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1. Introduction

Concentration inequalities are of great importance in discrete mathematics, theoret-
ical computer science, and related fields. They intuitively quantify random fluctuations 
of a given random variable X, by bounding the probability that X differs substantially 
from its expected value μ = EX. In combinatorial applications, X often counts certain 
objects (e.g., the number of subgraphs or arithmetic progressions), in which case the 
random variable X can usually be written as a low-degree polynomial of many inde-
pendent random variables. In this context concentration inequalities with exponentially 
small estimates are vital (e.g., to make union bound arguments amenable), and here Kim 
and Vu [19,30,32] achieved a breakthrough in the late 1990s. Their powerful concentra-
tion inequalities have since then, e.g., been successfully applied to many combinatorial 
problems, been included in standard textbooks, and earned Vu the George Pólya Prize 
in 2008.

In probabilistic combinatorics, the exponential rate of decay of the lower tail P (X ≤
μ − t) and upper tail P (X ≥ μ + t) have received considerable attention, since they 
are of great importance in applications (of course, this is also an interesting problem in 
concentration of measure). The behaviour of the lower tail is nowadays well-understood 
due to the celebrated Janson- and Suen-inequalities [10,21,17,11,13]. By contrast, the 
behaviour of the ‘infamous’ upper tail has remained a well-known technical challenge 
(see also [14,12]). Here the inductive method of Kim and Vu [19,32] from around 1998 
often yields inequalities of the form

P (X ≥ (1 + ε)μ) ≤ exp
(
−c(ε)μ1/q), (1)

where q ≥ 1 is some constant. In 2000, Janson and Ruciński [15] developed an alternative 
inductive approach, which often gives comparable results for the upper tail, i.e., which 
recovers (1) up to the usually irrelevant numerical value of the parameter c. Studying 
the sharpness of the tail inequality (1) is an important problem according to Vu (see 
Section 4.8 in [32]). In fact, one main aim of the paper [15] was ‘to stimulate more research 
into these methods’ since ‘neither of [them] seems yet to be fully developed’. In other 
words, Janson and Ruciński were asking for further improvements of the aforementioned 
fundamental proof techniques (the papers [15,32] already contained several tweaking 
options for decreasing q).

In this paper we address this technical challenge in cases where the inductive methods 
of Kim–Vu and Janson–Ruciński are nearly sharp. The crux is that, for several interesting 
classes of examples (naturally arising, e.g., in additive combinatorics), the upper tail 
inequality (1) is best possible up to a logarithmic factor in the exponent. Closing such 
narrow gaps has recently become an active area of research in combinatorial probability 
(see, e.g., [14,12,16,6,7,34,35]). The goal of this paper is to present a new idea that can 
add such missing logarithmic terms to the upper tail. From a conceptual perspective, 
this paper thus makes a new effect amenable to the rich toolbox of the Kim–Vu and 
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Janson–Ruciński methods (we believe that our techniques will be useful elsewhere). For 
example, under certain somewhat natural technical assumptions, our methods allow us 
to improve the classical upper tail inequality (1) to estimates of the form

P (X ≥ (1 + ε)μ) ≤ exp
(
−c(ε) min

{
μ, μ1/qs

})
with s ∈

{
log n, log(1/p)

}
, (2)

where the reader may wish to tentatively think of the parameters n = ω(1) and p =
o(1) as those in the binomial random graph Gn,p (here some extra assumptions are 
necessary, since there are examples where (1) is sharp, see Sections 1.1 and 6.1). This 
seemingly small improvement of (1) is conceptually important, since in several interesting 
applications the resulting inequality is best possible up to the value of c. Indeed, as 
we shall see, sharp examples with P (X ≥ (1 + ε)μ) = exp

(
−Θ(min

{
μ, μ1/q log(1/p))

)
for ε = Θ(1) naturally arise when X counts various objects of great interest in additive 
combinatorics, such as the number of arithmetic progressions (of given length) or additive 
quadruples in random subsets of the integers [n] = {1, . . . , n}.

In the remainder of this introduction we illustrate our methods with some appli-
cations, outline our high-level proof strategy, and discuss the structure of this paper. 
Noteworthily, our proof techniques do not solely rely on induction, but a blend of com-
binatorial and probabilistic arguments.

1.1. Flavour of the results

We now illustrate the main flavour of our upper tail results with some concrete ex-
amples. Many important counting problems can be rephrased as the number of edges 
induced by the random induced subhypergraph Hp = H[Vp(H)] (see, e.g., [14,22,16,35,
37]), where Vp(H) denotes the binomial random subset where each vertex v ∈ V (H)
is included independently with probability p. Our methods yield the following upper 
tail inequality for Hp, which extends one of the main results from [35] for the special 
case q = 2, and sharpens one of the principle results of Janson and Ruciński [16] by a 
logarithmic factor in the exponent.

Theorem 1 (Counting edges of random induced subhypergraphs). Let 1 ≤ q < k and 
γ, D > 0. Assume that H is a k-uniform hypergraph with v(H) ≤ N vertices and e(H) ≥
γNq edges. Suppose that Δq(H) ≤ D, where Δq(H) denotes the maximum number of 
edges of H that contain q given vertices. Let X = e(Hp) and μ = EX. Then for any ε > 0
there is c = c(ε, k, γ, D) > 0 such that for all p ∈ (0, 1] we have

P (X ≥ (1 + ε)μ) ≤ exp
(
−cmin

{
μ, μ1/q log(e/p)

})
. (3)

This upper tail inequality is conceptually best possible in several ways. First, the 
restriction to q < k is necessary (see Section 6.1 for a counterexample when q = k), 
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Second, in several important applications (3) is sharp (yields the correct exponential 
rate of decay), i.e., there is a matching lower bound of form

P (X ≥ (1 + ε)μ) ≥ 1{1≤(1+ε)μ≤e(H)} exp
(
−C(ε) min

{
μ, μ1/q log(e/p)

})
, (4)

where the restriction 1 ≤ (1 + ε)μ ≤ e(H) is natural.1 In particular, letting the edges 
of the hypergraph H with vertex-set V (H) = [n] encode classical objects from additive 
combinatorics and Ramsey Theory, sharp examples of type (3)–(4) include the number 
of k-term arithmetic progressions, Schur triples x +y = 2z, additive quadruples x1+x2 =
y1 +y2, and (r, s)-sums x1 + · · ·+xr = y1 + · · ·+ys in the binomial random subset [n]p =
Vp(H) of the integers; see Section 1.1.1 and 6.1 for more details/concrete examples.

The two expressions in the exponent of the upper tail (3)–(4) correspond to dif-
ferent phenomena.2 Namely, in some range we expect that X = e(Hp) is approxi-
mately Poisson, in which case P (X ≥ 2μ) decays roughly like exp(−cμ). Similarly, the 
exp(−cμ1/q log(1/p)) = pcμ

1/q term intuitively corresponds to ‘clustered’ behaviour (see 
also [35,27,12]), where few vertices U ⊆ Vp(H) induce many edges in Hp = H[Vp(H)]: 
e.g., in each of the above-mentioned examples there always is such a set with |U | = cμ1/q

and e(H[U ]) ≥ 2μ, which readily implies P (X ≥ 2μ) ≥ P (U ⊆ Vp(H)) = pcμ
1/q . Note 

that classical tail inequalities of form (1) fail to handle these phenomena properly (lack-
ing Poisson behaviour and the extra log(1/p) term).

1.1.1. Upper tail examples from additive combinatorics and Ramsey theory
In the following exemplary upper tail bounds (5)–(8) we tacitly allow the implicit 

constants to depend on ε.

Example 2. Arithmetic progressions (APs) are central objects in additive combina-
torics. Given k ≥ 3, let X = Xn,k,p denote the number of arithmetic progressions 
of length k in the binomial random subset [n]p of the integers (to clarify: we count 
k-subsets {x1, . . . , xk} ⊆ [n]p forming APs); note that μ = EX = Θ(n2pk). Then, for 
any ε > 0 and p = p(n) ∈ (0, 1] satisfying 1 ≤ (1 + ε)μ ≤ Xn,k,1, we have

P (X ≥ (1 + ε)μ) = exp
(
−Θ
(
min

{
μ, μ1/2 log(1/p)

}))
. (5)

Example 3. Schur triples {x, y, z} ⊆ [n] with x +y = z (where x �= y) are classical objects 
in Number theory and Ramsey theory (see, e.g., [9] and [8,24]). Let X = Xn,p denote 
the number of Schur triples in [n]p; note that μ = EX = Θ(n2p3). Then, for any ε > 0
and p = p(n) ∈ (0, 1] satisfying 1 ≤ (1 + ε)μ ≤ Xn,1, we have

1 Note that P(X ≥ (1 + ε)μ) = 0 when (1 + ε)μ > e(H), and that P(X ≥ (1 + ε)μ) = 1 − P(X = 0)
when (1 + ε)μ < 1.
2 A phenomenon not relevant for the qualitative accuracy of (3)–(4) is that |Vp(H)| can also be somewhat 

‘bigger’ than E|Vp(H)|, which in some range yields sub-Gaussian type tail behaviour, see also [35,27].
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P (X ≥ (1 + ε)μ) = exp
(
−Θ
(
min

{
μ, μ1/2 log(1/p)

}))
. (6)

The same tail bound also holds for �-sums (studied, e.g., in [1]), where the 3-element 
subsets satisfy x + y = �z.

Example 4. Additive quadruples are 4-subsets {x1, x2, y1, y2} ⊆ [n] satisfying x1 + x2 =
y1 + y2. The number of these quadruples is also called additive energy, which is an 
important quantity in additive combinatorics (see, e.g., [2,5]). Let X = Xn,p denote the 
number of additive quadruples in [n]p; note that μ = EX = Θ(n3p4). Then, for any ε > 0
and p = p(n) ∈ (0, 1] satisfying 1 ≤ (1 + ε)μ ≤ Xn,1, we have

P (X ≥ (1 + ε)μ) = exp
(
−Θ
(
min

{
μ, μ1/3 log(1/p)

}))
. (7)

Example 5. (r, s)-sums are (r + s)-subsets {x1, . . . , xr, y1, . . . , y2} ⊆ [n] satisfying x1 +
· · · + xr = y1 + · · · + ys. In the special case r = s the number of these sets is called 
2r-fold additive energy, which is useful in the context of Roth’s theorem (see, e.g., [5]). 
Given r, s ≥ 1 satisfying r + s ≥ 3, let X = Xn,r,s,p denote the number of (r, s)-sums 
in [n]p; note that μ = EX = Θ(nr+s−1pr+s). Then, for any ε > 0 and p = p(n) ∈ (0, 1]
satisfying 1 ≤ (1 + ε)μ ≤ Xn,r,s,1, we have

P (X ≥ (1 + ε)μ) = exp
(
−Θ
(
min

{
μ, μ1/(r+s−1) log(1/p)

}))
. (8)

Similar tail bounds also hold for integer solutions of linear homogeneous systems, see 
Section 6.1 for the details.

1.1.2. Subgraph counts in random graphs: sub-Gaussian type upper tail bounds
As a side-product, our proof techniques also yield new results with a slightly different 

flavour. To illustrate this with subgraph counts in the binomial random graph Gn,p, 
let X = XH denote the number of copies of H in Gn,p. Set μ = EX. Here sub-Gaussian 
type upper tail estimates3 of the form

P (X ≥ μ + t) ≤ C exp(−ct2/VarX) (9)

have been extensively studied [23,30,15,25,18,36,37] during the last decades, usually 
with emphasis on small deviations of form

√
VarX ≤ t = o(μ), say (differing from 

the large deviations regime t = Θ(μ) considered in the classical upper tail problem for 
subgraph counts). In particular, for so-called ‘strictly balanced’ graphs H three differ-
ent approaches [30,15,25] have been developed during the years 2000–2012, which each 
establish a form of inequality (9) for t ≤ μ = O(logn). Our methods allow us to break 

3 For subgraph counts lower tail estimates of sub-Gaussian type follow from Janson’s inequality (see, 
e.g., [17]).
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this logarithmic barrier slightly, answering a question of Janson and Ruciński [13]; see 
Section 6.2.1 for more details.

Theorem 6 (Subgraph counts: sub-Gaussian type upper tail bounds). For any strictly 
balanced graph H there are n0, c, C, ξ > 0 such that inequality (9) holds whenever n ≥ n0
and 0 < t ≤ μ ≤ (logn)1+ξ.

1.2. Glimpse of the proof strategy

In contrast to most of the previous work, in this paper we take a more combinatorial 
perspective to concentration of measure (and avoid induction via a more iterative point 
of view). Our high-level proof strategy proceeds roughly as follows. In the deterministic 
part of the argument, we define several ‘good’ events Ei = Ei(H, ε), and show that the 
following implication holds:

all Ei hold =⇒ X < (1 + ε)EX. (10)

In the probabilistic part of the argument, we show that for some suitable parameter Ψ
we have

P (some Ei fails) ≤ exp(−Ψ). (11)

Combining both parts then readily yields an exponential upper tail estimate of the form

P (X ≥ (1 + ε)EX) ≤ P (some Ei fails) ≤ exp(−Ψ).

In this paper we illustrate the above approach by implementing (10)–(11) in a general 
Kim–Vu/Janson–Ruciński type setup. To communicate our ideas more clearly, our below 
informal discussion again uses the simpler random induced subhypergraph setup (a more 
detailed sketch is given in Sections 3.1.2–3.1.3).

For the deterministic part (10), we shall crucially exploit a good event EQ,ε of the 
following form: all subhypergraphs with ‘small’ maximum degree have ‘not too many’ 
edges, i.e., that e(J ) < (1 + ε/2)EX holds for all J ⊆ Hp with Δ1(J ) ≤ Q, say. Our 
sparsification idea proceeds roughly as follows. First, using combinatorial arguments (and 
further good events) we find a nested sequence of subhypergraphs

Hp = Jq ⊇ Jq−1 ⊇ · · · ⊇ J2 ⊇ J1, (12)

which gradually decreases the maximum degree down to Δ1(J1) ≤ Q. The crux is 
that EQ,ε then implies e(J1) < (1 + ε/2)EX. In the second step we exploit various good 
events (and properties of the constructed sequence) to show that we obtained J1 by 
removing relatively few edges from Hp, such that
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X = e(Hp) = e(J1)+
∑

1≤j<q

e(Jj+1 \Jj) < (1+ ε/2)EX +(ε/2)EX = (1+ ε)EX. (13)

In fact, the combinatorial arguments leading to (12)–(13) develop a ‘maximal matching’ 
based sparsification idea from [35], which is key for handling some vertices of Hp with 
exceptionally high degrees, say.

The probabilistic part (11) works hand in hand with the above deterministic argu-
ments. Similar to EQ,ε, we shall throughout work with ‘relative estimates’, i.e., which 
are valid for all subhypergraphs of Hp satisfying some extra properties (e.g., that 
Δj(J ) ≤ Rj holds for all J ⊆ Hp with Δj+1(J ) ≤ Rj+1). These estimates are cru-
cial for bringing combinatorial arguments of type (12)–(13) into play (instead of relying 
solely on inductive reasoning), and they hinge on a concentration inequality from [35]. 
Perhaps surprisingly, this inequality allows us to estimate P (¬EQ,ε) and similar ‘rela-
tive’ events without taking a union bound over all subhypergraphs. For the matching 
based sparsification idea briefly mentioned above, we exploit the fact that the relevant 
‘matchings’ guarantee the ‘disjoint occurrence’ of suitably defined events. This observa-
tion allows us to estimate the probability of certain ‘bad’ events via BK-inequality based 
moment arguments.

Finally, in our probabilistic estimates the logarithmic terms in (2)–(3) arise in a fairly 
delicate way (which comes as no surprise, since there are examples where (1) is sharp). We 
now illustrate the underlying technical idea for binomial random variables X ∼ Bin(n, p)
with μ = np, where for x ≥ e(e/p)αμ we have

P (X ≥ x) ≤
(
n

x

)
px ≤

(eμ
x

)x
≤
(p
e

)αx
= exp

(
−αx log

(
e/p
))

.

Our proofs apply this ‘overshooting the expectation yields extra terms in the exponent’ 
idea to a set of carefully chosen auxiliary random variables. As the reader can guess, 
the technical details are, e.g., complicated by the fact that the edges of Hp are not
independent, and that we may not assume x � μ.

1.3. Guide to the paper

In Section 2 we introduce our key probabilistic tools. In Section 3 we give a fairly 
detailed proof outline, and present our main combinatorial and probabilistic arguments 
in the random induced subhypergraphs setup. In Section 4 we then extend the discussed 
arguments to a more general setup. In Section 5 we derive some concrete upper tail 
inequalities, which in Section 6 are then applied to several pivotal examples.

The reader interested in our proof techniques may wish to focus on Section 3, which 
contains our core ideas and arguments. The reader interested in applications may wish 
to skip to Section 6, where the ‘easy-to-apply’ concentration inequalities of Section 5.1
are used in several different examples. Finally, the reader interested in comparing our 
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results with the literature may wish to focus on the general setup of Section 4.1 and the 
concentration inequalities in Section 5.2.

2. Probabilistic preliminaries

2.1. A Chernoff-type upper tail inequality

In this subsection we state a powerful Chernoff-type upper tail inequality from [35]. 
It might be instructive to check that, for sums X =

∑
i∈A ξi of independent random 

variables ξi ∈ [0, 1], inequality (14) below reduces to the classical Chernoff bound (writ-
ing i ∼ j if i = j, for Yi = ξi, I = A and C = 1 we have X = ZC). We think of ∼ as a ‘de-
pendency relation’: α � β implies that the random variables Yα and Yβ are independent. 
For indicator random variables Yα ∈ {0, 1} the condition maxβ∈J

∑
α∈J :α∼β Yα ≤ C es-

sentially ensures that each variable Yβ with β ∈ J ‘depends’ on at most C variables Yα

with α ∈ J . Intuitively, ZC defined below thus corresponds to an approximation of 
X =

∑
α∈I Yα with ‘bounded dependencies’.

Theorem 7. Given a family of non-negative random variables (Yα)α∈I with 
∑

α∈I EYα ≤
μ, assume that ∼ is a symmetric relation on I such that each Yα with α ∈ I is indepen-
dent of {Yβ : β ∈ I and β � α}. Let ZC = max

∑
α∈J Yα, where the maximum is taken 

over all J ⊆ I with maxβ∈J
∑

α∈J :α∼β Yα ≤ C. Set ϕ(x) = (1 +x) log(1 +x) −x. Then 
for all C, t > 0 we have

P (ZC ≥ μ + t) ≤ exp
(
−ϕ(t/μ)μ

C

)
= e−μ/C ·

(
eμ

μ + t

)(μ+t)/C

≤ min
{

exp
(
− t2

2C(μ + t/3)

)
,

(
1 + t

2μ

)−t/(2C)
}

≤
(

1 + t

μ

)−t/(4C)

.

(14)

Remark 8. In applications there often is a family of independent random variables 
(ξσ)σ∈A such that each Yα is a function of (ξσ)σ∈α. Then it suffices to define α ∼ β

if α ∩ β �= ∅ (as α � β implies that Yα and Yβ depend on disjoint sets of variables ξσ).

Remark 9. Theorem 7 remains valid after weakening the independence assumption 
to a form of negative correlation: it suffices if E(

∏
i∈[s] Yαi

) ≤
∏

i∈[s] EYαi
for all 

(α1, . . . , αs) ∈ Is satisfying αi � αj for i �= j. For example, writing α ∼ β if α∩β �= ∅, it is 
not hard to check that this weaker condition holds for variables of form Yα = wα1{α∈Hm}, 
where the uniform model Hm = H[Vm(H)] is defined as in Section 3.5.

Remark 10. Replacing the assumption 
∑

α∈I EYα ≤ μ of Theorem 7 with 
∑

α∈I λα ≤ μ

and minα∈I λα ≥ 0, the correlation condition of Remark 9 can be further weakened 
to E(

∏
i∈[s] Yαi

) ≤
∏

i∈[s] λαi
.
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Remark 11. Note that inequality (14) implies ϕ(ε) ≥ ε2/[2(1 + ε/3)] ≥ min{ε2, ε}/3
for ε ≥ 0.

Remarks 9–10 suggest that the proof of Theorem 7 is fairly robust (it exploits indepen-
dence only in a limited way; see also the discussion in [35] and the proof of Lemma 4.5 
in [33]).

2.2. The BK-inequality

In this subsection we state a convenient consequence of the BK-inequality of 
van den Berg and Kesten [3] and Reimer [20]. As usual in this context, we consider 
a sample space Ω = Ω1 × · · · × ΩM with finite Ωi, and write ω = (ω1, . . . , ωM ) ∈ Ω. 
Given an event E ⊆ Ω and an index set I ⊆ [M ] = {1, . . . , M}, we define

E|I =
{
ω ∈ E : for all π ∈ Ω we have π ∈ E whenever πj = ωj for all j ∈ I

}
.

In intuitive words, the event E|I occurs if knowledge of the variables indexed by I already 
‘guarantees’ the occurrence of E (note that all other variables are irrelevant for E|I). 
Given a collection (Ei)i∈C of events, for the purposes of this paper it seems easiest to 
introduce the convenient definition

�i∈CEi =
{

there are pairwise disjoint Ii ⊆ [M ] such that
⋂
i∈C

Ei|Ii occurs
}
. (15)

The event �i∈CEi intuitively states that all Ei ‘occur disjointly’, i.e., that there are disjoint
subsets of variables which guarantee the occurrence of each event Ei (the definition of �
sidesteps that the usual box product � is, in general, not associative). The general 
BK-inequality of Reimer [20] implies the following estimate.

Theorem 12. Let P be a product measure on Ω = Ω1 × · · ·×ΩM with finite Ωi. Then for 
any collection (Ei)i∈C of events we have

P
(
�i∈CEi

)
≤
∏
i∈C

P (Ei). (16)

Remark 13. For increasing events Ei, [4] implies that inequality (16) also holds for P

assigning equal probability to all outcomes ω ∈ {0, 1}M with exactly m ones (as usual, 
an event E is called increasing if for all ω ∈ E and π ∈ Ω we have π ∈ E whenever ωj ≤ πj

for all j ∈ [M ]).

3. Core ideas and arguments

In this section we present our core combinatorial and probabilistic arguments in a 
slightly simplified setup. Our main focus is on the new proof ideas and methods (which 
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we believe are more useful to the reader than the theorems), so we defer applications 
and concrete upper tail inequalities to Sections 5–6. This organization of the paper also 
makes the extension to the more general setup of Section 4 more economical. Indeed, 
similar to the high-level proof strategy discussed in Section 1.2, the main results of this 
section are Theorem 15 of form P (X ≥ (1 + ε)EX) ≤

∑
i P (¬Ei) and Theorem 18 of 

form P (¬Ei) ≤ exp(−Ψi). Together they yield upper tail inequalities, and in Section 4.2
we adapt both to our more general setup.

In Section 3.1 we give a detailed proof overview, and introduce the simpler random 
induced subhypergraphs setup (where our main arguments and ideas are more natural). 
As a warm-up, in Section 3.2 we revisit existing inductive concentration methods, and 
reinterpret some of the underlying ideas. Section 3.3 contains our key combinatorial argu-
ments, which hinge on ‘sparsification’ ideas and the BK-inequality. In Section 3.4 these 
arguments are complemented by probabilistic estimates, which rely on the Chernoff-
type tail inequality Theorem 7. Finally, in Section 3.5 we demonstrate that our proofs 
are somewhat ‘robust’.

3.1. Overview

3.1.1. Simplified setup: random induced subhypergraph Hp

Our basic setup concerns random induced subhypergraphs. For a hypergraph H with 
vertex set V (H), let Vp(H) denote the binomial random vertex subset where each v ∈
V (H) is included independently with probability p. We define the subhypergraph of H
induced by Vp(H) as

Hp = H[Vp(H)]. (17)

Given non-negative weights (wf )f∈H, for every G ⊆ H we set

w(G) =
∑
f∈G

wf1{f∈Hp}, (18)

where our main focus is on the weighted number of induced edges w(H) = w(Hp). 
The ‘unweighted’ case with wf = 1 occurs frequently in the literature (see, e.g., [14,
22,16,35,37]), where the random variable w(H) = e(Hp) simply counts the number of 
edges of H induced by Vp(H). Our arguments will also carry over to the uniform variant 
Hm = H[Vm(H)] defined in Section 3.5 (see Remark 19).

To formulate our results, we need some more notation and definitions. As usual, 
we write

ΓU (H) = {f ∈ H : U ⊆ f}, (19)

Δj(H) = max
U⊆V (H):|U |=j

|ΓU (H)|. (20)
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In concrete words, ΓU (H) corresponds to the set of all edges f ∈ H that contain the vertex 
subset U ⊆ V (H), and Δj(H) denotes the maximum number of edges that contain j given 
vertices (which we think of as a ‘maximum degree’ parameter). Inspired by [15,19,30,
32], we now define the following two crucial assumptions (P’) and (Pq), where q ∈ N is 
a parameter:

(P’) Assume that maxf∈H |f | ≤ k, maxf∈H wf ≤ L and v(H) ≤ N . Define μ = Ew(H)
and

μj = max
U⊆V (H):|U |=j

∑
f∈ΓU (H)

p|f |−|U |. (21)

(Pq) Assume that Δq(H) ≤ D.

Property (P’) ensures that every edge f ∈ H has at most k vertices, that the associated 
edge weights satisfy 0 ≤ wf ≤ L, and that H contains at most v(H) ≤ N vertices. 
Although we shall not assume this, our main focus is on the common case where k+L =
O(1) and N = ω(1) holds. Property (Pq) will be useful when D = O(1) holds for q < k

(this is trivial for q = k). The key parameters μj intuitively quantify the ‘dependencies’ 
between the edges, and we think of them as average variants of the ‘maximum degree’ 
parameter Δj(Hp) from (20). To see this, note that P (f ∈ Hp | U ⊆ Vp(H)) = p|f |−|U |, 
so (21) equals

μj = max
U⊆V (H):|U |=j

E
(
|ΓU (Hp)|

∣∣ U ⊆ Vp(H)
)
. (22)

In concrete words, after conditioning on the presence of any vertex subset U ⊆ Vp(H)
of size |U | = j, the expected number of edges in Hp that contain U is at most μj (for 
this reason, μj can be interpreted as the ‘maximum average effect’ of any j vertices or 
variables, see also [19,32]). For example, if the edges of the k-uniform hypergraph H = Hn

correspond to k-term arithmetic progressions, then we can take V (H) = [n], N = n, 
L = 1, μ = Θ(n2pk) and μj = Θ(n2−jpk−j) for 1 ≤ j ≤ q = 2 (note that Δ2(H) =
O(1) holds).

3.1.2. The basic form of our tail estimates
In this subsection we discuss the approximate form of our upper tail estimates. As 

we shall see in Section 3.2, for hypergraphs H with Δq(H) ≤ D the usual inductive 
concentration of measure methods [19,15,32] yield basic inequalities of the following 
form (omitting several technicalities). Given positive parameters (Rj)1≤j≤q with Rq ≥ D, 
for every ε > 0 there are positive constants a = a(ε, k) and b = b(k) such that roughly

P (e(Hp) ≥ (1 + ε)μ) ≤ exp
(
−aμ/R1

)
+
∑ (

μj

Rj

)bRj/Rj+1

, (23)

1≤j<q
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say (see (76) of Claim 33; the freedom of choosing the parameters (Rj)1≤j≤q is part of 
the method, though one naturally aims at roughly μ/R1 ≈ Rj/Rj+1). The ‘prepackaged 
versions’ of these inequalities usually assume that the parameters satisfy roughly μ/R1 ≥
λ and Rj ≥ max{2μj , λRj+1} (see, e.g., Theorem 4.2 in [32] or Theorem 3.10 in [15]). 
In this case there are positive constants c = c(a, b) and C = C(q) such that

P (e(Hp) ≥ (1 + ε)μ) ≤ C exp
(
−cλ

)
. (24)

The punchline of this paper is that we can often improve the exponential decay of (24)
if stronger bounds than Rj ≥ 2μj hold. For example, setting λ ≈ μ1/q and Rj ≈
λq−j (similar to, e.g., the proof of Corollary 6.3 in [32] or Theorem 2.1 in [31]), in the 
applications of Section 6.1 we naturally arrive at bounds of form

max
1≤j<q

μj

Rj
≈ max

1≤j<q

μj

μ(q−j)/j = O(pα). (25)

It might be instructive to check that (25) holds with α = 1/2 for k-term arithmetic 
progressions with k ≥ 3. Intuitively, replacing Rj ≥ 2μj by the stronger assumption (25)
improves the exponential decay of the sum-terms in (23) by a factor of roughly log(1/p)
for small p. Hence the exp

(
−aμ/R1

)
term in (23) is the main obstacle for improving 

inequality (24). Here our new ‘sparsification’ based approach is key: after some technical 
work it essentially allows us to replace R1 by

Q1 = max
{
R1/ log(1/p), B

}
,

where B ≥ 1 is some constant (of course, we later need to be a bit careful when p ≈ 1
holds, e.g., replacing log(1/p) with log(e/p), say). More concretely, assuming (25), for 
μ/R1 ≥ λ, Rj ≥ λRj+1 and p = o(1) we eventually arrive (ignoring some technicalities) 
at a bound that is roughly of the form

P (e(Hp) ≥ (1 + ε)μ) ≤ exp
(
−aμ/Q1

)
+
∑

1≤j<q

[(
μj

Rj

)bRj/Rj+1

+
(
μj

Rj

)aμ/R1
]

≤ C exp
(
−cmin

{
μ, λ log(1/p)

})
,

(26)

with c = c(a, b, α, B) > 0 and C = q (see (80) of Theorem 34). In words, (26) essentially 
adds a logarithmic factor to the exponent of the classical bound (24). This improvement 
of (23)–(24) is conceptually important, since in several interesting examples the resulting 
estimate (26) is qualitatively best possible (see Section 6.1).

3.1.3. Sketch of the argument
In this subsection we expand on the high-level proof strategy from Section 1.2, and 

give a rough sketch of our main combinatorial line of reasoning (the full details are 



110 L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98–146
deferred to Sections 3.2–3.4 and 4.2). As we shall argue in Section 3.2, at the conceptual 
heart of the usual inductive concentration approaches lies the following combinatorial 
‘degree’ event Dj : Δj+1(Hp) ≤ Rj+1 implies Δj(Hp) ≤ Rj . Given a hypergraph H with 
Δq(H) ≤ Rq, for the induced number of edges e(Hp) the basic idea is that an iterative 
application of the events Dq−1 ∩ · · · ∩ D1 reduces the upper tail problem to

P (e(Hp) ≥ (1 + ε)μ) ≤ P (e(Hp) ≥ (1 + ε)μ and Δq(Hp) ≤ Rq)

≤ P (e(Hp) ≥ (1 + ε)μ and Δ1(Hp) ≤ R1) +
∑

1≤j<q

P (¬Dj). (27)

It turns out that all the probabilities on the right hand side of (27) can easily be es-
timated by the concentration inequality Theorem 7 (see Claim 14 and Theorem 18), 
which eventually yields a variant of the upper tail estimate (23). As before, the crux 
is that smaller values of the ‘maximum degree’ R1 translate into better tail estimates. 
To surpass the usual inductive approaches, similar to (26) our plan is thus to reduce 
the ‘degree bound’ R1 down to Q1, and here our new ‘sparsification idea’ will be key, 
achieving this ‘degree reduction’ by deleting up to εμ/2 edges.

Our starting point is the observation that, via Theorem 7, we can strengthen the de-
gree event Dj to all subhypergraphs G ⊆ Hp (see Claim 14 and Theorem 18). Namely, let 
D+

j denote the event that Δj+1(G) ≤ Qj+1 implies Δj(G) ≤ Qj for all G ⊆ Hp. A crucial 
aspect of our argument is that the events Dj , D+

j work hand in hand with the following 
combinatorial ‘sparsification’ event Eq: Δ1(Hp) ≤ R1 implies existence of a subhyper-
graph G ⊆ Hp with e(Hp \ G) ≤ εμ/2 and Δq−1(G) ≤ Qq−1 (tacitly assuming q ≥ 2). 
Intuitively, Eq states that the deletion of ‘few’ edges reduces the degree Δq−1(Hp) down 
to Δq−1(G) ≤ Qq−1.

The basic combinatorial idea of our approach is roughly as follows (see Section 3.3
for the more involved details). We first (i) obtain the coarse degree bound Δ1(Hp) ≤ R1

via an iterative application of the degree events Dq−1 ∩ · · · ∩ D1, then (ii) exploit the 
sparsification event Eq to find a subhypergraph G ⊆ Hp with e(Hp \ G) ≤ εμ/2 and 
Δq−1(G) ≤ Qq−1, and finally (iii) deduce the improved degree bound Δ1(G) ≤ Q1 via 
an iterative application of the degree events D+

q−2 ∩ · · · ∩ D+
1 . Taking into account that 

we obtain G ⊆ Hp by deleting up to εμ/2 edges, for hypergraphs H with Δq(H) ≤ Rq

we eventually arrive at

P (e(Hp) ≥ (1 + ε)μ) ≤ P (e(G) ≥ (1 + ε/2)μ and Δ1(G) ≤ Q1 for some G ⊆ Hp)

+
∑

1≤j<q

P (¬Dj) + P (¬Eq) +
∑

1≤j<q−1
P (¬D+

j ). (28)

The crux is that we can again obtain good tail estimates for P (e(G) ≥ (1 + ε/2)μ · · · )
and P (¬Dj) + P (¬D+

j ) via Theorem 7 (see Claim 14 and Theorem 18), so in (28) it 
remains to bound P (¬Eq).
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To estimate the probability that the sparsification event Eq fails, we shall rely on 
combinatorial arguments and the BK-inequality, developing a ‘maximal matching’ based 
idea from [35]. Simplifying slightly (see Section 3.3.1 for the full details), for any vertex 
set U ⊆ V (H) with |U | = q − 1 we tentatively call KU ⊆ ΓU (H) = {f ∈ H : U ⊆ f}
with |KU | = r an r-star, where we set r = Qq−1 for brevity. The basic idea is to take a 
maximal vertex disjoint collection of r-stars in Hp, which we denote by M (to clarify: 
the edges from any two distinct r-stars KU , KW ∈ M are vertex disjoint), and remove 
all edges f ∈ Hp that are incident to M, i.e., which share at least one vertex with some 
r-star from M. Denoting the resulting subhypergraph by G ⊆ Hp, using maximality 
of M it is not difficult to argue that Δq−1(G) < r = Qq−1 holds (otherwise we could 
add another r-star to M). Furthermore, by construction the deleted number of edges is 
at most

e(Hp \ G) ≤
∑

KU∈M

∑
f∈KU

∑
v∈f

|Γ{v}(Hp)| ≤ |M| · r · k · Δ1(Hp). (29)

Since the event Eq presupposes Δ1(Hp) ≤ R1, we thus see that |M| ≤ εμ/(2rkR1)
implies |Hp \ G| ≤ εμ/2. It remains to estimate the probability that |M| is big, and here 
we shall exploit the fact that the r-stars KU ∈ M satisfy two properties: they (i) are 
pairwise vertex disjoint, and (ii) each ‘guarantee’ that |ΓU (Hp)| ≥ r holds. Intuitively, 
the point of (i) and (ii) is that |M| events of from |ΓU (Hp)| ≥ r ‘occur disjointly’ 
in the sense of Section 2.2, which allows us to bring the BK-inequality (16) into play. 
Indeed, by analyzing a �-based moment of 

∑
U :|U |=q−1 1{|ΓU (Hp)|≥r}, we then eventually 

obtain sufficiently good estimates for P (¬Eq), as desired (see the proofs of Lemma 16
and inequality (48) of Theorem 18).

As the reader can guess, the actual details are more involved. For example, instead of 
just Eq for Δq−1(·), we also need to consider similar sparsification events for the others 
degrees Δj(·) with 1 ≤ j < q. In fact, analogous to D+

j , these events must moreover apply 
to all subhypergraphs G ⊆ Hp simultaneously (see Ej,�(x, r, y, z) defined in Section 3.3). 
Furthermore, due to technical reasons, the decomposition (28) requires some extra bells 
and whistles (see (33) of Theorem 15). Finally, we have also ignored how Theorem 7 and 
the BK-inequality (16) eventually allow us to convert the decompositions (27)–(28) into 
concrete upper tail inequalities of form (23) and (26); see Sections 3.3.1, 3.4, 4.2 and 5.3
for these technical calculations.

3.2. Inductive concentration proofs revisited

The goal of this warm-up section is to reinterpret the classical inductive concentration 
proofs from [15,19,32] using the following ‘degree intuition’: an (improved) upper bound 
for Δj+1(Hp) and Δ1(Hp) translates into an improved upper tail estimate for Δj(Hp)
and w(Hp), respectively. We exemplify this with the following claim, which is usually 
stated for G = Hp only (the proof of is based on routine applications of Theorem 7, and 
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thus deferred to Section 3.4). We find inequalities (30)–(31) below remarkable, since they 
intuitively yield bounds for all subhypergraphs G ⊆ Hp without taking a union bound.

Claim 14. Given H, assume that (P’) holds. Then for all t, x, y > 0 and 1 ≤ j < k we 
have

P
(
w(G) ≥ μ + t and Δ1(G) ≤ y for some G ⊆ Hp

)
≤
(

1 + t

μ

)−t/(4Lky)

, (30)

P
(
Δj(G) ≥ μj + x and Δj+1(G) ≤ y for some G ⊆ Hp

)
≤ N j

(
1 + x

μj

)−x/(4ky)

.

(31)

Now, by a straightforward iterative degree argument similar to (27), we obtain the simple 
estimate

P
(
w(G) ≥ μ + t and Δq(G) ≤ Rq for some G ⊆ Hp

)
≤ P

(
w(G) ≥ μ + t and Δ1(G) ≤ R1 for some G ⊆ Hp

)
+
∑

1≤j<q

P
(
Δj(G) > Rj and Δj+1(G) ≤ Rj+1 for some G ⊆ Hp

)
.

(32)

Restricting to the special case w(Hp), using Claim 14 it turns out that inequality (32) is 
essentially equivalent to the basic induction of Janson and Ruciński [15] (see the proof 
of Theorem 3.10 in [15]), which in turn qualitatively recovers the upper tail part of Kim 
and Vu [19] (see Section 5 of [15,13]). The iterative point of view (32) is somewhat more 
flexible than induction, making the arguments subjectively easier to modify (as there is no 
need to formulate a suitable induction hypothesis). Estimates for all subhypergraphs G ⊆
Hp also make room for additional combinatorial arguments, which is crucial for the 
purposes of this paper.

3.3. Combinatorial sparsification: degree reduction by deletion

In this section we introduce our key combinatorial arguments, which eventually al-
low us to obtain improved upper tail estimates by ‘sparsifying’ Hp, i.e., deleting edges 
from Hp. Loosely speaking, via this sparsification idea we can effectively ignore certain 
‘exceptional’ edges from Hp (which contain vertices with extremely high degree, say). For 
the purpose of this paper, we encapsulate this heuristic idea with the definition below. In 
intuitive words, for � = 1 the ‘sparsification’ event Ej,1(x, r, y, z) essentially ensures that 
every G ⊆ Hp with bounded Δj+1(G) and Δ1(G) contains a large subhypergraph J ⊆ G
with small Δj(J ).

Definition (Sparsification event). Let Ej,�(x, r, y, z) denote the event that for every G ⊆
Hp with Δj+1(G) ≤ y and Δ�(G) ≤ z there is J ⊆ G with Δj(J ) ≤ x and e(G \ J ) ≤ r.
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Here one conceptual difference to the ‘deletion lemma’ of Rödl and Ruciński [22,14] is 
that our focus is on ‘local properties’ such as degrees (somewhat in the spirit of [29]), and 
not on ‘global properties’ such as subgraph counts. Furthermore, we are deleting edges 
from Hp = H[Vp(H)], whereas the classical approach corresponds to deleting vertices 
from Vp(H) = E(Gn,p), say.

With Ej,1(x, r, y, z) in hand, we now refine4 the basic estimate (32) via the strategy 
outlined in Section 3.1.3 (see also (28) therein). We believe that the ideas used in the 
proof of Theorem 15 below are more important than its concrete statement (which is 
optimized for the purposes of this paper). Here one new ingredient is the edge deletion of 
the sparsification events in Pj,3,� of (36), which allows us to decrease certain maximum 
degrees. The total weight of the deleted edges can be as large as t/2, which is the reason 
why in (33) we need to relax w(G) ≥ μ +t to w(G) ≥ μ +t/2. In later applications we shall 
use Sj ≈ Rj/s with s = ω(1), and then the parametrization Qj = max{Sj , Dj} allows 
us to easily deal with Sj = o(1) border cases. The indicators in (35)–(36) can safely be 
ignored on first reading (they mainly facilitate certain technical estimates). A key aspect 
of (33) is that we intuitively replace Δ1(G) ≤ R1 of (32) with Δ1(G) ≤ min{Q1, R1}, 
which by the discussion of Section 3.2 is crucial for obtaining improved tail estimates 
(see also Theorem 18).

Theorem 15 (Combinatorial decomposition of the upper tail). Given H with 1 ≤ q ≤ k, 
assume that (P’) holds. Suppose that t > 0. Given positive (Dj)1≤j≤q, (Rj)1≤j<q and 
(Sj)1≤j<q, define Rq = Qq = Dq and Qj = max{Sj , Dj} for 1 ≤ j < q. Then we have

P
(
w(G) ≥ μ + t and Δq(G) ≤ Dq for some G ⊆ Hp

)
≤ P

(
w(G) ≥ μ + t/2 and Δ1(G) ≤ min{Q1, R1} for some G ⊆ Hp

)
+
∑

1≤j<q

[
Pj,1 + Pj,2 + Pj,3,1

]
,

(33)

where

Pj,1 = P
(
Δj(G) > Rj and Δj+1(G) ≤ Rj+1 for some G ⊆ Hp

)
, (34)

Pj,2 = 1{Qj<Rj and Qj+1>Dj+1}P
(
Δj(G) > Qj and Δj+1(G) ≤ Sj+1 for some G ⊆ Hp

)
,

(35)

Pj,3,� = 1{Qj<Rj and Qj+1=Dj+1}P
(
¬Ej,�(Qj , t/(2Lq), Dj+1, R�)

)
. (36)

The combinatorial proof proceeds in two sparsification rounds. In the first round we use 
our usual iterative degree argument to deduce that Δq(G) ≤ Rq implies Δj(G) ≤ Rj for 
all 1 ≤ j ≤ q. We start the second round with the sparsification event, by deleting edges 

4 Note that by setting Dj = Rj = Sj the indicators in (35)–(36) are zero, so (33) qualitatively reduces 
to (32).
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such that J ⊆ G satisfies Δq−1(J ) ≤ Qq−1 (tacitly assuming Qq−1 < Rq−1, say). The 
idea is that our usual iterative degree argument should then allow us to deduce that 
Δj+1(J ) ≤ Qj+1 implies Δj(J ) ≤ Qj for all 1 ≤ j < q − 1. Unfortunately, our later 
probabilistic estimates break down if the parameter Qj+1 is ‘too small’. With foresight 
we thus use our alternative ‘degree reduction’ argument whenever Qj+1 = Dj+1 holds, 
i.e., we again delete edges.

Proof of Theorem 15. Inequality (33) is trivial for q = 1 (since R1 = Q1 = D1). For q ≥
2 the plan is to show that properties (a)–(d) below deterministically imply that w(G) <
μ + t for every G ⊆ Hp with Δq(G) ≤ Dq. Using a union bound argument this then 
completes the proof (it is routine to check that (a)–(d) correspond to the complements 
of the events on the right hand side of (33), since Qj+1 > Dj+1 implies Sj+1 = Qj+1). 
Turning to the details, we henceforth assume that the following properties hold for 
all G ⊆ Hp and 1 ≤ j < q:

(a) Δ1(G) ≤ min{Q1, R1} implies w(G) < μ + t/2,
(b) Δj+1(G) ≤ Rj+1 implies Δj(G) ≤ Rj ,
(c) if Qj < Rj and Qj+1 > Dj+1, then Δj+1(G) ≤ Qj+1 implies Δj(G) ≤ Qj , and
(d) if Qj < Rj and Qj+1 = Dj+1, then Δj+1(G) ≤ Qj+1 and Δ1(G) ≤ R1 implies 

existence of J ⊆ G with Δj(J ) ≤ Qj and e(G \ J ) ≤ t/(2Lq).

For the remaining deterministic argument we fix G ⊆ Hp with Δq(G) ≤ Dq, and claim 
that we can construct a hypergraph sequence G = Jq ⊇ · · · ⊇ J1 such that

Δi(Jj) ≤
{
Ri, if 1 ≤ i < j,

min{Qi, Ri}, if j ≤ i ≤ q,
(37)

e(Jj+1 \ Jj) ≤ t/(2Lq). (38)

With this sequence in hand, using (38) we have

w(Jj+1 \ Jj) =
∑

f∈Jj+1\Jj

wf ≤
(

max
f∈Jj+1\Jj

wf

)
· e(Jj+1 \ Jj) ≤ L · t/(2Lq) = t/(2q),

which together with Δ1(J1) ≤ min{Q1, R1} of (37) and (a) then yields

w(G) = w(J1) +
∑

1≤j<q

w(Jj+1 \ Jj) < (μ + t/2) + (q − 1) · t/(2q) ≤ μ + t. (39)

It thus remains to construct G = Jq ⊇ · · · ⊇ J1 with the claimed properties. For the 
base case G = Jq, using Δq(Jq) = Δq(G) ≤ Dq = Rq repeated applications of (b) yield 
that Δi(Jq) ≤ Ri for all 1 ≤ i ≤ q, so (37) holds since Δq(Jq) ≤ Rq = min{Rq, Qq}. 
Given Jj+1 with 1 ≤ j < q, our construction of Jj ⊆ Jj+1 distinguishes several cases; 
in view of Δi(Jj) ≤ Δi(Jj+1) it clearly suffices to check (37) for Δj(Jj) only.
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If Qj ≥ Rj , then we set Jj = Jj+1, which satisfies Δj(Jj) = Δj(Jj+1) ≤ Rj =
min{Qj , Rj} by (37).

If Qj < Rj and Qj+1 > Dj+1, then we set Jj = Jj+1, which by (37) satisfies 
Δj+1(Jj) = Δj+1(Jj+1) ≤ Qj+1. Hence (c) implies Δj(Jj) ≤ Qj = min{Qj , Rj}.

Finally, if Qj < Rj and Qj+1 = Dj+1, then by (37) we have Δj+1(Jj+1) ≤ Qj+1 and 
Δ1(Jj+1) ≤ R1. Hence (d) implies existence of Jj ⊆ Jj+1 satisfying Δj(Jj) ≤ Qj =
min{Qj , Rj} and e(Jj+1 \ Jj) ≤ t/(2Lq), completing the proof. �

The above proof demonstrates that estimates for all subhypergraphs G ⊆ Hp are 
extremely powerful along with combinatorial arguments. It seems likely that the above 
sparsification approach can be sharpened in specific applications, i.e., that there is room 
for alternative (ad-hoc) arguments which apply the ‘degree reduction’ idea differently. 
For example, in [35] the degrees are iteratively reduced by a factor of two, say (replacing 
the finite sum in (39) by a convergent geometric series). In [27] the iterative argument also 
takes ‘trivial’ upper bounds for the Δj(H) into account (which can be smaller than Rj

or Qj).

3.3.1. A combinatorial local deletion argument
The goal of this subsection is to estimate P

(
¬Ej,1(x, r, y, z)

)
, i.e., the probability that 

our ‘sparsification’ event fails. As indicated in Section 3.1.3, our proof uses a maximal 
matching based idea which relies on combinatorial arguments and the BK-inequality. 
The following auxiliary event DU,x,y intuitively states that, in Hp, the vertex set U is 
the centre of a ‘star’ with at least x spikes (satisfying some degree constraint).

Definition (Auxiliary degree event). Let DU,x,y denote the event that there is K ⊆ ΓU (Hp)
with |K| ≥ x and Δ|U |+1(K) ≤ y.

To put this definition into our ‘all subhypergraphs’ context, note that ¬DU,x,y implies 
|ΓU (G)| < x for all G ⊆ Hp with Δ|U |+1(G) ≤ y. It might also be instructive to note that 
a union bound argument yields

P
(
Δj(G) ≥ x and Δj+1(G) ≤ y for some G ⊆ Hp

)
≤

∑
U⊆V (H):|U |=j

P (DU,x,y). (40)

The next result relates the auxiliary event DU,x,y with the sparsification event Ej,1(x, r,
y, z). For example, 

∑
U P (DU,x,y) ≤ B−x/y translates into P (¬Ej,1(x, r, y, z)) ≤

B−r/(kyz) by inequality (41).

Lemma 16 (Auxiliary result for the sparsification event). Given H, assume that 
maxf∈H |f | ≤ k holds. Then for all x, r, y, z > 0 and 1 ≤ j < k we have

P
(
¬Ej,1(x, r, y, z)

)
≤
( ∑

U⊆V (H):|U |=j

P (DU,x,y)
)�r/(k�x�z)�

. (41)
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Remark 17. Inequality (41) remains valid after dividing the right hand side by 
�r/(k�x�z)�!.

The proof of Lemma 16 develops a combinatorial idea from [35], which in turn was 
partially inspired by [28,14]. We call (U, KU ) an (j, x, y)-star in G if U ⊆ V (G) and 
KU ⊆ ΓU (G) = {f ∈ G : U ⊆ f} satisfy |U | = j, |KU | = �x� and Δj+1(KU ) ≤ y. 
Note that we allow for overlaps of the edges f, g ∈ KU outside of the ‘centre’ U . Writing 
Sj,x,y(G) for the collection of all (j, x, y)-stars in G, we define Mj,x,y(G) as the size of the 
largest M ⊆ Sj,x,y(G) satisfying V (KU ) ∩V (KW ) = ∅ for all distinct (U, KU ), (W, KW ) ∈
M. In intuitive words, Mj,x,y(G) denotes the size of the ‘largest (j, x, y)-star matching’ 
in G, i.e., vertex-disjoint collection of stars. We are now ready to follow the strategy 
sketched in Section 3.1.3 (see also (29) therein).

Proof of Lemma 16. Let r̃ = r/(k�x�z) and R = �r̃�. We first assume that Mj,x,y(Hp) ≤
r̃ holds, and claim that this implies the occurrence of Ej,1(x, r, y, z). For any G ⊆ Hp

with Δj+1(G) ≤ y and Δ1(G) ≤ z, it clearly suffices to show that there is J ⊆ G with 
Δj(J ) ≤ x and e(G \ J ) ≤ r. Let M ⊆ Sj,x,y(G) attain the maximum in the definition 
of Mj,x,y(G). We then remove all edges f ∈ G which overlap some star (U, KU ) ∈ M, 
where overlap means that f ∩ g �= ∅ for some edge g ∈ KU . We denote the resulting 
subhypergraph by J ⊆ G. Using Δj+1(J ) ≤ Δj+1(G) ≤ y and maximality of M, we 
then infer Δj(J ) ≤ �x� − 1 < x (because otherwise we could add another (j, x, y)-star 
to M). Furthermore, since |M| = Mj,x,y(G) ≤ Mj,x,y(Hp) ≤ r̃ and Δ1(G) ≤ z, by 
construction the number of deleted edges is at most

e(G\J ) ≤
∑

KU∈M

∑
f∈KU

∑
v∈f

|Γ{v}(G)| ≤ |M|·�x�·
(
max
f∈G

|f |
)
·Δ1(G) ≤ r̃ ·�x�kz = r. (42)

It follows that Mj,x,y(Hp) ≤ r̃ implies Ej,1(x, r, y, z), as claimed.
For (41) it remains to estimate P (Mj,x,y(Hp) > r̃). Similar to the proof of Theorem 11 

in [35], we set

ZR =
∑

(U1,...,UR):
Ui⊆V (H) and |Ui|=j

1{�i∈[R]DUi,x,y

}, (43)

where � is defined as in (15). If Mj,x,y(Hp) > r̃, then there is M ⊆ Sj,x,y(Hp) of size 
|M| = �r̃� = R which satisfies V (KU ) ∩ V (KW ) = ∅ for all distinct (U, KU ), (W, KW ) ∈
M. So, since the disjoint vertex sets V (KU ) ⊆ Vp(H) guarantee the occurrence of each 
event DU,x,y, it follows that �(U,KU )∈MDU,x,y occurs. As U ⊆ V (KU ) holds, by ver-
tex disjointness of the V (KU ) we deduce that the corresponding ‘star-centres’ U are 
distinct. Since ZR counts ordered R-tuples, we thus infer ZR ≥ R!. Hence, Markov’s 
inequality yields

P (Mj,x,y(Hp) > r̃) ≤ P (ZR ≥ R!) ≤ (EZR)/R!. (44)
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Turning to EZR, using the BK-inequality (16) we readily obtain

EZR =
∑

(U1,...,UR):
Ui⊆V (H)s and |Ui|=j

P
(
�i∈[R]DUi,x,y

)

≤
∑

(U1,...,UR):
Ui⊆V (H) and |Ui|=j

∏
i∈[R]

P (DUi,x,y) ≤
( ∑

U⊆V (H):|U |=j

P (DU,x,y)
)R

,

(45)

which together with (44) and R ≥ 1 completes the proof. �
The ‘star-matching’ based deletion argument used in the above proof seems of indepen-

dent interest. In applications it might be easier to avoid Ej,1(x, r, y, z), and directly work 
with the random variable Mj,x,y(Hp), see also [35,27]. The above estimates (44)–(45) ex-
ploit the BK-inequality to relate Mj,x,y(Hp) with the simpler events DU,x,y. In Hp and 
other probability spaces one can sometimes also estimate P (Mj,x,y(Hp) ≥ z) more di-
rectly (see, e.g., the remark after the proof of Lemma 17 in [35], or the proof of Lemma 9 
in [27]).

3.4. Probabilistic estimates

In this section we introduce our key probabilistic estimates, which complement the 
combinatorial decomposition of Theorem 15, i.e., allow us to bound the right hand side 
of (33). A key aspect of inequalities (46)–(47) is that improved degree constraints Δi(G) ≤
y translate into improved tail estimates. In our applications (48) below often reduces to 
P
(
¬Ej,1(x, r, y, z)

)
≤ (eμj/x)−Θ(r/(yz)), say (see, e.g., the proof of Theorem 34).

Theorem 18 (Probabilistic upper tail estimates). Given H, assume that (P’) holds. Set 
ϕ(x) = (1 + x) log(1 + x) − x. Then for all x, r, y, z, t > 0 and 1 ≤ j < k we have

P
(
w(G) ≥ μ + t/2 and Δ1(G) ≤ y for some G ⊆ Hp

)
≤ exp

(
−ϕ(t/μ)μ

4Lky

)
, (46)

P
(
Δj(G) ≥ x and Δj+1(G) ≤ y for some G ⊆ Hp

)
≤ N j

(eμj

x

)x/(ky)
, (47)

P
(
¬Ej,1(x, r, y, z)

)
≤
(
N j

(
eμj

�x�

)�x�/(ky)
)�r/(k�x�z)�

.

(48)

The proofs of (46)–(47) are based on fairly routine applications of Theorem 7. The 
crux is that the restrictions Δ1(G) ≤ y and Δj+1(G) ≤ y translate into bounds for the 
parameter C in (14), which intuitively controls the ‘largest dependencies’ (Δ1(G) ≤ y

ensures that every edge f ∈ G overlaps at most |f | ·Δ1(G) ≤ ky edges e ∈ G). For verifying 
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the independence assumption of Theorem 7, we use the following simple observation: 
e ∩f = ∅ implies that 1{e∈Hp} = 1{e⊆Vp(H)} and 1{f∈Hp} = 1{f⊆Vp(H)} are independent, 
since both depend on disjoint sets of independent variables ξσ = 1{σ∈Vp(H)}. Assuming 
(e ∩f) \U = ∅, we below exploit that an analogous (conditional independence) reasoning 
works after conditioning on U ⊆ Vp(H).

Proof of Theorem 18. With an eye on Theorem 7, inspired by Remark 8 we set ξσ =
1{σ∈Vp(H)}.

We first prove (46). Let Yf = wf1{f∈Hp}, which satisfies Yf = wf

∏
σ∈f ξσ and ∑

f∈H EYf = Ew(H) = μ. Furthermore, w(G) =
∑

w∈G Yf for any G ⊆ Hp. Defining 
α ∼ β if α ∩ β �= ∅, the independence assumption of Theorem 7 holds by Remark 8. 
Observe that for any f ∈ G ⊆ H with Δ1(G) ≤ y we have

∑
e∈G:e∼f

Ye ≤
(
max
e∈G

we

)
·

∑
e∈G:e∩f 
=∅

1{e∈Hp} ≤ L ·
∑
v∈f

|Γ{v}(G)| ≤ L · |f | · Δ1(G) ≤ Lky.

To sum up, if w(G) ≥ μ + t/2 and Δ1(G) ≤ y for some G ⊆ Hp, then ZC ≥ μ + t/2 holds 
with C = Lky, where ZC is defined as in Theorem 7 with I = H. So, applying (14), 
we deduce

P
(
w(G) ≥ μ + t/2 and Δ1(G) ≤ y for some

G ⊆ Hp

)
≤ P (ZC ≥ μ + t/2) ≤ exp

(
−ϕ(t/(2μ))μ

Lky

)
. (49)

Using calculus (see, e.g., the proof of Lemma 13 in [35]) it is easy to check that ϕ(t/(2μ) ≥
ϕ(t/μ)/4. In view of (49) and (14), inequality (46) now follows.

Next we turn to (47), which hinges on the union bound estimate (40). Note that 
v(H) < 1 implies H = ∅, so (47) is trivial for N < 1 (the left hand side is zero). 
Similarly, (47) is also trivial for x ≤ eμj and N ≥ 1 (the expression on the right hand 
side is at least one). To sum up, we henceforth may assume x > eμj and N ≥ 1. Given 
U ⊆ V (H) with |U | = j, set I := ΓU (H) = {f ∈ H : U ⊆ f}. Let Yf = 1{f∈Hp}, and 
define α ∼ β if (α∩β) \U �= ∅. Note that for any f ∈ K ⊆ I with Δ|U |+1(K) ≤ y we have

∑
e∈K:e∼f

Ye =
∑

e∈K:(e∩f)\U 
=∅
1{e∈Hp} ≤

∑
v∈f\U

|ΓU∪{v}(K)| ≤ |f \ U | · Δ|U |+1(K) ≤ ky.

(50)

So, if DU,x,y occurs, then ZC ≥ x holds with C = ky, where ZC is defined as in Theorem 7
with I = ΓU (H). For f ∈ I, note that U � Vp(H) implies f /∈ Hp = H[Vp(H)]. Recalling 
Yf = 1{f∈Hp} and ξσ = 1{σ∈Vp(H)}, using the definition of μj (see (21)) it follows that
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∑
f∈I

E(Yf | (ξσ)σ∈U ) =
∑

f∈ΓU (H)

P (f ∈ Hp | (ξσ)σ∈U )1{U⊆Vp(H)}

≤
∑

f∈ΓU (H)

P (f ∈ Hp | U ⊆ Vp(H)) =
∑

f∈ΓU (H)

p|f |−|U | ≤ μ|U | = μj .

(51)

Furthermore, conditional on (ξσ)σ∈U , the independence assumption of Theorem 7 holds 
by the same reasoning as in Remark 8 (in the conditional space, each Yf is a function of 
the independent random variables (ξσ)σ∈f\U ). So, applying (14) with μ = μj and μ +t =
x > eμj , we deduce the conditional inequality

P (DU,x,y | (ξσ)σ∈U ) ≤ P (ZC ≥ x | (ξσ)σ∈U ) ≤
(eμj

x

)x/(ky)
. (52)

Taking expectations, by summing over all relevant U ⊆ V (H) we thus infer

∑
U⊆V (H):|U |=j

P (DU,x,y) =
∑

U⊆V (H):|U |=j

EP (DU,x,y | (ξσ)σ∈U ) ≤ N j
(eμj

x

)x/(ky)
, (53)

and (47) follows in view of (40).
It remains to establish (48). Exploiting integrality of the underlying variables, note 

in (52) we can strengthen ZC ≥ x to ZC ≥ �x�. In (52)–(53) we thus may replace 
(eμj/x)x/(ky) by (eμj/�x�)�x�/(ky), and so (48) follows from (41) of Lemma 16, with 
room to spare. �

The proof of Claim 14 (only used in our informal discussion) is very similar, and thus 
left to the reader.

3.5. Extension: uniform random induced subhypergraph Hm

The proofs in Sections 3.3–3.4 exploited the independence of Hp = H[Vp(H)] in a 
limited way. In this section we record that they extend to the uniform model Hm =
H[Vm(H)], where the vertex subset Vm(H) ⊆ V (H) of size |Vm(H)| = m is chosen 
uniformly at random (this is a natural variant of Hp with mild dependencies).

Remark 19. Theorems 15 and 18 carry over to Hm after setting p = m/v(H) in (21).

Proof. The proof of Theorem 15 is based on (deterministic) combinatorial arguments, 
and after replacing Hp with Hm thus carries over word-for-word to Hm.

Turning to Theorem 18, using Remark 9 it is easy to see that the proof of (46) carries 
over to Hm (with minor notational changes).

For (47) more care is needed. To avoid conditional probabilities and expectations, set 
Yf = 1{f\U⊆Vm(H)} for all f ∈ I := ΓU (H). Writing α ∼ β if (α ∩ β) \ U �= ∅, note 
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that inequality (50) readily carries over. It is folklore (analogous to, e.g., the proof of 
Theorem 15 in [17]) that EYf = P (f \U ⊆ Vm(H)) ≤ p|f |−|f∩U | for p = m/v(H), so that ∑

f∈I EYf ≤
∑

f∈ΓU (H) p
|f |−|U | ≤ μj by (21). Recalling the definition of ∼, it is similarly 

folklore that the random variables Yf = 1{f\U⊆Vm(H)} satisfy the negative correlation 
condition of Remark 9. Mimicking the argument leading to (52), using Theorem 7 we 
obtain P (DU,x,y) ≤ P (ZC ≥ x) ≤ (eμj/x)x/(ky) for Hm, which by a simpler variant 
of (53) then establishes (47).

As the proof of (47) carries over, for (48) it remains to check that (41) holds for Hm. 
A close inspection of the proof of Lemma 16 reveals that only the usage of the BK-
inequality in (45) needs to be justified. But, since DU,x,y is an increasing event, this 
application of (16) is valid by Remark 13, completing the proof. �
4. More general setup

In this section we introduce our general Kim–Vu/Janson–Ruciński type setup, and 
show that the combinatorial and probabilistic arguments of Section 3 carry over with 
somewhat minor changes. Readers only interested in random induced subhypergraphs Hp

may wish to skip to Section 5 (see Remark 29).

4.1. Setup

Our general setup is based on certain independence assumptions, i.e., we do not re-
strict ourselves to polynomials of independent random variables (and we also do not 
make any monotonicity assumptions). Given a hypergraph H and non-negative random 
variables (Yf )f∈H, for every G ⊆ H we set

X(G) =
∑
f∈G

Yf , (54)

where our main focus5 is on the sum X(H) of all the variables Yf (sometimes H is 
also called the ‘supporting’ or ‘underlying’ hypergraph, see [19,32]). Loosely speaking, 
the plan is to adapt the combinatorial arguments of Sections 3.3–3.4 to the associated 
random subhypergraph

Hp = {f ∈ H : Yf > 0}, (55)

which due to X(H) = X(Hp) loosely encodes all ‘relevant’ variables (recall that Yf ≥ 0). 
Similar to [15], we shall use the following independence assumption (H�), where � ∈ N

is a parameter:

5 Usually we have X =
∑

f∈H wfIf in mind, for random variables If ∈ {0, 1} and constants wf ∈ (0, ∞). 
All examples and applications in [19,30,32,15,14,16] are of this form, with wf = 1 (possibly after rescaling 
X by a constant factor).
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(H�) Let (ξσ)σ∈A be a family of independent finite random variables. Suppose that there 
are families of subsets AU ⊆ A such that (i) each non-negative random variable Yf

with f ∈ H is a function of the variables (ξσ)σ∈Af
, (ii) we have Ae ∩ Af ⊆ Ae∩f

for all e, f ∈ H, and (iii) we have Ae ∩ Af = ∅ for all e, f ∈ H with |e ∩ f | < �.

The setup of Section 3.1.1 corresponds to the special case ξσ = 1{σ∈Vp(H)}, Af = f

and Yf = wf

∏
σ∈Af

ξσ. A key consequence of (H�) is that Ye and Yf are independent 
whenever |e ∩ f | < �, since by (i) and (iii) then both depend on disjoint sets of vari-
ables ξσ. The ‘structural’ assumption (i) that each Yf depends only on the variables ξσ
with σ ∈ Af is very common in applications; often AU = U suffices. The ‘consisten-
cy’ assumption (ii) and ‘independence’ assumption (iii) of the index sets AU are also 
very natural. For example, in the frequent case AU = U we have Ae ∩ Af = Ae∩f , so 
Ae ∩ Af = ∅ if |e ∩ f | < 1. Example 22 in Section 4.1.1 illustrates the case � �= 1 with 
AU = {f ∈ E(Kn) : f ⊆ U}.

We now introduce the modified key parameters μj , which intuitively quantify the 
‘dependencies’ among the variables Yf (in the spirit of [15,19,30,32]). Recalling ΓU (H) =
{f ∈ H : U ⊆ f}, with Section 3.1.1 in mind we now define the following two crucial 
assumptions (P) and (Pq), where q ∈ N is a parameter:

(P) Assume that maxf∈H |f | ≤ k, maxf∈H supYf ≤ L and v(H) ≤ N . Define μ =
EX(H) and

μj = max
U⊆V (H):|U |=j

supE
(
|ΓU (Hp)|

∣∣ (ξσ)σ∈AU

)
, (56)

where the supremum is over all values of the variables ξσ with σ ∈ AU .
(Pq) Assume that Δq(H) ≤ D.

In view of (22), property (P) is a natural extension of (P’) from the basic setup of 
Section 3.1.1. Our general setup lacks monotonicity, and so the conditioning in (56) is 
with respect to all possible values of the ξσ.

For the interested reader, we now briefly discuss how our setup and assumptions differ 
in some (usually irrelevant) minor details from the literature [15,19,30,32]. Firstly, the 
‘normal’ assumption of Vu implies maxf∈H supYf ≤ 1 in (P) above (see, e.g., Theorem 
1.2 in [30] and Theorem 4.2 in [32]). Secondly, classical variants of the ‘maximum average 
effect’ parameter μj (see, e.g., Sections 3 in [15] and Section 4 in [32]) are roughly defined 
as the maximum over all supE(

∑
f∈ΓU (Hp) Yf | (ξσ)σ∈AU

) with |U | = j, but in most 
applications 

∑
f∈ΓU (Hp) Yf = Θ(|ΓU (Hp)|) holds, so the difference is usually immaterial. 

Thirdly, in (H�) our assumptions for the index sets AU are slightly simpler than in 
Section 3 of [15]. Finally, in contrast to [15], we assume that the (ξσ)σ∈A are finite
random variables, which is very natural in combinatorial applications (this technicality 
can presumably be removed by approximation arguments, but we have not pursued this).
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4.1.1. Examples
The above assumptions (H�) and (P ) might seem a bit technical at first sight, and 

for this reason we shall below spell out three pivotal examples (see Section 3 of [15] for 
more examples).

Example 20 (Random induced subhypergraphs). For a given k-uniform hypergraph H, 
analogous to Section 3.1.1 we consider X = e(Hp) =

∑
f∈H 1{f∈Hp}. Note that A = H, 

ξσ = 1{σ∈Vp(H)}, Af = f and Yf =
∏

σ∈Af
ξσ ∈ {0, 1} satisfy properties (H1) and (Pk). 

In fact, for (P) we can simplify the definition of μj . Namely, since U � Vp(H) implies 
f /∈ Hp = H[Vp(H)] for all f ∈ ΓU (H), we have

supE
(
|ΓU (Hp)|

∣∣ (ξσ)σ∈AU

)
= E

(
|ΓU (Hp)|

∣∣ U ⊆ Vp(H)
)

=
∑

f∈ΓU (H)

P
(
f ∈ Hp

∣∣ U ⊆ Vp(H)
)
.

As H is k-uniform, for any f ∈ ΓU (H) it is easy to see that P
(
f ∈ Hp

∣∣ U ⊆ Vp(H)
)

=
P
(
f \U ⊆ Vp(H)

)
= pk−|U |. Combining these observations, it follows that (56) simplifies 

for 1 ≤ j ≤ k to

μj = max
U⊆V (H):|U |=j

|ΓU (H)| · pk−j . (57)

Example 21 (Subgraph counts in Gn,p: induced subhypergraphs approach). Subgraph 
counts in Gn,p can be viewed as a special case of Example 20, i.e., random induced 
subhypergraphs. Given a fixed subgraph H with e = eH edges, v = vH vertices 
and minimum degree δ = δH ≥ 1, we consider the e-uniform hypergraph H with 
vertex set V (H) = E(Kn), where edges correspond to copies of H. Clearly, k = e

and N = n2 suffice. Note that for the copy of H counted by Yf , any subset of the 
edges U ⊆ f ∩ E(Kn) ⊆ V (H) is isomorphic to some subgraph J ⊆ H. So, taking all 
subgraphs of H with exactly |U | = j edges into account, using (57) with k = e and 
V (H) = E(Kn) there is universal constant B = B(H) > 0 such that for 1 ≤ j ≤ e

we have

μj ≤
∑

J⊆H:eJ=j

max
U⊆E(Kn): U∼=J

|ΓU (H)| · pe−j ≤ B
∑

J⊆H:eJ=j

nv−vJpe−j . (58)

Note that any q = e − δ + 1 ≤ e edges already determine the vertex set, so (Pq) holds 
with D = O(1). Finally, a minor variant of the described approach also applies to induced
subgraph counts (with k =

(
vH
2
)
, by letting E(H) correspond to copies of the complete 

graph KvH , and defining Yf as the indicator for the event that the subgraph of Gn,p

defined by the edges in f is isomorphic to H).

Example 22 (Subgraph counts in Gn,p: vertex exposure approach). Subgraph counts 
in Gn,p can also be treated via a ‘vertex exposure’ based approach. Given a fixed sub-
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graph H with e = eH edges and v = vH edges, we consider the complete v-uniform 
hypergraph H with vertex set V (H) = [n], so N = n and k = v. For I ⊆ V (H) with 
|I| = v the random variable YI counts the number of copies of H in Gn,p that have 
vertex set I. Note that 0 ≤ YI ≤ L = O(1). Since X =

∑
I∈H YI , we take A = E(Kn), 

ξσ = 1{σ∈Vp(H)}, and AI = {f ∈ E(Kn) : f ⊆ I}. As AI∩AJ = AI∩J is empty whenever 
|I ∩ J | < 2, for � = 2 properties (H�) and (Pk) are satisfied. Conditioning on (ξσ)σ∈AU

corresponds to conditioning on Gn,p[U ], so bounding μj is conceptually analogous (58). 
Indeed, by similar reasoning as in Example 21, we arrive for 1 ≤ j ≤ v at

μj ≤ B
∑

induced J⊆H:vJ=j

nv−jpe−eJ , (59)

where B = B(H) > 0. Finally, induced subgraph counts can clearly be treated analo-
gously.

4.2. Adapting the arguments of Sections 3.3–3.4

In this section we adapt the key results Theorem 15 and 18 from Sections 3.3–3.4
to our more general setup. The crux is that the random variables (Yf)f∈H satisfy Yf =
Yf (ξσ : σ ∈ Af ) by the independence assumption (H�), so that the intersection properties 
of the index sets Af give us a handle on the dependencies. This allows us to adapt our 
combinatorial arguments to the auxiliary subhypergraph Hp = {f ∈ H : Yf > 0}.

We start with a natural analogue of Theorem 15, which is at the heart of our argu-
ments.

Theorem 23 (Combinatorial decomposition of the upper tail: general setup). Given H
with 1 ≤ � ≤ q ≤ k, assume that (H�) and (P) hold. Suppose that t > 0. Given positive 
(Rj)�≤j<q and (Dj)�≤j≤q, define Rq = Qq = Dq and Qj = max{Sj , Dj} for � ≤ j < q. 
Then we have

P
(
X(G) ≥ μ + t and Δq(G) ≤ Dq for some G ⊆ Hp

)
≤ P

(
X(G) ≥ μ + t/2 and Δ�(G) ≤ min{Q�, R�} for some G ⊆ Hp

)
+
∑

�≤j<q

[
Pj,1 + Pj,2 + Pj,3,�

]
,

(60)

where Pj,1, Pj,2 and Pj,3,� are defined as in (34)–(36).

Recalling X(G) =
∑

f∈G Yf and Hp = {f ∈ H : Yf > 0}, the deterministic proof of 
Theorem 15 carries over to Theorem 23 with minor obvious changes (inequality (60) is 
trivial if q = �; for q > � it suffices to construct G = Jq ⊇ · · · ⊇ J�, with indices of 
form � ≤ i, j ≤ q in (37)); we omit the routine details.

Next we state an analogue of Lemma 16 for the ‘sparsification’ event Ej,�(x, r, y, z)
from Section 3.3.



124 L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98–146
Lemma 24 (Auxiliary result for the sparsification event: general setup). Given H with 
1 ≤ � ≤ k, assume that (H�) and maxf∈H |f | ≤ k hold. Then for all x, r, y, z > 0 and 
� ≤ j < k we have

P
(
¬Ej,�(x, r, y, z)

)
≤
( ∑

U⊆V (H):|U |=j

P (DU,x,y)
)⌈r/((k�)�x�z)⌉

. (61)

Remark 25. Inequality (61) remains valid after dividing the right hand side by 
�r/(

(
k
�

)
�x�z)�!.

For the proof of Lemma 24 we adapt the definition of Mj,x,y(G) used for Lemma 16. Intu-
itively, the idea is to replace ‘vertex disjoint’ by ‘depending on disjoint sets of variables’. 
Namely, here we define Mj,x,y(G) as the size of the largest collection M ⊆ Sj,x,y(G) of 
(j, x, y)-stars in G satisfying the following property for all distinct (U, KU ), (W, KW ) ∈
M: we have |e ∩ f | < � for all e ∈ KU and f ∈ KW . The point will be (i) that each Yf

is a function of the variables (ξσ)σ∈Af
, and (ii) that |e ∩ f | < � implies Ae ∩ Af = ∅

by (H�).

Proof of Lemma 24. Using the above definition of Mj,x,y(G), we shall adapt the proof of 
Lemma 16. Let r̃ = r/

((
k
�

)
�x�z

)
and R = �r̃�. We first assume that Mj,x,y(Hp) ≤ r̃ holds, 

and claim that this implies the occurrence of Ej,�(x, r, y, z). Fix G ⊆ Hp with Δj+1(G) ≤ y

and Δ�(G) ≤ z, and let M ⊆ Sj,x,y(G) attain the maximum in the definition of Mj,x,y(G). 
We remove all edges f ∈ G which ‘overlap’ some star (U, KU ) ∈ M, where overlap means 
that |f ∩g| ≥ � for some edge g ∈ KU . We denote the resulting subhypergraph by J ⊆ G. 
Recalling Δj+1(J ) ≤ Δj+1(G) ≤ y, by maximality of M we infer Δj(J ) ≤ �x� − 1 < x. 
Similar to (42), using |M| = Mj,x,y(G) ≤ Mj,x,y(Hp) ≤ r̃ and Δ�(G) ≤ z it is easy to see 
that we removed at most

e(G \ J ) ≤ |M| · �x� ·
[
max
f∈G

(
|f |
�

)]
· Δ�(G) ≤ r̃ · �x�

(
k

�

)
z = r (62)

edges. It follows that Mj,x,y(Hp) ≤ r̃ implies Ej,�(x, r, y, z), as claimed.
For (61) it remains to estimate P (Mj,x,y(Hp) > r̃). Suppose that Mj,x,y(Hp) > r̃

occurs. If M ⊆ Sj,x,y(Hp) attains the maximum in the definition of Mj,x,y(Hp), then 
we know (i) that |M| ≥ �r̃� = R holds, and (ii) that 

⋂
(U,KU )∈M DU,x,y occurs. In the 

following we argue that these events DU,x,y ‘occur disjointly’ in the sense of Section 2.2. 
For each (U, KU ) ∈ M, note that the variables indexed by

V (KU ) =
⋃

f∈KU

Af

guarantee the occurrence of DU,x,y. The crux is now that for all distinct (U, KU ),
(W, KW ) ∈ M, by (iii) of (H�) we have Ae ∩ Af = ∅ for all e ∈ Ku and f ∈ KW

(since |e ∩ f | < �), so
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V (KU ) ∩ V (KW ) =
⋃

e∈KU

⋃
f∈KW

(Ae ∩ Af ) = ∅. (63)

It follows that �(U,KU )∈MDU,x,y occurs (since the disjoint sets of variables indexed by 
V (KU ) guarantee the occurrence of each DU,x,y). Next we claim that all the corresponding 
sets U are distinct. To see this, note that for distinct (U, KU ), (W, KW ) ∈ M we have 
� > |e ∩ f | ≥ |U ∩ W | by definition of M, which due to |U | = |W | = j ≥ � implies 
U �= W . To sum up, Mj,x,y(Hp) > r̃ implies ZR ≥ R!, where ZR is defined as in (43). The 
arguments of (44) and (45) now carry over unchanged, completing the proof of (61). �

Finally, we state a natural analogue of Theorem 18, which contains our core proba-
bilistic estimates (inequalities (64)–(66) allow us to bound the right hand side of (60)
from Theorem 23).

Theorem 26 (Probabilistic upper tail estimates: general setup). Given H with 1 ≤ � ≤ k, 
assume that (H�) and (P) hold. Set ϕ(x) = (1 +x) log(1 +x) −x. Then for all x, r, y, z, t >
0 and � ≤ j < k we have

P
(
X(G) ≥ μ + t/2 and Δ�(G) ≤ y for some G ⊆ Hp

)
≤ exp

(
−ϕ(t/μ)μ

4L
(
k
�

)
y

)
, (64)

P
(
Δj(G) ≥ x and Δj+1(G) ≤ y for some G ⊆ Hp

)
≤ N j

(eμj

x

)x/(ky)
, (65)

P
(
¬Ej,�(x, r, y, z)

)
≤
(
N j

(
eμj

�x�

)�x�/(4ky)
)⌈r/((k�)�x�z)⌉

.

(66)

The proof is based on a minor modification of the proof of Theorem 18. As we shall see, 
our main task is to adapt the definitions of the dependency relations ∼. To this end recall 
(i) that each Yf is a function of the independent variables (ξσ)σ∈Af

, and (ii) that (H�) 
implies Ae ∩ Af = ∅ whenever |e ∩ f | < �.

Proof of Theorem 26. For (64), note that 
∑

f∈H EYf = EX(H) = μ. We define α ∼ β

if |α ∩ β| ≥ �. In view of properties (i) and (ii) discussed above, the independence 
assumption of Theorem 7 holds by analogous reasoning as in Remark 8. Furthermore, 
for any f ∈ G ⊆ H with Δ�(G) ≤ y we have∑

e∈G:e∼f

Ye ≤
(
max
e∈G

supYe

)
·

∑
e∈G:|e∩f |≥�

1{f∈G} ≤ L ·
∑

U⊆f :|U |=�

|ΓU (G)|

≤ L ·
(
|f |
�

)
· Δ�(G) ≤ L

(
k

�

)
y.

Setting C = L
(
k
�

)
y, the remaining proof of (46) readily carries over to (64) with obvious 

notational changes.
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Next we turn to (65), which is again based on (40). As before, we may assume that 
x > eμj and N ≥ 1 (otherwise the claim is trivial). Furthermore, given U ⊆ V (H)
with |U | = j, we set I = ΓU (H). With the random variables 

(
1{Yf>0}

)
f∈I in mind, 

define α ∼ β if (α ∩ β) \ U �= ∅. Note that, for any f ∈ K ⊆ I with Δ|U |+1(K) ≤ y, 
analogous to (50) we have 

∑
e∈K:e∼f 1{Yf>0} ≤ |f \ U | · Δ|U |+1(K) ≤ ky. Furthermore, 

by definition of I = ΓU (H), Hp = {f ∈ H : Yf > 0} and μj (see (56)) we obtain
∑
f∈I

E
(
1{Yf>0} | (ξσ)σ∈AU

)
= E

(
|ΓU (Hp)|

∣∣ (ξσ)σ∈AU

)
≤ μ|U | = μj .

Note that, conditional on (ξσ)σ∈AU
, each 1{Yf>0} is now a function of the independent 

random variables (ξσ)σ∈Af\AU
. Furthermore, for all e, f ∈ I = {g ∈ H : U ⊆ g} we see 

that (e ∩ f) \U = ∅ implies e ∩ f = U , so that (ii) of (H�) yields Ae ∩Af ⊆ Ae∩f = AU . 
For all e, f ∈ I we thus infer that e � f implies

(Ae \ AU ) ∩ (Af \ AU ) = (Ae ∩ Af ) \ AU ⊆ AU \ AU = ∅.

Conditional on (ξσ)σ∈AU
, it follows (by the reasoning of Remark 8) that the independence 

assumption of Theorem 7 holds for the variables 
(
1{Yf>0}

)
f∈I . The remaining proof 

of (47) readily carries over to (65).
Finally, for (66) we recall that (48) is based on Lemma 16 and the argument leading 

to (47). In view of Lemma 24 and the above proof of (65), the same line of reasoning 
carries over, establishing (66). �
4.3. Adapting Section 3.5: vertex exposure approach for Hm

In this section we partially adapt our arguments to the uniform random induced sub-
hypergraph Fm = F [Vm(F)]. Generalizing the ‘vertex exposure’ approach of Example 22, 
we rely on the following assumption.

(H�P) Suppose that H, E and F are hypergraphs with V (H) = V (E), V (F) = {h ∈ E}
and minh∈E |h| ≥ �. Defining AU = {h ∈ E : h ⊆ U} for all U ⊆ V (E), assume 
that F =

⋃
f∈H F [Af ] is a disjoint union of induced subhypergraphs. Suppose 

that (wg)g∈F are non-negative weights. For all f ∈ H, let

Yf =
∑

g∈F [Af ]

wg1{g∈Fm}. (67)

Assume that maxf∈H |f | ≤ k, maxf∈H Yf ≤ L and v(H) ≤ N . Define μ =
EX(H), p = m/v(F), and

μj = max
U⊆V (E):|U |=j

∑
f∈ΓU (H)

∑
g∈F [Af ]

p|g|−|g∩AU |. (68)
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Example 27. Using the ‘vertex exposure’ setup discussed in Example 22, subgraph counts 
in Gn,m satisfy (H�P) with � = 2 and k = vH (by setting E = Kn, and defining F as 
the hypergraph H of Example 21). In (68) the modified parameter μj is again bounded 
from above by the right hand side of (59).

Remark 28. Theorems 23 and 26 remain valid after replacing the assumptions (H�), (P) 
with (H�P).

Proof. With the ideas of Remark 19 in mind, we only sketch the key modifications 
for (64)–(65) of Theorem 26.

For (64) it suffices to verify the negative correlation condition of Remark 9, writing 
α ∼ β if |α ∩ β| ≥ �. Using (67) and the negative correlation properties of Fm (see 
Remark 9), it is not hard to check that

E
(∏
i∈[s]

Yαi

)
=

∑
g1∈F [Aα1 ]

· · ·
∑

gs∈F [Aαs ]

E
(∏
i∈[s]

wgi1{gi∈Fm}
)
≤
∏
i∈[s]

EYαi
, (69)

and so the proof of (64) carries over (above we used that αi � αj implies F [Aαi
] ∩

F [Aαj
] = ∅).

For (65) we define α ∼ β if (α ∩ β) \ U �= ∅, and replace 
(
1{Yf>0}

)
f∈I by (

1{Yf}
)
f∈I , where Yf denotes the event that g \ AU ⊆ Vm(F) for some g ∈ F [Af ]. Let 

λf =
∑

g∈F [Af ] P (g \AU ⊆ Vm(F)). It is folklore that P (g \AU ⊆ Vm(F)) ≤ p|g|−|g∩AU |

(see Remark 19), so I = ΓU (H) and (68) yield 
∑

f∈I λf ≤ μ|U | = μj . Since 1{Yf} ≤∑
g∈F [Af ] 1{g\AU⊆Vm(F)}, analogous to (69) we infer E(

∏
i∈[s] 1{Yαi

}) ≤
∏

i∈[s] λαi
, es-

tablishing the correlation condition of Remark 10. Mimicking Remark 19, the proof 
of (47) then carries over to (65). �
5. Corollaries: upper tail inequalities

The main results of Sections 3–4 are Theorems 15, 23 of form P (X ≥ (1 + ε)EX) ≤∑
i P (¬Ei) and Theorems 18, 26 of form P (¬Ei) ≤ exp(−Ψi). In this section we derive 

upper tail inequalities that are convenient for the applications of Section 6, and briefly 
compare some of our more general estimates with the literature.

Remark 29 (Random induced subhypergraph setup). The results in Sections 5.1–5.2 are 
stated for the general setup of Section 4.1. But, with minor changes, they remain valid 
in the simpler random induced subhypergraph setup of Section 3.1.1. Indeed, setting 
� = 1 and replacing the assumptions (H�), (P) with (P’), all results carry over to Hp

by defining X(J ) := w(J ). After setting p = m/v(H) in (21), these results for Hp then 
also carry over to the uniform variant Hm defined in Section 3.5. Finally, after replacing 
the assumptions (H�), (P) with (H�P), all results in Sections 5.1–5.2 also remain valid 
in the setup of Section 4.3.
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Henceforth, we tacitly set ϕ(x) = (1 +x) log(1 +x) −x for brevity (as in Theorems 7, 18
and 26).

5.1. Easy-to-apply tail inequalities

In this section we state some simplified upper tail inequalities that suffice for all the 
applications in Section 6 (we have not optimized the usually irrelevant constants); the 
proofs are deferred to Section 5.3.

On first reading of the following upper tail inequality for X(H) =
∑

f∈H Yf , the 
reader may wish to set � = 1 and q = k, so that (72) is of form P (X(H) ≥ 2μ) ≤
exp(−d min{μ, μ1/k log(e/π)}). Here our main novelty is the log(e/π) term: it allows us to 
gain an extra logarithmic factor if π ∈ {N−1, p}, which yields best possible tail estimates 
in the applications of Section 6.1. We think of (70) as a ‘balancedness’ condition, and 
mainly have parameters of form π ∈ {1, N−1, p} in mind. In fact, for π ∈ {N−1, p} the 
technical assumption (71) usually holds automatically for small τ (see Remark 31 and 
the proof of Theorem 36).

Theorem 30 (Easy-to-apply upper tail inequality). Given H with 1 ≤ � ≤ q ≤ k, assume 
that (H�), (P) and (Pq) hold. If there are constants A, α, τ > 0 and a parameter π ∈ (0, 1]
such that

max
�≤j<q

μj

max{μ(q−j)/(q−�+1), 1} ≤ Aπα, (70)

Aμ1/(q−�+1) ≥ 1{π>N−τ} logN, (71)

then for ε > 0 we have

P (X(H) ≥ (1 + ε)μ)≤ (1 + bN−�) exp
(
−cmin

{
ϕ(ε)μ, min

{
ε2, 1

}
μ1/(q−�+1) log(e/π)

})
≤ (1 + bN−�) exp

(
−dmin

{
ε2, 1

}
min

{
μ, μ1/(q−�+1) log(e/π)

})
,

(72)

where b = 3q, c = c(�, q, k, L, D, A, α, τ) > 0 and d = c/3.

Remark 31. If π = N−1, then (71) is trivially satisfied for τ = 1/2, and log(e/π) ≥ logN
holds in (72).

Simple applications of the inductive approaches [19,15,32] often implicitly assume (70)
with π = 1, and replace (71) by the stronger assumption min{ε2, 1}μ1/(q−�+1) =
ω(logN), say (see, e.g., the proof of Corollary 6.3 in [32] or Theorem 2.1 in [31]). Their 
conclusion is then of the form P (X(H) ≥ (1 + ε)μ) ≤ exp(−a min{ε2, 1}μ1/(q−�+1)), 
where μ1/(q−�+1) = min

{
μ, μ1/(q−�+1) log(e/π)

}
holds by assumption. In other words, 
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our inequality (72) yields an extra logarithmic factor when π ∈ {N−1, p} in (70). To il-
lustrate this, for subgraph counts in Gn,p the setup of Example 21 (with � = 1, q = k = e

and N = n2) naturally yields

max
�≤j<q

μj

μ(q−j)/(q−�+1) ≤ max
1≤j<e

O(
∑

J⊆H:eJ=j n
v−vJpe−j)

Θ((nvpe)(e−j)/e)
≤ O(

∑
J⊆H:1≤eJ<e

neJv/e−vJ ),

which is well-known to be O(n−β) for so-called ‘strictly balanced’ graphs and O(1) for 
‘balanced’ graphs (the details are deferred to (104) and (115) in Section 6.2; see also 
Section 6.3 in [32]).

The next upper tail result assumes that all the parameters μj are decaying polyno-
mially in N , which typically requires that μ = EX(H) is small (as v(H) ≤ N). On first 
reading of Theorem 32 the reader may wish to set � = 1, q = k and K = 1, so that (74)
is of form P (X(H) ≥ μ + t) ≤ exp(−a min{t2/μ, t1/k logN}) when t ∈ [1, μ]. Here our 
main novelty is the t1/k logN term, which is key for the applications in Section 6.2.1.

Theorem 32 (Easy-to-apply upper tail inequality: the small expectations case). Given H
with 1 ≤ � ≤ q ≤ k, assume that (H�), (P) and (Pq) hold. If there are constants A, α > 0
such that

max
�≤j<q

μj ≤ AN−α, (73)

then for t, K > 0 we have

P (X(H) ≥ μ + t) ≤ (1 + bN−q) exp
(
−min

{
cϕ(t/μ)μ, max

{
ct1/(q−�+1),K

}
logN

})
≤ (1 + bN−q) exp

(
−min

{
dt2/μ, dt, max

{
ct1/(q−�+1),K

}
logN

})
,

(74)

where b = 2q, c = c(�, q, k, L, D, A, α, K) > 0 and d = c/3.

The inductive approaches [30,15] yield variants of (74) where max
{
ct1/(q−�+1), K

}
is 

qualitatively replaced by K (see, e.g., Corollary 4.10 in [15]). For K large enough this 
gives bounds of the form P (X(H) ≥ (1 + ε)μ) ≤ N−β for μ ≥ C(ε, d, β) log n, and 
P (X(H) ≥ (1 + ε)μ) ≤ exp(−dε2μ) for μ ≤ log n and ε ≤ 1, say (see, e.g., Corollar-
ies 4.11–4.12 in [15]). To illustrate assumption (73), for subgraph counts in Gn,p with 
p = O(n−v/e+σ), the setup of Example 21 (with � = 1, q = k = e and N = n2) yields 
μ = O(neσ) and

max
�≤j<q

μj ≤ O(
∑

nv−vJpe−eJ ) ≤ O(
∑

neJv/e−vJ+σ(e−eJ )),

J⊆H:1≤eJ<e J⊆H:1≤eJ<e
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which for ‘strictly balanced’ graphs is well-known to be O(n−σ/2) for sufficiently small 
σ > 0 (the details are deferred to (104) and (107) in Section 6.2; see also Claim 6.2 
in [32]).

5.2. More general tail inequalities

In this section we state some more general upper tail inequalities which (i) mimic 
the heuristic discussion of Section 3.1.2, and (ii) are easier to compare with the work of 
Kim–Vu/Janson–Ruciński [19,30,32,15]; the proofs are deferred to Section 5.3. Readers 
primarily interested in applications may proceed to Section 6.

We start with a rigorous analogue of the basic upper tail inequality (23) from Sec-
tion 3.1.2, which is inspired by very similar classical results for the special case G = Hp

with Δq(H) ≤ D (see, e.g., Theorem 3.10 in [15] and Theorem 4.2 in [32]). In applica-
tions convenient choices of the parameters (Rj)�≤j<q and D are often of form D = Θ(1), 
Rj = λq−jD and λ = B max{μ1/(q−�+1), 1}, so that in (76) we have min{μ/R� = Θ(λ)
and Rj/Rj+1 = λ when μ ≥ 1 (see, e.g., the proof of Corollary 6.3 in [32] or Theorem 2.1 
in [31]).

Claim 33 (Basic upper tail inequality). Given H with 1 ≤ � ≤ q ≤ k, assume that (H�) 
and (P) hold. Suppose that t > 0. Given positive (Rj)�≤j<q and D, let Rq = D. If 
inequality

(
eμj

Rj

)Rj/Rj+1

≤ N−4kj (75)

holds for all � ≤ j < q, then there are a, b > 0 (depending only on �, k, L) such that

P (X(G) ≥ μ + t and Δq(G) ≤ D for some G ⊆ Hp)

≤ exp
(
−aϕ(t/μ)μ

R�

)
+
∑

�≤j<q

N−j

(
eμj

Rj

)bRj/Rj+1

.
(76)

To familiarize the reader with the form of assumption (75) and inequality (76), it is 
instructive to briefly relate them to work of Kim and Vu [19,31,32]. Theorem 4.2 in [32]
qualitatively sets t =

√
λμR�, and (in our notation) its parametrization assumes roughly 

Δq(H) ≤ D = Rq, μ/R� ≥ λ = ω(logN), as well as Rj ≥ 2eμj and Rj/Rj+1 ≥
λ for all � ≤ j < q, say. In this case (eμj/Rj)Rj/Rj+1 ≤ 2−λ = N−ω(1) follows, so 
assumption (75) holds. We also have t = μ

√
λR�/μ ≤ μ, so that Remark 11 yields 

ϕ(t/μ)μ/R� ≥ t2/(3μR�) = λ/3, say. Recalling Δq(H) ≤ D, for suitable C = C(q) and 
c = c(a, b) it follows that (76) yields

P (X(Hp) ≥ μ + t) ≤ exp
(
−aλ/3

)
+ 1{q>�}qN

−�2−bλ ≤ C exp
(
−cλ

)
, (77)

which is of similar form as (24) or Theorem 4.2 [32].
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We now state our improved variant6 of Claim 33, which corresponds to a rigorous 
analogue of the upper tail inequality (26) from Section 3.1.2. Convenient choices of 
the parameters (Rj)�≤j<q and (Dj)�≤j≤q are often of form Dj = Bq−jDq = Θ(1), 
Rj = λq−jDq and λ = B max{μ1/(q−�+1), 1}, so that in (80) we have Rj/Rj+1 = λ

and t/R� = Θ(λ) when t = Θ(μ) and μ ≥ 1. One key novelty of (80) is the μ/Q� =
min{μs/R�, μ/D�} term, which intuitively allows us to sharpen inequality (76) whenever 
Rj = ω(μj) holds (by using s = ω(1) in (78), so that usually μ/Q� = ω(μ/R�) in (80), 
say).

Theorem 34 (Extended upper tail inequality). Given H with 1 ≤ � ≤ q ≤ k, assume 
that (H�) and (P) hold. Suppose that s ≥ 1 and t > 0. Given positive (Rj)�≤j<q and 
(Dj)�≤j≤q with Rj ≥ Dj, define

Qj = max{Rj/s,Dj} (78)

for � ≤ j < q, and Rq = Qq = Dq. If inequality

max
{(

eμj

Qj

)Rj/Rj+1

, 1{Qj<Rj and Qj+1=Dj+1}

(
eμj

Qj

)Qj/Dj+1
}

≤ N−4kj (79)

holds for all � ≤ j < q, then for a = 1/
(
4L
(
k
�

))
, b = 1/(2k) and d = 1/

(
4Lqk

(
k
�

))
we have

P (X(G) ≥ μ + t and Δq(G) ≤ Dq for some G ⊆ Hp)

≤ exp
(
−aϕ(t/μ)μ

Q�

)
+ 2

∑
�≤j<q

N−j

(
eμj

Qj

)bRj/Rj+1

+
∑

�≤j<q

1{Qj<Rj and Qj+1=Dj+1}N
−j

(
eμj

Qj

)max
{
dt/(R�Dj+1), bQj/Dj+1

}
.

(80)

To illustrate Theorem 34, in the applications of Sections 5.3.2 and 6.1 we have eμj/Rj ≤
pα/e with p ∈ (0, 1], in which case s = log(e/pα/2) is a convenient choice. Indeed, 
x log(e/x) ≤ 1 then implies eμj/Qj ≤ eμjs/Rj ≤ pα/2/e = e−s. We thus think of the (79)
as a minor variant of the assumption (75) from Claim 33 (note that eμj/Rj ≤ e−s holds, 
and that Qj < Rj implies Qj = Rj/s). Using Dj = Θ(1) and the additional Kim–Vu type 
assumptions discussed below Claim 33, we now review inequality (80) of Theorem 34. 
Since 1/Q� = min{s/R�, 1/D�}, using t/R� =

√
λμ/R� ≥ λ we obtain analogous to (77)

an estimate of the form

6 Note that by setting s = 1 and Dj = Rj we have Qj = Rj in (78), so the indicators in (79)–(80) are 
zero and Theorem 34 recovers Claim 33 up to irrelevant constant factors.
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P (X(Hp) ≥ μ + t) ≤ exp
(
−ãmin{t2/μ, λs}

)
+ 1{q>�}3qN−�e−d̃λs

≤ C exp
(
−cmin{t2/μ, λ log(e/p)}

)
.

(81)

If q > � then t2/μ = λR� ≥ λq−�+1Rq = ω(λ logN), so (81) usually decays like 
C exp(−cλ log(e/p)). When λ ≈ μ1/(q−�+1) or t = εμ we similarly see that (81) decays 
like C exp(−c min{μ, λ log(e/p)}). In all these cases we thus improve the exponential 
decay of the classical bound (77) by an extra logarithmic factor.

The following upper tail inequality for polynomially small μj is a minor extension 
of Theorem 32. Note that (82) decays exponentially in min{t2/μ, t1/(q−�+1) logN} for 
1 ≤ t ≤ O(μ), which seems quite informative when μ = Θ(VarX(H)) holds (i.e., in the 
Poisson range).

Theorem 35 (Upper tail inequality: the small expectations case). Given H with 1 ≤ � ≤
q ≤ k, assume that (H�) and (P) hold. If there are A, α > 0 such that inequality (73)
holds, then for t, K > 0 we have

P (X(G) ≥ μ + t and Δq(G) ≤ D for some G ⊆ Hp)

≤ exp
(
−aϕ(t/μ)μ

)
+ 1{q>�}2qN−q exp

(
−max{bt1/(q−�+1), K} logN

)
,

(82)

where a, b > 0 depend only on �, q, k, L, D, A, α, K.

5.3. Proofs

5.3.1. Proofs of Claim 33 and Theorems 34–35
Combining Theorem 15 and 18, by setting Sj = Rj/s the proof of Theorem 34 is 

straightforward.

Proof of Theorem 34. We first consider the special case q = �. Since Rq = Dq, using 
s ≥ 1 we thus infer max{R�/s, D�} = D� = R�. Hence (64) of Theorem 26 readily 
implies (80).

In the remainder we focus on the more interesting case q > �. Analogous to the proof 
of Theorem 18, inequality (80) is trivial when N < 1 (the left hand side is zero). So we 
henceforth may assume N ≥ 1, and using the assumption (79) it follows that Qj ≥ eμj . 
Let Sj = Rj/s, and recall that Qj = max{Sj , Dj} in Theorem 23. Note that s ≥ 1 and 
Rj ≥ Dj imply Qj ≤ Rj . In view of (60) and (64) of Theorem 23 and 26, it remains to 
estimate Pj,1, Pj,2 and Pj,3,� defined in (34)–(36). Starting with Pj,1 and Pj,2, using (65)
together with Rj ≥ Qj , Qj/Sj+1 ≥ Sj/Sj+1 = Rj/Rj+1 and the assumption (79)
we infer

Pj,1 + Pj,2 ≤ N j

(
eμj

Rj

)Rj/(kRj+1)

+ N j

(
eμj

Qj

)Qj/(kSj+1)

≤ 2N j

(
eμj

)Rj/(kRj+1)

≤ 2N−j

(
eμj

)Rj/(2kRj+1)

.

(83)
Qj Qj



L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98–146 133
Finally, for Pj,3,� of (36) we henceforth tacitly assume Qj < Rj and Qj+1 = Dj+1. 
With an eye on (66), using Qj ≥ eμj and the assumption (79) we then (with foresight) 
similarly deduce

Π := N j

(
eμj

�Qj�

)�Qj�/(kDj+1)

≤ N j

(
eμj

Qj

)�Qj�/(kDj+1)

≤ N−j

(
eμj

Qj

)�Qj�/(2kDj+1)

.

Since �x� ≥ max{x, 1}, by applying (66) with (x, r, y, z) = (Qj , t/(2qL), Dj+1, R�) it 
follows that

Pj,3,� ≤ (Π)
⌈
t/(2Lq

(k
�

)
�Qj�R�)

⌉
≤ N−j

(
eμj

Qj

)max
{
dt/(R�Dj+1), bQj/Dj+1

}
.

Recalling our tacit assumption for Pj,3,�, this completes the proof in view of (60), (64)
and (83). �

The details of the similar but simpler proof of Claim 33 are omitted (the above proof 
carries over by setting s = 1 and Dj = Rj , since Qj = max{Rj/s, Dj} = Rj implies 
Pj,2 = Pj,3,� = 0).

For the proof of Theorem 35 we need to define the parameters (Rj)�≤j≤q and 
(Dj)�≤j≤q of Theorem 15 and 18 in a suitable way. Intuitively, we shall set Rj = λq−jD, 
λ = max{t1/(q−�+1), B} and Dj = Qj = Bq−jD = Θ(1), and the crux is that the as-
sumption (73) eventually yields eμj/x ≤ N−Θ(1) in (65)–(66). We shall also exploit the 
indicators in Theorem 23 for estimating t/R� in (80), see (86) below.

Proof of Theorem 35. With foresight, let B = max
{
4qk/α, 2kK/α, Ae/D, 1

}
and λ =

max{t1/(q−�+1), B}. Define Dj = Sj = Bq−jD and Rj = λq−jD for all � ≤ j ≤ q. 
Note that Qj = max{Sj , Dj} = Dj and min{Qj , Rj} = Dj , so that Pj,2 = 0 in (35). 
Combining (60) and (64) of Theorem 23 and 26, we obtain

P (X(G) ≥ μ + t and Δq(G) ≤ D for some

G ⊆ Hp) ≤ exp
(
− ϕ(t/μ)μ

4L
(
k
�

)
D�

)
+
∑

�≤j<q

[
Pj,1 + Pj,3,�

]
. (84)

Tacitly assuming q > �, it remains to estimate Pj,1 and Pj,3,� defined in (34) and (36). 
Starting with Pj,1, by inserting (73) into (65), using Rj ≥ DB ≥ Ae and Rj/Rj+1 =
λ ≥ B ≥ 4qk/α we infer

Pj,1 ≤ N j

(
eμj

Rj

)Rj/(kRj+1)

≤ Nq
(
μj/A

)λ/k ≤ Nq−αλ/k ≤ N−q−αλ/(2k). (85)

For Pj,3,�, using �Qj� ≥ Ae and Qj/Dj+1 ≥ B ≥ 4qk/α we (with foresight) similarly 
deduce



134 L. Warnke / Journal of Combinatorial Theory, Series B 140 (2020) 98–146
Π := N j

(
eμj

�Qj�

)�Qj�/(kDj+1)

≤ N−q−α�Qj�/(2kDj+1).

Note that λ = B implies Rj = Dj = Qj . Hence Qj < Rj ensures λ = t1/(q−�+1), so 
that t/R� = t1/(q−�+1)/D. Recalling �Qj�/Dj+1 ≥ B, by applying (66) with (x, r, y, z) =
(Qj , t/(2qL), Dj+1, R�) we thus infer

Pj,3,� ≤ 1{Qj<Rj}(Π)
⌈
t/(2Lq

(k
�

)
�Qj�R�)

⌉
≤ N−q−max

{
βt1/(q−�+1)/Dj+1, αB/(2k)

}
, (86)

with β = α/(4Lqk
(
k
�

)
D). With the above estimates (85) and (86) for Pj,1 and Pj,3,�

in hand, using B ≥ 2kK/α and Dj+1 ≤ D� it follows by definition of λ =
max{t1/(q−�+1), B} that

∑
�≤j<q

[
Pj,1 + Pj,3,�

]
≤ 1{q>�}2qN−q exp

(
−max

{
bt1/(q−�+1), K

}
logN

)
,

with b = min
{
α/(2k), β/D�

}
. Recalling (84), this establishes (82) with a = 1/

(4L
(
k
�

)
D�). �

5.3.2. Proofs of Theorem 30 and 32
The ‘easy-to-apply’ inequalities from Section 5.1 are convenient corollaries of Theo-

rems 34–35. Indeed, Remark 11 implies ϕ(t/μ)μ ≥ min{t2/μ, t}/3, so Theorem 32 follows 
readily from Theorem 35. For Theorem 30 the basic strategy is to apply Theorem 34 with 
s = log(e/πα/2), Rj = λq−jD, λ = B max{μ1/(q−�+1), 1} and Dj = Bq−jD = Θ(1). The 
crux is that the assumption (70) eventually yields eμj/Qj ≤ πα/2/e = e−s in (79)–(80). 
As before, the indicators in Theorem 34 facilitate estimating t/R� in (80), see (89) below.

Proof of Theorem 30. The proof is naturally divided into four parts: (i) introducing 
definitions, (ii) estimating eμj/Qj , (iii) applying inequality (80) of Theorem 34, and 
(iv) verifying assumption (79).

Analogous to the proof of Theorem 18 and 34, we may henceforth assume N ≥ 1. 
Furthermore, by increasing A or D if necessary, we may of course assume A, D ≥ 1. With 
foresight, let β = α/2 and s = log(e/πβ). Set B = max{e2A/D, 4k2/(τβ), 4k2(4A)q, 1}
and λ = B max{μ1/(q−�+1), 1}. Define Rj = λq−jD and Dj = Bq−jD, so that Rj ≥ Dj

and Rq = Dq = D.
Next we estimate eμj/Qj , where Qj ≥ Rj/s. Using assumption (70) and α = 2β, for 

� ≤ j < q we have

eμj

Qj
≤ eμjs

Rj
= eμjs

DBq−j max{μ(q−j)/(q−�+1), 1} ≤ eAπ2β log(e/πβ)
DB

≤ πβ

e
= e−s, (87)

where we tacitly used π ∈ (0, 1] and x log(e/x) ≤ 1 for all x ∈ [0, 1].
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We now apply inequality (80) of Theorem 34, deferring the proof of the claim that 
assumption (79) holds. Using (87) and Rj/Rj+1 = λ, note that X(H) = X(Hp) and 
Δq(H) ≤ D = Dq yield

P (X(H) ≥ (1 + ε)μ) ≤ P (X(G) ≥ μ + εμ and Δq(G) ≤ Dq for some G ⊆ Hp)

≤ exp
(
− aϕ(ε)μ

max{R�/s,D�}

)

+ qN−�

[
2e−bλs + max

�≤j<q
1{Qj<Rj}e

−dεμs/(R�Dj+1)
]
.

(88)

Note that λ = B implies Rj = Dj , in which case s ≥ 1 yields Qj = Dj = Rj . Hence 
Qj < Rj ensures λ = Bμ1/(q−�+1), so that R� = (Bμ1/(q−�+1))q−�D. Noting Dj+1 ≤ D�, 
it follows that

max
�≤j<q

1{Qj<Rj}e
−dεμs/(R�Dj+1) ≤ exp

(
− d

D�Bq−�D
· εμ1/(q−�+1)s

)
. (89)

Similarly, using s ≥ 1 we also see that R�/s > D� implies R� = (Bμ1/(q−�+1))q−�D. 
Hence

exp
(
− aϕ(ε)μ

max{R�/s,D�}

)
≤ exp

(
−min

{
a

D�
· ϕ(ε)μ, a

Bq−�D
· ϕ(ε)μ1/(q−�+1)s

})
.

(90)

Remark 11 implies min{ϕ(ε), 1, ε} ≥ min{ε2, 1}/3. So, combining (88)–(90), using s ≥
min{1, β} log(e/π) and λ ≥ Bμ1/(q+�−1) our findings thus establish (72) for suitable 
c = c(ε, k, q, D, L, α) > 0.

In the following we verify assumption (79), i.e., the claim omitted above. Note that 
Rj/Rj+1 = λ ≥ B and Qj/Dj+1 ≥ Dj/Dj+1 = B. Using (87), for π ≤ N−τ the left 
hand side of (79) can thus be bounded by

(
eμj

Qj

)B

≤ πβB ≤ N−τβB ≤ N−4k2 ≤ N−4kj . (91)

For π > N−τ we defer the proof of the claim that for � ≤ j < q we have

min{λ,Rj/Dj+1} ≥ 4k2 logN. (92)

Using (87), s ≥ 1, Qj ≥ Rj/s and (92) we see that the left hand side of (79) can be 
bounded by

max
{(

e−1)Rj/Rj+1
,
(
e−s
)Rj/(sDj+1)

}
≤ max

{
e−λ, e−Rj/Dj+1

}
≤ N−4k2 ≤ N−4kj .
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To sum up, we have verified (79), assuming that (92) holds for π > N−τ . Turning to the 
remaining claim (92), using assumption (71) we see that π > N−τ implies

λ ≥ Bμ1/(q−�+1) ≥ B(logN)/A ≥ 4k2 logN.

Similarly, π > N−τ , � ≤ j < q and N ≥ 1 imply

Rj/Dj+1 = λq−j/Bq−j−1 ≥
(
Bμ1/(q−�+1))q−j

/Bq−j−1 ≥ B
(
(logN)/A

)q−j ≥ 4k2 logN,

establishing (92). As discussed, this completes the proof of (72). �
6. Applications

In this section we illustrate our concentration techniques, by applying the basic in-
equalities from Section 5.1 to several pivotal examples. In Section 6.1 we improve previous 
work of Janson and Ruciński [16] on random induced subhypergraphs, and derive sharp 
upper tail inequalities for several quantities of interest in additive combinatorics. In Sec-
tion 6.2 we answer a question of Janson and Ruciński [13] on subgraph counts in binomial 
random graphs, and improve the main applications of Wolfovitz [37] and Šileikis [25].

6.1. Random induced subhypergraphs

In probabilistic combinatorics, random induced subhypergraphs Hp are a standard 
test-bed for upper tail inequalities (see, e.g., Section 3 in the survey [14]). Janson and 
Ruciński studied the number of randomly induced edges in [16], and one of their principle 
results concerns k-uniform hypergraphs with v(H) = N vertices, e(H) ≥ γNq edges 
and Δq(H) ≤ D (for easier comparison with Theorem 2.1 in [16], note that Δj(H) ≤
Nmax{q−j,0}Δq(H) holds). Writing X = e(Hp) and μ = EX, they obtained bounds 
of form

exp
(
−C(ε)μ1/q log(1/p)

)
≤ P (X ≥ (1 + ε)μ) ≤ exp

(
−c(ε)μ1/q), (93)

determining logP (X ≥ (1 + ε)μ) up to a missing logarithmic factor (in fact, their lower 
bound needs an extra assumption). For 2 ≤ q < k the following corollary of Theo-
rem 30 improves the exponential rate of decay of (93) in the more general weighted 
case. Noteworthily, inequality (94) below closes the log(1/p) gap left open by Janson 
and Ruciński [16] (for the special case q = 2 this was already resolved in [35]).

Theorem 36 (Weighted edge-count of random induced subhypergraphs). Let 1 ≤ q < k and 
γ, D, a, L > 0. Assume that H is a k-uniform hypergraph with v(H) ≤ N , e(H) ≥ γNq, 
Δq(H) ≤ D, and wf ∈ [a, L] for all f ∈ H. Set X = w(Hp) and μ = EX. For any ε > 0
there is c = c(ε, k, γ, D, a, L) > 0 such that for all p ∈ (0, 1] we have

P (X ≥ (1 + ε)μ) ≤ exp
(
−cmin

{
μ, μ1/q log(e/p)

})
. (94)
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Remark 37. Setting p = m/v(H), inequality (94) also carries over to Hm as defined 
in Section 3.5.

Inequality (94) does not always hold in the excluded case q = k. A concrete counterex-
ample is the complete k-uniform hypergraph H = HN with V (H) = [N ] and wf = 1. 
Then q = k, X =

(|[N ]p|
k

)
≈ |[N ]p|k/k! and μ =

(
N
k

)
pk ≈ (Np)k/k!. For μ = ω(1), 

p ≤ 1/2 and ε = Θ(1) it is routine to see that P (w(Hp) ≥ (1 + ε)μ) = exp
(
−Θ(Np)

)
=

exp
(
−Θ(μ1/q)

)
holds, i.e., that there is no logarithmic term.

Concerning sharpness of (94), in applications we usually do not consider a single hyper-
graph H, but sequences of hypergraph (HN )N∈N which are nearly monotone, i.e., where 
HN ⊆ HN+1 holds up to some minor ‘defects’ (arising, e.g., due to boundary effects). 
The following remark states that, in this frequent case, the upper tail inequality (94) is 
best possible up to the value of the parameter c (for 2 ≤ q < k).

Remark 38 (Matching lower bound). Let 2 ≤ q < k and γ, D, a, L, n1, n2 > 0. Let 
(HN )N≥n1 be a sequence of k-uniform hypergraphs such that all H = HN sat-
isfy the assumptions of Theorem 36. Assume that there is β ∈ (0, 1] such that 
e(HN ∩ HM ) ≥ βe(HN ) for all M ≥ N ≥ n2. Then for all ε > 0 there are n0 =
n0(k, γ, D, a, L, β, n1, n2) > 0 and C = C(ε, γ, k, q, D, a, L, β, n1, n2, ) > 0 such that for 
all H = HN with N ≥ n0, setting X = w(Hp) and μ = EX, for all p ∈ (0, 1] we have

P (X ≥ (1 + ε)μ) ≥ 1{1≤(1+ε)μ≤w(H)} exp
(
−C min

{
μ, μ1/q log(1/p)

})
. (95)

We omit the proof of Remark 38, which mimics the lower bound techniques from [35] in 
a routine way.

Proof of Theorem 36. Let δ = aγ, and note that μ ≥ e(H)pk · minf∈H wf ≥ δN qpk (we 
never use wf ≥ a again, i.e., we could weaken our assumptions). Inequality (94) holds 
trivially whenever N < k (since then 0 ≤ w(Hp) ≤ L · e(H) = 0), so we may henceforth 
assume N ≥ k. Our main task is to verify the assumptions of Theorem 30. Let � = 1
and τ = q/(2k). As N1/2 ≥ logN for all N > 0, for p ≥ N−τ we have

μ1/(q−�+1) = μ1/q ≥ δ1/qNpk/q ≥ δ1/qN1−kτ/q ≥ δ1/qN1/2 ≥ δ1/q logN. (96)

As discussed in Example 20, using (57) and |ΓU (H)| ≤ v(H)q−j · Δq(H), for 1 ≤ j < q

we thus have

μj ≤ Nq−j ·D · pk−j . (97)

Recalling � = 1, (96) and q < k, there thus is a constant A = A(D, δ) > 0 such that for 
1 ≤ j < q we have

μj

(q−j)/(q−�+1) ≤ DNq−jpk−j

1/q q−j
≤ Dδj/q−1pj(k/q−1) ≤ Ap1/q. (98)
μ (μ )
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Hence assumptions (70)–(71) hold with π = p and α = 1/q. Using (72) of Theorem 30
it follows that

P (w(Hp) ≥ (1 + ε)μ) ≤ (1 + 3qN−1)e−Π, (99)

where Π = c′ min
{
ε2, 1

}
min{μ, μ1/(q−�+1) log(e/p)} and c′ = c′(�, q, k, L, D, A, δ) > 0.

The author finds (99) quite satisfactory, but in the literature the usually irrelevant 
prefactor 1 +3qN−1 is often suppressed for cosmetic reasons. Below we shall achieve this 
by inflating the constant in the exponent (without assuming that n, p or Π are large). 
If Π ≥ 6, then N ≥ k ≥ q implies 3qN−1 ≤ 3 ≤ Π/2, so that

P (w(Hp) ≥ (1 + ε)μ) ≤ e−Π+3qN−1 ≤ e−Π/2.

Otherwise 1 ≥ Π/6 holds, in which case ε/(1 +ε) ≥ min{1, ε}/2 and Markov’s inequality 
yield

P (w(Hp) ≥ (1 + ε)μ) ≤ 1
1 + ε

= 1 − ε

1 + ε
≤ e−ε/(1+ε) ≤ e− min{1,ε}Π/12,

establishing (94) for suitable c = c(ε, c′) > 0. �
Combining Theorem 36 and Remark 38, we obtain the following convenient upper 

tail result (see [35] for a similar result in the special case q = 2). It applies to many 
widely-studied objects in additive combinatorics and Ramsey theory, each time closing 
the logarithmic gap present in previous work, see (93) and [16].

Corollary 39. Let 2 ≤ q < k and γ, D, a, L, n1 > 0. Let (Hn)n≥n1 be k-uniform hyper-
graphs such that Hn ⊆ Hn+1, v(Hn) ≤ n, e(Hn) ≥ γnq, Δq(Hn) ≤ D, and wf ∈ [a, L]
for all f ∈ Hn. Then for all ε > 0 there are n0 = n0(k, γ, D, a, L, n1) > 0 and c, C > 0
(depending only on ε, k, γ, D, a, L, n1) such that for all H = Hn with n ≥ n0, set-
ting X = w(Hp) and μ = EX, for all p ∈ (0, 1] we have

1{1≤(1+ε)μ≤w(H)} exp
(
−CΨq,μ

)
≤ P (X ≥ (1 + ε)μ) ≤ exp

(
−cΨq,μ

)
, (100)

where Ψq,μ = min{μ, μ1/q log(1/p)}.

In particular, letting the edges of the k-uniform hypergraphs Hn with vertex-set V (H) =
[n] encode the relevant objects, it is not difficult to check that Corollary 39 with uniform 
weights wf = 1 implies7 all the upper tail bounds presented in Examples 2–5 of Sec-
tion 1.1.1 (using q = 2 for k-term arithmetic progressions, (k, q) = (3, 2) for Schur triples, 

7 Note that using weights wf = 1 we count unordered objects, i.e., treat the objects as k-sets (if desired, 
we could also treat them as ordered k-vectors by using non-uniform weights wf > 0, say).
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(k, q) = (4, 3) for additive quadruples, and (k, q) = (r + s, r + s − 1) for (r, s)-sums). 
Motivated by Section 2.1 in [16], we now record a further common generalization of 
these examples.

Example 40 (Integer solutions of linear homogeneous systems). Let 1 ≤ r ≤ k− 2. Let A
be a r × k integer matrix. Following [16], we assume that every r × r submatrix B of A
has full rank, i.e., rank(B) = r = rank(A). We also assume that there exists a distinct-
valued positive integer solution to Ax = 0, where x = (x1, . . . , xk) is a column vector and 
0 = (0, . . . , 0) is an r-dimensional column vector. Let the edges of the k-uniform hyper-
graph Hn with V (Hn) = [n] encode solutions {x1, . . . , xk} ⊆ [n] of the system Ax = 0
with distinct xi. The discussion of Section 2.1 in [16] implies that (Hn)n≥n1 satisfies the 
assumptions of Corollary 39 with q = k − r, so the upper tail inequality (100) holds 
for X = e(Hp), say.

6.1.1. Small expectations case
Note that inequality (100) does not guarantee a similar dependence of c, C > 0 on ε. 

Of course, we can also ask for finer results, which determine how the exponential decay 
of the upper tail depends on ε. The following corollary of Theorem 32 provides a partial 
answer for small p (see [35] for results which for q = 2 cover all p).

Theorem 41. Let k ≥ 2. Let 1 ≤ q ≤ k and D, L > 0. Assume that H is a k-uniform 
hypergraph with v(H) ≤ N , Δq(H) ≤ D and maxf∈H wf ≤ L, where N ≥ 1. Set 
X = w(Hp) and μ = EX. For all σ, Λ > 0 there are c = c(σ, Λ, k, D, L) > 0 and 
d = d(q) ≥ 1 such that for all p ≤ ΛN−(q−1)/(k−1)−σ and t > 0 we have

P (X ≥ μ + t) ≤ d exp
(
−cmin

{
ϕ(t/μ)μ, t1/q logN

})
. (101)

Furthermore, setting p = m/v(H), inequality (101) also holds with Hp replaced by Hm.

Assume that H = HN also satisfies e(HN ) ≥ γNq, the monotonicity conditions of 
Remark 38, wf = 1 and 2 ≤ q < k. Mimicking the lower bound arguments from [35], 
inequality (101) can then shown to be best possible up to the values of d, c for some 
range of small p (we leave the details to the interested reader).

Proof of Theorem 41. Our main task is to verify assumption (73) of Theorem 32. To 
this end we exploit that

q − 1
k − 1 = max

1≤j<q

q − j

k − j
.

Indeed, using (97) and N ≥ 1 there thus is a constant A = A(D, Λ) > 0 such that 
we have
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max
1≤j<q

μj ≤
∑

1≤j<q

DNq−jpk−j ≤ D
∑

1≤j<q

Λk−jN (q−j)−(k−j)(q−1)/(k−1)−(k−j)σ ≤ AN−σ.

Applying Theorem 32 (with σ = α and K = 1) now readily establishes inequal-
ity (101). �
6.2. Subgraph counts in random graphs

In this section we consider subgraph counts in the binomial random graph Gn,p, 
which are pivotal examples for illustrating various concentration methods (see, e.g., [19,
31,32,14,15,12] and Examples 21–22 in Section 4.1.1). We shall discuss two qualitatively 
different upper tail bounds in Sections 6.2.1 and 6.2.2.

We henceforth tacitly write X = XH for the number of copies of H in Gn,p, and 
set μ = EX = Θ(nvHpeH ). Let us recall some definitions from random graph theory. 
Writing d(J) = eJ/vJ , a graph H is called balanced if eH ≥ 1 and d(H) ≥ d(J) for all 
J � H with vJ ≥ 1. If this holds with d(H) > d(J), then H is called strictly balanced. 
Writing d2(J) = (eJ − 1)/(vJ − 2), a graph H is called 2-balanced if eH ≥ 2 and 
d2(H) ≥ d2(J) for all J � H with vJ ≥ 3. If this holds with d2(H) > d2(J), then H is 
called strictly 2-balanced.

6.2.1. Small deviations: sub-Gaussian type bounds
We first consider sub-Gaussian type P (X ≥ μ + t) ≤ C exp(−ct2/ VarX) upper tail 

inequalities. Our main focus is on the Poisson range, where VarX ∼ EX = μ holds, 
which according to Kannan [18] is the more difficult range. For small p the follow-
ing simple corollary of Theorem 32 extends/sharpens several results from [30,15,25,37,
18,36], and implies Theorem 6. (For balanced and 2-balanced graphs H it is folklore 
that δH ≥ 1. Furthermore, with the exception of perfect matchings, all 2-balanced graphs 
are strictly balanced.)

Theorem 42 (Subgraph counts in random graphs: small expectations case). Let H be a 
graph with v = vH vertices, e = eH edges and minimum degree δ = δH . Let X = XH

and μ = EX. Define s = min{v − 1, e − δ + 1}. If H is strictly balanced, then for every 
Λ > 0 there are c = c(Λ, H) > 0 and C = C(H) ≥ 1 such that for all n ≥ v, ε ∈ (0, Λ]
and p ∈ [0, 1] satisfying μ(s−1)/s ≤ Λ logn we have

P (X ≥ (1 + ε)μ) ≤ C exp
(
−cε2μ

)
. (102)

If H is 2-balanced, then for all σ, Λ > 0 there are c = c(σ, Λ, H) > 0 and C =
C(H) ≥ 1 such that for all n ≥ v, 0 ≤ p ≤ Λn−(v−2)/(e−1)−σ and 0 < t ≤
Λ min{(μ logn)1/(2−1/s), μ} we have

P (X ≥ μ + t) ≤ C exp
(
−ct2/μ

)
. (103)
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Remark 43. It is well-known that in (102)–(103) we have μ = EX ∼ VarX when 
p = o(1). The proof shows that the constants C can be replaced by 1 + o(1), and 
that (102)–(103) both carry over to Gn,m. Furthermore, [26] demonstrates that the sub-
Gaussian type tail inequality (102) can already fail for balanced graphs H.

To put Theorem 42 into context, in the year 2000 Vu [30] showed that the sub-Gaussian 
inequality (102) holds for strictly balanced graphs as long as ε = O(1) and μ ≤ log n (note 
that ε2μ ∼ (εμ)2/ VarX by Remark 43). Shortly afterwards, this result was reproved via 
a different method by Janson and Ruciński [15], who also raised the question whether the 
restriction μ = O(logn) is necessary (see Section 6 in [13]). For the special case ε = Θ(1)
the aforementioned results were yet again reproved by Šileikis [25] in 2012. Our methods 
allow us (i) to go beyond all these three approaches from 2000–2012, and (ii) to answer 
the aforementioned question of Janson and Ruciński: inequality (102) still holds in the 
wider range μ = O((logn)1+ξ).

Wolfovitz demonstrated the applicability of his sub-Gaussian concentration result [37]
via the complete graph Kr and the complete bipartite graph Kr,r, showing that inequal-
ity (103) holds for both strictly 2-balanced graphs in certain ranges of the parameters p, t. 
Theorem 42 generalizes these main applications from [37] to all 2-balanced graphs (for 
a slightly wider parameter range). For n−1 ≤ p ≤ n−1/2−σ inequality (103) also slightly 
extends the t–range of two K3-specific results of Kannan [18] and Wolfovitz [36].

Proof of Theorem 42. The proofs of (102)–(103) are very similar: each time we shall 
apply Theorem 32 twice, using the two different setups of Examples 21–22. Hence our 
main task is to check assumption (73).

For (102) we assume that H is strictly balanced, in which case δ = δH ≥ 1 is folklore. 
By assumption there is a constant β = β(H) > 0 such that for all subgraphs J � H

with vJ ≥ 1 we have

vJ · e
v
≥ eJ + β and eJ · v

e
≤ vJ − β. (104)

Using the setup of Example 21, by (58) there is a constant B1 > 0 such that the 
corresponding μj satisfy

max
1≤j<e−δ+1

μj ≤ B1
∑

J⊆H:1≤eJ<e−δ+1

nv−vJpe−eJ . (105)

Similarly, using the setup of Example 22, by (59) there is a constant B2 > 0 such that

max
2≤j<v

μj ≤ B2
∑

J⊆H:2≤vJ<v

nv−vJpe−eJ . (106)

Recalling s = min{v − 1, e − δ + 1}, in our further estimates of (105)–(106) we may 
assume s > 1 (otherwise H = K2 and (105)–(106) are both equal to zero). Recalling 
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μ = Θ(nvpe), we now pick S = S(Λ, H) ≥ 1 large enough such that the assumption 
μ(s−1)/s ≤ Λ logn implies p ≤ Sn−v/e+β/(2e) for all n ≥ v. Using δ = δH ≥ 1 and the 
density condition (104), it follows that there are constants B3, B4, B5 > 0 such that

(105) + (106) ≤ B3
∑

J⊆H:vJ≥2,eJ<e

nv−vJpe−eJ

≤ B4
∑

J⊆H:vJ≥2,eJ<e

neJv/e−vJ+β/2 ≤ B5n
−β/2.

(107)

Armed with (107), we now apply Theorem 32 with K = 1, A = B5 and α = β/4, using 
the setup of Example 21 (with � = 1, k = e, q = e − δ + 1 and N = n2) and Example 22
(with � = 2, k = q = v and N = n). So, applying (74) twice, there is a constant c1 > 0
such that for t = εμ we have

P (X ≥ μ + t) ≤
(
1 + 2 max{vH , eH}n−1) exp

(
−c1 min

{
t2/μ, t, t1/s log n

})
. (108)

Since t = εμ ≤ Λμ, we infer t ≥ t2/(Λμ). Hence, after adjusting the constant c1, the 
t-term is irrelevant for the exponent of (108). As t2−1/s ≤ (Λμ)1+(s−1)/s = O(μ logn) by 
assumption, this establishes (102).

For (103) we proceed similarly, assuming that H is 2-balanced. In this case, for all 
subgraphs J � H with 2 ≤ vJ < v, the assumption that H is 2-balanced (and noting 
that (109) is trivial when vJ = 2) implies

e− eJ
v − vJ

= (e− 1) − (eJ − 1)
(v − 2) − (vJ − 2) ≥ e− 1

v − 2 . (109)

Analogous to (107), in Examples 21 and 22 (with 1 ≤ j < e − δ + 1 and 2 ≤ j < v) 
the assumption p ≤ Λn−(v−2)/(e−1)−σ and the density result (109) entail existence of 
constants B6, B7 > 0 such that

μj ≤ B6
∑

J⊆H:vJ≥2,eJ<e

n(v−vJ )−(e−eJ )(v−2)/(e−1)−(e−eJ )σ ≤ B7n
−σ. (110)

Armed with (110), we now obtain (108) by applying Theorem 32 twice (with A = B7
and α = σ/2) analogous to the proof of (102). Noting t ≤ Λμ and t2−1/s = O(μ logn)
then readily completes the proof of (103). �
Parts of Theorem 42 can be proved in a simpler/more direct way, but in view of the 
previous work [30,15,25,37,18,36] here the main point is to illustrate that (102)–(103)
follow routinely from our general bounds.

6.2.2. Large deviations: upper tail problem
Next we consider the classical upper tail problem for subgraph counts, which con-

cerns P (X ≥ (1 + ε)μ) for constant ε > 0. Here our general methods usually give much 
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weaker estimates than modern specialized approaches such as [12,7,6], but it turns out 
that our methods can routinely sharpen results based on classical inductive approaches 
(which might potentially be useful in other contexts). Indeed, for balanced graphs Kim 
and Vu used two different inductions (see Sections 6.3 and 6.6 in [32]), which together 
establish the following tail estimate: if ε ≤ C and ε2 max{μ1/(v−1), μ1/e} = ω(logn), then

P (X ≥ (1 + ε)μ) ≤ exp
(
−cε2 max

{
μ1/(v−1), μ1/e}). (111)

This inequality was reproved by Janson and Ruciński [15] via their alternative inductive 
method. Using Theorem 30, we shall go beyond both approaches for strictly balanced 
graphs: (i) we improve the exponential rate of decay by an extra logarithmic factor, and 
(ii) we remove the restriction to ‘large’ expectations μ.

Theorem 44. Let H be a strictly balanced graph with v = vH vertices and e = eH edges. 
Let X = XH and μ = EX. For any ε > 0 there is c = c(ε, H) > 0 such that for all n ≥ v

and p ∈ [0, 1] we have

P (X ≥ (1 + ε)μ) ≤ exp
(
−cmin

{
μ, max

{
μ1/(v−1), μ1/e} logn

})
. (112)

Remark 45. Writing the exponent of (112) in the form exp(−cΨ), the proof shows that 
c = c′ min{ε2, 1} with c′ = c′(H) > 0 suffices when min{ε2, 1}Ψ ≥ 1. Furthermore, 
inequality (112) also carries over to Gn,m.

Remark 46. For balanced graphs H, the proof yields the following variant: for all n ≥ v, 
p ≥ ξn−v/e+σ and ε > 0 we have P (X ≥ (1 + ε)μ) ≤ exp(−cμ1/(v−1) logn), where c =
c(σ, ξ, ε, H) > 0.

For r-armed stars H = K1,r inequality (112) yields an exp
(
−Ω(min{μ, μ1/r log n})

)
exponential decay, which by [27] is best possible for p ≤ n−1/r and ε = Θ(1). However, for 
general graphs H other approaches such as [12,7,6] yield better estimates (as mentioned 
before), so we defer the proof of Theorem 44 to Appendix A.

Acknowledgments

We are grateful to the referees for helpful suggestions concerning the presentation.

Appendix A. Proofs omitted from Section 6.2.2

In this appendix we give the proof of Theorem 44, which proceeds similar to Theo-
rem 36 and 42. Namely, we prove (112) by two applications of Theorem 30 and Remark 31
(using the setups of Examples 21–22).
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Proof of Theorem 44. We first use the setup of Example 21 with � = 1, q = k = e and 
N = n2. Using the bound (58) for μj , the expectation μ = Θ(nvpe) and the density 
result (104), for 1 ≤ j < e = eH we infer

μj

μ(q−j)/(q−�+1) ≤
B
∑

J⊆H:eJ=j n
v−vJpe−j

(μ1/e)e−j
≤ B1

∑
J⊆H:eJ=j

neJv/e−vJ ≤ B2n
−β . (113)

Applying Theorem 30 and Remark 31 with A = B2 and α = β/2, there thus is c1 > 0
such that

P (X ≥ (1 + ε)μ) ≤ (1 + 3eHn−2) exp
(
−c1 min

{
ε2, 1

}
min{μ, μ1/e log n}

)
. (114)

Next we use the setup of Example 22 with � = 2, k = q = v and N = n. We distinguish 
several cases. If p ≤ n−v/e, then using the bound (58) for μj and the density result (104), 
we infer for 2 ≤ j < v = vH that

μj ≤ B
∑

J⊆H:vJ=j

nv−vJpe−eJ ≤ B
∑

J⊆H:2≤vJ<vH

neJv/e−vJ ≤ B3n
−β . (115)

Otherwise p ≥ n−v/e, so nvpe ≥ 1. Note that for j < v we have (v − j)/(v − 1) ≥
(v − j)/v + 1/v2. Recalling � = 2 and q = v, using (59), μ = Θ(nvpe) and (104) we infer 
for 2 ≤ j < v = vH that

μj

μ(q−j)/(q−�+1) ≤ μj

B4(nvpe)(v−j)/v+1/v2 ≤
B5
∑

J⊆H:vJ=j p
vJe/v−eJ

(nvpe)1/v2 ≤ B6p
β

(nvpe)1/v2 .

(116)

Distinguishing n−v/e ≤ p ≤ n−v/(2e) and n−v/(2e) ≤ p ≤ 1, we see that

μj

μ(q−j)/(q−�+1) ≤ B6 max{n−βv/(2e), n−1/(2v)}. (117)

Applying Theorem 30 and Remark 31 with A = max{B3, B6} and α = min{β, βv/(2e),
1/(2v)}, we deduce

P (X ≥ (1 + ε)μ) ≤ (1 + 3vHn−1) exp
(
−c2 min

{
ε2, 1

}
min{μ, μ1/(v−1) log n}

)
. (118)

Finally, we combine the two upper bounds (114) and (118), and then remove (for 
cosmetic reasons) the multiplicative prefactor 1 + O(n−1) analogous to the proof of 
Theorem 36, which establishes (112). �
For Remark 46 the point is that for balanced graphs H the density condition (104) only 
holds with β = 0, so in (116) we need p ≥ ξn−v/e+σ to establish (117) with ≤ O(n−eσ/v2), 
say.
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