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1. Introduction

Concentration inequalities are of great importance in discrete mathematics, theoret-
ical computer science, and related fields. They intuitively quantify random fluctuations
of a given random variable X, by bounding the probability that X differs substantially
from its expected value y = EX. In combinatorial applications, X often counts certain
objects (e.g., the number of subgraphs or arithmetic progressions), in which case the
random variable X can usually be written as a low-degree polynomial of many inde-
pendent random variables. In this context concentration inequalities with exponentially
small estimates are vital (e.g., to make union bound arguments amenable), and here Kim
and Vu [19,30,32] achieved a breakthrough in the late 1990s. Their powerful concentra-
tion inequalities have since then, e.g., been successfully applied to many combinatorial
problems, been included in standard textbooks, and earned Vu the George Pdélya Prize
in 2008.

In probabilistic combinatorics, the exponential rate of decay of the lower tail P(X <
w—t) and upper tail P(X > p+ t) have received considerable attention, since they
are of great importance in applications (of course, this is also an interesting problem in
concentration of measure). The behaviour of the lower tail is nowadays well-understood
due to the celebrated Janson- and Suen-inequalities [10,21,17,11,13]. By contrast, the
behaviour of the ‘infamous’ upper tail has remained a well-known technical challenge
(see also [14,12]). Here the inductive method of Kim and Vu [19,32] from around 1998
often yields inequalities of the form

P(X > (14 )p) < exp(—c(e)u/), (1)

where ¢ > 1 is some constant. In 2000, Janson and Ruciriski [15] developed an alternative
inductive approach, which often gives comparable results for the upper tail, i.e., which
recovers (1) up to the usually irrelevant numerical value of the parameter c. Studying
the sharpness of the tail inequality (1) is an important problem according to Vu (see
Section 4.8 in [32]). In fact, one main aim of the paper [15] was ‘to stimulate more research
into these methods’ since ‘neither of [them] seems yet to be fully developed’ In other
words, Janson and Rucinski were asking for further improvements of the aforementioned
fundamental proof techniques (the papers [15,32] already contained several tweaking
options for decreasing g).

In this paper we address this technical challenge in cases where the inductive methods
of Kim—Vu and Janson—Rucinski are nearly sharp. The crux is that, for several interesting
classes of examples (naturally arising, e.g., in additive combinatorics), the upper tail
inequality (1) is best possible up to a logarithmic factor in the exponent. Closing such
narrow gaps has recently become an active area of research in combinatorial probability
(see, e.g., [14,12,16,6,7,34,35]). The goal of this paper is to present a new idea that can
add such missing logarithmic terms to the upper tail. From a conceptual perspective,
this paper thus makes a new effect amenable to the rich toolbox of the Kim—Vu and
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Janson—Ruciriski methods (we believe that our techniques will be useful elsewhere). For
example, under certain somewhat natural technical assumptions, our methods allow us
to improve the classical upper tail inequality (1) to estimates of the form

P(X > (14+e)p) < exp(—c(s) min{, ,ul/qs}) with s € {logn, log(1/p)}, (2)

where the reader may wish to tentatively think of the parameters n = w(1) and p =
o(1) as those in the binomial random graph G, , (here some extra assumptions are
necessary, since there are examples where (1) is sharp, see Sections 1.1 and 6.1). This
seemingly small improvement of (1) is conceptually important, since in several interesting
applications the resulting inequality is best possible up to the value of c¢. Indeed, as
we shall see, sharp examples with P(X > (14 )u) = exp(—O(min{p, p/?log(1/p)))
for e = ©(1) naturally arise when X counts various objects of great interest in additive
combinatorics, such as the number of arithmetic progressions (of given length) or additive
quadruples in random subsets of the integers [n] = {1,...,n}.

In the remainder of this introduction we illustrate our methods with some appli-
cations, outline our high-level proof strategy, and discuss the structure of this paper.
Noteworthily, our proof techniques do not solely rely on induction, but a blend of com-
binatorial and probabilistic arguments.

1.1. Flavour of the results

We now illustrate the main flavour of our upper tail results with some concrete ex-
amples. Many important counting problems can be rephrased as the number of edges
induced by the random induced subhypergraph H, = H[V,(H)] (see, e.g., [14,22,16,35,
37]), where V,,(H) denotes the binomial random subset where each vertex v € V(H)
is included independently with probability p. Our methods yield the following upper
tail inequality for #,, which extends one of the main results from [35] for the special
case ¢ = 2, and sharpens one of the principle results of Janson and Ruciriski [16] by a
logarithmic factor in the exponent.

Theorem 1 (Counting edges of random induced subhypergraphs). Let 1 < q < k and
v, D > 0. Assume that H is a k-uniform hypergraph with v(H) < N wvertices and e(H) >
YN edges. Suppose that Ay(H) < D, where Ay(H) denotes the mazimum number of
edges of H that contain q given vertices. Let X = e(Hy) and p =EX. Then for any e > 0
there is ¢ = ¢(e, k,~v, D) > 0 such that for all p € (0, 1] we have

P(X > (1+e)p) < eXP(—cmin{u, pte log(e/p)})' (3)

This upper tail inequality is conceptually best possible in several ways. First, the
restriction to ¢ < k is necessary (see Section 6.1 for a counterexample when ¢ = k),
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Second, in several important applications (3) is sharp (yields the correct exponential
rate of decay), i.e., there is a matching lower bound of form

P(X 2 (1+€)1) 2 Lin<sopseony exp( ~C(e) min{u, u'/"log(e/p)}),  (4)

where the restriction 1 < (1 + &)u < e(H) is natural.! In particular, letting the edges
of the hypergraph H with vertex-set V(H) = [n] encode classical objects from additive
combinatorics and Ramsey Theory, sharp examples of type (3)—(4) include the number
of k-term arithmetic progressions, Schur triples x+y = 2z, additive quadruples z1 +xz2 =
y1+y2, and (r, s)-sums x1+- - -+, = Y1 +- - - +ys in the binomial random subset [n], =
V,(H) of the integers; see Section 1.1.1 and 6.1 for more details/concrete examples.

The two expressions in the exponent of the upper tail (3)—(4) correspond to dif-
ferent phenomena.” Namely, in some range we expect that X = e(H,) is approxi-
mately Poisson, in which case P(X > 2u) decays roughly like exp(—cu). Similarly, the
exp(—cpt/91og(1/p)) = pet'"* term intuitively corresponds to ‘clustered’ behaviour (see
also [35,27,12]), where few vertices U C V,,(H) induce many edges in H, = H[V,(H)]:
e.g., in each of the above-mentioned examples there always is such a set with |U| = cpt/
and e(H[U]) > 2u, which readily implies P(X > 2u) > P(U C V,(H)) = p*"’*. Note
that classical tail inequalities of form (1) fail to handle these phenomena properly (lack-
ing Poisson behaviour and the extra log(1/p) term).

1.1.1. Upper tail examples from additive combinatorics and Ramsey theory
In the following exemplary upper tail bounds (5)—(8) we tacitly allow the implicit
constants to depend on .

Example 2. Arithmetic progressions (APs) are central objects in additive combina-
torics. Given k > 3, let X = X, ., denote the number of arithmetic progressions
of length k in the binomial random subset [n], of the integers (to clarify: we count
k-subsets {z1,...,7x} C [n], forming APs); note that 4 = EX = ©(n?p*). Then, for
any € > 0 and p = p(n) € (0,1] satisfying 1 < (1 +¢)u < X, k.1, we have

P(X > (1+2)) = exp(-O(min{p, u'/2log(1/p)})). (5)

Example 3. Schur triples {z,y, z} C [n] with x+y = z (where x # y) are classical objects
in Number theory and Ramsey theory (see, e.g., [9] and [8,24]). Let X = X,, , denote
the number of Schur triples in [n],; note that 4 = EX = ©(n?p?). Then, for any ¢ > 0
and p = p(n) € (0, 1] satisfying 1 < (1 +¢)u < X,, 1, we have

! Note that P(X > (1 +¢€)u) = 0 when (1 + &) > e(H), and that P(X > (1 4+¢e)u) =1 —P(X = 0)
when (1+¢e)p < 1.

2 A phenomenon not relevant for the qualitative accuracy of (3)—(4) is that |V, (#)| can also be somewhat
‘bigger’ than E|V,,(#)|, which in some range yields sub-Gaussian type tail behaviour, see also [35,27].
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P(X > (1+e)p) = exp(—G(min{u, pt’? log(l/p)}))~ (6)

The same tail bound also holds for ¢-sums (studied, e.g., in [1]), where the 3-element
subsets satisfy © +y = £z.

Example 4. Additive quadruples are 4-subsets {1, x2,y1,y2} C [n] satisfying z1 + 29 =
y1 + y2. The number of these quadruples is also called additive energy, which is an
important quantity in additive combinatorics (see, e.g., [2,5]). Let X = X,, , denote the
number of additive quadruples in [n],; note that u = EX = ©(n®p*). Then, for any £ > 0
and p = p(n) € (0, 1] satisfying 1 < (1 +¢)u < X,, 1, we have

P(X > (1+2)) = exp(-O(min{u, u'/*log(1/p)})). (7)

Example 5. (7, s)-sums are (r + s)-subsets {x1,...,2,y1,...,y2} C [n] satisfying z; +
o4+ 2, = y1 + -+ + ys. In the special case r = s the number of these sets is called
2r-fold additive energy, which is useful in the context of Roth’s theorem (see, e.g., [5]).
Given r,s > 1 satisfying r +s > 3, let X = X, , 5, denote the number of (r, s)-sums
in [n],; note that p = EX = ©(n" "~ 1p"+$). Then, for any ¢ > 0 and p = p(n) € (0,1]
satisfying 1 < (1 +e)u < X, 15,1, We have

P(X > (1+e)) = exp(—O(min{p, u/+Vlog(1/p)})). (8)

Similar tail bounds also hold for integer solutions of linear homogeneous systems, see
Section 6.1 for the details.

1.1.2. Subgraph counts in random graphs: sub-Gaussian type upper tail bounds

As a side-product, our proof techniques also yield new results with a slightly different
flavour. To illustrate this with subgraph counts in the binomial random graph G, p,
let X = Xy denote the number of copies of H in Gy, ,. Set u = EX. Here sub-Gaussian
type upper tail estimates® of the form

P(X > p+t) < Cexp(—ct?/ Var X) (9)

have been extensively studied [23,30,15,25,18,36,37] during the last decades, usually
with emphasis on small deviations of form vVarX < t = o(u), say (differing from
the large deviations regime ¢ = ©(u) considered in the classical upper tail problem for
subgraph counts). In particular, for so-called ‘strictly balanced’ graphs H three differ-
ent approaches [30,15,25] have been developed during the years 2000-2012, which each
establish a form of inequality (9) for t < p = O(logn). Our methods allow us to break

3 For subgraph counts lower tail estimates of sub-Gaussian type follow from Janson’s inequality (see,
e.g., [17]).
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this logarithmic barrier slightly, answering a question of Janson and Rucinski [13]; see
Section 6.2.1 for more details.

Theorem 6 (Subgraph counts: sub-Gaussian type upper tail bounds). For any strictly
balanced graph H there are ng,c, C,& > 0 such that inequality (9) holds whenever n > ng
and 0 <t < p < (logn)t+e.

1.2. Glimpse of the proof strategy

In contrast to most of the previous work, in this paper we take a more combinatorial
perspective to concentration of measure (and avoid induction via a more iterative point
of view). Our high-level proof strategy proceeds roughly as follows. In the deterministic
part of the argument, we define several ‘good’ events & = &;(H,¢), and show that the
following implication holds:

all & hold = X <(1+¢EX. (10)

In the probabilistic part of the argument, we show that for some suitable parameter ¥
we have

P (some &; fails) < exp(—%). (11)
Combining both parts then readily yields an exponential upper tail estimate of the form
P(X > (1+¢)EX) < P(some &; fails) < exp(—U).

In this paper we illustrate the above approach by implementing (10)—(11) in a general
Kim—Vu/Janson—Rucinski type setup. To communicate our ideas more clearly, our below
informal discussion again uses the simpler random induced subhypergraph setup (a more
detailed sketch is given in Sections 3.1.2-3.1.3).

For the deterministic part (10), we shall crucially exploit a good event g . of the
following form: all subhypergraphs with ‘small’ maximum degree have ‘not too many’
edges, i.e., that e(J) < (14 ¢/2)EX holds for all J C H, with A;(J) < @, say. Our
sparsification idea proceeds roughly as follows. First, using combinatorial arguments (and
further good events) we find a nested sequence of subhypergraphs

Hp:JqQJqflg"';)j22jl7 (]‘2)

which gradually decreases the maximum degree down to A;(J1) < Q. The crux is
that £g . then implies e(J1) < (14 ¢/2)EX. In the second step we exploit various good
events (and properties of the constructed sequence) to show that we obtained J; by
removing relatively few edges from #,, such that
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X=e(Hy) =e(T)+ Y e(JTira\J;) < (1+¢/2EX +(e/2EX = (1+)EX. (13)

1<5<q

In fact, the combinatorial arguments leading to (12)—(13) develop a ‘maximal matching’
based sparsification idea from [35], which is key for handling some vertices of #,, with
exceptionally high degrees, say.

The probabilistic part (11) works hand in hand with the above deterministic argu-
ments. Similar to £g ., we shall throughout work with ‘relative estimates’, i.e., which
are valid for all subhypergraphs of #, satisfying some extra properties (e.g., that
A;(J) < R; holds for all J C H, with A;j11(J) < Rjt1). These estimates are cru-
cial for bringing combinatorial arguments of type (12)—(13) into play (instead of relying
solely on inductive reasoning), and they hinge on a concentration inequality from [35].
Perhaps surprisingly, this inequality allows us to estimate P (=g ) and similar ‘rela-
tive’ events without taking a union bound over all subhypergraphs. For the matching
based sparsification idea briefly mentioned above, we exploit the fact that the relevant
‘matchings’ guarantee the ‘disjoint occurrence’ of suitably defined events. This observa-
tion allows us to estimate the probability of certain ‘bad’ events via BK-inequality based
moment arguments.

Finally, in our probabilistic estimates the logarithmic terms in (2)—(3) arise in a fairly
delicate way (which comes as no surprise, since there are examples where (1) is sharp). We
now illustrate the underlying technical idea for binomial random variables X ~ Bin(n, p)
with g = np, where for z > e(e/p)®u we have

P(X >z) < <Z>p“c < (%)I < (E)az = exp(—am log(e/p)).

T e

Our proofs apply this ‘overshooting the expectation yields extra terms in the exponent’
idea to a set of carefully chosen auxiliary random variables. As the reader can guess,
the technical details are, e.g., complicated by the fact that the edges of H, are not
independent, and that we may not assume z > pu.

1.8. Guide to the paper

In Section 2 we introduce our key probabilistic tools. In Section 3 we give a fairly
detailed proof outline, and present our main combinatorial and probabilistic arguments
in the random induced subhypergraphs setup. In Section 4 we then extend the discussed
arguments to a more general setup. In Section 5 we derive some concrete upper tail
inequalities, which in Section 6 are then applied to several pivotal examples.

The reader interested in our proof techniques may wish to focus on Section 3, which
contains our core ideas and arguments. The reader interested in applications may wish
to skip to Section 6, where the ‘easy-to-apply’ concentration inequalities of Section 5.1
are used in several different examples. Finally, the reader interested in comparing our
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results with the literature may wish to focus on the general setup of Section 4.1 and the
concentration inequalities in Section 5.2.

2. Probabilistic preliminaries
2.1. A Chernoff-type upper tail inequality

In this subsection we state a powerful Chernoff-type upper tail inequality from [35].
It might be instructive to check that, for sums X = Zie 4 &i of independent random
variables & € [0, 1], inequality (14) below reduces to the classical Chernoff bound (writ-
ingi~jifi=jforY; =¢,Z=Aand C =1 wehave X = Z¢). We think of ~ as a ‘de-
pendency relation’: a »¢ 8 implies that the random variables Y, and Y are independent.
For indicator random variables Y, € {0,1} the condition maxge 7 >_ e 7.q0p Yo < C es-
sentially ensures that each variable Yz with 5 € J ‘depends’ on at most C' variables Y,
with o € J. Intuitively, Z¢o defined below thus corresponds to an approximation of
X =3 e1 Yo with ‘bounded dependencies’

Theorem 7. Given a family of non-negative random variables (Yo )aecz with ) .7 EY, <
1, assume that ~ is a symmetric relation on L such that each Y, with a € I is indepen-
dent of {Ys: B €T and B = a}. Let Zc = max ) . ; Yo, where the mazimum is taken
over all J C T with maxges D _pe 7.0mp Yo < C. Set p(x) = (1 +2)log(1+z) —x. Then
for all C;t > 0 we have

(n+t)/C
o(t/pp —pc [ _en
P(Zc > pu+t) < — —e HC.
( Cc =K ) <S exp( C e 0 P

t2 t —t/(ZC) t _t/(4c)
< mi _ 1+ — <1+ — .
= eXp( 2C(u+t/3)>’ ( +2u> _< +u)

(14)

Remark 8. In applications there often is a family of independent random variables
(£5)sea such that each Y, is a function of (£, )yca. Then it suffices to define o ~ 8
ifanp#0 (as a ~ [ implies that Y, and Yz depend on disjoint sets of variables &, ).

Remark 9. Theorem 7 remains valid after weakening the independence assumption
to a form of negative correlation: it suffices if E(Hie[s] Y, < Hie[s] EY,, for all
(aa,...,a5) € I° satisfying a; ~ a; for i # j. For example, writing o ~ f if aNg # 0, it is
not hard to check that this weaker condition holds for variables of form Y, = wa1{ae#,,}
where the uniform model H,, = H[V;,(H)] is defined as in Section 3.5.

Remark 10. Replacing the assumption ., EY, < p of Theorem 7 with } 7 Ao < p
and mingez Ay > 0, the correlation condition of Remark 9 can be further weakened

to E(Hze[s] Yai) < Hie[s] Aai'
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Remark 11. Note that inequality (14) implies ¢(g) > €2/[2(1 + ¢/3)] > min{e? }/3
for e > 0.

Remarks 9-10 suggest that the proof of Theorem 7 is fairly robust (it exploits indepen-
dence only in a limited way; see also the discussion in [35] and the proof of Lemma 4.5
in [33]).

2.2. The BK-inequality

In this subsection we state a convenient consequence of the BK-inequality of
van den Berg and Kesten [3] and Reimer [20]. As usual in this context, we consider
a sample space = Q5 X -+ x Qpr with finite Q;, and write w = (w1,...,war) € Q.
Given an event £ C ? and an index set I C [M] = {1,..., M}, we define

&, = {wEE : for all m € 2 we have 7 € £ whenever 7; = w; for allje]}.

In intuitive words, the event £|; occurs if knowledge of the variables indexed by I already
‘guarantees’ the occurrence of £ (note that all other variables are irrelevant for £|;).
Given a collection (&;);ec of events, for the purposes of this paper it seems easiest to
introduce the convenient definition

Hiccéi = {there are pairwise disjoint I; C [M] such that ﬂ &ilp, occurs}. (15)

icC
The event [;cc&; intuitively states that all £; ‘occur disjointly’, i.e., that there are disjoint
subsets of variables which guarantee the occurrence of each event &; (the definition of [

sidesteps that the usual box product OJ is, in general, not associative). The general
BK-inequality of Reimer [20] implies the following estimate.

Theorem 12. Let P be a product measure on Q = Qq X --- X Qpr with finite ;. Then for
any collection (&;);cc of events we have

P(Micc&i) < [ P(&). (16)
i€C

Remark 13. For increasing events &;, [4] implies that inequality (16) also holds for P
assigning equal probability to all outcomes w € {0,1} with exactly m ones (as usual,
an event & is called increasing if for allw € £ and 7 € ) we have 7 € £ whenever w; < 7;
for all j € [M]).

3. Core ideas and arguments

In this section we present our core combinatorial and probabilistic arguments in a
slightly simplified setup. Our main focus is on the new proof ideas and methods (which
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we believe are more useful to the reader than the theorems), so we defer applications
and concrete upper tail inequalities to Sections 5-6. This organization of the paper also
makes the extension to the more general setup of Section 4 more economical. Indeed,
similar to the high-level proof strategy discussed in Section 1.2, the main results of this
section are Theorem 15 of form P(X > (1+¢)EX) < >, P(=&;) and Theorem 18 of
form P(=¢&;) < exp(—¥;). Together they yield upper tail inequalities, and in Section 4.2
we adapt both to our more general setup.

In Section 3.1 we give a detailed proof overview, and introduce the simpler random
induced subhypergraphs setup (where our main arguments and ideas are more natural).
As a warm-up, in Section 3.2 we revisit existing inductive concentration methods, and
reinterpret some of the underlying ideas. Section 3.3 contains our key combinatorial argu-
ments, which hinge on ‘sparsification’ ideas and the BK-inequality. In Section 3.4 these
arguments are complemented by probabilistic estimates, which rely on the Chernoff-
type tail inequality Theorem 7. Finally, in Section 3.5 we demonstrate that our proofs
are somewhat ‘robust’.

3.1. Owverview

3.1.1. Simplified setup: random induced subhypergraph H,

Our basic setup concerns random induced subhypergraphs. For a hypergraph H with
vertex set V (), let V,(H) denote the binomial random vertex subset where each v €
V(H) is included independently with probability p. We define the subhypergraph of H
induced by V,(H) as

Hy = H[Vp(H)]. (17)

Given non-negative weights (wy) e, for every G C H we set

w(G) = Z wiliren,y (18)
feg
where our main focus is on the weighted number of induced edges w(H) = w(H,).

The ‘unweighted’ case with wy = 1 occurs frequently in the literature (see, e.g., [14,
22,16,35,37]), where the random variable w(H) = e(#,) simply counts the number of
edges of H induced by V,(#H). Our arguments will also carry over to the uniform variant
Hum = H[Vim(H)] defined in Section 3.5 (see Remark 19).

To formulate our results, we need some more notation and definitions. As usual,
we write

Ty(H)={feH:UC f}, (19)

A= maxTo(H)] (20)
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In concrete words, I'y (H) corresponds to the set of all edges f € H that contain the vertex
subset U C V(#H), and A;(H) denotes the maximum number of edges that contain j given
vertices (which we think of as a ‘maximum degree’ parameter). Inspired by [15,19,30,
32], we now define the following two crucial assumptions (P’) and (Pgq), where ¢ € N is
a parameter:

(P’) Assume that max ey |f| <k, maxyey wy < L and v(H) < N. Define p = Ew(H)
and

o [f1=1U1 21
Fi = peviiiul=s Z P 1)
FETy(H)

(Pg) Assume that A, (H) < D.

Property (P’) ensures that every edge f € H has at most k vertices, that the associated
edge weights satisfy 0 < wy < L, and that H contains at most v(H) < N vertices.
Although we shall not assume this, our main focus is on the common case where k+ L =
O(1) and N = w(1) holds. Property (Pq) will be useful when D = O(1) holds for ¢ < k
(this is trivial for ¢ = k). The key parameters p; intuitively quantify the ‘dependencies’
between the edges, and we think of them as average variants of the ‘maximum degree’
parameter A;(#,,) from (20). To see this, note that P(f € H, | U C V,(H)) = pl/I=IVI,
so (21) equals

. C .
Hj = UCVI(I;-L%}TUl ]E(‘FU(HP” ‘ UC VP(H)) (22)

In concrete words, after conditioning on the presence of any vertex subset U C V,(H)
of size |U| = j, the expected number of edges in H, that contain U is at most p; (for
this reason, p; can be interpreted as the ‘maximum average effect’ of any j vertices or
variables, see also [19,32]). For example, if the edges of the k-uniform hypergraph H = H,,
correspond to k-term arithmetic progressions, then we can take V(H) = [n], N = n,
L=1,p=0(®npr) and p; = O(n*Iph=J) for 1 < j < ¢ = 2 (note that Ay(H) =
O(1) holds).

3.1.2. The basic form of our tail estimates

In this subsection we discuss the approximate form of our upper tail estimates. As
we shall see in Section 3.2, for hypergraphs H with Ay(#) < D the usual inductive
concentration of measure methods [19,15,32] yield basic inequalities of the following
form (omitting several technicalities). Given positive parameters (R;)1<j<q with R, > D,
for every € > 0 there are positive constants a = a(e, k) and b = b(k) such that roughly

N\ bR/ Rjt1
P(e(Hy) > (14 ¢e)pu) < exp(—ap/Ry) + Z (%) ) (23)

1<j<q N7
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say (see (76) of Claim 33; the freedom of choosing the parameters (R;)1<;<q is part of
the method, though one naturally aims at roughly p/R1 ~ R;/R;11). The ‘prepackaged
versions’ of these inequalities usually assume that the parameters satisfy roughly pu/Ry >
A and R; > max{2u;, \Rj+1} (see, e.g., Theorem 4.2 in [32] or Theorem 3.10 in [15]).
In this case there are positive constants ¢ = ¢(a,b) and C' = C(q) such that

P(e(Hp) = (1 +€)pu) < Cexp(—ch). (24)

The punchline of this paper is that we can often improve the exponential decay of (24)
if stronger bounds than R; > 2u; hold. For example, setting A ~ p!/? and R; ~
\97J (similar to, e.g., the proof of Corollary 6.3 in [32] or Theorem 2.1 in [31]), in the
applications of Section 6.1 we naturally arrive at bounds of form

Hy Hj

% Ry = e = 00 )
It might be instructive to check that (25) holds with o = 1/2 for k-term arithmetic
progressions with k& > 3. Intuitively, replacing R; > 2u; by the stronger assumption (25)
improves the exponential decay of the sum-terms in (23) by a factor of roughly log(1/p)
for small p. Hence the exp(—au/ Rl) term in (23) is the main obstacle for improving
inequality (24). Here our new ‘sparsification’ based approach is key: after some technical
work it essentially allows us to replace R; by

Q1= max{Rl/log(l/p), B},

where B > 1 is some constant (of course, we later need to be a bit careful when p ~ 1
holds, e.g., replacing log(1/p) with log(e/p), say). More concretely, assuming (25), for
w/R1 > X\, R; > ARj41 and p = o(1) we eventually arrive (ignoring some technicalities)
at a bound that is roughly of the form

\ bRj/Rjv1 N an/Ra
P(e(Hy) > (1+ ) < exp(—ap/@1) + 3 K%) +<&> 1 .
26

1<j<q J Rj
<C exp(—c min{,u, A log(l/p)})7

with ¢ = ¢(a,b,, B) > 0 and C = ¢ (see (80) of Theorem 34). In words, (26) essentially
adds a logarithmic factor to the exponent of the classical bound (24). This improvement
of (23)—(24) is conceptually important, since in several interesting examples the resulting
estimate (26) is qualitatively best possible (see Section 6.1).

3.1.3. Sketch of the argument
In this subsection we expand on the high-level proof strategy from Section 1.2, and
give a rough sketch of our main combinatorial line of reasoning (the full details are
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deferred to Sections 3.2-3.4 and 4.2). As we shall argue in Section 3.2, at the conceptual
heart of the usual inductive concentration approaches lies the following combinatorial
‘degree’ event Dj: Aj11(H,) < Rjq1 implies Aj(H,) < R;. Given a hypergraph H with
Aq(H) < Ry, for the induced number of edges e(#,) the basic idea is that an iterative
application of the events D,_1 N --- N D; reduces the upper tail problem to

<P(e(Hp) > (1+¢e)p and Ay (H, Z P(-D;) (27)

Pe(Hy) > (1+€)p) < P(e(Hy) > (1+ ) and Ay(H,) < Rq>

It turns out that all the probabilities on the right hand side of (27) can easily be es-
timated by the concentration inequality Theorem 7 (see Claim 14 and Theorem 18),
which eventually yields a variant of the upper tail estimate (23). As before, the crux
is that smaller values of the ‘maximum degree’ R; translate into better tail estimates.
To surpass the usual inductive approaches, similar to (26) our plan is thus to reduce
the ‘degree bound’ R; down to (1, and here our new ‘sparsification idea’ will be key,
achieving this ‘degree reduction’ by deleting up to eu/2 edges.

Our starting point is the observation that, via Theorem 7, we can strengthen the de-
gree event D; to all subhypergraphs G C H,, (see Claim 14 and Theorem 18). Namely, let
Dj' denote the event that Aj1(G) < Q;41 implies A;(G) < @, for all G C H,,. A crucial
aspect of our argument is that the events Dy, D;-' work hand in hand with the following
combinatorial ‘sparsification’ event £;: Aq(#H,) < Ry implies existence of a subhyper-
graph G C H,, with e(H, \ G) < ep/2 and A;_1(G) < Qq—1 (tacitly assuming g > 2).
Intuitively, &, states that the deletion of ‘few’ edges reduces the degree A,_1(H,) down
to Ag—1(9) < Qq—1.

The basic combinatorial idea of our approach is roughly as follows (see Section 3.3
for the more involved details). We first (i) obtain the coarse degree bound A;(H,) < R;
via an iterative application of the degree events D,_q1 N --- N Dy, then (ii) exploit the
sparsification event &; to find a subhypergraph G C H, with e(H, \ §) < eu/2 and
Ay—1(G) < Qq-1, and finally (iii) deduce the improved degree bound A;(G) < @4 via
an iterative application of the degree events D;Q n---N Df. Taking into account that
we obtain G C H,, by deleting up to eu/2 edges, for hypergraphs H with A,(H) < R,
we eventually arrive at

Pe(Hp) > (1 +e)u) < P(e(G) > (1+¢/2)p and A1(G) < Qq for some G C H,,)
+ 3 P(D)+P(-E)+ S P(-D)). (28)

1<j<q 1<j<q—1

The crux is that we can again obtain good tail estimates for P(e(G) > (1 +¢&/2)pu ---)
and P(—-D;) + ]P’(—\D;T) via Theorem 7 (see Claim 14 and Theorem 18), so in (28) it
remains to bound P (—&,).
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To estimate the probability that the sparsification event &, fails, we shall rely on
combinatorial arguments and the BK-inequality, developing a ‘maximal matching’ based
idea from [35]. Simplifying slightly (see Section 3.3.1 for the full details), for any vertex
set U C V(H) with |U| = ¢ — 1 we tentatively call Ky CTy(H)={f e H:UC [}
with [Ky| = r an r-star, where we set r = Q41 for brevity. The basic idea is to take a
maximal vertex disjoint collection of r-stars in #,, which we denote by M (to clarify:
the edges from any two distinct r-stars Ky, Ky € M are vertex disjoint), and remove
all edges f € H,, that are incident to M, i.e., which share at least one vertex with some
r-star from M. Denoting the resulting subhypergraph by G C H,, using maximality
of M it is not difficult to argue that Ay_1(G) < r = Q4—1 holds (otherwise we could
add another r-star to M). Furthermore, by construction the deleted number of edges is
at most

eMp\G) < Y D D Ty (M)l < M| -7 k- Ay(H,). (29)

KueM feky vef

Since the event &, presupposes Aq(H,) < Ri, we thus see that |[M| < eu/(2rkR:)
implies |H, \ G| < ep/2. It remains to estimate the probability that | M| is big, and here
we shall exploit the fact that the r-stars Ky € M satisfy two properties: they (i) are
pairwise vertex disjoint, and (ii) each ‘guarantee’ that |I'y/(#,)| > r holds. Intuitively,
the point of (i) and (ii) is that |M| events of from |[I'y(#H,)| > r ‘occur disjointly’
in the sense of Section 2.2, which allows us to bring the BK-inequality (16) into play.
Indeed, by analyzing a [[J-based moment of ZU:‘Ulqu Ly (#1,)|>r}» We then eventually
obtain sufficiently good estimates for P(—&,), as desired (see the proofs of Lemma 16
and inequality (48) of Theorem 18).

As the reader can guess, the actual details are more involved. For example, instead of
just &, for A,_1(+), we also need to consider similar sparsification events for the others
degrees A;(-) with 1 < j < ¢. In fact, analogous to Dj, these events must moreover apply
to all subhypergraphs G C H,, simultaneously (see &; ¢(z,r,y, z) defined in Section 3.3).
Furthermore, due to technical reasons, the decomposition (28) requires some extra bells
and whistles (see (33) of Theorem 15). Finally, we have also ignored how Theorem 7 and
the BK-inequality (16) eventually allow us to convert the decompositions (27)—(28) into
concrete upper tail inequalities of form (23) and (26); see Sections 3.3.1, 3.4, 4.2 and 5.3
for these technical calculations.

3.2. Inductive concentration proofs revisited

The goal of this warm-up section is to reinterpret the classical inductive concentration
proofs from [15,19,32] using the following ‘degree intuition’: an (improved) upper bound
for Aj11(H,) and Ai(H,) translates into an improved upper tail estimate for A;(#,)
and w(H,), respectively. We exemplify this with the following claim, which is usually
stated for G = H,, only (the proof of is based on routine applications of Theorem 7, and
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thus deferred to Section 3.4). We find inequalities (30)—(31) below remarkable, since they
intuitively yield bounds for all subhypergraphs G C H,, without taking a union bound.

Claim 14. Given H, assume that (P’) holds. Then for all t,z,y > 0 and 1 < j < k we
have

t —t/(4Lky)
) ()

P(w(g) > u+t and A(G) <y for some G C ’Hp) < (1—|— ;

, o/ (4ky)
]P’(Aj(g) > pi+x and Aj11(G) <y for some G C ’Hp) < N/ (1 + #—) .
J
(31)

Now, by a straightforward iterative degree argument similar to (27), we obtain the simple
estimate

]P’(w(g) > p+tand Ayg(G) < R, for some G C Hp)
< P(w(G) > p+tand Ay(G) < Ry for some G C H,)
+ Z P(A;(G) > R;j and Aj41(G) < Rj41 for some G CH,,).

1<5<q

(32)

Restricting to the special case w(H,), using Claim 14 it turns out that inequality (32) is
essentially equivalent to the basic induction of Janson and Rucinski [15] (see the proof
of Theorem 3.10 in [15]), which in turn qualitatively recovers the upper tail part of Kim
and Vu [19] (see Section 5 of [15,13]). The iterative point of view (32) is somewhat more
flexible than induction, making the arguments subjectively easier to modify (as there is no
need to formulate a suitable induction hypothesis). Estimates for all subhypergraphs G C
H, also make room for additional combinatorial arguments, which is crucial for the
purposes of this paper.

3.8. Combinatorial sparsification: degree reduction by deletion

In this section we introduce our key combinatorial arguments, which eventually al-
low us to obtain improved upper tail estimates by ‘sparsifying’ H,, i.e., deleting edges
from H,. Loosely speaking, via this sparsification idea we can effectively ignore certain
‘exceptional’ edges from #,, (which contain vertices with extremely high degree, say). For
the purpose of this paper, we encapsulate this heuristic idea with the definition below. In
intuitive words, for £ = 1 the ‘sparsification’ event £; 1 (z,r,y, 2) essentially ensures that
every G C ‘H,, with bounded A;;1(G) and A;(G) contains a large subhypergraph J C G
with small A;(7).

Definition (Sparsification event). Let &; ¢(x,7,y, z) denote the event that for every G C
Hp, with Aj11(G) <y and Ay(G) < z thereis J C G with A;(J) <z and e(G\ J) <.
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Here one conceptual difference to the ‘deletion lemma’ of Rédl and Ruciiiski [22,14] is
that our focus is on ‘local properties’ such as degrees (somewhat in the spirit of [29]), and
not on ‘global properties’ such as subgraph counts. Furthermore, we are deleting edges
from H, = H[V,(H)], whereas the classical approach corresponds to deleting vertices
from V,(H) = E(Gyp), say.

With &;1(z,7,y, 2) in hand, we now refine’ the basic estimate (32) via the strategy
outlined in Section 3.1.3 (see also (28) therein). We believe that the ideas used in the
proof of Theorem 15 below are more important than its concrete statement (which is
optimized for the purposes of this paper). Here one new ingredient is the edge deletion of
the sparsification events in P; 3, of (36), which allows us to decrease certain maximum
degrees. The total weight of the deleted edges can be as large as t/2, which is the reason
why in (33) we need to relax w(G) > p+t to w(G) > p+1t/2. In later applications we shall
use S; = R;/s with s = w(1), and then the parametrization (); = max{S;, D;} allows
us to easily deal with S; = o(1) border cases. The indicators in (35)-(36) can safely be
ignored on first reading (they mainly facilitate certain technical estimates). A key aspect
of (33) is that we intuitively replace A1(G) < R; of (32) with A1(G) < min{Q;, R;},
which by the discussion of Section 3.2 is crucial for obtaining improved tail estimates
(see also Theorem 18).

Theorem 15 (Combinatorial decomposition of the upper tail). Given H with 1 < q < k,
assume that (P’) holds. Suppose that t > 0. Given positive (D;)1<j<q, (Rj)i<j<q and
(Sj)1<j<qs define Ry = Qq = Dy and Q; = max{S;, D,} for 1 < j < q. Then we have

]P’(w(g) > p+tand Ag(G) < Dy for some G C Hp)
< P(w(G) > p+t/2 and Ay(G) < min{Q1, R1} for some G C H,)

(33)
+ > [P +Pi2+Pisal,
1<j<q

where
Py = P(Aj(g) > Rj; and Aj11(G) < Rjy1 for some G C Hp), (34)
Pi2 = Lg,<, and @yeuo by P(85(0) > Q; and Ay+1(0) < 841 for some G C Hy),
(35)
Pjse=1{Q,<R; and Q;11=D;:1}P (—E€;e(Qj,t/(2Lq), Dj 41, Re)). (36)

The combinatorial proof proceeds in two sparsification rounds. In the first round we use
our usual iterative degree argument to deduce that A,(G) < R, implies A;(G) < R; for
all 1 < 5 < g. We start the second round with the sparsification event, by deleting edges

4 Note that by setting D; = R; = S; the indicators in (35)—(36) are zero, so (33) qualitatively reduces
to (32).
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such that J C G satisfies Ag_1(J) < Qq—1 (tacitly assuming QQq—1 < R4—1, say). The
idea is that our usual iterative degree argument should then allow us to deduce that
Ajp1(J) < Q41 implies A;(J) < @, for all 1 < j < ¢ — 1. Unfortunately, our later
probabilistic estimates break down if the parameter Q); 1 is ‘too small’. With foresight
we thus use our alternative ‘degree reduction’ argument whenever Q41 = D;4+1 holds,
i.e., we again delete edges.

Proof of Theorem 15. Inequality (33) is trivial for ¢ = 1 (since R; = Q1 = D). For ¢ >
2 the plan is to show that properties (a)—(d) below deterministically imply that w(G) <
w+t for every G C H, with Aq(g) < D,. Using a union bound argument this then
completes the proof (it is routine to check that (a)—(d) correspond to the complements
of the events on the right hand side of (33), since Q41 > Dj41 implies Sj11 = Qj4+1).
Turning to the details, we henceforth assume that the following properties hold for
alGCHpand 1 <j<gq:

(a) A1(G) < min{Q1, R1} implies w(G) < p+1t/2,

(b) Aj+1(9) < Rj41 implies A;(G) < Rj,

(C) if Qj < R; and Qj-i-l >Djiq, then Aj+1(g) < Qj+1 implies AJ(Q) < Qj, and

(d) if Qj < Rj and Qj.;,_l = Dj+17 then Aj+1(g) < Qj+1 and Al(g) < R implies

existence of J C G with A;(J) < Q; and e(G\ J) < t/(2Lq).

For the remaining deterministic argument we fix G C H,, with A,(G) < Dy, and claim
that we can construct a hypergraph sequence G = J, 2 --- 2 J; such that

Ri, if1<i<j,
AT <y o (37)
min{Q;, R; }, if j <i<yq,

e(Jj+1\ Jj) < t/(2Lg). (38)

With this sequence in hand, using (38) we have

w(Ta\T) = Y, wp<( _max wy)-e(Ta\Tj) < L-t/(2Lg) = t/(2q),
redin\g; FE€Tj+1\T;

which together with Aq(J1) < min{Q@1, Ry} of (37) and (a) then yields

w(@) =w()+ Y, w(T\Tp) < (n+1/2)+(q—1)-t/2q) <p+t.  (39)

1<j<q

It thus remains to construct G = J, 2 --- 2 J; with the claimed properties. For the
base case G = Jg, using Ay(Jy) = Ay(G) < Dy = R, repeated applications of (b) yield
that A;(J;) < R; for all 1 < i < ¢, so (37) holds since Ay(J;) < Ry = min{Ry, Qq}-
Given J;41 with 1 < j < g, our construction of J; C J;4+1 distinguishes several cases;
in view of A;(J;) < Ai(J;+1) it clearly suffices to check (37) for A;(J;) only.
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If Q; > Rj, then we set J; = Jj41, which satisfies Aj(J;) = Aj(Tj41) < R; =
min{Q;. B, by (37).

If Q; < R; and Qj4+1 > Dji1, then we set J; = Jj41, which by (37) satisfies
Aj11(T5) = Aj11(Jj+1) < Qj41. Hence (c) implies A;(J;) < @5 = min{Q;, R;}.

Finally, if Q; < R; and Q41 = Dj41, then by (37) we have Aj1(Jj41) < Qj+1 and
A1(Jj+1) < Ri. Hence (d) implies existence of J; C J;41 satisfying A;(J;) < Q; =
min{Q;, R;} and e(Jj+1 \ J;) < t/(2Lg), completing the proof. O

The above proof demonstrates that estimates for all subhypergraphs G C H, are
extremely powerful along with combinatorial arguments. It seems likely that the above
sparsification approach can be sharpened in specific applications, i.e., that there is room
for alternative (ad-hoc) arguments which apply the ‘degree reduction’ idea differently.
For example, in [35] the degrees are iteratively reduced by a factor of two, say (replacing
the finite sum in (39) by a convergent geometric series). In [27] the iterative argument also
takes ‘trivial’ upper bounds for the A;(#) into account (which can be smaller than R;

or Q])

3.8.1. A combinatorial local deletion argument

The goal of this subsection is to estimate P (ﬁ iz, oy, z)), i.e., the probability that
our ‘sparsification’ event fails. As indicated in Section 3.1.3, our proof uses a mazimal
matching based idea which relies on combinatorial arguments and the BK-inequality.
The following auxiliary event Dy ., intuitively states that, in H,, the vertex set U is
the centre of a ‘star’ with at least x spikes (satisfying some degree constraint).

Definition (Auziliary degree event). Let Dy, ,, denote the event that there is K C 'y (H,)
with K| >z and Ay (K) < y.

To put this definition into our ‘all subhypergraphs’ context, note that =Dy, , implies
Ty (G)] < o for all G C H,, with Ajy11(G) < y. It might also be instructive to note that
a union bound argument yields

P(A;(G) >z and Aj41(G) <y for some G C H,) < Z P(Dysy).  (40)
UCV(H):|U|=j

The next result relates the auxiliary event Dy .., with the sparsification event &; 1 (z, 7,
y,2). For example, >, P(Dyy,) < B~%/Y translates into P(=&1(z,7,y,2)) <
B~"/(ky2) by inequality (41).

Lemma 16 (Auziliary result for the sparsification event). Given H, assume that
max ey | f| < k holds. Then for all x,r,y,2 >0 and 1 < j < k we have

[r/(k[z]2)]
IP<_‘ j,l('rvrvyﬂz)) S ( Z P(DU,x,y)> (41)

UCV(H):|U|=j
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Remark 17. Inequality (41) remains valid after dividing the right hand side by

[/ (k[x]2)]"

The proof of Lemma 16 develops a combinatorial idea from [35], which in turn was
partially inspired by [28,14]. We call (U,Ky) an (j,z,y)-star in G if U C V(G) and
Kuv CTy(G) ={f € G:U C f} satisty |U| = j, [Cy| = [z] and A;11(Ky) < .
Note that we allow for overlaps of the edges f,g € Ky outside of the ‘centre’ U. Writing
Sj,2,4(G) for the collection of all (j, z,y)-stars in G, we define M , ,,(G) as the size of the
largest M C S ;. ,(G) satisfying V (Ky) NV (Kw) = 0 for all distinct (U, Ky ), (W, Kw) €
M. In intuitive words, M, ,(G) denotes the size of the ‘largest (j, z,y)-star matching’
in G, i.e., vertex-disjoint collection of stars. We are now ready to follow the strategy
sketched in Section 3.1.3 (see also (29) therein).

Proof of Lemma 16. Let 7 = r/(k[z]z) and R = [7]. We first assume that M, , ,(H,) <
7 holds, and claim that this implies the occurrence of &, 1(x,7,y,z). For any G C H,,
with A;11(G) <y and Aq1(G) < z, it clearly suffices to show that there is J C G with
Aj(J)<zande(G\J) <r.Let M CS;,,(G) attain the maximum in the definition
of M 4,(G). We then remove all edges f € G which overlap some star (U, Ky) € M,
where overlap means that f N g # 0 for some edge g € Ky. We denote the resulting
subhypergraph by J C G. Using A;11(J) < Aj11(9) < y and maximality of M, we
then infer A;(J) < [2] — 1 < « (because otherwise we could add another (j,z,y)-star
to M). Furthermore, since |[M| = M;,,(G) < M;.,(H,) < 7 and A1(G) < z, by

construction the number of deleted edges is at most

eG\T)< D D > TGl < [M]-[2]- (I}lgg\fl)ﬂl(g) < i [alkz=r. (42)

KueM feky vef

It follows that M; , ,(H,) < 7 implies & 1(z, r,y, 2), as claimed.
For (41) it remains to estimate P (M; 4 ,(H,) > 7). Similar to the proof of Theorem 11
in [35], we set

Zp = Z L(E,c 1D, 0} (43)

(Ur,...,UR):
U;CV(H) and |U;|=j

where [J is defined as in (15). If M; . ,(H,) > 7, then there is M C S; ;. (H,) of size
|IM| = [F] = R which satisfies V(Ky) NV (Kw) = 0 for all distinct (U, Ky), (W, Kw) €
M. So, since the disjoint vertex sets V(Ky) C V,(H) guarantee the occurrence of each
event Dy, it follows that [y, )emPu,z,y occurs. As U C V(Ky) holds, by ver-
tex disjointness of the V(Ky) we deduce that the corresponding ‘star-centres’ U are
distinct. Since Zp counts ordered R-tuples, we thus infer Zr > R!. Hence, Markov’s
inequality yields

P(Mjy(Hy) > 7) < P(Zr > R)) < (EZg)/R. (44)
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Turning to EZg, using the BK-inequality (16) we readily obtain

EZgr = Z ]P)(Elie[R]DUi,m,y)
(U1, UR):
U;CV(H)s and |U;|=j

< ¥ H}P(DUI.,I,@,K( ) P(DU,m,w)R,

(U1,...Ur):  i€[R UCV (H):|U|=j
U;CV(H) and |U;|=j

(45)

which together with (44) and R > 1 completes the proof. O

The ‘star-matching’ based deletion argument used in the above proof seems of indepen-
dent interest. In applications it might be easier to avoid &; 1(x, 7, y, 2), and directly work
with the random variable M; , ,(#,), see also [35,27]. The above estimates (44)—(45) ex-
ploit the BK-inequality to relate M; , ,(#,) with the simpler events Dy . In H, and
other probability spaces one can sometimes also estimate P(M; ., (H,) > z) more di-
rectly (see, e.g., the remark after the proof of Lemma 17 in [35], or the proof of Lemma 9
in [27]).

3.4. Probabilistic estimates

In this section we introduce our key probabilistic estimates, which complement the
combinatorial decomposition of Theorem 15, i.e., allow us to bound the right hand side
of (33). A key aspect of inequalities (46)—(47) is that improved degree constraints A;(G) <
y translate into improved tail estimates. In our applications (48) below often reduces to
P(=&j1(z,r,y,2)) < (epj/x) =9/ W=) "say (see, e.g., the proof of Theorem 34).

Theorem 18 (Probabilistic upper tail estimates). Given H, assume that (P’) holds. Set
p(z) =1+ z)log(l +x) —x. Then for all x,r,y,z,t >0 and 1 < j < k we have

P(w(G) > p+1t/2 and Ay(G) <y for some G C H,,) < exp (%) 7 (46)

P(A;(G) >z and Aj11(G) <y for some G C H,p) < N’ (%)x/(ky) 7 )
e\ 21/ G T/ T712)]

(4)

The proofs of (46)—(47) are based on fairly routine applications of Theorem 7. The
crux is that the restrictions A;(G) < y and Aj41(G) < y translate into bounds for the
parameter C' in (14), which intuitively controls the ‘largest dependencies’ (A1(G) < y
ensures that every edge f € G overlaps at most | f|-A1(G) < ky edges e € G). For verifying
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the independence assumption of Theorem 7, we use the following simple observation:
eNf = () implies that Licen,y = Liecv,(3)y and Liren,y = L{ycv, ()} are independent,
since both depend on disjoint sets of independent variables {; = 1(scv, (3)}- Assuming
(enf)\U = 0, we below exploit that an analogous (conditional independence) reasoning
works after conditioning on U C V,(H).

Proof of Theorem 18. With an eye on Theorem 7, inspired by Remark 8 we set &, =
Loev, (0}

We first prove (46). Let Yy = wgl{sep,), which satisfies Yy = wy[[, ;& and
> ren EYy = Ew(H) = p. Furthermore, w(G) = >_, g Yy for any G C H,,. Defining
a ~ Bif an g # @, the independence assumption of Theorem 7 holds by Remark 8.
Observe that for any f € G C H with A1(G) < y we have

Y ov.< (I?ggxwe) © Y ey LY D@ < L-[f]- Av(G) < Lhy.
e€Gie~f e€G:eNf#£0 vef

To sum up, if w(G) > p+t/2 and A1(G) < y for some G C H,,, then Z¢ > p+1t/2 holds
with C' = Lky, where Z¢ is defined as in Theorem 7 with Z = H. So, applying (14),
we deduce

P(w(G) > p+t/2 and A(G) < y for some

w(t/(2u))u) '

T (49)

G CHy) <P(Zc > p+t/2) < exp (—

Using calculus (see, e.g., the proof of Lemma 13 in [35]) it is easy to check that ¢(¢/(2u) >
o(t/p)/4. In view of (49) and (14), inequality (46) now follows.

Next we turn to (47), which hinges on the union bound estimate (40). Note that
v(H) < 1 implies H = ), so (47) is trivial for N < 1 (the left hand side is zero).
Similarly, (47) is also trivial for # < ep; and N > 1 (the expression on the right hand
side is at least one). To sum up, we henceforth may assume z > eu; and N > 1. Given
UCV(H) with U] =j,set Z:=Ty(H)={f €H:UC f}. Let Yy = Lysecy9,}, and
define a ~ B if (aNB)\U # 0. Note that for any f € K C T with Aj11(K) <y we have

> Y= > Leern,) < Y Tuugp ()] < [F\UL- Ay (K) < ky.
eek:e~ f ee:(enfI\UAD ve fA\U
(50)

So, if Dy 4, occurs, then Z¢ > x holds with C' = ky, where Z¢ is defined as in Theorem 7
with Z =Ty (H). For f € Z, note that U € V,,(H) implies f ¢ H, = H[V,(H)]. Recalling
Yy = 1ysen,y and & = Liscv, (1)}, using the definition of p; (see (21)) it follows that
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ZE(Yf | (ga)an) = Z ]P(f € HP | (ga)UGU)IL{UQVp(H)}

fez felu (M)
< Y PUeH,IUCV,(H) = D IV <y =y
feTy (M) fery (M)

(51)

Furthermore, conditional on (&,)scv, the independence assumption of Theorem 7 holds
by the same reasoning as in Remark 8 (in the conditional space, each Y7 is a function of
the independent random variables (§,)sef\v)- S0, applying (14) with u = p; and p+t =
x > ey, we deduce the conditional inequality

e\ =/ (ky)
P(Duy | (€)oer) < P(Ze 2 o | (Ea)ocv) < (H2) (52)
Taking expectations, by summing over all relevant U C V(H) we thus infer
(et \*/ k)
> PDusy)= Y EP(Duay | Elec) <N ()T (53)

UCV(H):U|= UCV(H)U|=j

and (47) follows in view of (40).

It remains to establish (48). Exploiting integrality of the underlying variables, note
in (52) we can strengthen Zo > z to Z¢ > [z]. In (52)—(53) we thus may replace
(epj/z)™ B9 by (ep;/[x])1*1/*¥) and so (48) follows from (41) of Lemma 16, with
room to spare. 0O

The proof of Claim 14 (only used in our informal discussion) is very similar, and thus
left to the reader.

3.5. Extension: uniform random induced subhypergraph H,

The proofs in Sections 3.3-3.4 exploited the independence of H, = H[V,(H)] in a
limited way. In this section we record that they extend to the uniform model H,, =
H[Vin(H)], where the vertex subset V;,,(H) € V(H) of size |V;,,(H)| = m is chosen
uniformly at random (this is a natural variant of H, with mild dependencies).

Remark 19. Theorems 15 and 18 carry over to H,, after setting p = m/v(#H) in (21).

Proof. The proof of Theorem 15 is based on (deterministic) combinatorial arguments,
and after replacing H, with H,, thus carries over word-for-word to H,,.

Turning to Theorem 18, using Remark 9 it is easy to see that the proof of (46) carries
over to H,, (with minor notational changes).

For (47) more care is needed. To avoid conditional probabilities and expectations, set
Yf = ]l{f\UQVm(’H)} for all f el = FU(H) Writing o~ B if ((X N ﬂ) \ U 75 @, note
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that inequality (50) readily carries over. It is folklore (analogous to, e.g., the proof of
Theorem 15 in [17]) that EY; = P(f\U C V,,(H)) < plfI=F7Y1 for p = m/v(H), so that
> rer BYy < ZfeFu(H) plfI=IUI < 41 by (21). Recalling the definition of ~, it is similarly
folklore that the random variables Yy = 1(p\vcv,, (2} satisfy the negative correlation
condition of Remark 9. Mimicking the argument leading to (52), using Theorem 7 we
obtain P(Dy.,) < P(Zc > x) < (ep;/x)*/*¥) for H,,, which by a simpler variant
of (53) then establishes (47).

As the proof of (47) carries over, for (48) it remains to check that (41) holds for H,,.
A close inspection of the proof of Lemma 16 reveals that only the usage of the BK-
inequality in (45) needs to be justified. But, since Dy, , is an increasing event, this
application of (16) is valid by Remark 13, completing the proof. O

4. More general setup

In this section we introduce our general Kim—Vu/Janson-Rucinski type setup, and
show that the combinatorial and probabilistic arguments of Section 3 carry over with
somewhat minor changes. Readers only interested in random induced subhypergraphs H,,
may wish to skip to Section 5 (see Remark 29).

4.1. Setup

Our general setup is based on certain independence assumptions, i.e., we do not re-
strict ourselves to polynomials of independent random variables (and we also do not
make any monotonicity assumptions). Given a hypergraph H and non-negative random
variables (Y}) ey, for every G C H we set

X(G)=> Y, (54)

feg

where our main focus® is on the sum X (#) of all the variables Y; (sometimes H is
also called the ‘supporting’ or ‘underlying’ hypergraph, see [19,32]). Loosely speaking,
the plan is to adapt the combinatorial arguments of Sections 3.3-3.4 to the associated
random subhypergraph

Hy ={f €M Ys >0} (55)

which due to X (H) = X (#,) loosely encodes all ‘relevant’ variables (recall that Y > 0).
Similar to [15], we shall use the following independence assumption (H¢), where £ € N
is a parameter:

® Usually we have X = > fen wrly in mind, for random variables Iy € {0, 1} and constants wy € (0, c0).
All examples and applications in [19,30,32,15,14,16] are of this form, with wy = 1 (possibly after rescaling
X by a constant factor).
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(H¢) Let (&5)sc.a be a family of independent finite random variables. Suppose that there
are families of subsets Ay C A such that (i) each non-negative random variable Y
with f € H is a function of the variables ({,)sca,, (ii) we have Ac N Ay C Acny
for all e, f € H, and (iii) we have Ac N Ay =0 for all e, f € H with [en f] < £.

The setup of Section 3.1.1 corresponds to the special case §; = Lisev, (1)}, Ar = f

and Yy = wy ngAf
whenever |e N f| < ¢, since by (i) and (iii) then both depend on disjoint sets of vari-

&-. A key consequence of (H() is that Y. and Y} are independent

ables £,. The ‘structural’ assumption (i) that each Y; depends only on the variables &,
with ¢ € Ay is very common in applications; often Ay = U suffices. The ‘consisten-
cy’ assumption (ii) and ‘independence’ assumption (iii) of the index sets Ay are also
very natural. For example, in the frequent case Ay = U we have A N Ay = Aeny, so
A.N Ay =0if |en f| < 1. Example 22 in Section 4.1.1 illustrates the case ¢ # 1 with
Ay ={f € B(K,): f CU}.

We now introduce the modified key parameters p;, which intuitively quantify the
‘dependencies’ among the variables Yy (in the spirit of [15,19,30,32]). Recalling I'y/(H) =
{f € H:U C f}, with Section 3.1.1 in mind we now define the following two crucial
assumptions (P) and (Pq), where ¢ € N is a parameter:

(P) Assume that maxyey |f| < k, maxpeysupYy < L and v(H) < N. Define p =
EX(H) and

= o max swE (o)l | (€o)oea). (56)

where the supremum is over all values of the variables £, with o € Ay.
(Pg) Assume that Ay(H) < D.

In view of (22), property (P) is a natural extension of (P’) from the basic setup of
Section 3.1.1. Our general setup lacks monotonicity, and so the conditioning in (56) is
with respect to all possible values of the &,.

For the interested reader, we now briefly discuss how our setup and assumptions differ
in some (usually irrelevant) minor details from the literature [15,19,30,32]. Firstly, the
‘normal’” assumption of Vu implies max ey supYy < 1 in (P) above (see, e.g., Theorem
1.2 in [30] and Theorem 4.2 in [32]). Secondly, classical variants of the ‘maximum average
effect’ parameter p; (see, e.g., Sections 3 in [15] and Section 4 in [32]) are roughly defined
as the maximum over all sSupE(}_ er 30,y Yr | (§o)ocay) with [U| = j, but in most
applications > rcp (3, Yr = ©(|T'v(Hp)]) holds, so the difference is usually immaterial.
Thirdly, in (H¢) our assumptions for the index sets Ay are slightly simpler than in
Section 3 of [15]. Finally, in contrast to [15], we assume that the ({,),eca are finite
random variables, which is very natural in combinatorial applications (this technicality
can presumably be removed by approximation arguments, but we have not pursued this).
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4.1.1. Examples

The above assumptions (H¢) and (P) might seem a bit technical at first sight, and
for this reason we shall below spell out three pivotal examples (see Section 3 of [15] for
more examples).

Example 20 (Random induced subhypergraphs). For a given k-uniform hypergraph H,
analogous to Section 3.1.1 we consider X = e(Hp) = > ;¢4 Liren, ) Note that A =H,
§o = Ligev, )y, Af = fand Yy = ngAf & € {0, 1} satisfy properties (H1) and (Pk).
In fact, for (P) we can simplify the definition of y;. Namely, since U € V,,(H) implies
f & Hy,=H[V,(H)] for all f € T'y(H), we have

Sup]E(|FU(HZJ)| ’ (ga)oéAU) = ]E(|FU(HI))| | Uc VP(H))

= Y P(feH,|UCV,(H).
fely (H)

As H is k-uniform, for any f € T'y(H) it is easy to see that P(f € H, |U C V,(H)) =
P(f\U C V,(H)) = p*~IVl. Combining these observations, it follows that (56) simplifies
for1 <j<kto

= e PO G012 &
Example 21 (Subgraph counts in G, ,: induced subhypergraphs approach). Subgraph
counts in G, can be viewed as a special case of Example 20, i.e., random induced
subhypergraphs. Given a fixed subgraph H with ¢ = ey edges, v = vy vertices
and minimum degree 6 = dy > 1, we consider the e-uniform hypergraph H with
vertex set V(H) = E(K,), where edges correspond to copies of H. Clearly, k = e
and N = n? suffice. Note that for the copy of H counted by Yy, any subset of the
edges U C fNE(K,) C V(H) is isomorphic to some subgraph J C H. So, taking all
subgraphs of H with exactly |U| = j edges into account, using (57) with £ = e and
V(H) = E(K,) there is universal constant B = B(H) > 0 such that for 1 < j < e
we have

< r p* I < B VTV e 58
pi< Y pepiex o)l p7 < > T (58)
JCH:ej;=j JCH:ej;=j

Note that any ¢ = e — d + 1 < e edges already determine the vertex set, so (Pq) holds
with D = O(1). Finally, a minor variant of the described approach also applies to induced
subgraph counts (with k = ("), by letting E(H) correspond to copies of the complete
graph K, , and defining Y7 as the indicator for the event that the subgraph of G,
defined by the edges in f is isomorphic to H).

Example 22 (Subgraph counts in G, p,: vertex exposure approach). Subgraph counts
in G, can also be treated via a ‘vertex exposure’ based approach. Given a fixed sub-
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graph H with e = ey edges and v = vy edges, we consider the complete v-uniform
hypergraph H with vertex set V(H) = [n], so N = n and k = v. For I C V(H) with
|I| = v the random variable Y; counts the number of copies of H in G, , that have
vertex set I. Note that 0 <Yy < L = O(1). Since X =}, ,, Y7, we take A = E(K,),
§o = Lisev,(nyyp, and Ar = {f € E(K,,) : f CI}. As A;NA; = Ajny is empty whenever
|[INJ| <2, for £ =2 properties (H¢) and (Pk) are satisfied. Conditioning on (&5)sc4,,
corresponds to conditioning on G, ,[U], so bounding p; is conceptually analogous (58).
Indeed, by similar reasoning as in Example 21, we arrive for 1 < j < v at

PET D D (59
induced JCH:wy=j

where B = B(H) > 0. Finally, induced subgraph counts can clearly be treated analo-
gously.

4.2. Adapting the arguments of Sections 3.5-3.)

In this section we adapt the key results Theorem 15 and 18 from Sections 3.3-3.4
to our more general setup. The crux is that the random variables (Yy) pey satisfy Yy =
Y (& : 0 € Ay) by the independence assumption (HY), so that the intersection properties
of the index sets Ay give us a handle on the dependencies. This allows us to adapt our
combinatorial arguments to the auxiliary subhypergraph H, = {f € 1 : Yy > 0}.

We start with a natural analogue of Theorem 15, which is at the heart of our argu-
ments.

Theorem 23 (Combinatorial decomposition of the upper tail: general setup). Given H
with 1 < £ < q < k, assume that (H¢) and (P) hold. Suppose that t > 0. Given positive
(Rj)i<j<q and (Dj)i<j<q, define Ry = Qq = Dy and Q; = max{S;,D;} for £ < j < q.
Then we have
P(X(G) > p+t and Ay(G) < Dy for some G C H,)
< IP’(X((]) > u+1t/2 and Ay(G) < min{Qy, Ry} for some G C Hp)

+ Z [Pi1+Pj2+ Pz,
£<j<q

(60)

where P 1, Pj o and Pj 3¢ are defined as in (34)—(36).

Recalling X(G) = > ;5 Yy and H, = {f € H : Yy > 0}, the deterministic proof of
Theorem 15 carries over to Theorem 23 with minor obvious changes (inequality (60) is
trivial if ¢ = ¢; for ¢ > £ it suffices to construct G = J; 2 --- D J¢, with indices of
form ¢ < i,j5 < qin (37)); we omit the routine details.

Next we state an analogue of Lemma 16 for the ‘sparsification’ event &; ¢(x,r,y, 2)
from Section 3.3.
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Lemma 24 (Auziliary result for the sparsification event: general setup). Given H with
1 <€ <k, assume that (H() and maxsey |f| < k hold. Then for all z,r,y,z > 0 and
{ < j <k we have

) [r/((7212)]

P (=& (z,7,y,2)) < ( Z P(Dy,z,y) (61)

UCV(H):|U|=j

Remark 25. Inequality (61) remains valid after dividing the right hand side by

[r/((§)T2]2)1Tt

For the proof of Lemma 24 we adapt the definition of M ; ,(G) used for Lemma 16. Intu-
itively, the idea is to replace ‘vertex disjoint’ by ‘depending on disjoint sets of variables’.
Namely, here we define M; , ,(G) as the size of the largest collection M C S;; ,(G) of
(J, x,y)-stars in G satisfying the following property for all distinet (U, Ky ), (W, Kw) €
M: we have |eN f| < £ for all e € Ky and f € Ky . The point will be (i) that each Y}
is a function of the variables (§,)sex,, and (ii) that e N f| < ¢ implies Ac N Ay = ()
by (HY).

Proof of Lemma 24. Using the above definition of M ; ,(G), we shall adapt the proof of
Lemma 16. Let 7 = r/((]z) [2]z) and R = [7]. We first assume that M, , ,(H,) < 7 holds,
and claim that this implies the occurrence of &; ¢(z, 7, y, 2). Fix G C H,, with A;11(G) <y
and Ay (G) < z,and let M C S, , ,(G) attain the maximum in the definition of M , ,(G).
We remove all edges f € G which ‘overlap’ some star (U, Kyy) € M, where overlap means
that |fNg| > ¢ for some edge g € Ky. We denote the resulting subhypergraph by J C G.
Recalling Aj11(J) < Aj4+1(9) <y, by maximality of M we infer A;(J) < [z] —1 < .
Similar to (42), using |[M| = M, » ,(G) < M; . ,(H,) < 7 and Ay(G) < z it is easy to see
that we removed at most

«@\ ) <Ml Tal - max ()| aug) < ropal (f)e=r o
edges. It follows that M; , ,(H,) < 7 implies &; ¢(z,7,y, 2), as claimed.

For (61) it remains to estimate P (M, ,,(Hp) > 7). Suppose that M, ,(Hp) > 7
occurs. If M C S;,,(Hp) attains the maximum in the definition of M, ,(Hp), then
we know (i) that [M| > [F] = R holds, and (ii) that () x,,)em Pu,a,y Occurs. In the
following we argue that these events Dy ., ‘occur disjointly’ in the sense of Section 2.2.
For each (U, Ky) € M, note that the variables indexed by

Vike)= |J Ay

feku

guarantee the occurrence of Dy ,. The crux is now that for all distinct (U, Ky),
(W,Kw) € M, by (iii) of (Hf) we have Ac N Ay = 0 for all e € K, and f € Kw
(since |en f| < £), so
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VIKe)nV(Kw)= | | (AenAy)=0. (63)

eey fELw

It follows that [y k. )emDu,z,y Occurs (since the disjoint sets of variables indexed by
V(Kv) guarantee the occurrence of each Dy, ). Next we claim that all the corresponding
sets U are distinct. To see this, note that for distinct (U, Ky ), (W, Kw) € M we have
¢ > len f| > |UNW| by definition of M, which due to |U| = |[W| = j > ¢ implies
U # W. Tosum up, M; . ,(#H,) > 7 implies Zr > R!, where Zp is defined as in (43). The
arguments of (44) and (45) now carry over unchanged, completing the proof of (61). O

Finally, we state a natural analogue of Theorem 18, which contains our core proba-
bilistic estimates (inequalities (64)—(66) allow us to bound the right hand side of (60)
from Theorem 23).

Theorem 26 (Probabilistic upper tail estimates: general setup). Given H with 1 < £ < k,
assume that (HC) and (P) hold. Set ¢(x) = (14x)log(1+z)—xz. Then for all z,r,y, z,t >
0 and ¢ < j < k we have

P(X(G) > p+1t/2 and Ay(G) <y for some G C H,) < exp (_‘igé%)#) ’ (64)
0)Y
P(A;(G) >z and Aj11(G) < y for some G C H,,) < N7 (%)x/(ky) ’ (©5)

ANECEY [r/((5)1212)]
P(> j7f<x,r,y’z>>S<N]([—ﬁ) ) |
(66)

The proof is based on a minor modification of the proof of Theorem 18. As we shall see,
our main task is to adapt the definitions of the dependency relations ~. To this end recall
(i) that each Y} is a function of the independent variables ({,)se4,, and (ii) that (H¢)
implies A, N Ay = () whenever |e N f| < ¢.

Proof of Theorem 26. For (64), note that > 5 EYy = EX(H) = p. We define o ~ f3
if lan gl > £ In view of properties (i) and (ii) discussed above, the independence
assumption of Theorem 7 holds by analogous reasoning as in Remark 8. Furthermore,
for any f € G C H with Ay(G) <y we have

Z Y, < (meaxsqu) Z Iifegy < L- Z Tu(9)l

ecG:e~f eeG:lenf|>¢ UCf:|U|=¢

<L (JQ) CA(G) < L(Dy

Setting C' = L( )y, the remaining proof of (46) readily carries over to (64) with obvious
notational changes.
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Next we turn to (65), which is again based on (40). As before, we may assume that
x > epj and N > 1 (otherwise the claim is trivial). Furthermore, given U C V(H)
with |U| = j, we set Z = I'y(H). With the random variables (ﬂ{yf>0})feI in mind,
define a ~ B if (a« N 3)\ U # 0. Note that, for any f € K C T with Ajy41(K) <,
analogous to (50) we have > ci...r Liy,>0p < [f\ Ul Ajy41(K) < ky. Furthermore,
by definition of Z =T'y/(H), Hp = {f € H : Y; > 0} and p; (see (56)) we obtain

> E(Ly, 50 | o)ocan) = E(Tu(Hp)l | (€)ocan) < mu| = p-
fez

Note that, conditional on (£{,)se.4, , each Liy;>0y is now a function of the independent
random variables ({y)scA,;\4, - Furthermore, for alle, f € Z={g € H : U C g} we see
that (eN f)\U = 0 implies eN f = U, so that (ii) of (H¢) yields A. N Ay C Aeny = Ap.
For all e, f € Z we thus infer that e ~ f implies

(Ac\ Av) N (A \ Av) = (Ae N Ap) N Ap € Au \ Ay = 0.

Conditional on (£,)sc .4, , it follows (by the reasoning of Remark 8) that the independence
assumption of Theorem 7 holds for the variables (]].{yf>0}) fer The remaining proof
of (47) readily carries over to (65).

Finally, for (66) we recall that (48) is based on Lemma 16 and the argument leading
to (47). In view of Lemma 24 and the above proof of (65), the same line of reasoning
carries over, establishing (66). O

4.8. Adapting Section 3.5: vertex exposure approach for H,,

In this section we partially adapt our arguments to the uniform random induced sub-
hypergraph F,,, = F[V,,(F)]. Generalizing the ‘vertex exposure’ approach of Example 22,
we rely on the following assumption.

(H(P) Suppose that H, £ and F are hypergraphs with V(H) = V(&), V(F) ={h € £}
and mingeg |h| > £. Defining Ay = {h € £: h C U} for all U C V(£), assume
that F = |J ren [Af] is a disjoint union of induced subhypergraphs. Suppose
that (wg)gecr are non-negative weights. For all f € H, let

Yf = Z wg]l{ge]:m}. (67)
gEF[Ay]

Assume that maxsey |f| < k, maxpey Yy < L and v(H) < N. Define p =
EX(H), p=m/v(F), and

— lgl—lgnAu|
M= e Eui= 2 2 ' (68)
FET T (H) gEFIAy)



L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98—146 127

Example 27. Using the ‘vertex exposure’ setup discussed in Example 22, subgraph counts
in Gy, satisfy (HCP) with £ = 2 and k = vy (by setting € = K,,, and defining F as
the hypergraph H of Example 21). In (68) the modified parameter u; is again bounded
from above by the right hand side of (59).

Remark 28. Theorems 23 and 26 remain valid after replacing the assumptions (H¢), (P)
with (H(P).

Proof. With the ideas of Remark 19 in mind, we only sketch the key modifications
for (64)—(65) of Theorem 26.

For (64) it suffices to verify the negative correlation condition of Remark 9, writing
a ~ B if lan ] > £ Using (67) and the negative correlation properties of F, (see
Remark 9), it is not hard to check that

E(]] Ya.) > Y E([] welgerny) < J] EYa  (69)

i€[s] g1E€F[Aaq] gs€EF[Aq,] i€[s] 1€[s]

and so the proof of (64) carries over (above we used that o; ~ «; implies F[Aqy,] N
FlAq] =0).

For (65) we define o ~ B if (a N B)\ U # 0, and replace (]l{yf>0})f€I by
(]l{@f})fez, where 9); denotes the event that g\ Ay C V,,(F) for some g € F[Ay]. Let
A=Y geria) P9\ Au C Vin(F)). It is folklore that P(g\ Ay C Vi (F)) < plol=lonAv]
(see Remark 19), so Z = I'y(H) and (68) yield > ;.7 Af < py) = py. Since ]].{ij} <
de]-‘[Af} L\ Ay CVi (7))}, analogous to (69) we infer E(Hie[s} L.} ) < Hle Aais
tablishing the correlation condition of Remark 10. Mimicking Remark 19, the proof
of (47) then carries over to (65). O

5. Corollaries: upper tail inequalities

The main results of Sections 3—4 are Theorems 15, 23 of form P(X > (14 ¢)EX) <
> P(=&;) and Theorems 18, 26 of form P(—&;) < exp(—¥;). In this section we derive
upper tail inequalities that are convenient for the applications of Section 6, and briefly
compare some of our more general estimates with the literature.

Remark 29 (Random induced subhypergraph setup). The results in Sections 5.1-5.2 are
stated for the general setup of Section 4.1. But, with minor changes, they remain valid
in the simpler random induced subhypergraph setup of Section 3.1.1. Indeed, setting
¢ = 1 and replacing the assumptions (H¢), (P) with (P’), all results carry over to H,
by defining X (J) := w(J). After setting p = m/v(#) in (21), these results for #,, then
also carry over to the uniform variant H,, defined in Section 3.5. Finally, after replacing
the assumptions (H¢), (P) with (H¢P), all results in Sections 5.1-5.2 also remain valid
in the setup of Section 4.3.
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Henceforth, we tacitly set p(z) = (1+2)log(1l+ x) — z for brevity (as in Theorems 7, 18
and 26).

5.1. Easy-to-apply tail inequalities

In this section we state some simplified upper tail inequalities that suffice for all the
applications in Section 6 (we have not optimized the usually irrelevant constants); the
proofs are deferred to Section 5.3.

On first reading of the following upper tail inequality for X(H) = > fen Yy, the
reader may wish to set £ = 1 and ¢ = k, so that (72) is of form P(X(H) > 2u) <
exp(—d min{u, u'/* log(e/n)}). Here our main novelty is the log(e/) term: it allows us to
gain an extra logarithmic factor if # € { N~ p}, which yields best possible tail estimates
in the applications of Section 6.1. We think of (70) as a ‘balancedness’ condition, and
mainly have parameters of form 7 € {1, N~!, p} in mind. In fact, for 7 € {N~! p} the
technical assumption (71) usually holds automatically for small 7 (see Remark 31 and
the proof of Theorem 36).

Theorem 30 (Easy-to-apply upper tail inequality). Given H with 1 < £ < q < k, assume
that (Ht), (P) and (Pq) hold. If there are constants A, o, 7 > 0 and a parameter w € (0,1]
such that

Hj < o
fréljaé(q max{p(a=9)/(a—4+1) 1} — Am®, (70)
Apt/la=t+1) > Iirsn-rylog N, (71)

then for e > 0 we have

P(X(H)> (14e)u)< (1+bNF) exp(fcmin{go(z—:),u, min{sQ, 1}u1/(q*e+1) log(e/ﬂ)})

< (1+bN"H exp(—dmin{sQ, 1} min{p, pt/ =t log(e/ﬂ)}) ,
(72)

where b=3q, ¢ =c(¢,q,k,L,D,A,a,7) >0 and d = ¢/3.

Remark 31. If 7 = N1, then (71) is trivially satisfied for 7 = 1/2, and log(e/7) > log N
holds in (72).

Simple applications of the inductive approaches [19,15,32] often implicitly assume (70)
with 7 = 1, and replace (71) by the stronger assumption min{e? 1}p!/ (@10 =
w(log N), say (see, e.g., the proof of Corollary 6.3 in [32] or Theorem 2.1 in [31]). Their
conclusion is then of the form P(X(H) > (1 4+ ¢)u) < exp(—amin{e?, 1}p!/(@=¢+1)
where p!/(@=+1 = min{u,ul/(q_“‘l) log(e/m)} holds by assumption. In other words,



L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98—146 129

our inequality (72) yields an extra logarithmic factor when 7 € {N~! p} in (70). To il-
lustrate this, for subgraph counts in G,, ,, the setup of Example 21 (with¢{ =1,g=k =e
and N = n?) naturally yields

) O(Z o n’U*’UJp87j)
1221 JCH:e;=j ejv/e—vy
B D S [ TG e SOC 2 m),

JCH:1<ej<e

which is well-known to be O(n~") for so-called ‘strictly balanced’ graphs and O(1) for
‘balanced’ graphs (the details are deferred to (104) and (115) in Section 6.2; see also
Section 6.3 in [32]).

The next upper tail result assumes that all the parameters p; are decaying polyno-
mially in N, which typically requires that g = EX(#) is small (as v(H) < N). On first
reading of Theorem 32 the reader may wish to set £ =1, ¢ = k and K = 1, so that (74)
is of form P(X(H) > pu +t) < exp(—amin{t?/u,t"/*log N}) when t € [1, ). Here our
main novelty is the t'/#log N term, which is key for the applications in Section 6.2.1.

Theorem 32 (Easy-to-apply upper tail inequality: the small expectations case). Given H
with 1 < ¢ < q <k, assume that (H(), (P) and (Pq) hold. If there are constants A, > 0
such that

< —«
nax fij < ANT?, (73)

then for t, K > 0 we have

P(X(H)>pu+t) <(1+bN %) exp (— min{cgo(t/u),u, max{ctl/(q_“l), K} log N}

< (14+bN"T)exp (— min{dtz/u, dt, max{ctl/(q_“'l), K} logN}) ,
(74)

where b =2q, c=c(¢,q,k,L,D,A,a, K) > 0 and d = ¢/3.

The inductive approaches [30,15] yield variants of (74) where max{ct'/(¢=1 K} is
qualitatively replaced by K (see, e.g., Corollary 4.10 in [15]). For K large enough this
gives bounds of the form P(X(H) > (1 +¢e)u) < N=# for u > C(e,d,8)logn, and
P(X(H) > (14 e)u) < exp(—de?p) for u < logn and ¢ < 1, say (see, e.g., Corollar-
ies 4.11-4.12 in [15]). To illustrate assumption (73), for subgraph counts in G,,, with
p = O(n=/¢t%), the setup of Example 21 (with £ =1, ¢ = k = e and N = n?) yields
w=0(n) and

max /i, < O( Z nU*UJp€7€J) < O( Z ner/evajLa(efeJ))’

1<j<
=J=4 JCH:1<e,<e JCH:1<es<e
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which for ‘strictly balanced’ graphs is well-known to be O(n~=7/2) for sufficiently small
o > 0 (the details are deferred to (104) and (107) in Section 6.2; see also Claim 6.2

n [32]).
5.2. More general tail inequalities

In this section we state some more general upper tail inequalities which (i) mimic
the heuristic discussion of Section 3.1.2, and (ii) are easier to compare with the work of
Kim—Vu/Janson—Rucinski [19,30,32,15]; the proofs are deferred to Section 5.3. Readers
primarily interested in applications may proceed to Section 6.

We start with a rigorous analogue of the basic upper tail inequality (23) from Sec-
tion 3.1.2, which is inspired by very similar classical results for the special case G = H,,
with Ag(H) < D (see, e.g., Theorem 3.10 in [15] and Theorem 4.2 in [32]). In applica-
tions convenient choices of the parameters (R;)¢<;<q and D are often of form D = (1),
R; = X\77D and A = Bmax{p!/@=*1 1} so that in (76) we have min{u/R, = O(\)
and R;/Rj+1 = A when p > 1 (see, e.g., the proof of Corollary 6.3 in [32] or Theorem 2.1
n [31]).

Claim 33 (Basic upper tail inequality). Given H with 1 < £ < q < k, assume that (H()
and (P) hold. Suppose that t > 0. Given positive (R;)e<j<q and D, let Ry = D. If
inequality

Rj/Rjt1
& < N4 75
( R; ) - (75)

holds for all ¢ < j < q, then there are a,b > 0 (depending only on £, k,L) such that

P(X(G) > p+t and Ay(G) < D for some G C Hy)

Sexp( t/u ) Z N <f>bRJ/RJ+1. (76)

1<j<q

To familiarize the reader with the form of assumption (75) and inequality (76), it is
instructive to briefly relate them to work of Kim and Vu [19,31,32]. Theorem 4.2 in [32]
qualitatively sets t = /ARy, and (in our notation) its parametrization assumes roughly
Ay(H) < D = Ry, u/Re > X = w(logN), as well as R; > 2eu; and R;/R;11 >
A for all £ < j < g, say. In this case (e,uj/Rj)Rj/RHl < 27 = N~ follows, so
assumption (75) holds. We also have ¢ = p+y/AR;/pu < u, so that Remark 11 yields
o(t/u)n/Re > t2/(3uRe) = \/3, say. Recalling A,(H) < D, for suitable C = C(g) and
¢ = c(a,b) it follows that (76) yields

P(X(Hp) > p+1t) < exp(fa)\/3) + ]1{q>g}qN*€2*b/\ < Cexp(fc)\), (77)

which is of similar form as (24) or Theorem 4.2 [32].
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We now state our improved variant® of Claim 33, which corresponds to a rigorous
analogue of the upper tail inequality (26) from Section 3.1.2. Convenient choices of
the parameters (R;)i<j<q and (D;)i<j<q are often of form D; = B?ID, = O(1),
R; = \777D, and A = Bmax{u"/ (@~ 1} so that in (80) we have R;/Rji1 = A
and t/Ry = ©(\) when t = ©(u) and g > 1. One key novelty of (80) is the p/Q¢ =
min{ps/Ry, 1/ Dy} term, which intuitively allows us to sharpen inequality (76) whenever
R; = w(p;) holds (by using s = w(1) in (78), so that usually p/Qr = w(p/Re) in (80),
say).

Theorem 34 (Extended upper tail inequality). Given H with 1 < £ < q < k, assume
that (HC) and (P) hold. Suppose that s > 1 and t > 0. Given positive (R;)¢<;<q and
(Dj)ggjﬁq with Rj > Dj, deﬁne

Qj = max{R;/s,D;} (78)

forl <j<gq, and Ry = Qq = Dy. If inequality

el Rj/Rjt1 el Qj/Dj+1 "
max <—> ) ﬂ{Qj<Rj and Qj+1=Djt1} <—> <N (79)
Q] QJ

holds for all ¢ < j < q, then for a = 1/(4L(’;)), b =1/(2k) and d = 1/(4qu(§))
we have

P(X(G) > p+t and Ay(G) < Dy for some G C H,)

< exp <_M> +2 Z N (%)ij/RjJrl
. Q 1<j<q Qj

(80)

+ Z L{Q;<R; and Q1=D; 1} N’

<%> max{dt/(R@Dj+1), ij/Dj+1}
<j<q

Qj

To illustrate Theorem 34, in the applications of Sections 5.3.2 and 6.1 we have ep;/R; <
p®/e with p € (0,1], in which case s = log(e/p®/?) is a convenient choice. Indeed,
xlog(e/z) < 1 then implies ey /Q; < ep;s/R; < p®/? /e = e~*. We thus think of the (79)
as a minor variant of the assumption (75) from Claim 33 (note that ep;/R; < e™* holds,
and that Q); < R; implies Q; = R;/s). Using D; = ©(1) and the additional Kim-Vu type
assumptions discussed below Claim 33, we now review inequality (80) of Theorem 34.
Since 1/Q¢ = min{s/Ry,1/D,}, using t/Ry = \/ A/ R¢ > X\ we obtain analogous to (77)
an estimate of the form

5 Note that by setting s = 1 and D; = R; we have Q; = R; in (78), so the indicators in (79)—(80) are
zero and Theorem 34 recovers Claim 33 up to irrelevant constant factors.
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P(X(Hp) > p+1t) < exp(—amin{t®/p, As}) + ]l{q>z}3qN_ee_J)‘s
< Cexp(—cmin{t?/u, Alog(e/p)}).
If ¢ > ¢ then t?/p = AR, > M 'TIR, = w(AlogN), so (81) usually decays like

C exp(—cAlog(e/p)). When A = pu'/(@=1) or t = ey we similarly see that (81) decays
like Cexp(—cmin{u, Alog(e/p)}). In all these cases we thus improve the exponential

(81)

decay of the classical bound (77) by an extra logarithmic factor.

The following upper tail inequality for polynomially small p; is a minor extension
of Theorem 32. Note that (82) decays exponentially in min{t?/u,t'/(?=¢+11og N} for
1 <t < O(p), which seems quite informative when p = ©(Var X (#)) holds (i.e., in the
Poisson range).

Theorem 35 (Upper tail inequality: the small expectations case). Given H with 1 < £ <
q < k, assume that (H¢) and (P) hold. If there are A, > 0 such that inequality (73)
holds, then for t, K > 0 we have

P(X(G) > u+t and Ay(G) < D for some G C H,)
82
< exp(—ap(t/n)pu) + Ligsey2qN "7 exp (— max{bt"/ 1=+ K}log N) : (82)

where a,b > 0 depend only on £,q,k, L, D, A, a, K.
5.8. Proofs

5.8.1. Proofs of Claim 33 and Theorems 3/-35
Combining Theorem 15 and 18, by setting S; = R;/s the proof of Theorem 34 is
straightforward.

Proof of Theorem 34. We first consider the special case ¢ = £. Since R, = Dy, using
s > 1 we thus infer max{R,;/s,D;} = D; = Ry. Hence (64) of Theorem 26 readily
implies (80).

In the remainder we focus on the more interesting case ¢ > ¢. Analogous to the proof
of Theorem 18, inequality (80) is trivial when N < 1 (the left hand side is zero). So we
henceforth may assume N > 1, and using the assumption (79) it follows that Q; > epu,.
Let S; = R;/s, and recall that Q; = max{S;, D;} in Theorem 23. Note that s > 1 and
R; > D; imply Q; < R;. In view of (60) and (64) of Theorem 23 and 26, it remains to
estimate P; 1, P; 2 and P; 3 4 defined in (34)-(36). Starting with IP; ; and IP; 2, using (65)
together with R; > Q;, @Q;/Sj+1 > S;/Sj+1 = R;j/R;11 and the assumption (79)
we infer

R;/(kRjt1) Q;/(kSj+1)
Pj1+Pj2 < N’ <—> + N? (—)
J J R; Q;

R;/(kRj+1) R;/(2kRj41)
(et ) - (6#3‘ >
< 2N7 | — <2N77 | —= .
B ( Q; Qj
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Finally, for P; 3, of (36) we henceforth tacitly assume Q; < R; and Qj41 = Dji1.
With an eye on (66), using Q; > eu; and the assumption (79) we then (with foresight)
similarly deduce

[Q;1/(kDjt1) N\ [Qi1/(kDjt1) ) N\ [Qi1/(2kDj41)
_ N»(eu ) SNj(%) <NJ(%) .
[Q;1 oy Q;

Since [z] > max{xz,1}, by applying (66) with (z,7,y,2) = (Q;,t/(2¢qL), D;+1, Re) it
follows that

Py, < (Y CrO1IR] o e <%

max{dt/(R¢Dj41), bQ;/Djt1}
759, - Qj ) .

Recalling our tacit assumption for P; 3, this completes the proof in view of (60), (64)
and (83). O

The details of the similar but simpler proof of Claim 33 are omitted (the above proof
carries over by setting s = 1 and D; = Rj, since Q; = max{R;/s,D;} = R; implies
]P’jyg = ]P)j,S,Z = 0)

For the proof of Theorem 35 we need to define the parameters (R;)/<j<q and
(D;)e<j<q of Theorem 15 and 18 in a suitable way. Intuitively, we shall set R; = A7 D,
A = max{t'/@=D B} and D; = Q; = BY7D = (1), and the crux is that the as-
sumption (73) eventually yields eu;/z < N~9W) in (65)—(66). We shall also exploit the
indicators in Theorem 23 for estimating ¢t/Ry in (80), see (86) below.

Proof of Theorem 35. With foresight, let B = max{4qk/a,2kK/a,Ae/D, 1} and \ =
max{t!/(@=+1) B} Define D; = S; = BY7D and R; = \979D for all £ < j < q.
Note that @; = max{S;,D;} = D; and min{Q;, R;} = D,, so that P;2 = 0 in (35).
Combining (60) and (64) of Theorem 23 and 26, we obtain

P(X(G) > pu+t and Aq(g) < D for some

ggH,,)gexp< 4L) >+Z Pi1+ sl (84)

<j<q

Tacitly assuming ¢ > ¢, it remains to estimate P;; and P; 3, defined in (34) and (36).
Starting with IP; 1, by inserting (73) into (65), using R; > DB > Ae and R;/Rj+1 =
A > B > 4qk/a we infer

Ak

N\ Ri/(ERjt1)
> < Nq—a)\/k < N—q—o&\/(2k). (85)

, < N9(u;/A)
j
For P; 3, using [Q,] > Ae and Q,/D;11 > B > 4qk/a we (with foresight) similarly
deduce
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II:= NY ( CH; < N—a-a[Q;1/(2kDj41)

[Q;]

Note that A = B implies R; = D; = ;. Hence (); < R; ensures A = tl/(a=t1) g0
that t/R, = t*/(a=*+1) /D. Recalling [Q;]/D;+1 > B, by applying (66) with (z,r,y, z) =
(Qj,t/(2¢L), D11, Ry) we thus infer

>(Qﬂ/(ij+1)

P

i3 < Ly, <r,y(II )Mw’( JIRARA| o y—a-max{s/ =40 /D, o/ (20)), (86)

with § = a/(4qu(lz)D). With the above estimates (85) and (86) for P;; and ;3
in hand, using B > 2kK/a and Dj;1 < D, it follows by definition of A =
max{t'/(@=¢1 B} that

Z [IP’jJ + Pj)gjjl < 1yg>e2qN " %exp (— max{btl/(q*””, K} log N) ,
1<j<q

with b = mm{a/ (2k), 8/Dy¢}. Recalling (84), this establishes (82) with a = 1/
(4L (5) De

5.83.2. Proofs of Theorem 30 and 32

The ‘easy-to-apply’ inequalities from Section 5.1 are convenient corollaries of Theo-
rems 34-35. Indeed, Remark 11 implies ¢(¢/p)p > min{t?/u,t}/3, so Theorem 32 follows
readily from Theorem 35. For Theorem 30 the basic strategy is to apply Theorem 34 with
s = log(e/m*/?), R; = 979D, A = Bmax{u/(¢=**V 1} and D; = B9~9D = ©(1). The
crux is that the assumption (70) eventually yields ep;/Q; < 7%/2 /e = e~ in (79)—(80).
As before, the indicators in Theorem 34 facilitate estimating ¢/ Ry in (80), see (89) below.

Proof of Theorem 30. The proof is naturally divided into four parts: (i) introducing
definitions, (ii) estimating ep;/Q;, (iii) applying inequality (80) of Theorem 34, and
(iv) verifying assumption (79).

Analogous to the proof of Theorem 18 and 34, we may henceforth assume N > 1.
Furthermore, by increasing A or D if necessary, we may of course assume A, D > 1. With
foresight, let 8 = a/2 and s = log(e/m?). Set B = max{e?A/D,4k?/(13),4k?(4A)9, 1}
and A = Bmax{p!/(@=+1 1}. Define R; = A 7D and D; = B9/ D, so that R; > D;
and R, =D, = D.

Next we estimate e /Q;, where Q; > R;/s. Using assumption (70) and o = 2/, for
{ < j < q we have

erj o CHyS _ ef;s < eAn?8log(e/7") < ™
QJ - Rj DBa—J max{u(q_j)/(q_e'Fl)’l} - DB e ’

where we tacitly used m € (0,1] and xlog(e/x) <1 for all = € [0,1].
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We now apply inequality (80) of Theorem 34, deferring the proof of the claim that
assumption (79) holds. Using (87) and R;/R;+1 = A, note that X(H) = X (#,) and
Ay(H) < D = D, yield

P(X(H) > (1+¢e)p) <P(X(G) > pu+epand Ay(G) < D, for some G C H,,)

<oxp (- 22lE)n
- max{Ry/s, Dy} (88)
N—Z 2 —bAs ]l ) ) —dE;LS/(Rng+1) .
+4q { € + ;gjafq {Q;<R;}€

Note that A = B implies R; = Dj, in which case s > 1 yields @; = D; = R;. Hence
Q; < R; ensures A = Bu!/ (4= 5o that Ry = (Bu'/(@=+1))a=¢D. Noting D; 41 < Dy,
it follows that

d
—deps/(ReDjq1) I VAU L 2 )
ax 1iq,<r;)e _exp( DD 8) (89)

Similarly, using s > 1 we also see that Ry/s > D, implies R, = (Bp!/(a=¢+1))a=¢p,
Hence

ap(e)p . a 1/(g—+1)
N 4 ) oS BV — = . _- . q .
eXp < maX{R,@/S, D[}) — eXp < min { DZ 90(5)/1” Bq_gD SO({‘:)M s
(90)
Remark 11 implies min{¢(¢),1,e} > min{e?,1}/3. So, combining (88)-(90), using s >
min{1, 8} log(e/n) and A > Bp!'/@*t*=1) our findings thus establish (72) for suitable
c=c(e k,q,D,L,ax) > 0.
In the following we verify assumption (79), i.e., the claim omitted above. Note that

Rj/Rj+1 = A Z B and Qj/Dj_H Z Dj/Dj+1 = B. Using (87), for m S N~7 the left
hand side of (79) can thus be bounded by

B
(Z“J) < 7B < N~TBB < N4k < N4k, (91)
J

For m > N~7 we defer the proof of the claim that for £ < j < ¢ we have
min{\, R;/D;j 11} > 4k*log N. (92)

Using (87), s > 1, Q; > R;/s and (92) we see that the left hand side of (79) can be
bounded by

maX{(e—l)Rj/Rj+l : (e—s)Rj/(SDj+1)} < max {e—A’e—Rj/Dﬂ_l} < N4k < N,
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To sum up, we have verified (79), assuming that (92) holds for 7 > N~". Turning to the
remaining claim (92), using assumption (71) we see that = > N~7 implies

A > Bpt/(a=1) > Blog N)/A > 4k*log N.
Similarly, 7 > N77, £ < j < qgand N > 1 imply
R;/Djyy = A7 /B4 > (B (a=4D) 177 yga=i=1 > B((log N)/A)" ™ > 4k log N,
establishing (92). As discussed, this completes the proof of (72). O

6. Applications

In this section we illustrate our concentration techniques, by applying the basic in-
equalities from Section 5.1 to several pivotal examples. In Section 6.1 we improve previous
work of Janson and Rucinski [16] on random induced subhypergraphs, and derive sharp
upper tail inequalities for several quantities of interest in additive combinatorics. In Sec-
tion 6.2 we answer a question of Janson and Ruciniski [13] on subgraph counts in binomial
random graphs, and improve the main applications of Wolfovitz [37] and Sileikis [25].

6.1. Random induced subhypergraphs

In probabilistic combinatorics, random induced subhypergraphs H, are a standard
test-bed for upper tail inequalities (see, e.g., Section 3 in the survey [14]). Janson and
Rucinski studied the number of randomly induced edges in [16], and one of their principle
results concerns k-uniform hypergraphs with v(H) = N vertices, e(H) > yN? edges
and Ay(H) < D (for easier comparison with Theorem 2.1 in [16], note that A;(H) <
Nmax{a=i.0} A (H) holds). Writing X = e(H,) and x4 = EX, they obtained bounds
of form

exp(—C(e)u"/*1og(1/p)) < P(X > (1+&)p) < exp(—c(e)p'’), (93)

determining log P(X > (1 + ¢)u) up to a missing logarithmic factor (in fact, their lower
bound needs an extra assumption). For 2 < ¢ < k the following corollary of Theo-
rem 30 improves the exponential rate of decay of (93) in the more general weighted
case. Noteworthily, inequality (94) below closes the log(1/p) gap left open by Janson
and Rucinski [16] (for the special case ¢ = 2 this was already resolved in [35]).

Theorem 36 (Weighted edge-count of random induced subhypergraphs). Let 1 < q < k and
v,D,a,L > 0. Assume that H is a k-uniform hypergraph with v(H) < N, e(H) > yN9,
Ay(H) < D, and wy € [a,L] for all f € H. Set X = w(H,) and p=EX. For any e > 0
there is ¢ = c(e, k,7, D,a,L) > 0 such that for all p € (0,1] we have

P(X > (1+ep) < exp(—cmin{u, ' 10g(6/p)})- (94)
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Remark 37. Setting p = m/v(H), inequality (94) also carries over to H,, as defined
in Section 3.5.

Inequality (94) does not always hold in the excluded case ¢ = k. A concrete counterex-
ample is the complete k-uniform hypergraph H = Hy with V(#H) = [N] and wy = 1.
Then q = k, X = (”A,’C]Pl) ~ [[N]p*/k! and p = (})p* =~ (Np)k/kl. For p = w(1),
p <1/2 and e = O(1) it is routine to see that P(w(H,) > (1+¢)u) = exp(—O(Np)) =
exp(—O(p!/)) holds, i.e., that there is no logarithmic term.

Concerning sharpness of (94), in applications we usually do not consider a single hyper-
graph H, but sequences of hypergraph (Hy)yen which are nearly monotone, i.e., where
Hy € Hpy41 holds up to some minor ‘defects’ (arising, e.g., due to boundary effects).
The following remark states that, in this frequent case, the upper tail inequality (94) is
best possible up to the value of the parameter ¢ (for 2 < ¢ < k).

Remark 38 (Matching lower bound). Let 2 < ¢ < k and v, D,a,L,ny,ny > 0. Let
(HN)N>n, be a sequence of k-uniform hypergraphs such that all H = Hy sat-
isfy the assumptions of Theorem 36. Assume that there is 8 € (0,1] such that
e(Hy N Hpar) > Pe(Hy) for all M > N > ny. Then for all € > 0 there are ng =
no(k,v,D,a,L,3,n1,n9) >0 and C = C(e,v,k,q,D,a,L,B,n1,n2,) > 0 such that for
all H = Hy with N > ng, setting X = w(H,) and p =EX, for all p € (0, 1] we have

P(X > (14¢e)u) > Liu<teyu<w®)} exp(—Cmin{u, ul/qlog(l/p)}) (95)

We omit the proof of Remark 38, which mimics the lower bound techniques from [35] in
a routine way.

Proof of Theorem 36. Let § = a7, and note that u > e(H)p* - minpeqy wy > SNIP* (we
never use wy > a again, i.e., we could weaken our assumptions). Inequality (94) holds
trivially whenever N < k (since then 0 < w(#,) < L-e(H) = 0), so we may henceforth
assume N > k. Our main task is to verify the assumptions of Theorem 30. Let £ = 1
and 7 = q/(2k). As N'/2 > log N for all N > 0, for p > N~" we have

plt/a=en — ta > gl/anpk/a > gt/ant=kr/a > §1/aN1/2 > §1/4])0g N. (96)

As discussed in Example 20, using (57) and [Ty ()] < v(H)97 - Ay(H), for 1 < j < g
we thus have

iy < NT°9 D g, (97)

Recalling ¢ = 1, (96) and ¢ < k, there thus is a constant A = A(D, d) > 0 such that for
1 < j < g we have

1 DN4—ipk=i

3/a—=1,i(k/a—1) 1/q
D S i < DY < Ap . (98)
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Hence assumptions (70)—(71) hold with 7 = p and o = 1/q. Using (72) of Theorem 30
it follows that

P(w(Hp) > (1+e)p) < (1+3¢N" e, (99)

where IT = ¢/ min{e?, 1} min{y, p!/@=“+Ylog(e/p)} and ¢’ = ¢'(¢,q,k,L, D, A,5) > 0.

The author finds (99) quite satisfactory, but in the literature the usually irrelevant
prefactor 14 3¢gN ! is often suppressed for cosmetic reasons. Below we shall achieve this
by inflating the constant in the exponent (without assuming that n, p or II are large).
If IT > 6, then N > k > ¢ implies 3¢N~! < 3 <TI/2, so that

Plw(Hy) > (1+e)p) < e MV < o712,

Otherwise 1 > II/6 holds, in which case ¢/(1+¢) > min{1, e}/2 and Markov’s inequality
yield
1 €

P > (1 < -1 < —e/(1+¢) < — min{1,e}I1/12
(0(Hy) > (1 +2)p) € o =1 = o < o0 < ,

establishing (94) for suitable ¢ = c(e,¢’) > 0. O

Combining Theorem 36 and Remark 38, we obtain the following convenient upper
tail result (see [35] for a similar result in the special case ¢ = 2). It applies to many
widely-studied objects in additive combinatorics and Ramsey theory, each time closing
the logarithmic gap present in previous work, see (93) and [16].

Corollary 39. Let 2 < q < k and v,D,a,L,nq > 0. Let (Hy)n>n, be k-uniform hyper-
graphs such that H, C Hpi1, v(Hn) < n, e(Hn) > yn?, Ay(Hn) < D, and wy € [a, L]
for all f € H,,. Then for all € > 0 there are ng = no(k,v,D,a,L,n1) >0 and ¢,C > 0
(depending only on e,k,v,D,a,L,ny) such that for all H = H, with n > ng, set-
ting X = w(Hp) and p=EX, for all p € (0,1] we have

1{1§(1+5);¢§w(7—[)} exp(—C\I/qw) S P(X Z (1 + e’:‘),u) S exp(—c\Ifq,u), (100)
where W, , = min{yu, p/?log(1/p)}.

In particular, letting the edges of the k-uniform hypergraphs H,, with vertex-set V(H) =
[n] encode the relevant objects, it is not difficult to check that Corollary 39 with uniform
weights wy = 1 implies” all the upper tail bounds presented in Examples 2-5 of Sec-
tion 1.1.1 (using g = 2 for k-term arithmetic progressions, (k, q) = (3,2) for Schur triples,

7 Note that using weights wy = 1 we count unordered objects, i.e., treat the objects as k-sets (if desired,
we could also treat them as ordered k-vectors by using non-uniform weights wy > 0, say).
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(k,q) = (4,3) for additive quadruples, and (k,q) = (r + s,7 + s — 1) for (r,s)-sums).
Motivated by Section 2.1 in [16], we now record a further common generalization of
these examples.

Example 40 (Integer solutions of linear homogeneous systems). Let 1 <r < k—2. Let A
be a r x k integer matrix. Following [16], we assume that every r x r submatrix B of A
has full rank, i.e., rank(B) = r = rank(A). We also assume that there exists a distinct-
valued positive integer solution to Ax = 0, where = (x4, ..., 2x) is a column vector and
0=1(0,...,0) is an r-dimensional column vector. Let the edges of the k-uniform hyper-
graph H,, with V(#,) = [n] encode solutions {z1,...,x;} C [n] of the system Az =0
with distinct x;. The discussion of Section 2.1 in [16] implies that (H,,)n>n, satisfies the
assumptions of Corollary 39 with ¢ = k — r, so the upper tail inequality (100) holds
for X = e(H,), say.

6.1.1. Small expectations case

Note that inequality (100) does not guarantee a similar dependence of ¢,C > 0 on €.
Of course, we can also ask for finer results, which determine how the exponential decay
of the upper tail depends on €. The following corollary of Theorem 32 provides a partial
answer for small p (see [35] for results which for ¢ = 2 cover all p).

Theorem 41. Let k > 2. Let 1 < q < k and D,L > 0. Assume that H is a k-uniform
hypergraph with v(H) < N, Ay(H) < D and maxseywy < L, where N > 1. Set
X = w(H,) and p = EX. For all o,A > 0 there are ¢ = c(o,A,k,D,L) > 0 and
d=d(q) > 1 such that for allp < AN—(a=D/(k=1)=0 gndt > 0 we have

P(X >pu+t) <dexp (—cmin{gp(t/u)p, t+/910g N}) . (101)
Furthermore, setting p =m/v(H), inequality (101) also holds with H, replaced by H, .

Assume that H = Hy also satisfies e(Hy) > N9, the monotonicity conditions of
Remark 38, wy = 1 and 2 < ¢ < k. Mimicking the lower bound arguments from [35],
inequality (101) can then shown to be best possible up to the values of d, ¢ for some
range of small p (we leave the details to the interested reader).

Proof of Theorem 41. Our main task is to verify assumption (73) of Theorem 32. To
this end we exploit that

9=1 _ ax 177

k-1 1<j<qk—3
Indeed, using (97) and N > 1 there thus is a constant A = A(D,A) > 0 such that
we have
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max 1; < Z DNq—jpk—j <D Z AF—I N(a=3) = (k=5)(g=1)/(k=1)=(k=j)o < AN,

1<j<q - -
1<j<q 1<j<q

Applying Theorem 32 (with ¢ = « and K = 1) now readily establishes inequal-
ity (101). O

6.2. Subgraph counts in random graphs

In this section we consider subgraph counts in the binomial random graph G p,
which are pivotal examples for illustrating various concentration methods (see, e.g., [19,
31,32,14,15,12] and Examples 21-22 in Section 4.1.1). We shall discuss two qualitatively
different upper tail bounds in Sections 6.2.1 and 6.2.2.

We henceforth tacitly write X = Xy for the number of copies of H in G, ,, and
set p = EX = ©(n"#pcH). Let us recall some definitions from random graph theory.
Writing d(J) = ey /vy, a graph H is called balanced if e > 1 and d(H) > d(J) for all
J C H with vy > 1. If this holds with d(H) > d(J), then H is called strictly balanced.
Writing da(J) = (ey — 1)/(vy — 2), a graph H is called 2-balanced if ey > 2 and
da(H) > do(J) for all J C H with vy > 3. If this holds with da(H) > da(J), then H is
called strictly 2-balanced.

6.2.1. Small deviations: sub-Gaussian type bounds

We first consider sub-Gaussian type P(X > p+t) < Cexp(—ct?/ Var X) upper tail
inequalities. Our main focus is on the Poisson range, where Var X ~ EX = p holds,
which according to Kannan [18] is the more difficult range. For small p the follow-
ing simple corollary of Theorem 32 extends/sharpens several results from [30,15,25,37,
18,36], and implies Theorem 6. (For balanced and 2-balanced graphs H it is folklore
that 0 > 1. Furthermore, with the exception of perfect matchings, all 2-balanced graphs
are strictly balanced.)

Theorem 42 (Subgraph counts in random graphs: small expectations case). Let H be a
graph with v = vy wvertices, e = ey edges and minimum degree § = 0. Let X = Xg
and p=EX. Define s =min{v — 1,e — § + 1}. If H is strictly balanced, then for every
A > 0 there are ¢ = ¢(A,H) > 0 and C = C(H) > 1 such that for alln > v, € € (0, A]
and p € [0,1] satisfying p*=1/5 < Alogn we have

P(X>1+e)p) < Cexp(—caQ,u). (102)
If H is 2-balanced, then for all o,A > 0 there are ¢ = c¢(o,A,H) > 0 and C =
C(H) > 1 such that for all n > v, 0 < p < An~W=2/(e=D= gpng 0 < t <

Amin{(glogn)/2=1/) u} we have

P(X>pu+t)< C’exp(—ct2/u). (103)
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Remark 43. It is well-known that in (102)—(103) we have u = EX ~ VarX when
p = o(1). The proof shows that the constants C can be replaced by 1 + o(1), and
that (102)-(103) both carry over to Gy, .,. Furthermore, [26] demonstrates that the sub-
Gaussian type tail inequality (102) can already fail for balanced graphs H.

To put Theorem 42 into context, in the year 2000 Vu [30] showed that the sub-Gaussian
inequality (102) holds for strictly balanced graphs as long ase = O(1) and p < logn (note
that €2y ~ (en)?/ Var X by Remark 43). Shortly afterwards, this result was reproved via
a different method by Janson and Ruciniski [15], who also raised the question whether the
restriction p = O(logn) is necessary (see Section 6 in [13]). For the special case ¢ = O(1)
the aforementioned results were yet again reproved by Sileikis [25] in 2012. Our methods
allow us (i) to go beyond all these three approaches from 2000-2012, and (ii) to answer
the aforementioned question of Janson and Ruciniski: inequality (102) still holds in the
wider range 1 = O((logn)'*¢).

Wolfovitz demonstrated the applicability of his sub-Gaussian concentration result [37]
via the complete graph K, and the complete bipartite graph K. ,., showing that inequal-
ity (103) holds for both strictly 2-balanced graphs in certain ranges of the parameters p, t.
Theorem 42 generalizes these main applications from [37] to all 2-balanced graphs (for
a slightly wider parameter range). For n=! < p < n~'/277 inequality (103) also slightly
extends the ¢t-range of two Kjs-specific results of Kannan [18] and Wolfovitz [36].

Proof of Theorem 42. The proofs of (102)—(103) are very similar: each time we shall
apply Theorem 32 twice, using the two different setups of Examples 21-22. Hence our
main task is to check assumption (73).

For (102) we assume that H is strictly balanced, in which case 6 = dy > 1 is folklore.
By assumption there is a constant 5§ = S(H) > 0 such that for all subgraphs J C H
with vy > 1 we have
>eyj+ 5 and ey-

vy <wvy—p. (104)

o<

Using the setup of Example 21, by (58) there is a constant By > 0 such that the
corresponding p; satisfy

| max. g < B Z n’TY ptTes . (105)
Sj<e—o+ JCH:1<ej<e—d+1

Similarly, using the setup of Example 22, by (59) there is a constant By > 0 such that

Jnax p; < By Z n’" I peTe, (106)
=iy JCH:2<v <v

Recalling s = min{v — 1,e — § + 1}, in our further estimates of (105)—(106) we may
assume s > 1 (otherwise H = Ky and (105)—(106) are both equal to zero). Recalling
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u = ©(np%), we now pick S = S(A, H) > 1 large enough such that the assumption
ps=D/s < Alogn implies p < Sn~v/¢t8/(2¢) for all n > v. Using § = 6y > 1 and the
density condition (104), it follows that there are constants Bs, By, Bs > 0 such that

(105) + (106) < By > pv=vI pe—es

JCH:wj;>2e5<e

§ B4 Z ne‘]v/ef'ulz+5/2 S B5n75/2.
JCH:wj>2e5<e

(107)

Armed with (107), we now apply Theorem 32 with K =1, A = Bs and a = /4, using
the setup of Example 21 (with =1,k =e, ¢ =e—Jd+ 1 and N = n?) and Example 22
(with £ =2, k = ¢ =v and N = n). So, applying (74) twice, there is a constant ¢; > 0
such that for ¢ = ey we have

P(X > p+t) < (14 2max{vg,eg}n™ ") exp (—cl min{tZ/u, t, t'/ logn}) . (108)

Since t = ep < Ap, we infer ¢ > #2/(Au). Hence, after adjusting the constant ¢y, the
t-term is irrelevant for the exponent of (108). As t>=/¢ < (Ap) =1/ = O(ulogn) by
assumption, this establishes (102).

For (103) we proceed similarly, assuming that H is 2-balanced. In this case, for all
subgraphs J C H with 2 < v; < v, the assumption that H is 2-balanced (and noting
that (109) is trivial when v; = 2) implies

e—e; (e—=1)—(esj—1) _e—1

'U*'UJ:('U72)7('UJ72)Z'U72. (109)

Analogous to (107), in Examples 21 and 22 (with 1 < j<e—4d+1and 2 < j < 0)
the assumption p < An~(=2/(e=1)=¢ and the density result (109) entail existence of
constants Bg, By > 0 such that

1; < Bs 3 p(v=v)—(e—en)(0=2)/(e=)=(e=en)o < B p=0. (110)
JCH:ww;>2e5<e

Armed with (110), we now obtain (108) by applying Theorem 32 twice (with A = By
and o = ¢/2) analogous to the proof of (102). Noting ¢t < Au and t>~1/* = O(ulogn)
then readily completes the proof of (103). O

Parts of Theorem 42 can be proved in a simpler/more direct way, but in view of the
previous work [30,15,25,37,18,36] here the main point is to illustrate that (102)—(103)
follow routinely from our general bounds.

6.2.2. Large deviations: upper tail problem
Next we consider the classical upper tail problem for subgraph counts, which con-
cerns P(X > (1 + ¢)u) for constant e > 0. Here our general methods usually give much
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weaker estimates than modern specialized approaches such as [12,7,6], but it turns out
that our methods can routinely sharpen results based on classical inductive approaches
(which might potentially be useful in other contexts). Indeed, for balanced graphs Kim
and Vu used two different inductions (see Sections 6.3 and 6.6 in [32]), which together
establish the following tail estimate: if ¢ < C' and €2 max{p'/ "= p/¢} = w(logn), then

P(X 2 (1+e)p) < exp(—es?max{p!/ =0, u1/e} ). (111)

This inequality was reproved by Janson and Ruciniski [15] via their alternative inductive
method. Using Theorem 30, we shall go beyond both approaches for strictly balanced
graphs: (i) we improve the exponential rate of decay by an extra logarithmic factor, and
(ii) we remove the restriction to ‘large’ expectations p.

Theorem 44. Let H be a strictly balanced graph with v = vy vertices and e = ey edges.
Let X = Xy and p =EX. For any e > 0 there is ¢ = ¢(e, H) > 0 such that for alln > v
and p € [0, 1] we have

P(X > (1+e)u) <exp <—cmin{u, max{,ul/(vfl),ul/e} logn}). (112)

Remark 45. Writing the exponent of (112) in the form exp(—c¥), the proof shows that
¢ = ¢ min{e?,1} with ¢ = /(H) > 0 suffices when min{e?,1}¥ > 1. Furthermore,
inequality (112) also carries over to Gy, .

Remark 46. For balanced graphs H, the proof yields the following variant: for all n > v,
p > &~ and £ > 0 we have P(X > (1 +¢)u) < exp(—cu/ =D logn), where ¢ =
c(o,& e, H) > 0.

For r-armed stars H = K, inequality (112) yields an exp(—Q(min{y, p'/"logn}))

—1/r

exponential decay, which by [27] is best possible for p < n and £ = O(1). However, for

general graphs H other approaches such as [12,7,6] yield better estimates (as mentioned
before), so we defer the proof of Theorem 44 to Appendix A.
Acknowledgments
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Appendix A. Proofs omitted from Section 6.2.2

In this appendix we give the proof of Theorem 44, which proceeds similar to Theo-

rem 36 and 42. Namely, we prove (112) by two applications of Theorem 30 and Remark 31
(using the setups of Examples 21-22).
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Proof of Theorem 44. We first use the setup of Example 21 with ¢ =1, ¢ = k = e and
N = n?. Using the bound (58) for u;, the expectation p = ©(n’p®) and the density
result (104), for 1 < j < e = ey we infer

Z BYscie, =" "0 _ B )
— —0+1) — 1/ee—j -
pa=/(a (ut/e)e=d JCHze,=j

nev/e=v < Bop TP, (113)

Applying Theorem 30 and Remark 31 with A = By and o = 3/2, there thus is ¢; > 0
such that

P(X > (1+¢&)u) < (1+3egn~?)exp (—c1 min{e?, 1} min{y, pt/e logn}> . (119)

Next we use the setup of Example 22 with ¢ = 2, k = ¢ = v and N = n. We distinguish
several cases. If p < n~"/¢, then using the bound (58) for j; and the density result (104),
we infer for 2 < j < v = vy that

u; < B Z n'"pT < B Z neIv/e=v < Ban =B, (115)
JCH:w;=j JCH:2<v<vy

Otherwise p > n~%/¢, so n"p® > 1. Note that for j < v we have (v — j)/(v — 1) >
(v—17)/v+1/v2. Recalling £ = 2 and ¢ = v, using (59), u = O(n’p®) and (104) we infer
for 2 < j < v =wvpg that

I < Hj B5 Y ycpi,— P Bep”®
u(q—j)/(q—é—i—l) — B4(nvpe)(v—j)/v+1/y2 = (,nvpe>1/v2 — (nvpe)l/v2 .
(116)

Distinguishing nv/e < p < n=/(2¢) and n—v/(2e) < p <1, we see that

K —Bv/(2¢) ,=1/(20)

POy < Bgmax{n ,n }. (117)
Applying Theorem 30 and Remark 31 with A = max{Bj3, Bs} and a = min{3, Sv/(2e),
1/(2v)}, we deduce

P(X > (14&)u) < (14 3vgn~ 1) exp (—62 min{527 1} min{p, pt/ =1 logn}> . (118)

Finally, we combine the two upper bounds (114) and (118), and then remove (for
cosmetic reasons) the multiplicative prefactor 1 + O(n~!) analogous to the proof of
Theorem 36, which establishes (112). O

For Remark 46 the point is that for balanced graphs H the density condition (104) only
holds with 8 = 0, so in (116) we need p > £n~"/¢+ to establish (117) with < O(n=/v"),
say.



L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98—146 145

References

[1] A. Baltz, P. Hegarty, J. Knape, U. Larsson, T. Schoen, The structure of maximum subsets of
{1,...,n} with no solutions to a + b = k¢, Electron. J. Combin. 12 (2005) 19.
[2] M. Bateman, N.H. Katz, New bounds on cap sets, J. Amer. Math. Soc. 25 (2012) 585-613.
[3] J. van den Berg, H. Kesten, Inequalities with applications to percolation and reliability, J. Appl.
Probab. 22 (1985) 556-569.
[4] J. van den Berg, J. Jonasson, A BK inequality for randomly drawn subsets of fixed size, Probab.
Theory Related Fields 154 (2012) 835-844.
[5] T. Bloom, A quantitative improvement for Roth’s theorem on arithmetic progressions, J. Lond.
Math. Soc. 93 (2016) 643-663.
[6] S. Chatterjee, The missing log in large deviations for triangle counts, Random Structures Algorithms
40 (2012) 437-451.
[7] B. DeMarco, J. Kahn, Tight upper tail bounds for cliques, Random Structures Algorithms 41 (2012)
469-487.
[8] R. Graham, V. Rodl, A. Rucinski, On Schur properties of random subsets of integers, J. Number
Theory 61 (1996) 388—-408.
[9] B. Green, The Cameron—Erd&s conjecture, Bull. Lond. Math. Soc. 36 (2004) 769-778.
[10] S. Janson, Poisson approximation for large deviations, Random Structures Algorithms 1 (1990)
221-229.
[11] S. Janson, New versions of Suen’s correlation inequality, Random Structures Algorithms 13 (1998)
467-483.
[12] S. Janson, K. Oleszkiewicz, A. Rucinski, Upper tails for subgraph counts in random graphs, Israel
J. Math. 142 (2004) 61-92.
[13] S. Janson, A. Rucinski, The deletion method for upper tail estimates, preprint, http://www2.math.
uu.se/~svante/papers/sj135_ ppt.pdf, 2000.
[14] S. Janson, A. Ruciriski, The infamous upper tail, Random Structures Algorithms 20 (2002) 317-342.
[15] S. Janson, A. Rucinski, The deletion method for upper tail estimates, Combinatorica 24 (2004)
615-640.
[16] S. Janson, A. Rucinski, Upper tails for counting objects in randomly induced subhypergraphs and
rooted random graphs, Ark. Mat. 49 (2011) 79-96.
[17] S. Janson, L. Warnke, The lower tail: Poisson approximation revisited, Random Structures Algo-
rithms 48 (2016) 219-246.
[18] R. Kannan, Two new probability inequalities and concentration results, preprint, arXiv:0809.2477v4,
2010.
[19] J.H. Kim, V.H. Vu, Concentration of multivariate polynomials and its applications, Combinatorica
20 (2000) 417-434.
[20] D. Reimer, Proof of the van den Berg-Kesten conjecture, Combin. Probab. Comput. 9 (2000) 27-32.
[21] O. Riordan, L. Warnke, The Janson inequalities for general up-sets, Random Structures Algorithms
46 (2015) 391-395.
[22] V. Rédl, A. Ruciniski, Random graphs with monochromatic triangles in every edge coloring, Random
Structures Algorithms 5 (1994) 253-270.
[23] A. Ruciniski, When are small subgraphs of a random graph normally distributed?, Probab. Theory
Related Fields 78 (1988) 1-10.
[24] M. Schacht, Extremal results for random discrete structures, Ann. of Math. 184 (2016) 333-365.
[25] M. Sileikis, On the upper tail of counts of strictly balanced subgraphs, Electron. J. Combin. 19
(2012), 4.
[26] M. Sileikis, L. Warnke, A counterexample to the DeMarco-Kahn upper tail conjecture, Random
Structures Algorithms (2019), in press, arXiv:1809.09595.
[27] M. Sileikis, L. Warnke, Upper tail bounds for stars, preprint, arXiv:1901.10637, 2019.
[28] J. Spencer, Counting extensions, J. Combin. Theory Ser. A 55 (1990) 247-255.
[29] R. Spohel, A. Steger, L. Warnke, General deletion lemmas via the Harris inequality, J. Comb. 4
(2013) 251-271.
[30] V.H. Vu, On the concentration of multivariate polynomials with small expectation, Random Struc-
tures Algorithms 16 (2000) 344-363.
[31] V.H. Vu, A large deviation result on the number of small subgraphs of a random graph, Combin.
Probab. Comput. 10 (2001) 79-94.
[32] V.H. Vu, Concentration of non-Lipschitz functions and applications, Random Structures Algorithms
20 (2002) 262-316.


http://refhub.elsevier.com/S0095-8956(19)30052-8/bib42484B4C53s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib42484B4C53s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib424B32303132s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib424Bs1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib424Bs1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib424B6B6F75746Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib424B6B6F75746Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4232303134s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4232303134s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B335461696C4368s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B335461696C4368s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B6B5461696C444Bs1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B6B5461696C444Bs1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib475252s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib475252s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4772s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4A616E736F6Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4A616E736F6Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4A5375656Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4A5375656Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib55545347s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib55545347s1
http://www2.math.uu.se/~svante/papers/sj135_ppt.pdf
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib5554s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib444Cs1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib444Cs1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib55544150s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib55544150s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4A57s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4A57s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B616E6E616Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B616E6E616Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B696D567532303030s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B696D567532303030s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib424B52s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib5257s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib5257s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib525231393934s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib525231393934s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib53474Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib53474Es1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib5363686163687432303039s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4D53s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4D53s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib53575554s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib53575554s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib73746172s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib5370656E63657231393930s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib535357s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib535357s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib567532303030s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib567532303030s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib567532303031s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib567532303031s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib567532303032s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib567532303032s1
http://www2.math.uu.se/~svante/papers/sj135_ppt.pdf

146 L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98—146

[33] L. Warnke, When does the K4-free process stop?, Random Structures Algorithms 44 (2014) 355-397.

[34] L. Warnke, On the method of typical bounded differences, Combin. Probab. Comput. 25 (2016)
269-299.

[35] L. Warnke, Upper tails for arithmetic progressions in random subsets, Israel J. Math. 221 (2017)
317-365.

[36] G. Wolfovitz, Sub-Gaussian tails for the number of triangles in G(n,p), Combin. Probab. Comput.
20 (1) (2011) 155-160.

[37] G. Wolfovitz, A concentration result with application to subgraph count, Random Structures Algo-
rithms 40 (2012) 254-267.


http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4B3466726565s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib544244s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib544244s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4150s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib4150s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib574732303131s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib574732303131s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib574732303132s1
http://refhub.elsevier.com/S0095-8956(19)30052-8/bib574732303132s1

	On the missing log in upper tail estimates
	1 Introduction
	1.1 Flavour of the results
	1.1.1 Upper tail examples from additive combinatorics and Ramsey theory
	1.1.2 Subgraph counts in random graphs: sub-Gaussian type upper tail bounds

	1.2 Glimpse of the proof strategy
	1.3 Guide to the paper

	2 Probabilistic preliminaries
	2.1 A Chernoff-type upper tail inequality
	2.2 The BK-inequality

	3 Core ideas and arguments
	3.1 Overview
	3.1.1 Simpliﬁed setup: random induced subhypergraph Hp
	3.1.2 The basic form of our tail estimates
	3.1.3 Sketch of the argument

	3.2 Inductive concentration proofs revisited
	3.3 Combinatorial sparsiﬁcation: degree reduction by deletion
	3.3.1 A combinatorial local deletion argument

	3.4 Probabilistic estimates
	3.5 Extension: uniform random induced subhypergraph Hm

	4 More general setup
	4.1 Setup
	4.1.1 Examples

	4.2 Adapting the arguments of Sections 3.3-3.4
	4.3 Adapting Section 3.5: vertex exposure approach for Hm

	5 Corollaries: upper tail inequalities
	5.1 Easy-to-apply tail inequalities
	5.2 More general tail inequalities
	5.3 Proofs
	5.3.1 Proofs of Claim 33 and Theorems 34-35
	5.3.2 Proofs of Theorem 30 and 32


	6 Applications
	6.1 Random induced subhypergraphs
	6.1.1 Small expectations case

	6.2 Subgraph counts in random graphs
	6.2.1 Small deviations: sub-Gaussian type bounds
	6.2.2 Large deviations: upper tail problem


	Acknowledgments
	Appendix A Proofs omitted from Section 6.2.2
	References


