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We  report  a study  of  non-covalent  complexes  of phosphopeptides  pXAAAA  and  N-Ac-pXAAAA  (X  = Ser,
Thr,  Tyr) with  arginine-containing  peptides  carrying  diazirine  4,4-azipentyl  tags  at the  N-terminus,
*LGG(A)nR,  or  in  the  photoleucine  residue,  L*GG(A)nR (n =  3–5). Complexes  with  *LGG(A)nR  were suc-
cessfully  generated  as  singly  charged  ions in the  gas  phase  in  0.6–3.5%  yields.  In  contrast,  complexes
with  L*GG(A)nR were  formed  in  negligible  (<0.1%)  yields.  Selective  photodissociation  at  355  nm  of  the
diazirine  ring  in  [*LGG(A)nR + pXAAAA  +  H]+ ions  resulted  in  loss  of  N2, producing  large  (75–95%)  frac-
tions  of  non-dissociating  complexes  that were further  probed  by collision-induced  dissociation  tandem
mass  spectrometry  (CID-MS3).  Covalent  cross-links  in  the complexes  produced  by  photoinduced  carbene
insertion  were  identified  by  specific  CID-MS3 dissociations  involving  H3PO4 transfer  and  backbone  frag-
mentations.  N-acetylation  in  the phosphopeptides  was  found  to  have  a substantial  negative  effect  on
the  formation  of covalent  cross-links.  Amongst  the  phosphorylated  amino  acid  residues,  pTyr  showed
the  highest  tendency  (up to  92%)  to form  covalent  cross-links.  The  fractions  of  covalent  cross-links  sub-
stantially  increased  with  the length  of the  photopeptide  chain.  Born-Oppenheimer  molecular  dynamics

+

heimer molecular dynamics

(BOMD)  calculations  of  canonical  and  zwitterionic  protomers  of  the  (pYAAAA  +  *LGGAAAR  + H) complex
indicated  multiple  close  contacts  between  the incipient  carbene  of the  diazirine  ring  and  the X  H  bonds
(X  C,  N,  O)  in the  phosphopeptide.  BOMD  in  combination  with  structural  analysis  by  density  func-
tional  theory  calculations  were  used  to interpret  the  experimental  data  and explain  the  cross-linking
efficiencies.

©  2018  Elsevier  B.V.  All  rights  reserved.
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ible protein phosphorylation [1] is one of the most impor-
-translational modifications that plays a critical role in
g many cellular processes including cell cycle, cell growth,
signal transduction pathways. Although the mechanism
ible protein phosphorylation has been studied inten-
, the importance for protein structure and functioning of
lent binding of phosphopeptides to lysine and arginine
in proteins [3] and simpler models continues to stimu-
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opy [6], has also been the subject of mass spectrome-
s [7]. Loo and coworkers have shown that non-covalent
eptide complexes with the Src homology 2 domain pro-

d be produced by electrospray ionization and studied by
ctrometry [8]. Likewise, binding of arginine-rich peptides
s been studied by electrospray ionization mass spectrom-
he complex ion formation in the gas phase was correlated
known binding properties in solution [9]. Non-covalent
s of arginine-rich peptides with phosphorylated peptides
n produced by soft ionization methods and shown to

 in the gas phase [10,11]. In addition, collision-induced
ion (CID) of arginine-phosphate non-covalent complexes

 fragment ions by covalent-bond cleavages while the non-
interactions were in part preserved intact [12,13]. These

inted to the importance of strong non-covalent interac-
he arginine-phosphate type in the gas phase. However,
ation of the mass spectrometric data did not provide spe-
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mation about the equilibrium structure of non-covalent
s or their dynamics.

Recently, we  have com-
perimental studies of photodissociative cross-linking
s phase with Born-Oppenheimer molecular dynamics

calculations as a new approach to probing non-covalent
n peptide-peptide ion complexes produced by electro-
ization. The chemical nature of our photodissociative
ing method relies on diazirine tags that are incorpo-

synthetic peptides. The amino acid residues that can be
y tagged in the side chain include leucine (L-2-amino-
entanoic acid, called photoleucine, L*) [14], a methionine
-2-amino-5,5-azi-hexanoic acid, photomethionine, M*)
lysine (L-2,6-diamino-4,4-azi-hexanoic acid) [15]. In addi-
ese, the lysine �-amino group (K*), leucine N-terminus (*L)

 the cysteine thiol group (C*) in peptides [17] have been
y tagged with the 4,4-azi-1-pentyl group and used in gas-
ss-linking [16–19]. The diazirine ring undergoes selective

sociative loss of N2 by irradiation at 330–370 nm [20],
a region where natural peptide or protein chromophores
arent [21]. Diazirine photodissociation creates a transient

arbene which either reacts by insertion into a proxi-
H bond in the complex or competitively self-destructs
molecular isomerization by 1,2-hydrogen shift from
ent methyl or methylene groups, forming nonreactive

 competitive side reactions have very low activation ener-
tablished for peptide ions [22] (19–31 kJ mol−1, Fig. 1, left
sulting in fast isomerization kinetics (Fig. 1, right panel a).
l vibrational energies in gas-phase peptide ions, as illus-

 the energy distribution curve for a model peptide (GL*GGK
Fig. 1, right panel b) [22], the carbene lifetimes are shorter
s, providing an internal clock for the timescale of the cova-

 formation. This time scale is commensurable with that for
al conformational motion in the gas-phase complex that
ulated by advanced molecular dynamics. In the absence

nt crosslinking, the vibrational excitation provided by the
othermic carbene-to-olefin isomerization (�Erxn > 200 kJ
2]) can drive complex dissociation [18,19]. In case a new
bond is formed, its location can potentially be located by
ng the products in the gas phase using collision-induced
on spectra (CID-MS3) [16–19].
ow apply gas-phase cross-linking to investigate non-
peptide-peptide complexes, consisting of phosphorylated
tides, pXAAAA where X = Ser, Thr, or Tyr and their
ted analogues, and diazirine tagged *LGG(A)nR and
R n = 3–5 photopeptides. Our goal was to investigate the
nd structures of these complexes with regard to poten-

actions of the phosphate with a single arginine residue.
igate the conformational space and achieve atomic-level
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antum chemistry methods to capture the thermal motion
AAAA + *LGGAAAR + H)+ complex.

imental

es photo-labeled at the N-terminus, *LGGAAAR,
AR,  *LGGAAAAAR, were synthesized on a CEM Lib-
thesizer. The tag was introduced by alkylating the
ly deprotected leucine N-terminus in a solid-phase bound

ith 1-iodo-4,4-diazirine pentane, as described in detail
y [16]. Phosphorylated pentapeptides pTAAAA, pSAAAA,

 and their complementary N-acetylated peptides (>90%
ere purchased from Genscript (Piscataway, NJ, USA)

 as received. The other peptide library, consisting of
R, L*GGAAAAR, and L*GGAAAAAR, where L* was the
cine (L-2-amino-4,4-azi-pentanoic acid) residue, was
hesized using a standard Fmoc solid phase procedure
described previously [19]. Solutions of the complexes
pared by mixing 50 �L of the phosphopeptide (5 − 10 �M
:1 methanol/water/acetic acid) and 100 �L of the pho-

 (5 − 10 �M in 50:50:1 methanol/water/acetic acid).
d solution was electrosprayed from a pulled fused silica
at a 1.5–2 �L/min flow rate into a linear ion trap tandem
ctrometer, LTQ-XL ETD (ThermoElectron Fisher, San Jose,
. Photodissociation experiments at 355 nm were carried
scribed previously [24,25]. Briefly, the laser beam was

d from an EKSPLA NL 301 H T (Altos Photonics, Bozeman,
) Nd-YAG laser operating at 20 Hz frequency with a
ulse width. The laser was  interfaced with the LTQ-XL
s spectrometer as described previously [26]. The typical
nsity used in the photodissociation experiments was

lse. Multiple (19–39) laser pulses were used to achieve
sociation of mass-selected ion-molecule complexes.
induced dissociation (CID) spectra were obtained at

nits of normalized collision energies (NCE) and with
 times that were varied between the instrument default

f 30 ms  for preliminary analysis and 1000 ms. The long
 times were chosen to match the ion storage time used
issociation.

lations

Oppenheimer molecular dynamics (BOMD) trajectories
 with semiempirical all-valence-electron quantum chem-
ulations using the Berendson thermostat algorithm [27].
ture was set at 310 K to represent the experimental con-

 the ion trap. The ion system under study, (pYAAAA +
R + H)+, was  represented by three different types of pro-
ig. 2).
e I complexes, the peptides had canonical ion or neutral
s with the charge located on the protonated guanidine
he Arg residue whereas the phosphate group was  neutral.
mplexes were constructed as zwitterions with two posi-

ges located on the protonated guanidine group of the Arg
nd the N-terminus of the phosphorylated peptide while
phate group carried a negative charge. Type III complex

 zwitterions with two  positive charges located on the pro-
uanidine group of the Arg residue and the N-terminus of
labeled peptide while the phosphate group carried a neg-
rge (Fig. 2). For each complex type, ten initial structures
structed from PM6-optimized peptide subunits in which

ine tag and pTyr were in different spatial orientations, and
lexes were optimized with semi-empirical PM6-D3H4
ns [28]. These complexes were subjected to a prelimi-
D using PM6-D3H4 under MOPAC [29] that was coupled
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by4 framework [30,31]. Running trajectories with 1 fs
20 ps furnished 20,000 snapshots from which 200 snap-

 structure were extracted at 100 fs intervals. The total of
= 2000 extracted snapshot structures were fully gradient-
d with PM6-D3H4 and sorted out by energy ranking. Ten
ergy PM6-D3H4 structures within 40 kJ mol−1 were then

 to a full BOMD with PM6-D3H4 for 100 ps. Cuby4 was
 to extract close contacts between the carbon atom of the
ring and the hydrogen-carrying atoms of the phosphopep-
e contacts were limited to X-H. . .C distance of less than
he basis of the van der Waals radii of the diazirine and
s [19]. This entire procedure was run for each Type I, II,

otomeric complexes.
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ochemical calculations were performed using the Gaus-
evision A.03) [32] suite of programs. Ten lowest-energy

s of each Type I-III complexes from the PM6-D3H4 calcu-
ere re-optimized with B3LYP/6–31 G(d,p) [33] to provide

4. Resul

Our  in
complexe
s from adjacent methyl and methylene groups. Activation energies are
ene ion [22]. Right panel: (a) Calculated half-lives of the carbene for a

bene [G(L*–N2)GGK + 2 H]2+ at 310 K.

 frequencies that were used to evaluate enthalpies,
, and thermal free-energy corrections at 310 K. In sepa-
, the initial structures were re-optimized with �B97X-D
the 6-31+G(d,p) basis set. The optimized geometries and
of seven low-energy complexes are given as Supplemen-

 in Tables S1a-S7b. These calculations included dispersion
ns  in the complexes, and the obtained energies were used

te the electronic terms of the free energies. The calculated
ree energies included electronic, vibrational, and rota-
ms at 310 K. Solvation free energies were calculated using
izable continuum model [35] for the water and methanol
.

ts and discussion

vestigations were focused on three sets of non-covalent
s. In the first set, we generated complexes of phosphopep-
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Fig. 2. Drawings of (pYAAAA + *LGGAAAR + H)+ protom

AAA, pTAAAA, and pYAAAA with the N-terminally tagged
rough nonapeptides *LGG(A)nR (n = 3–5). For comparison,
ous series of N-acetylated phosphopeptides, N-Ac-XAAAA

 pThr, pTyr) was used. The purpose of N-acetylation was to
 formation of zwitterionic forms of the phosphopeptides
vestigate its effect on the complex formation and behav-
hird set consisted of combinations of pSAAAA, pTAAAA,
AA with the photoleucine (L*) containing hepta- through
ides L*GG(A)nR (n = 3–5). In addition to the different posi-
e diazirine ring in the *L and L* residues, the peptides also
heir gas-phase basicity (GB), with the *L peptides having
ry amine group, suggesting GB(*L) > GB(L*). For a general
n, we use the previously introduced notation where the
tide and target peptide are denoted as M and m,  respec-
d the complexes are labeled as (m(M+H)+. Ions formed by
sociative elimination of N2 are denoted as (mM–N2 + H)+,

the  

mas
N-Ac
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end 
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repo
H)+ and (m + H)+ for the respective surviving complex and
onomers formed upon dissociation.

elds of gas-phase complexes formed by electrospray as
rged ions were estimated as per cent mole fractions from

to minim
that the L
plexes w
>0.6% we
s I-III used in BOMD calculations.

ive intensities of (mM+H)+, (M+H)+ and (m + H)+ in the
ctra [18,19]. The yields for combinations of pXAAAA and
AAA with *LGG(A)nR (n = 3–5) ranged between 0.6–3.6%.

st, the yields of complexes from combinations of pXAAAA
G(A)nR (n = 3–5) were <0.1%. Doubly charged complexes

 observed for either series of peptides with intensities
e spectra threshold level. The yields of the more abun-
plexes of the *LGG(A)nR (n = 3–5) series were at the low
ose observed previously for complexes of hydrophobic
[16–19]. This finding was surprising, because the pre-

hosphate-Arg interactions were expected to stabilize the
s and increase their yields [10–12]. We  note that an accu-
ation of non-covalent complex yields for different sets of

can be difficult because of intrinsic differences in peptide
ations. However, for the *LGG(A)nR and L*GG(A)nR series

 here we used the same phosphopeptide stock solutions

ize effects of different concentrations. Thus, it appears
*GG(A)nR peptides were unusually weak in forming com-
ith the phosphopeptides. Complexes formed with yields
re further investigated by UVPD-MS2 and CID-MS3 exper-
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Table  1
R(MS2) fractions of (mM–N2 + H)+ ions surviving photodissociation.

Peptide R(MS2)a

*LGG(A)3R *LGG(A)4R *LGG(A)5R

pSAAAA 75 81 88
pTAAAA  80 81 86
pYAAAA  91 92 95
N-Ac-pSAAAA 90  89 89
N-Ac-pTAAAA  88 89 88
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Summed relative intensities of covalently cross-linked fragment ions in the UVPD-
CID-MS3 spectra of (mM–N2 +H)+ ions from (pXAAAA + *LGG(A)nR + H)+ complexes.

Phosphopeptide %Relative Intensitya

Cross-Linked Fragment Ions

(A)3
b (A)4

c (A)5
d

pSAAAA 48 80 89
pTAAAA  44 71 50
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Peptide 

N-Ac-pSA
N-Ac-pTA
N-Ac-pYA

a(A)3 stand
AAA  79 80 84

ctions, see text for definition.

8, Fig. 3b) which underwent partial dissociation to the
AAAR + H)+ monomer (m/z 683, Fig. 3b). Remarkably,

ss than 1% elimination of H3PO4 from the (mM–N2 + H)+

lustrated in Fig. 3b. Similar results were obtained for all
, pS, and pT containing complexes. In contrast to pho-
ation, collision-induced dissociation (CID) of (m(M+H))+

n complex dissociation to ((M+H))+ (m/z  711, Fig. 3c) that
mpanied by (M–N2 + H)+ at m/z  683 while no (mM–N2 +
etected. The yields of (mM–N2+H)+ complexes surviving

sociation were expressed as R(MS2) values: R(MS2) = 100
2 + H]+/{[mM–N2 + H]+ + [M–N2 + H]+} where square

indicate ion intensities in the UVPD-MS2 spectra (Table 1).
ons of (mM–N2 + H)+, expressed as R(MS2), combined con-
s from non-covalent complexes surviving the exothermic
trogen [22] and their cross-linked isomers. The Table 1
cated high levels of retention of non-covalent complexes
eded 75%. Some minor trends of R(MS2) were observed in
ce on the photopeptide molecular size where increasing
er of Ala residues resulted in a slight increase of the frac-
n-dissociating complexes. This trend and its magnitude

stent with the degree-of-freedom effect on the complex
on kinetics. For example, the internal degrees of freedom
AA + *LGG(A)nR + H)+ increased by 11% from 516 for n = 3
r n = 5, a relatively minor change. The internal energies
M–N2 + H)+ ions immediately after photodissociation are
d of the precursor (m(M+H))+ ion internal energy and the
icity of N2 elimination. The distribution of thermal vibra-
rgies at the ion trap temperature of 310 K was calculated
YAAAA + *LGGAAAR + H)+ complexes (Figure S1, Supple-
data), giving mean energy values of 258–261 kJ mol−1 for
rmers. An N2 elimination from the diazirine ring followed
e isomerization to an olefin is ca. 200 kJ mol−1 exothermic

easing the mean vibrational energy of (mM–N2 + H)+ ions
 kJ mol−1 in the non-covalent complexes to drive their

on. In spite of this substantial excitation, only a minor
f complexes dissociated upon UVPD (Table 1), raising the
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s for complexes with *LGG(A)3R. b(A)4 stands for complexes with *LGG(A)4R. c(A)5 stands
M–N2 + H) that originated from cross-linked complexes. (A)3 stands
xes with *LGG(A)3R; c(A)4 stands for complexes with *LGG(A)4R; d(A)5

mplexes with *LGG(A)5R.

XAAAA + *LGG(A)nR + H)+ ion complexes and their N-
d analogues are summarized in Tables 2 and 3. The (M–N2)
tides are abbreviated as (A)3, (A)4, and (A)5 according to
er of Ala residues. The relative intensities of (M–N2 + H)+

r ions were taken as representing the fractions of non-
complexes. This followed from the general feature of CID
ig. 3c) showing that non-covalent complexes exclusively

ed to monomers. Starting with the N-acetylated
hopeptides, CID-MS3 analysis indicated that major frac-
he complexes (>90%) dissociated to monomeric peptides,
ted by the data in the (M–N2 + H)+ columns in Table 2.
sed below, these dissociations can chiefly originate from
lent complexes but also can include cross-links at the
hate oxygens. The fractions of these complexes did not
ng dependence on the length of the photopeptide chain.

g covalent cross-linked complexes, their minor fractions
resented by fragment ions formed either by loss of H3PO4
M–N2 + H)+, or resulted as H3PO4 adducts onto the
)+ moiety, as shown for the (pXAAAA + (A)4 + H)+ com-

ig. 4a,b,c). Note that none of these reactions was  observed
sence of photodissociation and so they can be unambigu-
igned to covalently cross-linked products.
r fractions of both the covalent cross-links and a variety
iation reactions were observed for photodissociation of
s with pXAAAA having free N-termini. This was inferred

 CID-MS3 spectra considering fragment ions with m/z
 that of the (M–N2 + H)+ and (mM–N2 + H)+ that can
biguously assigned to originate from covalent cross-
her than listing the multitude of individual cross-linked

 ions for each combination of the phospho- and photopep-
summed their relative intensities that are presented in

ID-MS3 data differed for pSAAAA, pTAAAA, and pYAAAA
he nature of CID fragmentations and dependence on the

 the photopeptide. The fragmentations are illustrated by
spectra of (pXAAAA + (A)4 + H)+ complexes (Fig. 5a-c). CID-

e pSAAAA complexes resulted in loss of H3PO4 (m/z  1125
) and formation of (M–N2 + H3PO4 + H)+ fragment ions
ared at m/z  852 in Fig. 5a and were incrementally shifted
for the complexes with *LGGAAAR, denoted by (A)3, and

AAAA + *LGG(A)nR + H)+ complexes.

+ (mM–N2–H3PO4+H)+

)4 (A)5 (A)3 (A)4 (A)5

.5 4.8 2.4 4.2 3.9

.8 1.9 1.8 3.5 1.8

 or complexes with *LGG(A)5R.
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Fig. 4. CID- -Ac-p
(m/z 1341).

*LGGAAA
which the
a  result of
with (A)3
MS3 spectra of (mM–N2+H)+ ions from UVPD of *LGGAAAAR complexes with (a) N
R, denoted by (A)5. These ions represented complexes in
 pSer phosphate group migrated onto the photopeptide as

 cross-linking. In addition, CID-MS3 of pSAAAA complexes
, (A)4, (A)5 showed elimination of 134 Da (m/z 1089 in

Fig.  5a) t
H3PO4 an
possibly 

abundan
SAAAA (m/z  1265), (b) N-Ac-pTAAAA (m/z  1279), and (c) N-Ac-pYAAAA
hat we tentatively assign to a combined elimination of
d two  water molecules. Loss of 162 Da (m/z  1061 in Fig. 5a),
consecutive CO elimination after loss of 134 Da, was  also
t in the CID-MS3 spectra of the pSAAAA complexes.
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Fig. 5. CID- pTAAA
m/z  1020 ar

The re
increased
plexes w
MS3 spectra of (pXAAAA + (A)4 + H)+ complexes with: (a) pSAAAA (m/z 1223); (b) 

e denoted as U and discussed in main text.
lative abundance of these two dissociations gradually
 from the (A)3 to (A)4 and further on to (A)5 com-
here they become prominent, representing 39 and 34%

of  the t
complexe
and form
A (m/z 1237); (c) pYAAAA (m/z 1299). The highlighted fragment ions at
otal fragment ion intensity. CID-MS3 of the pTAAAA
s showed mainly loss of H3PO4 (m/z  1139 in Fig. 5b)
ation of (M–N2 + H3PO4 + H)+ fragment ions (m/z
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us  solution.

plexd Typee Relative Energya

B3LYPb �B97X-Dc

�Hg,0 �Gg,310
f �Gaq

g �Hg,0 �Gg,310
f �Gaq

g

I 32 19 19 59 46 35
Ih 42 36 36 35 28 25
Ih 60 46 46 38 23 6
II 54 56 56 34 36 25
III 94 79 79 97 83 27
III 0 0 0 0 0 0
III 41 38 38 40 37 36

 mol−1 including B3LYP/6–31 G(d,p) zero-point energies and referring to 0 K
s stated otherwise. bGas-phase structures fully optimized with the 6–31 G(d,p)
set. cGas-phase structures fully optimized with the 6-31+G(d,p) basis set. dSee
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he complex with (A)4). Interestingly, dissociations anal-
 homologous to the loss of 134 and 162 Da neutral
s in the pSer series were absent for the pThr com-

spicuous feature of the CID-MS3 spectra was the forma-
oss-linked fragment ions at m/z  949, 1020, and 1091 from
ctive (A)3, (A)4, and (A)5 complexes (Figures S2-S4, Sup-
ry data). These fragment ions, which are highlighted and

 in the CID-MS3 spectra (Fig. 5a,b,c), showed the same m/z
med from the pSAAAA, pTAAAA, and pYAAAA complexes,
g that the Ser, Thr and Tyr residues were eliminated by
on, so that covalent cross-linking must have taken place
e AAAA sequence of the phosphopeptides. At the same

 pertinent neutral losses of 203, 217, and 279 Da from the
eptides were difficult to explain by including the intact

 Da), pThr (182 Da) and pTyr (244 Da) moieties, because
s no logical mass unit to account for the missing 35 Da
e. Hence, we concluded that prior to or in the course of
on, the (mM–N2 + H)+ ion complexes underwent HPO3

 onto the photopeptide. The recipient group could not be
ed by CID-MS4 of the U ions (m/z 1020 from the complexes
(A)4R) because of the substantially diminished ion count

MS3 step. We  tentatively suggest that HPO3 moved to one
entially nucleophilic groups in the photopeptides, which

rg guanidine and the (*L–N2) secondary amine. The over-
iation leading to the formation of U fragment ions can be
ly explained as proceeding with backbone cleavage next to

 residue in the rearranged phosphopeptide. The formation
ent ions relatively increased from (A)3 to (A)4 complexes

 leveled off.
marizing this section, we note that the CID-MS3 dissoci-

the photolyzed complexes indicated substantial fractions
tly cross-linked products with the phosphopeptides with
mini. A common feature of the complexes was phosphate
rom the phosphopeptide to the photopeptide. Although

echanisms of the cross-linked ion dissociations remain
idated, the above described reactive interactions between
hopeptide and photopeptide moieties provide a firm evi-

 covalent bond formation in the complexes upon diazirine
ociation.
te that CID-induced phosphate migration among serine

in phosphopeptide cations and anions has been reported
ssed by Reid and coworkers [36], and its importance for
roteome analysis has been debated [37–40]. Collision-

transfer of HPO3 [41] and H2SO4 [42] in non-covalent
s of phosphorylated and sulfated peptides has been

 In contrast to the previous studies, we did not observe
e transfer upon CID of non-covalent (pXAAAA + *LGG(A)nR
plexes prior to photodissociative cross-linking.

lex ion structures and dynamics

er to shed light on the interactions in the complexes,
rtook a detailed computational study of the (pYAAAA +
R + H)+ ion. BOMD of several Type I, II, and III protomeric
s (Fig. 2), followed by gradient geometry optimization,

 several structures representing local energy minima at
tructures were sorted out by free energies to select low-
y representatives of each protomeric type, as summarized
4. The gas-phase energies varied, depending on the DFT
sed, and further adjustments were made by including gas-
halpies, entropies, and solvation energies [35]. Regarding
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percenta
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grouped 
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ee energies in a polarizable dielectric continuum of water. hRearranged
omplexes upon gradient optimization.

ced by electrospray and represented in the gas phase.
mplexes in which the phosphopeptide was  in a neutral
l form (Fig. 2) were represented by a single low-energy

 (1, Fig. 6) The main non-covalent interactions between
and *LGGAAAR in 1 originated from hydrogen bonding to
hoester and carboxyl groups of the phoshopeptide. Two
-energy structures that were started as Type I underwent
ic rearrangements upon gradient optimization, yielding
omplexes 2 and 3 with a deprotonated phosphate and

onation sites on the basic groups in *LGGAAAR (Fig. 6).
 non-covalent interactions between the peptide moieties
3 involved hydrogen bonding of the charged groups to
phate anion, as well as neutral amide-amide hydrogen
e single low-energy Type II complex was represented by

 4 (Fig. 6). The phosphate anion in 4 was internally sol-
neutral amide and carboxyl groups, whereas the charged
ceived internal solvation within the photopeptide. Type

exes were most frequently represented among the low-
ructures, as illustrated by structures 5 and 6, in addition
3. The phosphate anion in 5 received internal solvation

 (A)3 neutral amide and carboxyl groups. The secondary
m group on *L participated in hydrogen bonding to the
eptide carboxyl whereas the charged Arg group was sol-

ernally within the (A)3 moiety. Structure 6 showed a yet
pattern of non-covalent interactions. Both charged groups
ere involved in hydrogen bonding to the phosphate anion,
on-covalent binding of the peptides was  further strength-
eutral hydrogen bonds between the amide groups (Fig. 6).
tructure 7 developed from an initial Type III complex
ranged by proton migration from the (A)3 carboxyl onto
hate group. The main non-covalent interactions between
and (A)3 in 7 involved hydrogen bonding of the neu-
phoester group, as well as the ammonium group on *L

hese low-energy structures in hand, we  investigated their
 ps) BOMD trajectories with the goal of determining close
of the incipient carbene with X H bonds in the target
peptide, resulting from intra-complex thermal motion at
ap temperature (310 K). A close contact of the carbene with
ond is prerequisite for the chemical reaction forming the
lent X C bond and resulting in cross-linking. A lack of con-
s carbene isomerization to an unreactive olefin. Hence, the

ge of time the diazirine spends in close contacts with X H
indicative of the propensity for cross-linking. Close con-
ined for the C–H, N H, and O H bonds in pYAAAA were

by amino acid residues. With pY, close contacts with the
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Fig. 6. �B97X-D/6-31+G(d,p) optimized structures of low-energy complexes 1-7. Atom color coding is as follows: Green or cyan = C, gray = H, blue = N, red = O, bronze = P.
Only  exchangeable (N H, O H) hydrogens are shown. Graphs of close contact distributions in complexes 1-7. Magenta bars: Total percentage of all contacts at pYAAAA.
Simultaneous contacts with multiple atoms in the target peptide account for the count exceeding 100%. Gray bars: contacts at X-H of the given amino acid residue. Green
bars: contacts with pY phosphate O-H. (For interpretation of the references to colour in this figure legend, the reader is referred to the web  version of this article).
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h of the photopeptide (Figure S2, Supplementary data),
lustrated by the 11% to 92% increase of the total frac-
oss-linked fragment ions (Table 3). The U ions involve
ing at the A3-A5 residues in pYAAAA. Although we did

 out detailed calculations of these larger systems, the
scribed analysis of the (pYAAAA + *LGGAAAR + H)+ struc-

 be used for interpretation. The formation of U fragment
petes with cross-linking to the pY phosphate group that
ted by hydrogen bonding to the Arg and N-terminal
roups in the complexes. As the photopeptide sequence
ncreased, simultaneous coordination to the pY phosphate
g and N-terminal charged groups becomes entropically
d, because there is a large number of alternative hydro-
ing sites for pY, forming conformers of comparable free
his should increase close contacts of the diazirine group
C-terminal residues in pYAAAA and favor cross-linking in

 remote from the pY phosphate.
er conspicuous result revealed by the present study was
negative effect on cross-linking of N-terminal acetylation
AAA peptides (Table 2). This may  result from a combina-
steric effect of the N-acetyl group, hindering hydrogen
at the phosphopeptide N-terminus, and its diminished
hat would disfavor zwitterionic protomers of the phos-
de.
, we note that the current complexes of pXAAAA with

R displayed rather contrasting features regarding their
 by electrospray and ion stability in the gas phase. When

 to complexes of more hydrophobic peptides, studied
y [18,19], pXAAAA and *LGG(A)nR showed much less
formation of gas-phase complexes by electrospray. The
s were even more dramatic for the pXAAAA complexes
G(A)nR. On the contrary, when formed in the gas phase,
AAA + *LGG(A)nR + H)+ complexes displayed substantial
e (75–95%, Table 2) to dissociation to peptide compo-
lowing diazirine photolysis. This by far exceeded the
abilities of complexes composed of hydrophobic pep-

 range between 19–44% [18]. These comparisons clearly
the negative effect of solvent on the stability of the

 + *LGG(A)nR + H)+ complexes. Both the complexes and
ar peptide components can be stabilized by solvation
us solution to balance the relative enthalpies at equi-

hereby complex dissociation is favored by entropy. In
nce of solvent, the break up of the attractive charge-
teractions between the polar phosphate, arginine, and
al groups in the complexes is much less compensated
interactions within the components, and the dissocia-
ndered even after excitation by photolysis and carbene
ment.

usions

dissociative loss of N2 from non-covalent complexes of
phoshopeptides with peptides tagged at the N-terminus
ining a single arginine residue produced large (75–95%)
of stable surviving adducts. The distribution of non-

and covalently cross-linked photoproducts was  found to
n several factors, such as the photopeptide chain length,

 phosphorylated amino acid residue, and phosphopeptide
al modification. CID of the photoproducts revealed H3PO4
onto the photopeptide followed by unusual backbone
ons in the phosphopeptide residue. Structure analysis
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