. Note that D™ f is an analytic function from
U to the linear space of all (symmetric) m-linear forms C? — C. In particular, for each z € U,
Df(z) is a linear form, which can also be regarded as a vector (the usual gradient); we write
D;f = aix,-f’ so Df(z) = (le(z), e, Ddf(z)). Similarly, D? f(z) is a bilinear form, which
may be regarded as a d x d matrix with entries D;; f(z), where D;; = D;D;. We denote its
determinant by Det(D? f(2)). (This is known as the Hessian of f.)

For a vector x € C¥, let D" f(@[x] denote D™ f(z)(x, ..., x), where the vector x is repeated
m times. When using coordinates x = (u, v) in the case d = 2, we write [u, v] for [(u, v)], so,
regarding D? f as a matrix and x as a (column) vector, we have

D* (D)l v] = (u v) D* f(2) (ﬁ) : (1.3)
We denote the usual Euclidean norm of vectors by |-|. For operators and the multilinear forms
D™ f we use | - || for the usual norm (any other norm would do as well).

For real symmetric matrices, A < B means that B — A is positive semi-definite, i.e., that
v"(B — A)v > 0 for all real vectors v. In particular, if A is a d x d symmetric matrix and ¢ € R,
then

A>cl < v Av > clv)* forallv € RY. (1.4)
Remark 1.3. We adopt the following notational convention regarding constants. ¢ and C are
used ‘locally’ (within a single proof), while numbered constants ¢y, C; etc. retain their meaning

throughout the paper. The constants ¢;, which are numbered in the order they are introduced,
obey the inequalities

c1<ceg<er<cg<cs and ¢ <o

We write y, z, w for complex variables, and u, v, o, § for real variables. All constants c;, C; etc.
are positive.

2. Point probabilities of a single branching process

In this section we study the point probabilities P(|X| = N) of the branching process X =
Xy, 7.y0.z0 from Definition 1.1. To formulate our main result we need some further definitions
(which encapsulate fairly mild and natural conditions for the offspring distributions).
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Definition 2.1. Suppose that R > 1, M < 00, kj,k, € Nand § > 0.

(i) Let K° = K°%R, M, 8) be the set of probability distributions v on N? such that if
(Y, Z) ~ v, then

ER'™* < M, .1

EY > 6. 2.2)

(i) Let K' = K'(ky, k2, 8) be the set of probability distributions v = (77i,)i,j>0 On N? such
that

Ty ky = 0, Tk 41,k 2 0, ki kpt1 2 6. (2.3)

(i) Let K = K(R, M, ki, k», 8) := K°(R, M, 8) N K'(k1, k2, 5).

We write (Y, Z) € K if the distribution of (¥, Z) is in K, and similarly for ! and C. The
key condition here is the (uniform) bound (2.1) on the probability generating functions. The
condition (2.3) is needed, roughly speaking, to ensure that (Y, Z) is not essentially supported on
a sublattice of N2, Note that (Y, Z) € K! trivially implies

EZ>2P(Z=k+1) >4, 2.4

and similarly EY > §.

The following theorem gives the qualitative behaviour of the size-N point probabilities of
the branching process X = Xy ; yo zo from Definition 1.1. The statement of Theorem 2.2 is
not self contained since the parameters ¥, ¢ and x* are defined (in a rather involved way)
from the generating functions of (Y, Z) and (Y9, 29), see (2.43)—~(2.44) and Lemma 2.15 in
Section 2.3. A key feature of the result is that the estimates and error-terms are uniform over
all distributions (Y°, Z%) e K% and (Y, Z) € K, i.e., the explicit and implicit constants depend
only on R, M, ki, k, and §. Note that, from (2.8) below, £ = 0 if and only if EY = 1, and that
P(|X| = N) decays exponentially in @(s2N) in the near-critical case EY = 1 % &.

Theorem 2.2 (Point Probabilities of X). Suppose that R > 1, M < o0, ki, k; € N, and § > 0.
Writing K° = K%R, M, 8) and KK = K(R, M, ky, k2, 8), there exists a constant ¢; > 0 such that
if(YO, ZN e K° (Y, Z2) € K, and |EY — 1| < ¢y, then for all N > 1 we have

P(X| = N)= N2 (6 + 0(N)), (2.5)
where, defining ¥ and @ as in (2.43)— (2.44) and x* as in Lemma 2.15, we have
E=¢&yz=-V(x") >0, (2.6)

6 = 0yo 70y 7z = V21 /| ¥"(x9)] D(x") = O(), Q2.7
and

& = O(EY — 1) 2.8)
Moreover, the implicit constants in (2.5)—(2.8) depend only on R, M, ky, k, and 8.

The remainder of this section is devoted to the proof of Theorem 2.2. To this end we fix R > 1,
M < 00, ki, ky € N, and § > 0, and write K° = K%R, M, 8) and K = K(R, M, ky, k», 8) to
avoid clutter. Let |X%| and |X5| denote the total numbers of type-L and type-S particles in X, so
|%] = 1%L + |%5], and set

Pam = P(XE| =n, |X5] =m). (2.9)
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Of course, p,,, depends on the distributions of (¥, Z) and (Y 0 Z%). In Section 2.1 we establish a
simple integral formula for p,, ,,. Then, in Section 2.2 we use a version of the saddle point method
to estimate this integral asymptotically. Finally, in Section 2.3 we prove (2.5) by summing all
DPnm Withn +m = N.

2.1. An integral formula for p,

In this section we derive an explicit integral formula for p, ,,, see (2.14). We start with a
simple conditional version of the classical Otter—Dwass formula (see e.g. Dwass [8]), which
hinges on the random walk representation of a branching process and a well-known random-walk
hitting time result.

Lemma 2.3. For all integers n > 1 and m, ng, my > 0,

P(IX = n, |X5]=m | Y =no, Z° = my)

no
P i=n, /. = . 2.10
= (no—i— E Yj n, mo -+ E j m) ( )

1<j<n 1<j<n

Proof. Let (Y;, Z;);>1 be independent with each pair having the same distribution as (Y, Z).
Since particles of type S do not have any children, by exploring the branching process X in the
usual way (i.e., revealing the offspring of the particles of type L one-by-one until none are left
to explore), we have

P(IX = n, |X5)=m | Y° = no, Z° = my)

=P<I’l0+ min Z (Y_/—1)>0, no + Z(Y]—l)z(), mo + Z Z,:m)

0<n’<n - - -
1<j<n’ 1<j<n 1<j<n

That the right-hand side of the above expression equals (2.10) is surely folklore (by conditioning
on Zlgjgnzj = m — my this also follows directly from [16, Theorem 7]); we include a
short argument. Namely, by a version of the well-known Cyclic Lemma (sometimes also called
Spitzer’s combinatorial lemma), see, e.g., [12, Lemma 15.3] or [17, Lemma 6.1], for any
sequence (yy, ..., y,) withy; € {—1,0,1,2,...} and ng + Zlgignyi = 0, there are exactly ng
cyclic shifts of (yy, ..., y,) for which all corresponding partial sums s; = y; + - - - + y; of length
i < n—1satisfy no+s; > 0. Hence, taking a uniformly random cyclic shift of the #» independent
variables (Y; — 1, Z;), the formula (2.10) follows. [

Remark 2.4. This two-type version of the Otter—Dwass formula is a simple variation of the
usual one-type case; this is because one type is barren and can essentially be ignored. For a much
more complicated formula in the general multi-type case, see Chaumont and Liu [5].

The probability on the right-hand side of (2.10) can be expressed using generating functions
as

[y"_”"zm_’”o](g(y, Z)n) — [y”z’”](y"ozmog(y, Z)”). (2.11)

Forn > 1 and m > 0, recalling the notation (2.9) and summing (2.10) over all ng, mg, we thus
obtain

npam =Y P =no, Z°=mo)noly"z"1(y"2"08(y. 2)")
ng,mo=0 (212)

= [y"2"1(20(y. 2)g(y. 2)").
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where

- ad
2oy, = Y P’ =n, Zo=m0)n0)’n02m°=Y58Y0,zo(y,Z)-

ng,mo=0

For later use, we also define

~ . 0 0
fo(y, 2) = go(e’, ) = 5fyo,zo(y, 2) =E(¥%” +ZZ"). (2.13)

Remark 2.5. Let G(y,z) := E(y'xL'z‘xS') be the bivariate generating function for the size of

the branching process X, and let G(y, z) = E(y\xl,L|Z|xl’s\) be the corresponding generating
function when starting with a single particle of type L. Then G(y,z) = go(G1(y, 2), z) and
Gi(y,2) = yg(G1(y, 2), 2), and the formula (2.12) can alternatively be obtained by the Lagrange
inversion formula in the Biirmann form, see e.g. [9, A.(14)], regarding the generating functions
as (formal) power series in y with coefficients that are power series in z. We omit the details.

The extraction of coefficients in (2.12) can be performed by complex integration in the

usual way (e.g., using Cauchy’s integral formula to evaluate E,;3,',1,—J.;Z1,,,(g:’o(y, 2)g(y, Z)”)‘ ym0 =

n!m!np, ,, as in the textbook proof of Cauchy’s estimates), yielding the formula

1 M{ gy, D, 2 L
NPnm = -7 ) ) )
Prn = G PP YT B0 g2 T

where we integrate (for example) over two circles with centre 0 and radii such that gy(y, z) and
g(y, ) are defined. In particular, if (¥, Z) and (Y°, Z°) are both in X°, then for any «, B < log R
we can integrate over |y| = ¢* and |z| = ¢#, and the standard change of variables y = et
7 = e+ then yields

1 T[T . s
NPpm = _/ / 6_11(a+lu)_m(ﬁ+lv)f0(a + iu, ,3 + iv)
472
- J—7
x fla + iu, B + ivy" du dv, (2.14)

Remark 2.6. Alternatively, (2.14) can be obtained from (2.10) by first considering suitably tilted
versions of the random variables (cf. Cramér [6]), and then passing to characteristic functions
and making a Fourier inversion.

Remark 2.7. It is not hard to write an integral formula for the final probability py =
> min—nPn.m that we are aiming to estimate. For example, multiplying (2.12) by x"/n and
summing we see that p,,, = [x"y"z"]1H(x,y,z), where H(x,y,z) = —go(y,z)log(l —
xg(y, 2)). Thus one can find py by extracting the coefficient of w’+" in H(w, t/w, t). However,
the corresponding integral does not obviously lend itself to asymptotic evaluation by methods
such as those used here. Still, a direct estimate of py may perhaps be possible by appropriate
singularity analysis.

2.2. An asymptotic estimate of p, n
In this section we estimate the integral (2.14) asymptotically (see Theorem 2.11), using
parameters defined in terms of the moment generating function f(y,z) = frz(y,2) =

E(e?Y*%%). Whenever f is defined and non-zero, let

o(y,2) = ey,z(y, 2) ;= log fy z(y, z) = log f(y, 2), (2.15)
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taking the principal value of the logarithm; we shall only consider ¢ on domains on which
| f — 1] < 1/2. The next lemma simply states that in suitable domains, f, ¢ and their (partial)
derivatives are all bounded.

Lemma 2.8. There exist constants 0 < ¢, < (logR)/2 and Ci m € N, such that if
(Y, Z) € K® and m € N, then the following hold.

() If o, B, u, v € Rwith |a|, |B| < ca, then |D™ f(a + iu, B +iv)|| < C;™.
(1) If, in addition, |u|, |v| < ca, then (o +iu, B +1iv) is defined, and || D™ p(a +iu, B +1v)|| <
c,m,
(iii) If |al, |B| < ca, then %f(a, B) = 8/2.

Proof. (i) When |y|, |z| < R, then |g(y, 2)| = |E(yYz%)| < E(ly|¥|z|%) < ERY*Z, which is at
most M by assumption. Thus | f(y, z)] < M when Re(y) < log R and Re(z) < log R. Recall
that R > 1 by assumption, so log R > 0. For any ¢, < (log R)/2, say, for suitable C;"™ > 0
statement (i) follows by standard Cauchy estimates

(i) Let C = Cil) denote the constant from the above proof of (i). Set ¢, := min{(log R)/2,
1/(8C)}. Since f(0,0) = g(1, 1) = 1, it follows from (i) that if |«|, | 8], |u], |[v| < c3, then

| fla+iu, B+iv) — 1] < (Ja +iu] + |B 4+ iv)C < 4e,C < 1/2, (2.16)

so ¢(« + iu, B + iv) is defined and bounded. Furthermore, after decreasing ¢, and increasing
C1™, if necessary, the bounds for the derivatives now again follow by Cauchy’s estimates.

(ii1) Let f = %f By our assumption (2.2), f(O, 0) = EY > §. Furthermore, Df(a, B) =
DD, f(a, B) = O(1) for ||, |B] < c, by part (i). Consequently, after reducing c; if necessary,
we have f(a, B) > %8 for |, |B] < ;. O

The next lemma expresses, in a quantitative form, the unsurprising fact that if we evaluate the
probability generating function g(y, z) = gy z(y,z) = E(y'z%) at y, z which are not positive
real numbers, then there is significant cancellation, i.e., |g(y, z)| is significantly smaller than
g(|yl, |z]). It will be more convenient to write this in terms of the moment generating function
f = fv.z rather than g.

Lemma 2.9. There exists a constant c¢3 > 0 such that if (Y,Z) € K and «, B, u,v € R with
leel, 1B < ¢2 and |ul, |v| < 7, then

| fle +iu, B+ iv)| < fla, Be 3+, 2.17)

Proof. Let my; :=P(Y =k, Z =1[). Then

fla+iu, p+iv) =Y mp et HoHE,
k,1=0
and thus f(«, 8) > 0. Then
f(O(, /3)2 _ |f(0( + iu, ﬂ + iU)|2 — Z ﬂk,lnm.ne(k+m)a+(l+n)ﬂ<l _ Re ei(k—m)LH—i(l—n)v)‘

k,l,m,n
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Each term on the right-hand side is non-negative, and considering just the cases (k, [, m,n) =
(k1, ko, ki + 1, kp) and (ky, ko, k1, ko + 1), recalling (2.3) we obtain
fle, By = | f(e +iu, B +iv)?
> §2e@kiHDat2hoB (] _ cog ) 4 §2e2K19+ @t DB(] _ cogp)
= 0u® +v?),
since 1 —cos x = 2(x?) for |x| < 7. Moreover, by Lemma 2.8(i), f(a, 8) = O(1). Consequently
L= |f(e +iu, B +iv)*/f (e B)* = 2c3u +v?)
for some constant ¢; > 0, and thus
et i, B+ i)/ f (e B < 1= 2e30u? + %) < e 23070,
establishing (2.17) since f(«, 8) > 0. O

We next establish that the symmetric bilinear form ngo(oz, B) is positive-definite; a variant
of the lower bound (2.18) could also be proved by first considering D?¢(0, 0) and then using
continuity. For the interpretation of Dz(p(ot, Blu, v], see (1.3).

Lemma 2.10. If (Y, Z) € K and «, B € R with |a|, |8| < ¢2, then D*¢(at, B) > 31, i.e.,
D¢, Blu, v] > c3(® +v%),  w,veR. (2.18)
In particular, Det(D*¢(a, B)) > c%.

Proof. We first consider only |u|, |[v| < ¢;, so Lemma 2.8(ii) applies. Then the estimate (2.17)
can be written

Rep(a + iu, B+ iv) < (o, B) — c3(u® + v?). (2.19)
A Taylor expansion yields

ol +iu, B+ iv) = ¢(a, B) + iDp(a, B)lu, vl — 3 D*¢(a, P)lu, vl + O((lu] + [v])*).

Since ¢(«, B) is real for real o and B, all derivatives D" ¢(«, B) are real. Hence, when taking the
real part, the linear term vanishes, and (2.19) implies

ID%¢(a, B)lu, vl = c3® + v*) + O((ul + |v])?).

Exploiting bilinearity, by replacing (u, v) with (tu, tv) and letting ¢t — 0, we now obtain (2.18)
for all u, v € R, with room to spare.

Finally, by (1.4), note that (2.18) can be written Dzw(a, B) = c3l. This says that both
eigenvalues are > c3, and thus the determinant is > c%. ]

For ||, |B8] < ¢3, define

Vo, B) = ¢(a, B) — aDig(a, B) — BDr¢(e, B). (2.20)
We are now ready to estimate the integral (2.14) for p, ,, using a (two-dimensional) version of the
saddle point method (see, e.g., [9, Chapter VIII]). We defer the problem of finding suitable («, B)

satisfying equation (2.21) to Section 2.3. Recall that fy(y, z) = %fyo’zo(y, 7) = E(Y°e3’yo+zzo),
see (2.13).



3636 S. Janson et al. / Stochastic Processes and their Applications 128 (2018) 3628-3655

Theorem 2.11. Suppose that (Y°, Z°) € K° and (Y, Z) € K. Suppose further thatn > 1, m > 0
are integers and that «, B are real numbers with |«|, |B| < ¢, such that

Do(a, B) = (1, m/n). (2.21)
Then

Pam = 2P (1) foet, ) Det(D2g@, B)) ™ + 0(n7), (222)
where the implicit constant depends only on the parameters R, M, ki, ky, 8 of K° and K.

Proof. We write (2.14) as

e "B (o, BY' I, (2.23)

Pnm =
T A2

where

I = /ﬂ /ﬂ e~ ime=imy £ (o + iu, B+ iv)(w> du dv. (2.24)
-7 J =7 f(a7 .B)

Using assumption (2.21) we have ¥ («, f) = ¢(«, B) —a — Bm/n, so
e—not—mﬂf(a7 ‘B)n — e—na—l71ﬂ+n<p(a,ﬁ) — enw(a,ﬁ). (225)

We shall estimate (2.24) using Laplace’s method (in two dimensions), cf. e.g. [9, Appendix B.6].
Roughly speaking, the idea is as follows. We view the integrand as a product of a term
independent of n with a term that is exponential in n. As we shall see, the condition (2.21)
ensures that the exponent has a stationary point, in fact a maximum, at u = v = 0. It turns out
that the main contribution is near to this point, and here the exponent may be approximated by a
quadratic, leading to a (two-dimensional) Gaussian integral.

Applying Lemma 2.8(i) to (Y°, Z°) shows that fy(e, B) = O(1). Since Det(D*¢(at, B)) =
£2(1) by Lemma 2.10, and ¥ (e, 8) = O(1) by (2.20) and Lemma 2.8(ii), the conclusion (2.22)
holds for any fixed n simply by taking the implicit constant large enough. Thus we may assume
that 7 is at least any given constant n, and in particular that n=0% < ¢».

Applying Lemma 2.8(i) to (Y°, Z°) also shows that fy(a + iu, g + iv) = O(1). Hence, if

lul = n=% or |v| > n%4, then by Lemma 2.9 the integrand in (2.24) is (e’”*"" 0'8) =
0(e‘c3”02) = 0(n™). On the other hand, if |u|, |v] < n~%* then, since n=%* < ¢,
Lemma 2.8(ii) shows that ¢(« + iu, B + iv) is defined and we obtain
L=0n)+ D, (2.26)
with
04 L .—04
L= / / fola + iu, B 4 iv)e"letinprivy—plf)=inuzimv 4, 4, (2.27)
_p—04 J_,-04

Considering a Taylor expansion of ¢ around («, 8), and noting that the linear terms cancel by
our assumption (2.21), we have

n(p(a +iu, B +iv) — ¢(a, B)) — inu — imv
= —n3D%p(a, p)lu, v] — ng D>p(er, B)lu, vl + O (n(jul + v))?), (2.28)
where we used Lemma 2.8(ii) to bound the error term. For |u|, [v] < n~%%, note that
Lemma 2.8(ii) implies nD3p(a, lu,v] = Om(u] + [v)D>) = 0®w™°?) = 0(), and
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O(n(lu] + [vD* = 0(n~%% = 0(1). Hence, writing for brevity
. 2
Q = D ¢p(a, B),

the exponential factor in (2.27) is
e’%”Q[”’”] exp(—néD3<p(oz, Blu, vl + O (n(|ul + |v|)4))
- e_%”Q[”’”]<l —niD¢(, B)lu, vl + O(n@* + vh) + 0 (n*u® + vﬁ))). (2.29)
Recalling fo = % fyo z0, using Lemma 2.8(i) we also have the Taylor expansion
fola +iu, B +iv) = foler, B) +1D foler, B)lu, v1+ O((|ul + [v])?). (2.30)
Multiplying together (2.29) and (2.30), the integrand in (2.27) is thus
e 2" fiar B) + D foer. Hlu, v] — n fier. )} Dplet. Bl v]
+ 0 (12 + %) + O(n(u* + vh) + 0(n2® + v6))). 2.31)

When we integrate, the terms with D fo and D3¢ are odd functions of (u, v) so their integrals
vanish. Hence,

04 04 |
L= / / e 2" el (fo(a, B)+ O(u* +v?)
_n04 J_,-04
+ O(n(u4 + v4)) + O(nz(u6 + v6))> du dv.
Recalling that Q = D?@(a, B), by Lemma 2.10 we have Q[u,v] = 2(u* + v?). Since for
k € {1,2,3}) we have [ eI w2 4 v?) dudv = O(a~*+), it follows that
—0.4 —-0.4
B n n 1
L = fola, ,3)/ f e 2" gy dv + 0(n72).
04 J 04

Since Q = D?¢(a, B) is symmetric and positive-definite by Lemma 2.10, we have the following
standard Gaussian integral over R?:

f/ e 2 qy dv = n~' - 2 (Det(Q)) /2. (2.32)
R2

Since Q[u, v] = 2(u? + v?), the contribution of the range max{|u|, |v|} > n~%* to the above
integral (2.32) is again exponentially small. Hence

L = fola, B)-n~ " 27(Det(Q))~? + O(n~?). (2.33)
The result follows by combining (2.23), (2.25), (2.26) and (2.33). O
We next estimate the exponent in (2.22), without assuming that Eq. (2.21) holds.

Lemma 2.12. There exists a constant 0 < ¢4 < ¢ such that if (Y, Z) € K and o, B € R with
lee], |B] < ca, then

V(a, B) < —jes@® + B7). (2.34)
Moreover, ¥(0,0) =0, DY (0,0) = 0 and Dzl//(O, 0) < —c3l.
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Proof. We have ¢(0, 0) = ¢(0, 0) = 0. Furthermore, differentiating (2.20) yields

Dy (e, p) = —aDng(a, B) — BDigp(a, B),
Dyy(a, B) = —aDng(a, B) — BDng(a, B),

and thus Dy(0, 0) = (0, 0). Differentiating again shows that D;;¥(0, 0) = —D;;¢(0, 0) for all
i, j € {1, 2}. Hence, using Lemma 2.10,

D?*y(0,0) = —D?¢(0, 0) < —c31.

Moreover, it follows from Lemma 2.8(ii) that |D3y (e, B)| = O(Q) for |af,|8] < c».
Consequently, a Taylor expansion yields (2.34) for ¢4 sufficiently small. [

2.3. Summing p, ,: proof of Theorem 2.2

In this section we prove Theorem 2.2 by summing several different estimates of the point
probabilities in

N
P(X|l = N)= ) pun-n- (2.35)
n=0

Throughout we consider, as in (2.22), only real inputs «, 8 for the various functions f, ¢ etc.
Thus, all relevant functions are treated as mapping from (subdomains in) R” to R™ for suitable
n,m.

An individual of type L has on average EY children of type L and EZ children of type S. So,
in the near-critical case EY = 1, we expect that the overall fraction of type L individuals in X
should be close to

xo = 1/(1 +EZ).

This suggests that the contribution from terms in (2.35) with n/N far from xy will be negligible,
and we shall later confirm this by standard Chernoff-like estimates. Below our main focus is thus
on the terms where n/N is close to xy. Here the plan is to rewrite the asymptotic estimate (2.22)
for p, n_n using the following version of the inverse function theorem, where we explicitly state
uniformity for a set of functions. We define

B ={xeR?:|x| <r} and B, := B’ ={x e R*: |x| <r}.

Lemma 2.13 (Inverse Function Theorem). Let d > 1 be an integer and r > 0 a real number.
For every 0 < A < oo, there exist 0 > 0 and 0 < r; < r, both depending only on A, r, such
that if F : Brd — R? is twice continuously differentiable and satisfies

(i) F(0)=0,
(ii) DF(0) is invertible and | DF(0)"'|| < A, and
(iii) |D*F(x)| < Aforall x € Bf,

then there exists a twice continuously differentiable function G : B¢ — B? with G(0) = 0 and
F(G(y)) = y for y € BY. Furthermore, for each y € B%, x = G(y) is the unique x € RY with
|x| < ry such that F(x) = y. Moreover, || DG(y)|| = O(1) and | D>*G(y)|| = O(1), uniformly
for'y € BY and all such F, and if F is infinitely differentiable or (real) analytic, then so is G.
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Proof. This follows by a standard proof of the inverse function theorem; we give some details
for completeness.

First, let r| := %min{r, A2} If |x| < ry, then by the mean-value theorem ||DF(x) —
DF(0)|| < Alx| < Ary. Hence, | DF(0)"'DF(x) — I]| < A%r; < % and thus DF(0)"'DF(x)
is invertible and its inverse has norm at most 2 (e.g., by the von Neumann series representation
of the inverse). Consequently, D F(x) is invertible and

IDF)™ < IDFO)7 ' - [(DF©O) 'DF(x)~'| <24  for |x| < ry. (2.36)
Next, let o :=r{/(2A). If |y| < o, define inductively x¢ := 0 and x,,1| := I'(x,), where
I'(x) :=x 4+ DF0) '(y — F(x)).

Using |DF(0)~'|| < A and that |DI'(x)|| = |I — DF(0)"'DF(x)| < % if |x] < ry,itis
easy to show by induction that |x,| < (1 —27)r; and |x,4; — x| < 27"Ac < 2771y,
Hence x,, is defined for all » > 0, and converges to some x with |x| < r; < r. Furthermore,
y — F(x,) = DF(0)(x,4+1 — x,) — 0asn — 00, and thus by continuity F(x) = y. Define
G(y) :=x.

This shows that the inverse function G exists in BY. The uniqueness statement is immediate,
since any x € R satisfying F(x) = y is a fixed point of I'(x), which is a contraction for |x| < ry.
Differentiability (and analyticity when F is analytic) follows in the usual way (or by appealing to
a standard version of the inverse function theorem, locally at G(y)). Finally, DG(y) = DF(x)~",
and thus || DG(y)|| < 2A by (2.36). Another differentiation (using the chain rule) then yields
ID* Gyl = o(1). O

Our next aim is to construct an (implicit) solution (¢, 8) = h(n/N) to Eq. (2.21) when
N = n+ m and n/N is close to xo = 1/(1 + EZ). We start by applying Lemma 2.13 to
the function F : B, — R? defined by

Fe )= (BY = Digles ). 1o =)

Note that Dyp(a, B) = D, f(, B)/f (a0, B) = 0, and thus F(«, B) is well-defined. Furthermore,
Dy(0,0) = (EY, EZ), and thus F (0, 0) = (0, 0). Moreover, using matrix form (where the first
column is % of the vector valued function F and the second is %), we have

(2.37)

-1 0 )
DF = D?p. 2.38
( 0 —(1+ D2¢)2> ¢ (2.38)
It follows from Lemma 2.10 that ||(D%*¢(e, 8))™'| = O(1), and then (2.38) together with

Lemma 2.8 yields

IDF(a, B)~'ll = O(1). (2.39)

Lemma 2.8 also implies || D*F(«, 8)|| = O(1). Consequently, Lemma 2.13 applies (with d = 2)
and yields a constant o = ¢s5 > 0 and a function G : B.; — B,, such that

F(G(y) =y fory e B.. (2.40)

Recall that xo = 1/(1 + EZ). Since EZ = D, f(0,0) = O(1) by Lemma 2.8 and EZ > § > 0
by (2.4), there exists a constant ¢ > 0 such that ¢ < xo < 1 —c. Let

Ce = %min{q, c}.
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Suppose that |EY — 1| < ¢¢. If also |[x — xo| < c¢, then (IEY —1,x— xo) € B,,; we then define

h(x) :=GEY —1,x — xo) € B,. (2.41)
Furthermore, |x — xo| < ¢¢ < %c < %xo implies x > %xo > cg and 1 — x > c¢. Now suppose
that 0 < n < N and that [n/N — xo| < cg, and letm := N —n and (o, B) := h(n/N). Then, by
(2.41) and (2.40),

n 1
Fla, =(1EY—1,—— ):(EY—I,—— ) 2.42
(o, B) N X0 T m/n X0 (2.42)

Definition (2.37) shows that (2.21) holds. Hence, by Theorem 2.11, (2.22) holds. For |x —xg| < cg
define

V(x) = xy¥(h(x)), (2.43)
P(x) = 27)"'x7? fo(h(x)) Det(D*p(h(x))) /. (2.44)
Recall that h(x) € B, C B.,, and note that Lemma 2.10 implies Det(D?p(h(x))) > c3;

thus ¥(x) and @(x) are well-defined. Then, still assuming |EY — 1| < cq, |n/N — x| < cs
and (a, B) = h(n/N), we see that (2.22) can be written

Pan-n = N2 (D(n/N) + ONTH). (2.45)

(Here, we use |[n/N — xo| < cs < xo/2tobound n > csN, so an O(n~") error term is O(N~!).)
We next show that, in the relevant domains, the functions @, ¥ and their (partial) derivatives
are all bounded.

Lemma 2.14. For each m > 0, there exists a constant C,™ such that if |IEY — 1| < ¢ and
|x — xo| < cg, then | D" $(x)|| < C2," and | D™ ¥ (x)|| < C,™.

Proof. We saw in the proof of Lemma 2.13 that DG(y) = (DF(G(y)))’1 , which is bounded for
y € B by (2.36). By further differentiations, using the chain rule, Lemma 2.8(ii) and induction,
it follows that for each m > 0,

ID"GEY —1,x — xp)|| = O(1) (2.46)

when |EY — 1] < ¢g and |x — x¢| < c¢. Hence the definition (2.41) yields | D™h(x)| = O(1), and
the result follows by (2.43)—(2.44) together with the chain rule and Lemmas 2.8 and 2.10. [

Note for later than since G(0) = 0 and || DG(y)|| = O(1) in B, we have

|G(w, x — x0)| = O(l(w, x — xo)]) (2.47)

if (w,x — xo) € B,.

We now analyse the exponential term e ¥(/N) of the formula (2.45) for DPn.N—n» Which is
valid for |n/N — xo| < c¢. The next result in particular implies that ¥(x) < 0 is a concave
function with a unique maximizer x* close to xy. As we shall see, this essentially means that
the dominant contribution to the sum of the p, y_, comes from the terms with n/N close to x*,
which is in turn close to x.

Lemma 2.15. There exist constants ¢y, cg > 0 with cg < ¢7 < %c6 such that if |EY — 1] < cg,
then the following hold.
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1) If x € Rwith |x — xo| < 3¢y, then

U(x) = —2(EY — 1] + |x — xo/?). (2.48)

(ii) There exists x* € R with |x* —x¢| = O(|EY —1|) and |x* — xo| < ¢7 such that ¥'(x*) = 0.
(iii) ¥"(x) = —2() for every x with |x — xo| < 3c¢7.
(iv) @(x*) = 2(1).

As a consequence, x* is the unique maximum point of x — W¥(x) in [xo — 3c7, xo + 3¢7].

Proof. For |w|, |[x — xo] < cg, let
@(w, x) = xY(G(w, x — xgp)), (2.49)

sothat ¥(x) = @(EY— 1, x). In the proofs below we assume that ¢; and cg are positive constants,

chosen later, with cg < ¢7 < %ce, and that |w| < cg and |x — xo| < 3¢7.

(1) Since |w| + |x — xo| < 4¢7 < 2¢6 < ¢s5, and G maps B, into B, we have

|G(w, x — x0)| < c4. (2.50)

Since F(0) = 0 and |[DF(y)|| = O(1) in B, using (w, x — x9) = F(G(w, x — xp)) we also
have |[(w, x — xg)| = O(|G(w, x — xp)|). This and Lemma 2.12 imply

Y(Gw, x — x0)) = —R(|G(w, x — x0)|*) = —2(|(w, x — xo)[*).
Furthermore, as remarked above, |x — xo| < 3¢7 < c¢ implies x > c¢. Hence, recalling (2.49),
Y(w, x) = —2((w, x — x0)P) = —2(w’ + (x — x0)%), @251)

which yields (2.48) since ¥(x) = @(EY —1,x).
(iii) Using G(0) = 0, which is shorthand for G(0, 0) = (0, 0), we have

(0, xo) = xo¥(G(0, 0)) = xoy(0,0) = 0. (2.52)
Together with (2.51), it follows that, for some constant ¢ > 0,

DU(0, x0) = 0, (2.53)

D*¥(0, x) < —cl. (2.54)

The same proof as for Lemma 2.14 shows that
D" W (w, x) = 0(1) (2.55)

for every fixed m > 0. Using (2.55) with m = 3 and (2.54), we see that if ¢; and hence cg < ¢y
is small enough, then

D*¥(w,x) < —$1
when |w| < cg and |x — x| < 3c¢y. In particular, recalling ¥(x) = @(EY — 1, x), by taking
w =EY — 1 we have

?'(x) < —5. (2.56)

(i) Similarly, (2.53) and (2.55) with m = 2 imply that D@(u}, x) = O(Jw| + |x — x¢]). In
particular, ¥'(xg) = D, W(EY — 1,x9) = O(JEY — 1]). Hence we may choose cg sufficiently
small such that |[EY — 1| < ¢g implies | ¥'(xg)| < cc7/3. Then the mean value theorem and (2.56)
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imply ¥/(xg — ¢7) > 0 and ¥'(xg + ¢7) < 0, so ¥'(x*) = 0 for some x* € (xg — ¢7, xg + ¢7).
Moreover, by the mean value theorem and (2.56) we also have |x* — xg| < %| U’ (xp)|, so (ii)
holds.

(iv) Since [x* — x| < ¢7 < cg, by (2.50) and the definition (2.41) of & we have |h(x*)| <
s < ¢2, so Lemma 2.8(iii) applied to (Y°, Z°) gives fo(h(x*)) > 18. The other factors in (2.44)
are bounded below, using x* < xo + ¢;7 < 1 4 ¢; and Hadamard’s inequality together with
Lemma 2.8(ii), and thus (iv) follows. [

The following technical lemma will be useful for expanding the sum of the p, n_,
estimates (2.45) around n/N ~ x* (it is easy to give a much more precise formula for 75,
but we do not need this).

Lemma 2.16. Fora > 0, y € R and an integer j > 0, let

Tj=Tja,y) =Y (n— yYe ™7, (2.57)

nez

Then, uniformly forall0 < a < 1and y € R,

To = \/E +0(a e, (2.58)
a

and for every fixed integeri > 0,
T = 0(a™"'7?), (2.59)
Toip1 = O(a™ e 1), (2.60)

Proof. We first consider T) = >, eZe‘“("—”z. Applying the well-known Poisson summation
formula [26, (II.13.4) or (I1.13.14)] and then using the Gaussian integral f_°°oo e—(@x+bxto) {4y —
\/éehz/ ()= "a short standard calculation yields the identity

(o]
Ty = Z/ efa(xi\r)zefhrinx dx = /% Zefnznz/afzniny’ (2.61)
o0

nezZ "~ nez

which for a < 1, say, implies (2.58). (In fact, (2.61) is equivalent to a well-known identity for
the theta function 65, see [15, (20.7.32)].)
Moreover, taking the partial derivative of (2.57) with respect to y we obtain

0 .
5Tj(a, y)=—jTj—1+2aTj4. (2.62)

In particular, 2aT; = %To, and termwise differentiation of the right-hand side in (2.61) (noting
that the main term, n = 0, is constant) yields

Ti = 0(a e ).
Repeated differentiation of (2.62) and induction now yield (2.59) and (2.60). O

We also have to estimate the sum of the p, y_, in (2.35) where n/N is far from x,. Based on
simple Chernoff-type arguments, the next result shows that their contribution is negligible.

Lemma 2.17. If |I’Z/N - xOl 2 Cc7, then Pn,N—n < ei‘Q(N)-
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Proof. For any u, v > 0, from (2.12) we have

nppm < u"v"go(u, v)g(u, v)". (2.63)
Take u = 1 and v = ¢, with |¢| < log R, and define

y(t) = e B2g(1, ¢") = B! ?ED,
Forany 0 < n < N, (2.63) yields

npun—n < "L (1, ey (1) (2.64)

Note that ¥(0) = 1 and y’(0) = 0. Since g(1,¢') = f(0,¢) and EZ = D,f(0,0), by
Lemma 2.8(i) there is a constant C3 > 0 such that ”(t) < C; whenever |t| < ¢3, and so

() < 14 C3r® < e (2.65)
By assumption, [n — Nxg| > ¢7N. Recalling that xo = 1/(1 + EZ) and EZ > 0, it follows that
[ttn — N +nEZ)| = |t| - [In(1 +EZ) — N| > |t| -¢c;N(1 + EZ) > c7|t|N. (2.66)

We now choose ¢ = +c where ¢ := min{%C7/C3, ¢}, and the sign is such that t(n — N 4+ nEZ)
< 0. Using (2.64)—(2.66) and n < N, we infer

~ N 2 PR,
npun-n < go(1,€") - e TINFTEGEN CO(1) . e7N/2,

completing the proof forn > 1.
Finally, in the remaining case n = 0 we have | X5| = Z°, since |X*| = O ifand only if Y* = 0.
Hence

pon =P(¥°=0,2°=N) < gyo (1, R)- R =0(1)- RV,
completing the proof (since R > 1). [

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We suppose throughout that ¢; < cg and that |[EY — 1] < ¢;.
We start by considering the quantities £ and 6 defined in (2.6) and (2.7). By Lemma 2.15,
¥ (x) has a local maximum point x* € (xg — ¢7, X9 + ¢7). As in (2.6) and (2.7), let

E=—-v@k") and 0 :=27/| V()] P(x7).

By Lemmas 2.14 and 2.15(iii), LU”(x*/)\ = —0O(1). By (2.48) we have & = —V¥(x*) =
QUEY — 1. Recalling that ¥(x*) = U(EY — 1, x*), see (2.49), by combining (2.52), (2.53)
and (2.55) (with m = 2) together with Lemma 2.15(ii), it follows that

£=|UEY — 1,x")| = O(IEY — 1] + |x* — xo/*) = O(IEY — 1]%). (2.67)

Hence & = 9(|IEY - 1|2), as claimed. That & = ©(1) follows from the bound | " (x*)| = ©(1)
above and Lemmas 2.14 and 2.15(iv), which give @(x*) = ©(1).

Since £ and 6, which do not depend on N, are both O(1), for any fixed N, (2.5) holds
trivially simply by taking the implicit constant large enough. Thus we may assume throughout
that N~94 < ¢7.

We have P(|X| = N) = Zf:o DPn.N—n- We estimate this sum by Laplace’s method, similarly
to the argument in the proof of Theorem 2.11, but now for a sum instead of a two-dimensional
integral.
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We consider first # such that [n/N — x*| < N~%4 which includes the main terms in the sum.
Suppose that [x — x*| < N~%4, Using Lemma 2.14, a Taylor expansion then yields, cf. (2.28),

NU(x)+ N& = N¥U(x) — NU(x*) = NI 0" (x*)(x — x*)?
+ NI — x) + O(N|x — x*[*),
which by exponentiation and a Taylor expansion of @(x) yields, cf. (2.31),
NVD G(x) = e—Ng+N%w”(x*)(x—x*)2<¢(x*) + &) x — xY)
+ N D) 0" (x*)(x — x*)
+O(Ix — x*P + NJx — x*|* + N2|x — x*|6)).
Similar, but simpler, reasoning also shows that if |x — x*| < N~0%, then

L g
NI =1 — = NE+N 5 W) a—x)? ON™),
Consequently, since ¥”(x*) < 0, if we define

n J 1 1% *
Sp= X (o) e (2.68)
\n/fo”‘|<N_0-4

then (2.45) yields

D pawen = NN (BN + NS + N OGS

|n/N—x*|<N—04
+0(8:+ NS+ NS6) + O(N'8) ). (2.69)

(The odd sums S; and S3 do not vanish as the corresponding integrals in the proof of
Theorem 2.11 do, but we shall see that they are exponentially small.) Recall (from the start
of the proof) that ¥ (x*) = —O(1). It follows that if we extend the summation in the definition
(2.68) to all n € Z, and denote the result by S}, then §; — S;. is‘ O(e’Q(NO'Z)) for each fixed j.
Leta = |¥”(x*)|/2N. In the notation of Lemma 2.16, S} = N~/Tj(a, Nx*). The error terms of
the form O(a—%WVe=7"/4) in the conclusion of Lemma 2.16 are e~®™ and so negligible. Thus,
from Lemma 2.16 and (2.69), recalling the definitions (2.6) and (2.7) of & and 6, we find

> Pun—n = N2V (N'20 + O(N7')). (2.70)
|n/N—x*|<N—04
Next, consider n such that N~%% < |n/N — x*| < 2c7, and recall that 3¢; < c6. If
N7% < |x — x*| < 2¢y, then Lemma 2.15 implies that |[x — x9|] < 3¢7 and ¥(x) <
T(x*)—2((x—x*)?) < T(x*)— NN = —£—Q(N°%). Hence, by (2.45) and Lemma 2.14,
if N704 L [n/N — x*| < 2c¢7, then Lemma 2.15 implies that
Pun-n = N2V o),
The sum over such 7 is easily absorbed into the error term we are aiming for: we have, say,

> PuN-n = O(NT/) . ¢, @.71)

N=04L|n/N—x*|<2c7
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Finally, since |x* — xg| < ¢7 by Lemma 2.15(ii) and 0 < n < N, using Lemma 2.17 there
exists a constant ¢ > 0 such that, say,

Yo v < Y, Pana SOWN) e PN =0O(NTPy N (272)
In/N—x*>2¢ In/N—xo|>c7
Recalling that |[EY — 1| < ¢y, by (2.67) we may choose ¢; < cg sufficiently small so that § < c,
and then (2.5) follows from (2.70), (2.71) and (2.72). O

3. Application to branching process families

In this section we apply the main result of Section 2 (Theorem 2.2) to a family of branching
processes. The goal is to prove Theorem 3.4 below, giving estimates for the point probabilities
P(|X] = N) in a form suitable for the application to Achlioptas processes in [21].

3.1. Properties of general parameterized families

By a branching process family (Xy , yo 70)uel We simply mean a family of branching
processes of the type in Definition 1.1, one for each u in some interval / C R. Given such a
family, we write

0 0
gu(y,2) = 8rz, (3, ) =B z%)  and  g)(y,2) == gy (v, 2) = B(y"rz7)

for the corresponding probability generating functions. Note that the branching process family is
fully specified by the interval I and the functions g, and g°.

The following auxiliary result shows that the associated parameters &, = &y, z, and 6, =
Oy, 7u.¥0. 20 defined as in Theorem 2.2 vary smoothly in u. This will later allow us to compare the
parameters &y,z and 0y 7 yo 7o resulting from different probability distributions (Y 0,7% e K°
and (Y, Z) € K (by integrating linear mixtures that interpolate between them); here the extra
EY, — 1] = O(1) factor in (3.2) is crucial.

Lemma 3.1. Suppose that R > 1, M < 00, ki, k» € N, and § > 0. Set K® = KR, M, §) and
K = K(R, M, ky,ky,8). Let (X,)uer = (qu,Zu,Y}),ZS)MEI be a branching process family such
that, for every u € I, we have (YL?, ZS) e K° (Y,, Z,) € K, and |EY,, — 1] < ¢|, where ¢; > 0
is the constant appearing in Theorem 2.2. Suppose that g,(y, z) and gg(y, z) are analytic as
functions of (u, y, z) in the domain

Drri=1x{(y,2)€C: |yl,lzl <R} € RxC,

and that for some A,

3

d 0
max{| e, 2| |58l 2]} < G0
ou ou
forall (u,y,z) € Drg. Let
& = &v,.z, and O = QYu,zu,Y}),zﬂ

be defined as in Theorem 2.2. Then &, and 6, are (real) analytic as functions of u € 1.
Furthermore,

d
aéu = 0()\’|EYM - 1|)7 3.2)
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iéu = 0(L), (3.3)
du

where the implicit constants in (3.2) and (3.3) depend only on R, M, ki, k3, §.

Proof. By assumption, the conditions of Theorem 2.2 hold for each u € I. For any of the
quantities or functions defined in previous sections for a single branching process, we use a
subscript u to denote the corresponding quantity or function associated to X,. As in previous
sections, « and § always denote real numbers.

The idea of the proof is as follows. For a given u, the functions defined in the previous sections
are defined, either explicitly or implicitly, in terms of g, and g (or their reparameterizations f,,
and f). Roughly speaking, since g, and g° vary analytically in u by assumption (and with
u-derivative O(1)), it follows that the same is true for the derived quantities. There are various
steps where we must be slightly careful; for example, when taking logs (there is no problem as
we stick to the domain |z — 1| < %), or dividing by the square root of a certain determinant
(there is no problem since this determinant is {2(1) by Lemma 2.10). We must also be careful
with the implicit definitions of G, and x¥; the hardest part of the argument is to establish (3.2)
with O(A|EY, — 1]) instead of O()).

Turning to the details, from (3.1) and standard Cauchy estimates we see that for each fixed m
we have

u ’

” D’”igu(y,z)H =0  and H D" — gu(y Z)H =0®) G4

whenever |y|, |z] < R'/?, say. (Here and below, D does not include derivatives with respect to u.)
Since ¢4 < ¢ < (log R)/2, the same estimates hold for the derivatives of f,(y, z) = g,(e’, €%)
and f (v,2) = gu(ey €‘) in the domain B, C R2; from now on we work over the reals.
Recalling the definition (2.37) and ¢, = log fu, from (3.4) it follows that || %Fu(a, Bl =0
for (a, B) € B,,.

From the definition (2.37), the function F,(«, B) is a (real) analytic function of (u, o, B) €
I x B.,.Foreachu € I, by (2.40) we have an inverse G, : B., — B,, of the 2-variable function
F,. Applying a standard version of the implicit function theorem locally, we see that G, («, f) is
analytic as a function of (u, o, B) € I x BCS.1

Noting EY, = 5-£.(y, 2)|,_._,, by definition (2.41) and |EY, — 1| < ¢y it follows that /2, (x)
is an analytic function of u, x for u € I and |x — x| < ce; we consider in the sequel only
such u and x. Inspecting the definitions (2.43) and (2.44), using Lemma 2.10 (to ensure that the
determinant is not degenerate), we see that ¥,(x) and &,(x) are well-defined compositions of
analytic functions, and thus analytic as functions of u, x.

Since F,(G,(y)) = y is independent of u, writing x = G,(y) and differentiating yields
%F x)+ DFu(x)(%Gu(y)) = 0 and thus, recalling (2.39), for y € B,,,

‘DF (x) 1” 2F (x)H — 0. (3.5)

5 0] < B

” ou u(y) ou
Recalling the definition (2.41), note that (3.5) implies ||Ehu(x)|| = O(A). Since ¥, is defined
in terms of ¢, = log f, = log fy, 2, and its derivatives, see (2.20), using (¥,, Z,) € K it
follows that || Dy, («, B)]| = O(1). Furthermore, since estimates analogous to (3.4) also hold

1 Fix ug and yop = («o, Po) in the relevant domain. By (2.36), DF, 15 invertible at xo = G ()0), so there is an dnalytlc
function G, «(y) defined in a neighbourhood of (ug, yo) such that F, (G (y)) = y. By local uniqueness, G,(y) = GL,())
near (u, Yo), so G is indeed analytic at this point.
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for f, = fv,.z,, we have %lﬁu()’) = O(X). Hence, recalling (2.43) and writing y = h,(x), we
have

0
() =x ( )+ DY (- (x))) = 0(h. (3.6)
u

Recalling the deﬁnitions (2.43) and (2. 44) and the estimates in Section 2.3, we similarly deduce
L &,(x) = O(L), = W,(x) = O(A) and = W//(x) = O(M).

Since x ¥ is defined by ¥/ (x}) = 0, we have (au Uhy(xk) + W;’(x:)%x;‘ = 0. It follows, using
the lower bound ¥/ (x) = —f2(1) from Lemma 2.15(iii) and the implicit function theorem, that
x, is an analytic function of u, and that

d , (v

—_— = —

du " T (xx)
As (3.5) implies [| 27, (x)|| = O(X), and ||, (x)]| = O(1) by (2.46), it follows that

* *

<[ Gy =

Similarly, from the definitions (2.6) and (2.7), using (3.7) and the bounds above on % v,,
% ¥ and % &, it follows that &, and 6, are analytic functions of u, with %Su = O()) and
&«9,, = O(A). It remains only to establish (3.2).

For this final step, recalling (2.20) and ¢, (c, B) = log f.(a, B) = log g.(e%, e?), note that
ID L4, (x)]| = O(1) follows from (3.4). Since -£1,(0) = 0, we thus have L, (x) = O (Alx]).
Similarly, as a consequence of Lemma 2.12, ¥, (x) = O(|x|) and || Dy, (x)| = O(]x|). Writing
v for h,(x)), it follows from the definition (2.43) and (3.7)—(3.8) that

d
——éu =3, W () = ( n ()

= o). (3.7)

H—h () LG = 0. (3.8)

: <ix*) 000+ (500 + DU 5 mD) ) = 0G5
duu u\Juy uauuu ”uduuu ul):

Since y; = h,(x;), from the definition (2.41) of h,, the bound (2.47), and, for the final step,
Lemma 2.15(i1), it follows that

d
&, = O(A(IEY, — 1+ |} — x0,]) ) = O(R[EY, — 1)),

completing the proof of the lemma. [

3.2. A specific result suitable for application to Achlioptas processes

In this section we use Theorem 2.2 and Lemma 3.1 to prove the case pg = 1, K = 0 of
Theorem A.10 of [21], used there for the analysis of Achlioptas processes. To formulate this main
application, i.e., our point probability result for certain (perturbed) branching process families,
we need some further definitions.

Definition 3.2. Let o < . < t; be real numbers. The branching process family (X;);eq.r) =
(Xy, 7, Yo, ZP)fe(ZOJI) is t.-critical if the following hold:
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(i) There exist § > 0 and R > 1 with (z, — 8,1, + 6) < (f, t;) such that the probability
generating functions

&(.2) = gy,2(y,2) =E(y"z*)  and

0 y0_ 20 (3.9)
8/(v.2) = gyo ,0(y.2) = E(y"2™")
are defined and analytic on the domain
{(t,y,2) e Rx C*: |t —t| < Sand |y|, |z| < R}.
(i) We have
EY, =1, EY)>0  and %EY, . > 0. (3.10)
(iii) There exists some ky € N such that
min{IP’(Y,C = ko, Zi = ko), P(Ye = ko + 1, Z,, = ko),
P(Y, = ko, Zy, = ko + 1)} > 0. 3.11)

Definition 3.3. Let (X;);e(,./) be a t.-critical branching process family, and let §, R and & be as
in Definition 3.2. Given ¢, n > 0 with |t — #| < §, we say that the branching process Xy 7 yo 70
is of type (¢, n) (with respect to (X;), §, R, and ko) if the following hold:

(i) Writing N := {(y, z) € C?: |y|, |z] < R}, the expectations
80,2 =grz(y.0) =E(y'z%)  and

~ 0 -0 (3.12)
(. 2) =gy (v, 2) =E(y" %)
are defined (i.e., the expectations converge absolutely) for all (y, z) € V.
(ii) For all (y, z) € N we have
gD —gal<n  and [0~ &', 2] <n. (3.13)

Note that X, = X, , ¥0,20 is itself of type (¢, n) for any n > 0. The following result relates

the point probabilities from X; with those from branching processes X of type (¢, ). A key
feature is the form of the uniform O(n|t — t.| + n?) error term in (3.15). In (3.14) and (3.15)
below, we have &y, 7, = ¥(t) = O((t — t.)*) and GY[’Z[,YIO’ZIO =0(t) = O(1) for X = X, (using
n = 0),and &y z ~ ¥(¢) and Oy ; yo 0 ~ 6(¢) for any branching process X of type (¢, n) with
n K |t —t.| < &. In the near-critical case t = ¢, &+ ¢, the size-N point probabilities of X; and X
thus both decay exponentially in ©(¢2N).

Theorem 3.4 (Point Probabilities of X of Type (t, n)). Let (X;)ie(sy.1) be a te-critical branching
process family. Then there exist constants €, no > 0 and analytic functions 0, ¥ on the interval
I = [t. — &g, t; + &] such that

P(X| = N) = (1 + O(1/N)N 0y , yo 50 e %2V (3.14)

uniformly over all N > 1, t € I, 0 < n < no and all branching processes X = Xy 7 yo 50 of
type (t, n) (with respect to (X)), where the parameters &y z and 0y 7 yo_z0, which depend on the
distributions of (Y, Z) and of (Y%, 29, satisfy
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Evz=v@)+ 00t —t|+n0°)  and Oy y0 50 =0()+ O). (3.15)
Moreover, 0(t) > 0, ¥ (t) > 0, ¥ (t.) = ¥'(t.) = 0, and " () > 0.

Proof. Fix a t.-critical branching process family (X;);e(.1), and let § > 0 and R > 1 be
as in the definitions above. We pick 0 < &y < 4§, and decrease R slightly, keeping R > 1.
Then g(t,y,2) = g:(y,z) and g%, y,2) = g?(y, z) are continuous on the compact domain
[t —t.| < €0, |¥], |2l £ R and so bounded, say by M. Let M = M; + 1. Then, provided
[t — t.] < &0, by (3.13) any X of type (¢, n) with n < 1 satisfies

maX[}g(y,z)L §°(y,z)|] <M whenever |yl,|z] <R.
For any integers k, £, we have
1 ak+£
PY, =k, Z, =)= — - ——— ,
(Y, t ) e Bykazegf(y 7) o

Since g;(y, z) is analytic in ¢, y, z, this probability varies continuously in . Moreover, since
P(Y = k, Z = £) can analogously be written as a derivative of g evaluated at (0, 0), using
standard Cauchy estimates and (3.13) we infer

PY =k, Z=0—P¥, =k, Z, = 0)| = O(n).

A similar argument shows that EY, = 3% gy, z)|y=z=1 is continuous in ¢, and that Cauchy’s
estimates imply '

|EY, —EY| = 0. (3.16)

Analogous reasoning applies to EY? and EY°.

By definition of a 7.-critical branching process family, there is some § > 0 such that for r = 7,
all of EY?, P(Y, = ko, Z; = ko), P(Y, = ko + 1, Z, = ko) and P(Y, = ko, Z, = ko + 1) are at
least 24, say. Furthermore, at r = ¢, we have EY; = 1. From the argument above these quantities
all vary continuously in ¢, and change by O(n) when we move from X, to some X of type (¢, n).
It follows that there is a constant 1o > 0 such that, after reducing &, if necessary, whenever
[t — .| < g9 and n < 1o, then any X of type (¢, n) satisfies the conditions of Theorem 2.2,
namely that (Y°, Z%) e K°, (Y, Z) € K and |[EY — 1| < ).

Now, applying Theorem 2.2 to each branching process in the family (X;);efr—eq,rc+e0]> and
Lemma 3.1 to the family itself, establishes the = 0 case of Theorem 3.4 with 6(t) = 6, and
¥ (t) = &. Indeed, Theorem 2.2 gives that 6 = ©(1), so we do have 6(¢r) > 0, while (2.8)
gives Y (t) = & = O(|EY, — 11%), which is O(|r — 7.|?) since (3.10) implies, after reducing & if
necessary, that

|EY, — 1| = O(|t — t.]). (3.17)

It follows that v (t.) = ¥'(t.) = 0 and ¥"(t.) > 0.

To complete the proof, assume now that X = Xy 7 yo 7o is of type (¢, 1), with 0 < 7 < no
and |t — #.| < &o. As noted above, Theorem 2.2 applies to X, giving (3.14); it remains to
establish (3.15). We do this by interpolating between X and X,, and applying Lemma 3.1.
Consider the branching process family (17”, Z,, Y ,?, Zg)uelo,l 1 defined by the mixtures

gu(y,2) =1 —u)g(y,z) +ug(y,z)  and

Y o o (3.18)
80,2 =0 —-uwg (y,2) +ug(y,2).
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(As noted earlier, the probability generating functions g,, g{j and the interval / = [0, 1] fully
specify the family.) Since the assumptions of Theorem 2.2 are preserved by taking mixtures,
every branching process in this family satisfies these assumptions. (In fact, they are all clearly of
type (¢, n) too.) Moreover, the assumption (3.13) implies that (3.1) holds with A = 7, and since
L o
EY, = a—ygu(y, z)|y:z:1 we have
[EY, — 1| < [EY, — 1| + u[EY —EY,| = O(|t — | + 1) (3.19)

by (3.16) and (3.17). Thus we may apply Lemma 3.1, and, by integrating (3.2) with §, = &5 > ,
we infer

E—& =&, 7 — &7 = Ot — 1l +17). (3.20)
Finally, 6 — 6, = O(n) follows similarly by integrating (3.3). O

Theorem 3.4 immediately implies the key case pr = 1, K = 0 of Theorem A.10 of [21]
with any positive value of the constant c. Indeed, after reducing ¢y if necessary, the assumption
n < c|t — t.] in the latter theorem implies the assumption n < ny of Theorem 3.4. Moreover, the
same assumption n < c|t — t.| together with (3.15) implies the bound &y, z = ¥ (¢) + O(n|t —t.|)
in Theorem A.10 of [21].

4. The survival probability

In this section we study the survival probability of the branching process X = Xy 7 yo 70
from Definition 1.1 and the branching process family (X,),c; from Section 3. The goal is to
prove Theorem 4.5 below, i.e., to give estimates for P(|X| = o0o) suitable for the application to
Achlioptas processes in [21].

Our strategy mimics the general approach used in Sections 2—3 for point probabilities, though
the technical details are much simpler. In Section 4.1 we first prove a technical result for the
survival probability P(]X| = oo) of a single branching process (Lemma 4.2). Then we show that
in a branching process family (X,),¢; certain parameters related to the survival probability vary
smoothly in u# (Lemma 4.4). Finally, in Section 4.2 we combine these two auxiliary results to
prove Theorem 4.5.

4.1. Properties of a single process and general parameterized families

As far as the survival of Xy ; yo 7o is concerned, particles of type S are irrelevant and may
be ignored, so we may consider a standard single-type Galton—Watson branching process with
offspring distribution ¥ and initial distribution Y°, which we henceforth denote by Xy yo. Thus

P(|1Xy 2 yo, 20| = 00) = P(|Xy yo| = 00) =: py yo. (4.1)
Writing 1 as shorthand for the distribution with constant value one, it similarly follows that
P(Xy 4| = 00) = P(|Xy,1] = 00) =: py. 4.2)

Throughout this section, we shall work with the univariate probability generating functions
gr(y) = Ey' = gyz(y, 1) and gyo(y) = gy0.z0(y, 1). By standard branching process
arguments (see, e.g., [10, Theorem 5.4.5]), we have

1 — pyyo = gyo(l — py), 4.3)
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where the extinction probability 1 — py is the smallest non-negative solution to

1 — py = gy(l — py). 4.4)
Fix R > 1, M, ky, k> and § > 0. We henceforth assume that (Y, Z) € K = K(R, M, ky, k>, §)
and (Y°, Z% e K° = K°(R, M, §). Since (Y, Z) € K, by (2.1) the function gy(y) is analytic
in{y € C : |y| < R}, with gy(1) = 1. A Taylor expansion of gy(y) at y = 1 yields, for
x| < R—1,

o0

n Y n
gr(1—x)=E( —x)! = §‘1> E(n)x
=1—IEYx+E<Y> 2—E<Y>x3+-~-. (4.5)
2 3
Define
hy(x) = W, (4.6)

removing the removable singularity at x = 0. Then /Ay is analyticin {x € C : |x| < R — 1}, and

p— - I n Y l’l_ — Y Y 2 ...
hy(x)—g( D E<n+1>x =EY E(Z)x+E(3)x +.-n 4.7

Observe that if py > 0, then (4.4) is equivalent to hy(py) = 1. Furthermore,

Y\  EX(y -1)
2) N 2 '

‘We next derive bounds on the derivatives of sy valid for small x.

hy(0) = EY = gi (1), —h%(0) = E( (4.8)

Lemma 4.1. Suppose that R > 1, M < oo, ki, ky € N, and § > 0. There exist constants
0 < c9g < min{R — 1,1}/3 and C4™ such that if Y,Z2) e K=K(R, M,k ky,$), then the
following hold.

(i) If m € Nand |x| < co, then |D"hy(x)| < C4™.
(i) IfEY > 1— 6, then h}y(0) < =8 and P(Y > 2) > 0.
(i) If EY > 1 — 8 and |x| < co, then h'y(x) < —8/2.

Proof. (i) By (4.6) and (2.1), h(x) = OQ1) if |[x| = (R — 1)/2, say. Hence the result, with
¢y := min{R — 1, 1}/3, say, follows by Cauchy’s estimates.

(ii) If (2.3) holds with k; > 1, then P(Y > 2) > P(Y =k + 1) 2> mmy, 41k, = 6, and thus
EY (Y — 1)) > 26.

If instead (2.3) holds with k; = 0, then P(Y = 0) > my 1, + g k41 = 28. Since
EY > 1 -6, then Y € N implies E(Ljy>p(Y — 1)) = E(Y — 1) + P(Y = 0) > 4, and
thus E(Y(Y — 1)) = 2E(Lysp)(Y — 1)) > 26.

In both cases, 1, (0) < —& follows by (4.8), and P(Y > 2) > 0 holds, too.

(iii) Follows by (ii) and (i) (with m = 2), replacing co by min{co, §/2C"}. O

We next characterize the survival probability py in terms of the (unique) solution to
hy(p) = 1.
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Lemma 4.2. Suppose that R > 1, M < 00, ki, ks € N, and § > 0. There exists a constant
0 < c¢19 < 8 such that the following holds. If (Y, Z) € K(R, M, ky, ky,8) and |EY — 1| < ¢y,
then there is a unique p = py € {x € R : |x| < co} such that

hy(p) = 1.

Furthermore, py = max{p, 0}, sign(p) = sign(EY — 1), and |p| = O(EY — 1|), where the
implicit constants depend only on R, M, ki, k, and §.

Proof. We apply the inverse function theorem, Lemma 2.13, withd = 1, r = ¢9 and
F(x) =hy(x)—EY,

using (4.8) and Lemma 4.1 to verify the assumptions; we shall ensure that cjp < 8, so
IEY — 1| < ¢jp implies EY > 1 — §. Writing B, = Br' = {x € R : |x| < r} to avoid clutter (as
before), Lemma 2.13 shows the existence of a constant c¢1g > 0, which we may assume to be at
most §, and an inverse function G : B, — B, with F/(G(x)) = x and G(0) = 0. We define

10
b= G(1 —EY),

so that hy(p) = F(p) + EY = 1. Since |[DG(y)| = O(1) in B, by Lemma 2.13 and
IDF(x)|l = O(1)in B, by Lemma 4.1(i), using G(0) = F(0) = O we have |p| = |G(1-EY)| =
O(|EY — 1)) and |EY — 1| = |F(p)| = O(p), establishing |p| = O(|EY — 1]).

We relate p and py by a variant of the usual fixed point analysis of gy(x) = x in [0, R]. Since
P(Y > 2) > 0 by Lemma 4.1(i1), gy is strictly convex on [0, R], which implies that gy(x) = x
has at most two solutions in this interval, and exactly one solution if EY = 1, since gy(1) = 1
and g, (1) =EY.Now x = land x = 1 — py € [0, 1] are solutions. Since hy(p) =1, x =1—p
is also a solution (see (4.6)); since |p| < c9 < min{R — 1, 1}, we have 1 — p € (0, R).

If p > 0,then 1 — p € (0,1) and 1 are two distinct solutions; thus 1 — py = 1 — p, and
gy(1) > 1 by strict convexity. Similarly, if 5 < 0, then 1 — 6 € (1, R) and thus I — py = 1,
and g} (1) < 1 by strict convexity. Finally, if p = 0, then EY = hy(0) = hy(p) = 1 by (4.8),
so that 1 — py = 1 (since then x = 1 is the only solution to gy(x) = x in [0, R]). Hence
py = max{p, 0} in all cases. It follows also that p is unique, and that p has the same sign as
EY -1=g,(1)—-1. O

Remark 4.3. Since F'(0) = h},(0) = —E(Y(Y — 1))/2, when EY > 1 it follows easily that
oy = % + O(|EY — 1/%). In particular py ~ % as EY \| 1, assuming, as always
here, that (Y, Z) € K. This holds under much weaker conditions on Y, see [11] and [2] for precise

conditions; see also [24, Section 3].

We next consider a branching process family (X,),c; = (}CYM, Za¥9, ZS)ME ; as in Section 3;
as there we indicate the parameter u by subscripts. Thus, for example, p, = Py, is defined as
in Lemma 4.2, with (Y, Z) replaced by (Y, Z,). Furthermore, in analogy to (4.3), we also define

1 - zayu,yg = gyg(l - ,5”)‘ 4.9

Thus, by combining (4.3) with Lemma 4.2, when EY,, > 1 we have g, = py, and '6Y,,,YL9 =
Py, yo- Mimicking Lemma 3.1, the following auxiliary result shows that 0 and '5Yu,YL? both vary
smoothly in u.
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Lemma 4.4. Suppose that R > 1, M < o0, ki, ky € N, and § > 0. Set K = K%R, M, 8)
and K = K(R, M, ki, k>, 68). Let (X,)uer = (qu,Z,,,YfB,ZE)MEI be a branching process family
satisfying the assumptions of Lemma 3.1, with |EY, — 1| < ¢ replaced by |EY, — 1] < cjp.
Let p, and ﬁYu,YL? be defined as in Lemma 4.2 and (4.9). Then p, and ﬁYu,Yé’ are analytic functions
of u € 1. Furthermore,

d . d .

h=00). by = 00, (4.10)
where the implicit constants depend only on R, M, ki, k, and §.

Proof. Let h,(x) = hy,(x) := (I — g,(1 — x))/x be the equivalent of (4.6) for X,, again
removing the removable singularity at x = 0. Then %,(x) is an analytic function of (u, x) €
I x {x € C: |x|] < R — 1}. Note that (3.1) implies |%hu(x)| = 0O if [x] = (R —1)/3, say.
Since cg < (R — 1)/3, by the maximum modulus principle (applied with u fixed) it follows that
‘a h (x)‘ Cx 4.11)
forallu € I and |x| < ¢y
By Lemma 4.2, for every u € I there is a unique p, € R with |p,| < ¢g such that

hu(pu) = 1. 4.12)

Since |1, (0u)] = 3/2 by Lemma 4.1(iii) and |EY, — 1] < c¢jp < §, the implicit function
theorem shows that g, is an analytic function of u € I. That ,5Y Y0 is analytic then follows

from (4.9) and the assumptlon that g%(y, z) is analytic. By dlfferentlatlng (4.12) we obtain
G (pu) + 1 (Ba) - 4 bu = 0. So, using |k, (5,)] > §/2 and (4.11),

0,) = O(1) - O(X) = O(N). (4.13)

=B 8:
Finally, g; o(1 = p,) = O(1) follows from (2.1) and Cauchy’s estimates (recall that |p,| <
c9 < (R — l);3). By differentiating (4.9) and then using (3.1) and (4.13), we obtain
d
FPLATRY:

completing the proof. [

) L,
= —(5-800) (1 = B+ gg(1 = )+ -hu = O + O(1) - O(h) = OG,

4.2. A specific result suitable for application to Achlioptas processes

We are now ready to prove our main result, concerning the 7-dependence of the survival
probability of X, when (X;),¢; is a t.-critical branching process family, as well as the survival
probability of branching processes X = Xy ; yo o of type (¢, n); see Section 3.2 for the relevant
definitions. Two key features are the convergent power series expansion (4.14), and the uniform
O(n) error term in (4.15). In particular, we have p ~ p(t. + &) = ©(e) for any branching
process X of type (¢. + €, n) with n < & < go. In the supercritical case ¢ = 1. + ¢, the survival
probabilities of X; and X thus both grow linearly in .

Theorem 4.5 (Survival Probabilities). Let (X;)ie@y,r) = (fo,Zf,Y,O,Z?)ZGUOJI) be a t.-critical

branching process family. Then there exist constants gy, ¢ > 0 with the following properties.
Firstly, the survival probability p(t) := P(|X;| = 00) is zero for t. — gy < t < t., and is positive
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fort. <t < t.+ €. Secondly, p(t) is analytic on [t., t. + €9]. More precisely, there are constants
a; with ay > 0 such that

o0
p(t. +¢) = Zaiei (4.14)
i=1
for 0 < e < gg. Thirdly, for any t, n with |t —t.| < ey and n < c|t—t.|, and any branching process

X = Xy 7 y0 z0 of type (t, n) (with respect to (X;)), the survival probability p = P(|X| = o00) is
zero if t < t., and is positive and satisfies

p = pt)+ O@m) (4.15)
if t > t., where the implicit constant depends only on the family (X;), not on t or X.
Moreover, analogous statements hold for the survival probabilities p(t) = P(|%},’, z,| = 00)

and py = IP(|$1,‘Z| = 00).

Proof. We argue as in the proof of Theorem 3.4. In particular, we may assume that (Y, Z) € K
and (Y°, Z%) e KO for some R, M, ki, k», 8. We shall also assume that ¢ < 1.

We consider only # with [t — .| < g9; we may assume that g( is small enough that this implies
t € (t, 1), and, by (3.10), that IEY,O > 0, and that

sign(EY; — 1) = sign(t — t.) and IEY, — 1| = Ot — t.]) < ci0. (4.16)

By (4.2) and Lemma 4.2 and it follows that p;(¢) = py, is zero for t, — g9 < t < £, and positive
fort, <t < t.+ &g Since }P’(Y,0 > 1) > 0,now (4.1) and (4.3) imply an analogous statement for
o) = Py, y0- Lemmas 4.2 and 4.4 also imply that

p1(t) = py, and p(t) = Py, y0 4.17)

are both analytic for z. < ¢ < 1. + &9. Hence (4.14) holds if gy is sufficiently small.

Next, for a branching process of type (¢, ), by (3.16) we have |EY; —EY| = O(#). Since n <
clt — 1|, it follows from (4.16) that if ¢ is small enough, then sign(EY — 1) = sign(t — z.).
Moreover, since n < c|t — 1| < |t — t.| < &, using (4.16) we also have [EY — 1] < c¢jo
if g9 is small enough. Mimicking the above reasoning for p;(#) and p(t), using (4.1)—(4.3) and
Lemma 4.2 it follows for n < c|t — 1| that p; = py and o = py yo satisfy oy = p = 0
ift. —eg <t <t,and py, p > 0if t. <t < 1. + &p; furthermore,

p1 = Py and p = ﬁy.yo (4.18)

fort, <t <t.+eandn < clt — 1.

Finally, we consider the interpolating branching process family (17,,, Zus )_’l?, ZS)ME[OJ] defined
by (3.18), for which, as noted in Section 3.2, (3.1) holds with A = n and I = [0, 1]. Note
that (3.19) and n < |t — #| < ¢go imply |E)_’u — 1] < c¢jo provided gy is small enough.
Integrating (4.10) of Lemma 4.4 over u € [0, 1] similarly to (3.20) in the proof of Theorem 3.4,
using the identities (4.17)—(4.18) we infer p; — p1(t) = py — Py, = O(n) and p — p(t) =
Py yo — ﬁyt,yto = O(n) fort, <t <t +spand n < c|t — 1|, completing the proof. [

Theorem 4.5 immediately implies the key case pr = 1, K = 0 of Theorem A.11 of [21],
used there for the analysis of Achlioptas processes.
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