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Abstract
Given a set of data, one central goal is to group them into clusters based on some
notion of similarity between the individual objects. One of the most popular and
widely-used approaches is k-means despite the computational hardness to find its
global minimum.We study and compare the properties of different convex relaxations
by relating them to corresponding proximity conditions, an idea originally introduced
by Kumar and Kannan. Using conic duality theory, we present an improved proximity
condition under which the Peng–Wei relaxation of k-means recovers the underlying
clusters exactly. Our proximity condition improves upon Kumar and Kannan and is
comparable to that of Awashti and Sheffet, where proximity conditions are established
for projective k-means. In addition, we provide a necessary proximity condition for
the exactness of the Peng–Wei relaxation. For the special case of equal cluster sizes,
we establish a different and completely localized proximity condition under which
the Amini–Levina relaxation yields exact clustering, thereby having addressed an
open problem by Awasthi and Sheffet in the balanced case. Our framework is not
only deterministic and model-free but also comes with a clear geometric meaning
which allows for further analysis and generalization. Moreover, it can be conveniently
applied to analyzing various data generative models such as the stochastic ball models
and Gaussian mixture models. With this method, we improve the current minimum
separation bound for the stochastic ball models and achieve the state-of-the-art results
of learning Gaussian mixture models.
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1 Introduction

k-Means clustering is one of themost well-known andwidely-used clusteringmethods
in unsupervised learning. Given N data points inRm , the goal is to partition them into
k clusters by minimizing the total squared distance between each data point and the
corresponding cluster center. It is a problem related to Voronoi tessellations [10].
However, k-means is combinatorial in nature since it is essentially equivalent to an
integer programming problem [22]. Thus, minimizing the k-means objective function
turns out to be an NP-hard problem, even if there are only two clusters [2] or if the
data points are on a 2D plane [19].

Despite its hardness, numerous efforts have been made to develop effective and
efficient heuristic algorithms to handle the k-means problem in practice. A famous
example is Lloyd’s algorithm [17] which was originally introduced for vector quan-
tization and then became popular in data clustering due to its high efficiency and
simplicity of implementation. One of the earliest convergence analyses of Lloyd’s
algorithm was given by Selim and Ismail [22]: Under certain conditions, the algo-
rithm converges to a stationary point within a finite number of iterations but may fail
to converge to a local minimum. A smoothed analysis given by Arthur, Manthey and
Roglin [4] shows that the smoothed/expected number of iterations is bounded poly-
nomially by N , k and m while the worst-case running time can be 2�(N ) even for the
case when data points are on a plane [24].

We are particularly interested in the semidefinite programming (SDP) relaxation
for k-means by Peng and Wei [21], who observed that the k-means objective function
can be written as the inner product between a projection matrix and a distance matrix
constructed from the data, and the combinatorial constraints of the projection matrix
can be convexified. Thus, whenever the Peng–Wei relaxation produces an output cor-
responding to a partition of the data set, the k-means problem is solved in polynomial
time [27]. The details of the Peng–Wei relaxation will be explained in 2.

Theoretical properties of the Peng–Wei relaxation have also been studied under
specific stochastic models in the literature. Minimum separation conditions were
established in [5,13] to guarantee exact clustering for the stochastic ball models with
balanced clusters (i.e., each cluster has the same number of points), while a similar
study was conducted in [20] for the Gaussian mixture model.

Despite these efforts, the Peng–Wei relaxation is not yet thoroughly understood.
Several fundamental questions of vital importance remain unexplored or require better
answers, such as

– How do the number of clusters and the data dimension affect the performance of
the Peng–Wei relaxation?

– Howdoes the performance of the Peng–Wei relaxation depend on the balancedness
of the cluster sizes and covariance structures within each cluster?

– Can the global minimum separation condition be localized?
– Under the special case of equal cluster sizes, does the tighter Amini–Levina relax-
ation [3] improve the Peng–Wei relaxation? If so, in which sense?

The studies in [5,13,20] reveal certain information about the Peng–Wei relaxation
based on the assumption of sufficient minimum center separation: guaranteed exact
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recovery in the case of the stochastic ball model [5,13] and learning of centers for
the Gaussian mixture model [20]. The price to obtain such information, the require-
ment imposed upon the minimum center separation, is the homogeneity of the criteria
forced on all different clusters. In other words, each pair of clusters, regardless of
their shapes and cardinalities, must have their centers separated by a uniform distance
determined by the entire data set. As a consequence of this “global” condition, the
effect of an isolated but huge cluster ripples throughout the entire data set by raising
the minimum center separation. Thus, a more “localized” condition, i.e., a condition
on the center separation for each pair of clusters that relies largely on local informa-
tion, is much desired. Such a more localized condition might pave the way to address
the aforementioned fundamental questions regarding the Peng–Wei relaxation.

To that end, in this paperwe introduce a proximity condition enabling us to relate the
pairwise center distances tomore localized quantities. Interestingly, it turns out that our
proximity condition improves the one in [15] and is comparable to that in [6], the state-
of-the-art proximity conditions in the literature of SVD-based projective k-means.
Furthermore, under the Amini–Levina relaxation for clusters of equal cardinality, the
associated proximity condition becomes even “fully localized”, as it only involves
information about pairs of clusters.

1.1 Organization of our paper

Our paper is organized as follows. In the remainder of this introductory section we
present our aforementioned proximity condition, discuss its implication for various
stochastic cluster models and briefly compare our results to the state of the art. In
Sect. 2, we discuss k-means and its convex relaxation introduced by Peng and Wei.
In Sect. 3, we show that the Peng–Wei relaxation yields the solution of the k-means
objective as long as our proximity condition (1.1) is satisfied. A different proximity
condition for the exactness of Amini–Levina relaxation is discussed in the same sec-
tion. In 4, we consider the application of our framework to the stochastic ball model
and the Gaussian mixture model. Numerical simulations that illustrate our theoretical
findings are presented in Sect. 5. All proofs can be found in Sects. 6–8.

1.2 Proximity conditions under deterministic models

The idea of proximity conditions originates from the work [15] by Kumar and Kannan
who use a proximity condition to characterize the performance of Lloyd’s algorithm
with an initialization given by an SVD-based projection under deterministic models.
The result is later improved by Awasthi and Sheffet [6], who perform a finer analy-
sis and redesign the proximity condition for the same algorithm. To the best of our
knowledge, no such type of proximity conditions has been established for the Peng–
Wei relaxation so far, and we will fill this gap in this paper.

123



X. Li et al.

Conceptually speaking, our proximity condition can be interpreted as follows:

For each pair of clusters, every point is closer to the center of its own cluster,
while the bisector hyperplane of the centers keeps all points in the two clusters
at a certain distance determined by global information of the data set.

Roughly speaking, the proximity condition characterizes for each pair of clusters
howmuch closer each point is to the within-cluster center than the cross-cluster center.
This is conceptually much more localized than minimum separation, which compares
all pairwise center distances to a uniform quantity.

Let us introduce some necessary notation before we proceed to the exact statement
of our proximity condition. Given a set of N data points � = {xl}Nl=1 with k mutually
disjoint clusters � = �k

a=1�a , we can re-index x1, . . . , xN according to the clusters:
�a = {xa,i }1≤i≤na for all 1 ≤ a ≤ k. Denote by na = |�a | the number of elements in
�a .

Denote the data matrix of the ath cluster by

X�
a = [

xa,1 . . . xa,na

] ∈ R
m×na .

Furthermore, define

ca = 1

na

na∑

i=1

xa,i , wa,b = cb − ca
‖cb − ca‖ , and Xa = Xa − 1na c

�
a .

In other words, ca is the sample mean (cluster center) of the ath cluster, wa,b is the
unit vector pointing from ca to cb, and Xa is the centered data matrix of the ath cluster.
Now we are ready to give a mathematical characterization of the proximity condition.

Condition 1 (Proximity condition) The partition � = �k
a=1�a satisfies the proximity

condition if for any a �= b, there holds

min
1≤i≤na

〈
xa,i − ca + cb

2
,wb,a

〉
>

1

2

√√√√
(

k∑

l=1

‖X l‖2
) (

1

na
+ 1

nb

)
. (1.1)

Here, ‖X l‖ is the operator norm of the matrix X l .

Theproximity condition has a very intuitive geometric interpretation, see alsoFig. 1.
Suppose the partition of data points satisfies the proximity condition. Then each pair
of clusters �a and �b can be separated by a plane through the bisector of their sample
means ca and cb. Moreover, the distance between every point in those two clusters
and the bisector must be greater than the right hand side of (1.1). This geometric
interpretation can be further illustrated by rewriting (1.1): Denote by ha,b = ‖ca − cb‖
the distance between the two centers ca and cb. Moreover, define

τa,b = max{max(ua,b),max(ub,a)} where ua,b = Xawa,b for 1 ≤ a, b ≤ k.
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Fig. 1 Proximity condition: If the partition of data points satisfies the proximity condition, then each pair
of clusters �a and �b can be separated by a plane through the bisector of their sample means ca and cb , and
the distance between each individual point in those two clusters and the bisector is greater than the right
hand side of (1.1)

Clearly, τa,b is the maximum signed projection distance over all the data points in the
clusters �a and �b. As illustrated in Fig. 1, one can easily check that the left hand
side of proximity condition (1.1) is in fact equal to 1

2ha,b − τa,b which is the shortest
distance between the midpoint ca+cb

2 and the projections of all the data points in �a

and �b on the line connecting ca and cb. This observation gives us the following
proposition.

Proposition 1 The proximity condition (1.1) is equivalent to

ha,b > 2τa,b +
√√√√

k∑

l=1

‖X l‖2
(

1

na
+ 1

nb

)
, ∀a �= b. (1.2)

Besides showing that the proximity condition (1.1) guarantees the exactness of
Peng–Wei relaxation, we also obtain a necessary proximity condition. If a determin-
istic mixture fails to fulfill the necessary condition, exact recovery by the Peng–Wei
relaxation is provably impossible.

Awasthi and Sheffet’s has raised an open question in [6]: can the pairwise separation
condition be fully localized, i.e., depend only on information of the corresponding
pair of clusters? We apply the Amini and Levina’s relaxation [3], originally intended
to address the weak assortativity issue in community detection among networks, to
convexify the k-means problem in the case of balanced clusters. Surprisingly, we end
up with a completely localized proximity condition for the exactness of the convex
relaxation, thus solving Awasthi and Sheffet’s open problem for the balanced case.

Furthermore, beyond the scope of the Peng–Wei relaxation of k-means, the prox-
imity condition itself provides an algorithm that can accept answers to the NP-hard
k-means problem (although it is not able to reject an answer). For a given solution
to k-means, one can simply check whether the proximity condition holds, and if it
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does hold, then the solution is provably the unique global minimum. The time cost is
proportional toO(kN +m2N ). Assuming the number of clusters k and the dimension
of data m are fixed, the time complexity is linear in the total number of points N ,
which improves the quasilinear-time algorithm proposed in [13] in terms of the time
complexity.

1.3 Comparison to existing proximity conditions in the literature

As mentioned before, in the literature of projective k-means, proximity conditions
have been proposed in [15] and later improved in [6]. In this section we compare our
proximity conditions with these existing results.

Denote W = [X�
1 , . . . , X

�
k ]�. By our notation, the original Kumar-Kannan prox-

imity condition [15] is equivalent to

ha,b > 2τa,b + Ck

(
1√
na

+ 1√
nb

)
‖W‖, ∀a �= b,

for some large absolute constant C > 0. The fact that max1≤l≤k ‖X l‖ ≤ ‖W‖ implies√∑k
l=1 ‖X l‖2 ≤ √

k‖W‖. Therefore, our proximity condition (1.2) is strictly weaker

than the Kumar-Kannan condition by at least a factor of
√
k.

The comparison between (1.1) and the Awasthi-Sheffet conditions in [6] is less
straightforward. Theorem 4 therein states that consistent clustering is guaranteed by
projective k-means plus Lloyd’s algorithm as long as

ha,b > max

{
2τa,b + C

(
1√
na

+ 1√
nb

)
‖W‖, C

√
k

(
1√
na

+ 1√
nb

)
‖W‖

}
∀a �= b.

(1.3)
Compared to our proximity condition (1.1), the second term on the right-hand side

of 1.3 could be more stringent given the fact
√∑k

l=1 ‖X l‖2 ≤ √
k‖W‖, whereas the

first term is less stringent than ours since

‖W‖2 = ‖W�
W‖ =

∥∥∥∥∥

k∑

a=1

X
�
a Xa

∥∥∥∥∥
≤

k∑

a=1

∥∥∥X
�
a Xa

∥∥∥ =
k∑

a=1

∥∥Xa
∥∥2 .

Therefore, it is fair to say our proximity condition is comparable to theAwasthi-Sheffet
condition.

1.4 Implications under stochastic models

We should emphasize that in order to prove our main results, we benefit a lot from
the existing primal-dual analyses in [5,13]. The major difference between our analysis
and [5,13] is that we aim at deriving proximity conditions under deterministic models
rather than establishing minimum separation results under stochastic models.
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However, we are still curious about what minimum separation conditions our prox-
imity condition can yield when applied to both the stochastic ball model and the
Gaussian mixture model. Before presenting conditions given by our proximity condi-
tion, we first review the state-of-the-art results on both models.

Existing work on the Peng–Wei relaxation: The stochastic ball model can be viewed
as a special case of mixture models where the distributions of sample data points are
compactly supported on k disjoint unit balls in Rm . The clusters are balanced and the
covariance structure is fairly rigid since all the distributions are assumed to be identical
and isotropic.

Let � be the minimal separation between the cluster centers. In [5], it is proven
that the Peng–Wei relaxation achieves exact recovery provided� > 2

√
2(1+1/

√
m),

where the lower bound of� is independent of the number of clusters k. Another bound
of � is given in [13] stating that exact recovery is guaranteed if � > 2+ k2/m which
is near-optimal in the m 
 k2 regime.

The Gaussian mixture model (GMM) as a stochastic model is more flexible. This
model is characterized by its density function which is a weighted sum of the density
functions ofGaussian or subgaussian distributions. In [20], assuming theGaussian dis-
tributions are identical and isotropic, Mixon, Villar andWard prove that the Peng–Wei
relaxation learns the Gaussian centers for balanced clusters when the center separa-
tions are required to be above kσ , where σ I is the common covariance of all Gaussian
distributions.

Existing work on other algorithms: Clustering Gaussian mixture models has received
extensive attention in machine learning and statistics communities.
Besides [20], a lot of progress has been made in developing efficient algorithms for
this task. Among them are a family of algorithms here referred to as the projective k-
means [1,6,9,14,15,18,25]. In general, the projective k-means works in two steps: first
project all the data points onto a lower dimensional space usually based on singular
value decomposition (SVD), and then classify each point by heuristic methods such
as single linkage clustering in [1] or Lloyd’s algorithm in [6].

Vempala and Wang [25] show that if each pairwise center separation is larger
than a quantity determined by the number of clusters k, the dimension m and the
variances of the clusters, the projective algorithm can classify a mixture of k isotropic
Gaussians with high probability. Achlioptas and McSherry [1] show that SVD-based
projection followed by single-linkage clustering is able to classify all the sampled
data points accurately if the center separation of each pair of clusters is greater than
the operator norm of the covariance matrix and the weights of the two clusters plus a
termwhich depends on the concentration properties of the distributions in the mixture.
The algorithm studied by Kannan and Kumar in [15]—the work that first devises the
idea of proximity condition—also begins with an SVD-based projection and proceeds
by Lloyd’s algorithm which is initialized by an unspecified near-optimal solution to
the k-means problem. As stated before, its technical results are improved by Awatshi
and Sheffet in [6]. Recently, Lu and Zhou [18] provide a more detailed estimation of
misclassification rate for each iteration of Lloyd’s algorithm with initialization given
by spectral methods [14].
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Table 1 Comparison of results on GMM: the separation bound for [25] only applies to mixtures of isotropic
Gaussian distributions and the bound for [20] is used to guarantee learning cluster centers instead of
recovering the labels of data points

Authors Separation bounds Algorithms Exact Year

Vempala and Wang [25] O(k1/4 log1/4(m)) Projective k-means Yes 2004

Achlioptas and McSherry [1] O(k + k1/2 log1/2 N ) Projective k-means Yes 2005

Kumar and Kannan [15] O(k(polylog(N ))) Projective k-means Yes 2010

Awasthi and Sheffet [6] O(k1/2(polylog(N ))) Projective k-means Yes 2012

Lu and Zhou [18] O(k3/2) Projective k-means No 2016

Mixon et al. [20] O(k) SDP k-means No 2017

Our work O(k1/2 + log1/2 (kN )) SDP k-means Yes –

Our results: We can easily apply the proximity condition to the stochastic ball
model and the Gaussian mixture model. The corresponding recovery guarantees are
competitive with or improve upon other state-of-the-art results.

– For the stochastic ball model, we show that � > 2 + O(
√
k/m) is sufficient

to guarantee the exact recovery of the Peng–Wei relaxation, which improves the
separation condition � > 2 + k2/m in [13] when k is large. Moreover, our result
applies to a broader class of stochastic ball models where each cluster can have a
different number of points and may even satisfy a different probability distribution
as long as the support of density function is contained within a unit ball.

– For the Gaussian mixture model, we summarize our result for the Peng–Wei
relaxation and other state-of-the-art results for both the Peng–Wei relaxation and
projective k-means in Table 1. It has been shown in [20] that the centers of a
Gaussian mixture can be accurately estimated by Peng–Wei relaxation provided
the minimal separation is O(k). In contrast, our proximity provides a different
minimal separation condition O(k1/2 + log1/2 (kN )), which is smaller thanO(k)
if k is large and N not too large. Our separation condition is better than [15] and
comparable to [6] for projective k-means. Though our bound loses a k1/4 factor
vis-à-vis the one in [25] for the special case of spherical Gaussian mixtures, we
can handle more general Gaussian mixtures where the density functions do not
have to be spherical or identical.

1.5 Notation

Let 1�a be the indicator vector of �a ⊆ �. 1n is an n × 1 vector with all entries equal
to 1. Given any two real matrices U and V in R

m×n , we define the inner product as
〈U, V 〉 = Tr(UV�) = ∑m

i=1
∑n

j=1Ui j Vi j . For a vector v, max(v) is equal to the
largest entry of v. We denote Z ≥ 0 if Z is a nonnegative matrix, i.e., each entry is
nonnegative; Z � 0 if Z is a symmetric positive semi-definite matrix. Besides, we
also use the notation listed below throughout the paper.

m Dimension of data
k Number of clusters
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� Set of N data points in Rm

�a The ath cluster
N Total number of data points
na Number of points in the ath cluster
SN Set of N × N symmetric matrices
SN+ Set of N × N positive semi-definite matrices

R
N×N+ Set of N × N nonnegative matrices
W Data matrix of all N data points
Xa Data matrix of the ath cluster
Xa Centered data matrix of the ath cluster
D Squared distance matrix
X Ground-truth solution to the SDP relaxation of k-means

Y (a,b) Submatrix of any N × N matrix Y given by {ys,t }s∈�a ,t∈�b

xa,i The i th data point in the ath cluster
μa Population mean of the ath cluster in a generative model
ca Sample mean of the ath cluster

wa,b Unit vector pointing from ca to cb
ua,b Signed projection distance given by ua,b = Xawa,b

ha,b Distance between ca and cb
τa,b Maximum signed projection distance determined by ua,b and ub,a

2 k-Means and the Peng–Wei relaxation

In this section, we briefly review the formulation of k-means and its SDP relaxation
introduced by Peng and Wei [21]. Let � = {xl}Nl=1 be a set of N data points in R

m .
k-means attempts to divide � into k disjoint clusters by seeking a solution to the
following minimization problem:

min
{�a}ka=1

min
{γ a}ka=1

k∑

a=1

∑

l∈�a

∥∥xl − γ a

∥∥2 ,

where {�a}ka=1 form a partition of � (i.e., �k
a=1�a = � and �a � �b = ∅ if

a �= b). For any given partition {�a}ka=1, choosing γ a as the centroid γ a = ca =
1

|�a |
∑

j∈�a
x j (a = 1, . . . , k) minimizes the objective function. Therefore, the k-

means problem is equivalent to:

min
{�a}ka=1

k∑

a=1

∑

l∈�a

‖xl − ca‖2 , (2.1)

Given an arbitrary partition {�a}ka=1 of �, let 1�a (a = 1, . . . , k) be the indicator
function of the ath cluster. That is,

1�a (l) =
{
1 if l ∈ �a,

0 otherwise.
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A simple calculation can reveal that

1

|�a |
∑

l∈�a ,s∈�a

‖xl − xs‖2 = 2
∑

l∈�a

‖xl − γ a‖2

and hence,

k∑

a=1

∑

l∈�a

∥∥xl − μa

∥∥2 = 1

2

k∑

a=1

1

|�a |
∑

l∈�a ,s∈�a

‖xl − xs‖2

= 1

2

k∑

a=1

1

|�a | 〈1�a1
�
�a

, D〉,

where D ∈ R
N×N is the distance matrix with the (l, s)th entry being given by Dl,s =

‖xl − xs‖2. Therefore, we can rewrite the k-means problem as

min 〈Z, D〉

s.t. Z =
k∑

a=1

1

|�a |1�a1
�
�a

with �k
a=1 �a = � and �a � �b = ∅ for a �= b.

(2.2)

It is self-evident that (2.2) is a non-convex problem due to the combinatorial nature of
the feasible set. Indeed, (2.2) is an NP-hard problem [2]. Despite this, it can be easily
verified that Z = ∑k

a=1
1

|�a |1�a1
�
�a

satisfies the following four properties:

Z � 0, Z ≥ 0, Z1N = 1N , Tr(Z) = k.

Replacing the constraint in (2.2) by the above four properties leads to the SDP relax-
ation of k-means introduced by Peng and Wei in [21],

min 〈Z, D〉
s.t. Z � 0, Z ≥ 0, Z1N = 1N , Tr(Z) = k, (2.3)

which will be the focus of this paper.
The Peng–Wei relaxation is a convex problem and can be solved in polynomial

time using the interior-point method [27]. We denote by X the optimal solution to the
Peng–Wei relaxation. Clearly, every feasible point of (2.2) is also feasible for (2.3);
so once the optimal solution to (2.3) has the form X = ∑k

a=1
1

|�a |1�a1
�
�a
, it must

be an optimal solution to the k-means problem. Therefore, the question of central
importance is:

When is the solution to (2.3) of the form X = ∑k
a=1

1
|�a |1�a1

�
�a
?
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3 Exact recovery guarantees

3.1 Exact clustering and proximity conditions

In a nutshell our following main theorem states that the proximity condition (1.1)
implies the exactness of the Peng–Wei relaxation (2.3):

Theorem 2 (Main theorem) Suppose the partition {�a}ka=1 obeys the proximity con-
dition (1.1). Then the minimizer of the Peng–Wei relaxation (2.3) is unique and given
by X = ∑k

a=1
1

|�a |1�a1
�
�a

.

Since the global minimum of (2.3) is always smaller than that of (2.1), Theorem 2
implies that the proximity condition provides a simple algorithm that is able to accept
answers to the k-means problem.

Corollary 1 (Algorithm accepting answers to k-means) If a partition � = �k
a=1�a

satisfies the proximity condition (1), then it is the unique global minimum to the k-
means objective function.

Note that each data point xa,i appears k − 1 times on the left hand side of (1), and it
takesO(m2na) amount of time to compute eachmatrix operator normusing theGolub-
Reisch SVD algorithm [11]. Thus, the time cost to examine the proximity condition
is proportional to O(kN + m2N ).

To the best of our knowledge, k-means problem has not been shown in NP or
not. The proximity condition does not change this fact. We want to emphasize that
the polynomial time examination of the proximity condition (1) does not imply that
an answer to the k-means problem can be verified in polynomial time since it does
not accept all correct answers. A different approach that leverages the dual certificate
associated with the Peng–Wei relaxation to test under certain conditions the optimality
of a candidate k-means solution can be found in [13]. The algorithm proposed in [13]
tests the optimality of a candidate solution in quasilinear time. Hence, our method
improves the time complexity by a logarithmic factor.

While themain theorem provides a sufficient condition for the Peng–Wei relaxation
to exactly recover a given partition, the following theorem gives a necessary condition.

Theorem 3 (Necessary condition) Suppose X = ∑k
a=1

1
|�a |1�a1

�
�a

is a global mini-

mum of (2.3). Then the partition {�a}ka=1 must satisfy

ha,b ≥ τa,b +
√

τ 2a,b + max
t

‖X t‖2
(

1

na
+ 1

nb

)
, ∀a �= b. (3.1)

Notice that as long as X is a solution to (2.3), {�a}ka=1 must be a global minimum
to the k-means. In other words, it is harder for a deterministic mixture to be exactly
recovered by the Peng–Wei relaxation than being the global minimum to the k-means.
It remains unclear whether this necessary condition (Theorem 3) is only necessary for
the Peng–Wei relaxation or is necessary for the k-means itself as well.
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3.2 Balanced case: Amini–Levina relaxation and proximity condition

One special case of interest is the balanced case where each cluster has the same
number of points, i.e. |�1| = · · · = |�k | = n. We have seen in Section 2 that the
k-means problem can be rewritten as (2.2):

min 〈Z, D〉

s.t. Z =
k∑

a=1

1

|�a |1�a1
�
�a

with �k
a=1 �a = � and �a � �b = ∅ for a �= b. (3.2)

With the balanced assumption, i.e., the cardinalities of all clusters being the same, it
is easy to verify that Z = ∑k

a=1
1
n 1�a1

�
�a

obeys the following four constraints:

Z � 0, Z ≥ 0, Z1N = 1N , diag(Z) = 1

n
1N .

This leads to the Amini–Levina relaxation of k-means, which was first introduced
in [3] for community detection under balanced case in order to address the weak
assortativity issue:

min 〈Z, D〉
s.t. Z � 0, Z ≥ 0, Z1N = 1N , diag(Z) = 1

n
1N . (3.3)

As with the analyses on the Peng–Wei relaxation, once the optimal solution to (3.3)
takes the form X = ∑k

a=1
1
n 1�a1

�
�a
, the Amini–Levina relaxation gives an optimal

solution to the k-means problem with balanced assumption. Once again, we ask the
same question for Peng and Wei’s relaxation:When is the solution to (3.3) of the form
X = ∑k

a=1
1
n 1�a1

�
�a
?

Unsurprisingly, the answer is another proximity condition specially tailored for
Amini and Levina’s relaxation.

Condition 4 (Proximity condition for balanced clusters)A partition� = �k
a=1�a with

|�1| = · · · = |�k | = n satisfies the proximity condition for balanced clusters if for
any a �= b, there holds

min
1≤i≤na

〈
xa,i − ca + cb

2
,wb,a

〉
>

√
k

4n

(‖Xa‖2 + ‖Xb‖2
)
. (3.4)

Similar to the general case, the proximity condition for balanced clusters also has an
equivalent formulation:

ha,b > 2τa,b +
√
k

n

(‖Xa‖2 + ‖Xb‖2
)
. (3.5)
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Fig. 2 An example of three
clusters in the plane. Each
contains 20 points. The
proximity for the general case
(1.1) fails for this instance.
However, the proximity
condition for balanced clusters
(3.4) is satisfied and hence
ensures the partition is optimal
to the k-means problem with
balanced assumption

Theorem 5 (Exact recovery for balanced clusters) Suppose the partition {�a}ka=1
with |�1| = · · · = |�k | = n obeys the proximity condition for balanced clusters
(3.4). Then the minimizer of the Amini–Levina relaxation (3.3) is unique and given by
X = ∑k

a=1
1
n 1�a1

�
�a

. Therefore, the partition {�a}ka=1 can be recovered exactly by
the Amini–Levina relaxation.

Compared with the proximity condition for Peng and Wei’s relaxation (1.1), the
proximity condition for Amini and Levina’s relaxation distinguishes itself by decou-
pling the clusters in the sense that each of the k(k − 1) inequalities in (3.4) only
depends on the two clusters involved in the inequality. In the case of balanced clusters,
this immediately solves the open question posed by Awasthi and Sheffet [6], which
asks if such a proximity condition exists.

The completely localized proximity condition is particularlymeaningfulwhen there
are a few abnormal clusters whose covariance matrices are huge in matrix operator
norm, but at the same time being away from all the other clusters. In this case, the
proximity condition for Amini and Levina’s relaxation has far better chance than that
for Peng and Wei’s relaxation to detect a reasonable partition of the data set. Figure 2
provides such an example.

Analogously, we can also prove a necessary condition for the Amini–Levina relax-
ation, which can be compared with Theorem 3 for the general case.

Theorem 6 (Necessary condition for balanced clusters) Suppose X = ∑k
a=1

1
|�a |1�a

1�
�a

is a global minimum of (3.3). Then the partition {�a}ka=1 must satisfy

ha,b ≥ τa,b +
√

τ 2a,b + 1

n

(‖Xa‖2 + ‖Xb‖2
)
, ∀a �= b. (3.6)

4 Results under randommodels

Nextwe apply the proximity condition (1.1) to data sets generated from the generalized
stochastic ball model and the Gaussian mixture model, respectively. We first give a
formal definition for each model and then present the minimal separation condition
which is sufficient to guarantee the exact recovery of underlying clusters by the Peng–
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Wei relaxation. The minimal separation conditions are established by verifying the
proximity condition (1) for those two randommodels. For proofs, seeSects. 8.2 and8.3.

4.1 Stochastic ball model

The definition of generalized stochastic ball model is given as follows where we only
assume the support of the density function is contained in the unit ball of Rm for all
clusters.

Definition 1 (Generalized stochastic ball model) Let {μa}ka=1 be a set of k determin-
istic vectors in R

m . For each 1 ≤ a ≤ k, Da is a distribution supported on the unit
ball of Rm with a covariance matrix �a and {ra,i }nai=1 are i.i.d. zero-mean random
vectors drawn from the distributionDa . The ath cluster is formed by {xa,i }nai=1, where
xa,i = μa + ra,i for 1 ≤ i ≤ na .

Corollary 2 Denoteσ 2
max = max1≤a≤k ‖�a‖, N = ∑k

a=1 na,wmin = 1
N min1≤a≤k na,

and � = mina �=b ‖μa − μb‖. For the generalized stochastic ball model, we draw na
points from the ath ball for each 1 ≤ a ≤ k. The Peng–Wei relaxation achieves exact
recovery with probability at least 1 − N−γ if N ≥ 4

wmin
log(4kmN γ ) and

� ≥ 2 +
√

2

wmin
σmax + 7

√
t

wmin
, (4.1)

where t =
√

4 log(4kmNγ )
Nwmin

and γ > 0. In particular, if na = n for all a, wmin = 1
k and

eachDa is a uniform distribution over the unit ball ofRm, then (4.1) can be simplified
to

� ≥ 2 +
√

2k

m + 2
+ 7

√
tk

by noting that σ 2
max = ‖�a‖ = 1

m+2 .

Remark 1 As the number of data points N goes to infinity provided k and wmin are

fixed, the value of t =
√

4 log(4kmNγ )
Nwmin

vanishes. So asymptotically the minimal separa-

tion condition reduces to � > 2 +
√

2k
m+2 when na = n and �a = 1

m+2 Im . Note that
we only assume that the distribution is supported on the unit ball, so rotation-invariant
distributions which are assumed in [12,13] are also included. Compared with the result
in [12,13] where � > 2 + k2

m is required, we have achieved a better bound when k is
large.

We can also apply the necessary lower bound (Theorem 3) to the generalized
stochastic ball model. To illustrate this, let us study a special case where the following
Corollary holds.

Corollary 3 For the generalized ball model, if for all 1 ≤ a ≤ k we have na = n,
then with high probability, the Peng–Wei relaxation fails to achieve exact recovery
provided that N is large enough and
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� < 1 +
√
1 + 2σ 2

max.

If for any a, Da is the uniform distribution over the unit ball, the bound becomes

� < 1 +
√

1 + 2

m + 2
.

4.2 Gaussianmixture model

The definition of Gaussian mixture model is given below, followed by the minimal
separation condition for the exactness of the Peng–Wei relaxation.

Definition 2 (Gaussianmixture model) Consider amixture of k Gaussian distributions
N (μa,�a) in Rm with a set of weights {wa}ka=1 obeying wa ≥ 0 and

∑k
a=1 wa = 1.

The probability density function of this mixture model is

p(x) =
k∑

a=1

wa pN (x;μa,�a), x ∈ R
m,

where pN (x;μa,�a) is the probability density function of the Gaussian distribution
N (μa,�a).

Corollary 4 Denote σ 2
max = max1≤a≤k{‖�a‖}, wmin = min1≤a≤k{wa} and � =

mina �=b ‖μa−μb‖. For theGaussianmixturemodel, the Peng–Wei relaxation achieves
exact recovery with probability at least 1 − 6N−1 if

� ≥ σmax

(
2√
wmin

+ 4
√
2 log1/2(kN 2) + q(N ;m, k, wmin)

)
,

where q(N ;m, k, wmin) = o(1) if N 
 m2k2 log(k)/wmin. In particular, if na = n
and �a = Im for all 1 ≤ a ≤ k, then the above condition reduces to

� ≥ 2
√
k + 4

√
2 log1/2(kN 2) + q(N ;m, k, 1/k),

and q(N ;m, k, 1/k) = o(1) if N 
 m2k3 log(k).

5 Numerical experiments

Consider applying the Peng–Wei relaxation to the generalized stochastic ball model.
When the total number of the data points N becomes large enough, the parameter t
vanishes and the sufficient lower bound predicted by Corollary 2 as in (4.1) becomes

123



X. Li et al.

µk

µk−1

µk−2µ2

µ3µ1

µ1 µ2 µk−1 µk

µ1

µ2

µ3

µk

µk−1

µk−2
(c)(b)(a)

Fig. 3 Illustration of three instructive centroidal geometries. The minimal separation � is the distance
between two adjacent centers. Our bound refers to (5.1)with parameters calculated for the given distribution.
The state-of-the-art bound (5.2) is the bound proved by [5,13]

� ≥ 2 + σmax

√
2

wmin
. (5.1)

The state-of-the-art bound for the stochastic ball model proved in [5,13] is

� > min

{
2
√
2

(
1 + 1√

m

)
, 2 + k2

m

}
. (5.2)

The exact phase transition bound, above which exact recovery can be achieved
by the Peng–Wei relaxation of k-means, is smaller than both of the above sufficient
lower bounds. As one would expect, the actual lower bound is hard to find in practice.
The major difficulty occurs when the number of clusters k is greater than 2. In this
case, when creating an instance of the stochastic ball model with prescribed minimal
separation distance �, there are infinitely many possible ways to place the centers
and this cannot be resolved by translation, rotation, and scaling. To address this, we
investigate the worst case where centers are packed as compactly as possible while
points in each cluster are chosen in the most scattered way. We have a better chance
finding a more accurate lower bound under this arrangement.

Three instructive centroidal geometries, the geometries formed by the locations
of the centers, are considered, and we call them circle-shaped geometry, line-shaped
geometry, and hive-shaped geometry respectively. Centers are packed compactly under
these shapes, especially the hive-shaped geometry.We can rescale the three geometries
to change the minimal separation distance �. An illustration of these geometries
formed by the locations of the centers is shown in Fig. 3.

We let the number of data points in each cluster be na = 100. Hence, the total
number of points N = 100k. As a result,wmin = 1/k. These na points are equispaced
points on the unit circle centered at μa . The data points are chosen in this way since
it maximizes the variance. Because the data is isotropic and the variance is equal to 1,
we have σmax = 1/

√
m = 1/

√
2.

For k and m chosen above, we can see that our bound is an improvement to the
state-of-the-art result. Overall, it is still a meaningful addition to the state-of-the-art
result. Nevertheless, it is not yet tight. Figure 4 shows that the actual lower bound is
almost independent of the parameter k, while our theory still relies on the assumption
that � ≥ 2 + O(

√
k/m).
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Stochastic ball model in dimension two
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Our bound
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Fig. 4 Numerical experiment on the stochastic ball model with dimension 2 and number of clusters varying
from 2 to 6. The sufficient lower bound here is the bound proved in Corollary 2. The Peng–Wei relaxation
(SDP) is solved by SDPNAL+v0.5 (beta) [28,29]

Another parameter that may affect the bound is the dimension m. To reveal depen-
dence of the bound on the dimension, we fix the number of clusters k to be 2 and let
the dimension m vary between 2 and 10. The center separation � is chosen among
100 equispaced number between 2 and 4. The number of points in each cluster na is
equal to 25×2m−1, so there are N = 50×2m−1 in total. The distributionDa for each
ball is the uniform distribution on the unit sphere centered at μa . For any fixed pair of
m and �, we generate 20 instances of the stochastic ball model.

From Fig. 5, it is evident that neither our bound nor the state-of-the-art bound is
tight. The blue line, which represents the bound � ≥ 2 + 2

m , fits our empircal result
the best. Based on the observation of dependence between the empirical lower bound
and the parameters k and m as in Figs. 4 and 5, we formulate a conjecture as stated
below.

Conjecture 7 For a mixture generated by the generalized stochastic ball model, the
Peng–Wei relaxation achieves exact recovery with high probability if

� ≥ 2 + O
(
1

m

)
, (5.3)

provided that the total number of points N is large enough.

After the completion of this manuscript, a semidefinite relaxation based on graph cuts
has been proposed in [16] to overcome the performance limits of Peng–Wei relaxation,
which provides a new alternative way to learn the stochastic ball models.
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Fig. 5 Numerical experiment on the stochastic ball model with 2 clusters and dimension varying from 2 to
7. For given dimension and separation, the lighter the color is, the higher the probability of success is. The
sufficient lower bound here is the bound given by Corollary 2, while the necessary lower bound is obtained
by applying Theorem 3 directly to the stochastic ball model, which is 1 + √

1 + 2/m in this case. Being
constrained by computational resources, we are not able to sample more points in higher dimension since
the time cost is prohibitive. This infers that the right half of the empirical lower bound is potentially smaller
than the exact phase transition bound, which is what we are trying to approximate in this experiment. The
Peng–Wei relaxation (SDP) is executed via SDPNAL+v0.5 (beta) [28,29]

6 Proofs for Section 3.1

We will prove the main theorem and related results under the proximity condition
given in Proposition 1. The proof for the equivalence of the two proximity conditions
is presented at the end of this section. The key ingredient in the proof of the main
theorem is to construct a dual variable to certify the optimality of the desired solution
X = ∑k

a=1
1

|�a |1�a1
�
�a

based on the conic duality theorem in convex optimization [7].

6.1 Conic duality

We first rewrite (2.3) as a cone program in standard form which naturally leads to its
dual formulation. Noting that Z is a symmetric variable, the Peng–Wei relaxation of
k-means (2.3) is equivalent to the following optimization problem:

min 〈Z, D〉
s.t. Z � 0, Z ≥ 0,

1

2
(Z + Z�)1N = 1N , Tr(Z) = k. (6.1)

Let K = SN+ ∩ R
N×N+ , the intersection of two self-dual cones: the positive semi-

definite cone SN+ and the nonnegative cone RN×N+ . By definition, it is a pointed1 and

1 K is pointed if for Z ∈ K and −Z ∈ K, Z must be 0, see Chapter 2 in [7].
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closed convex cone with a nonempty interior. Moreover, its dual cone2 is given by
K∗ = SN+ + R

N×N+ = {B + Q : B ≥ 0, Q � 0}. Let A be a linear map A from SN

to RN+1 defined as follows:

A(Z) : Z →
[ 〈Z, IN 〉
1
2 (Z + Z�)1N )

]
.

We can express (6.1) in the form of a standard cone program,

min 〈Z, D〉, s.t. A(Z) =
[
k
1N

]
, Z ∈ K. (6.2)

Thus, using the standard derivation in Lagrangian duality theory [8], the dual problem
of (6.1) can be easily obtained and given by

max −kz − 〈α, 1N 〉, s.t. D + A∗ (λ) ∈ K∗, (6.3)

where λ =
[
z
α

]
∈ R

N+1 is the dual variable with respect to the affine constraints and

A∗(λ) := 1

2
(α1�

N + 1Nα�) + z IN (6.4)

is the adjoint operator of A under the canonical inner product over RN×N .

6.2 Optimality condition

This subsection presents a necessary and sufficient condition for
X = ∑k

a=1
1

|�a |1�a1
�
�a

to be the global minimum of the Peng–Wei relaxation. The
result is summarized in Proposition 2, which follows from the complementary slack-
ness in the conic duality theory. Moreover, a stronger sufficient condition has been
established for the uniqueness of X in Proposition 3.

Theorem 8 (Conic Duality Theorem, Theorem 2.4.1 in [7]) There hold:

1. If the primal problem is strictly feasible and bounded below, then the dual program
is solvable3 and the optimal values of the primal/dual problems are equal to each
other;

2. If the dual problem is strictly feasible and bounded above, then the primal program
is solvable and the optimal values of the primal/dual problems are equal to each
other;

3. Assume either the primal problem or the dual problem is bounded and strictly
feasible. Then (Z,λ) is a pair of primal/dual optimum if and only if either the
duality gap is zero or the complementary slackness holds.

2 The dual cone of K is defined as {W : 〈W , Z〉 ≥ 0,∀Z ∈ K}; in particular, there holds (K∗)∗ = K.

3 The primal problem or dual problem is solvable if it is feasible, bounded and the optimal value is attained.
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The following lemma, tailored to (6.1) and (6.3), simply follows from the strict
feasibility of (6.1) or (6.3) and Theorem 8.

Lemma 1 Both primal/dual problems (6.1) and (6.3) are strictly feasible and bounded
below/above. Therefore, they are are solvable (so the optimal values are attained).
Moreover, (X,λ) is a pair of primal/dual optima if and only if the complementary
slackness holds: 〈D + A∗(λ), X〉 = 0 where D + A∗(λ) ∈ K∗.

Proof Consider Z̃ = 1−λ
N 1N1�

N + λIN , where λ = k−1
N−1 > 0 for k ≥ 2. Note that

Z̃ � λIN � 0 and Z̃ ≥ 1−λ
N 1N1�

N > 0. So Z̃ is in the interior of K. It is also easy
to verify that Z̃ satisfies the other two equality constraints. This shows (6.1) is strictly
feasible. In addition, we can see that the objective function in (6.1) is also nonnegative
since both Z and D are entrywise nonnegative. In conclusion, the primal problem is
strictly feasible and bounded below by 0.

Note that JN×N = 1N1�
N is a strictly positive symmetric matrix. For the dual

problem (6.3), we can take α = 0 and let z be a sufficiently large positive number
such that

D + A∗(λ) = JN×N︸ ︷︷ ︸
a positive matrix

+ (D + z IN − JN×N )
︸ ︷︷ ︸
a positive definite matrix

is in the interior of K∗. Hence, the dual program is also strictly feasible. Its optimal
value is bounded above because it is always smaller than the optimal value of the
primal problem.

Therefore, the application of Theorem 8 implies that (X,λ) is a pair of primal/dual
optima if and only if the complementary slackness holds, i.e., 〈D + A∗(λ), X〉 = 0
where D + A∗(λ) ∈ K∗ and X ∈ K. ��
Remark 2 The complementary slackness is indeed equivalent to the zero duality gap
since the optimal values of both problems are attained and there holds

〈D, X〉 = −〈A∗(λ), X〉 = −〈λ,A(X)〉 = − 〈
λ,

[
k1N

]〉 = −kz − 〈α, 1N 〉.

In the following lemma, we will derive a more explicit expression for complemen-
tary slackness which will be used in the analysis later. By definition ofK∗, the matrix
D + A∗(λ) must be in the form of

D + A∗(λ) = B + Q, (6.5)

where B ≥ 0, Q � 0 and both of them are symmetric.

Lemma 2 The complementary slackness 〈D + A∗(λ), X〉 = 0 is equivalent to

B(a,a) = 0 for all 1 ≤ a ≤ k, and QX = X Q = 0, (6.6)

where B ≥ 0 and Q � 0 obeys (6.5) for some λ. It follows immediately that
Q(a,b)1nb = 0 for 1 ≤ a, b ≤ k. Moreover, (6.6) implies that the dual variable
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λ =
[
z
α

]
satisfies

αa = − 2

na
D(a,a)1na + 1

n2a
〈D(a,a), Jna×na 〉1na − z

na
1na , (6.7)

where αa is the ath block of α given by {αi }i∈�a .

Proof It suffices to prove (6.6) from 〈D +A∗(λ), X〉 = 0 since the other direction is
trivial. Note that the complementary slackness is equivalent to 〈B + Q, X〉 = 0 for
some B ≥ 0 and Q � 0. Since X ≥ 0 and X � 0, it follows that 〈B, X〉 = 〈Q, X〉 =
0. From 〈B, X〉 = 0 and B ≥ 0, we have

〈B(a,a), Jna×na 〉 = 0 ⇐⇒ B(a,a) = 0

where X(a,a) = Jna×na . Since both X and Q are positive semi-definite matrices, we
have

0 = 〈X, Q〉 = Tr(X Q) = ‖X1/2Q1/2‖2F ,

which gives Q1/2X1/2 = X1/2Q1/2 = 0 and in turn implies QX = X Q = 0.
Now we proceed to derive (6.7). Following from Q(a,a)1na = 0 and B(a,a) = 0,

we obtain

Q(a,a)1na = D(a,a)1na + 1

2
(naαa + α�

a 1na1na ) + z1na = 0,

1�
na Q

(a,a)1na = 1�
na D

(a,a)1na + naα
�
a 1na + naz = 0,

where Q = D + 1
2 (α1

�
N + 1Nα�) + z IN − B follows from B + Q = D + A∗(λ)

and the definition of A∗, see (6.5) and (6.4). From the second equation above, we get
α�
a 1na = − 1

na
1�
na D

(a,a)1na − z. Substituting it into the first one gives

αa = 1

na

(
−2D(a,a)1na − α�

a 1na1na − 2z1na
)

= 1

na

(
−2D(a,a)1na + 1

na
1na1

�
na D

(a,a)1na − z1na

)
,

which completes the proof. ��

Because of (6.7), the effective dual variables are only z and B(a,b) with a �= b since
α can be fully represented by a function of z if the complementary slackness holds,
and plugging α back into the expression of Q in (6.5) gives

Q = z(IN − E) + M − B, (6.8)

123



X. Li et al.

where

E(a,b) = 1

2

(
1

na
+ 1

nb

)
Jna×nb ,

M(a,b) = D(a,b) −
(

1

na
D(a,a) Jna×nb + 1

nb
Jna×nb D

(b,b)
)

+ 1

2

(
1

n2a
〈D(a,a), Jna×na 〉 + 1

n2b
〈D(b,b), Jnb×nb 〉

)

Jna×nb . (6.9)

In particular, if a = b,

E(a,a) = 1

na
Jna×na ,

M(a,a) =
(
Ina − 1

na
Jna×na

)
D(a,a)

(
Ina − 1

na
Jna×na

)
. (6.10)

On the other hand, if B ≥ 0, B(a,a) = 0 for all 1 ≤ a ≤ k, and Q � 0 has
the form of (6.8), then one can easily verify that QX = 0 since 〈Q, X〉 = 0, and
B + Q = D + A∗(λ) for z in (6.8) and α in (6.7). Therefore, Lemma 2 implies that
X is a global minimizer of (6.1).

In summary, we have established a necessary and sufficient condition for X to be
a global minimizer of the Peng–Wei relaxation of k-means.

Proposition 2 (Optimality condition) Any feasible pair of Q � 0 and B ≥ 0 where
Q has the form of (6.8) and B(a,a) = 0 for all 1 ≤ a ≤ k, certifies X to be a global
minimum of (6.1). Conversely, if X is a global minimum of (6.1), then such a pair of
(Q, B) (or (z, B)) must exist.

The optimality condition we have established is essentially equivalent to that of
[12]. However, we use conic duality theory in [7] to show the strong duality holds, and
both primal/dual solutions exist for Peng–Wei relaxation by constructing a Slater’s
constraint qualification. This lays the foundation to derive the necessary condition for
the tightness of Peng–Wei relaxation, which is not fully addressed in [12].

In other words, the optimality condition in Proposition 2 is not strong enough to
guarantee that X is a unique solution to (6.1). The following proposition provides a
sufficient condition for the uniqueness of X by imposing a stricter condition on B.

Proposition 3 (A sufficient condition for the uniqueness of global minimum)
Any feasible pair of Q � 0 and B ≥ 0, where Q has the form of (6.8), B(a,a) = 0

for all 1 ≤ a ≤ k, and B(a,b) > 0 for all a �= b, certifies X to be a unique global
minimum of (6.1).

Proof Proposition 2 implies X is a global minimum of (6.1). Let X̃ ∈ R
N×N be an

arbitrary feasible solution satisfying X̃1N = 1N , Tr(X̃) = k, X̃ � 0 and X̃ ≥ 0. We
will prove X is a unique solution by showing that if X̃ �= X , there holds

〈D, X̃ − X〉 > 0.
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We start with 〈Q, X̃ − X〉. Since Q � 0, X̃ � 0, and 〈Q, X〉 = 0, it follows that

〈Q, X̃ − X〉 = 〈Q, X̃〉 ≥ 0.

By the definition of Q, and the fact X̃1N = X1N = 1N and Tr(X̃) = Tr(X) = k,
there holds,

〈Q, X̃ − X〉 = 〈D, X̃ − X〉 − 〈B, X̃ − X〉 ≥ 0.

Since the supports of B and X are disjoint, one has 〈B, X〉 = 0. Therefore, in order
to show 〈D, X̃ − X〉 > 0, it suffices to prove that 〈B, X̃〉 > 0, which will be done by
contradiction.

Suppose 〈B, X̃〉 = ∑
a �=b〈B(a,b), X̃(a,b)〉 = 0. Then we have X̃(a,b) = 0 which

follows from B(a,b) > 0 for all a �= b and X̃ ≥ 0. Therefore, the support of X̃ must
be the same as that of X . Note that X̃ is a positive semi-definite matrix which satisfies
X̃1N = 1N and Tr(X̃) = k. So for any 1 ≤ a ≤ k, X̃(a,a)1na = 1na . This means
that 1 is an eigenvalue of X̃ with multiplicity at least k. Since all the eigenvalues
of X̃ are nonnegative and their sum is equal to Tr(X̃) = k, X̃ has only k nonzero
eigenvalues and all of them are 1. Thus, each X̃(a,a) is a rank one matrix. It follow that
X̃(a,a) = 1

na
1na1

�
na = X(a,a) since X̃(a,a)1na = 1na and X̃(a,a) is symmetric. This

contradicts the assumption X̃ �= X . ��

6.3 Sufficient condition for dual certificate

Wewill further reduce the sufficient condition in Proposition 3 to one that will be used
in the construction of the dual certificate. As suggested by that proposition, we need
to find a number z ∈ R and a symmetric matrix B ∈ R

N×N+ such that the following
sufficient condition holds:

Q � 0, B(a,b) > 0, B(a,a) = 0 ∀a �= b, (6.11)

where Q is given in (6.8). As a result Q, satisfies QX = X Q = 0 automatically.
In order to present our final sufficient optimality condition, we first introduce two

linear subspaces. Note that X is clearly a projection matrix satisfying X2 = X . Let T
and T⊥ be two linear subspaces in R

N×N defined as

T = {XY + YX − XYX : Y ∈ R
N×N },

T⊥ = {(IN − X)Y(IN − X) : Y ∈ R
N×N }.

Denote by PT : RN×N → T and PT⊥ : RN×N → T⊥ the corresponding projection
operators. We use subscripts to denote projections, for example letting PT (B) = BT

and PT⊥(B) = BT⊥ . For any Z ∈ R
N×N , it can be easily verified that the (a, b)th

block of ZT and ZT⊥ are
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Z(a,b)
T = 1

na
Jna×na Z

(a,b) + 1

nb
Z(a,b) Jnb×nb − 1

nanb
Jna×na Z

(a,b) Jnb×nb , (6.12)

Z(a,b)
T⊥ =

(
Ina − 1

na
Jna×na

)
Z(a,b)

(
Inb − 1

nb
Jnb×nb

)
. (6.13)

Proposition 4 The optimality condition with uniqueness in (6.11) is equivalent to

zPT⊥(IN ) + MT⊥ − BT⊥ � 0,

M(a,b)
T − B(a,b)

T − z(na + nb)

2nanb
Jna×nb = 0, ∀a �= b,

B(a,b) = (B(b,a))�, B(a,a) = 0, B(a,b) > 0, ∀ a �= b. (6.14)

Proof We first show that (6.11) implies (6.14), and then show the other direction.
(6.11)�⇒(6.14): Noting that E ∈ T , P(IN ) = IN − X and Q has the form of

(6.8), the projection of Q on T⊥ is given by

QT⊥ = (IN − X)Q(IN − X) = z(IN − X) + MT⊥ − BT⊥ � 0

which gives the first expression in (6.14). For the second one in (6.14), we have
QT = 0 since QX = X Q = 0 and thus Q(a,b)1nb = 0 for all pairs of (a, b). For
Q(a,a) with 1 ≤ a ≤ k, Q(a,a)1na = 0 holds automatically by the definition of Q
in (6.8). For a �= b, straightforward calculations lead to

Q(a,b)1nb = −nbz

2

(
1

na
+ 1

nb

)
1na + M(a,b)1nb − B(a,b)1nb = 0. (6.15)

Thus, one has 1
nb
B(a,b) Jnb×nb = 1

nb
M(a,b) Jnb×nb− z

2

(
1
na

+ 1
nb

)
Jna×nb for alla �= b,

which implies B(a,b)
T = M(a,b)

T − z(na+nb)
2nanb

Jna×nb . The third formula in (6.14) satisfies
automatically.

(6.14)�⇒(6.11): It suffices to prove Q in (6.8) is positive semidefinite. By defi-

nition, the matrix E(a,b) is equal to 1
2

(
1
na

+ 1
nb

)
Jna×nb and PT⊥(IN ) = IN − X .

Adding the first two formulas in (6.14) blockwisely over all (a, b) gives

z(IN − X) + M − B − z(E − X) = z(IN − E) + M − B︸ ︷︷ ︸
Q

� 0

where we have used the following facts: X(a,a) = E(a,a), X(a,b) = 0 when a �= b,
M(a,a)

T = 0 which follows from (6.10), and B(a,a)
T = 0 due to B(a,a) = 0. This shows

Q � 0. ��

According to (6.14), B(a,b)
T is determined byM(a,b) and z. So the only free variables

are z and B(a,b)
T⊥ for a �= b. To determine z, we replace zPT⊥(IN ) + MT⊥ − BT⊥ � 0
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by a stronger condition z ≥ ‖MT⊥ − BT⊥‖ which clearly implies the former one. To
choose B(a,b)

T⊥ for any a �= b, notice that

B(a,b) > 0 ⇐⇒ B(a,b)
T⊥ + B(a,b)

T > 0 ⇐⇒ B(a,b)
T⊥ >

z(na + nb)

2nanb
Jna×nb − M(a,b)

T ,

wherewe have used a substitution for B(a,b)
T . To sumup,we have derived a replacement

sufficient condition which guarantees X as the unique global minimum of (6.1):

z ≥ ‖MT⊥ − BT⊥‖,
B = B�,

B(a,a) = 0, ∀ 1 ≤ a ≤ k,

B(a,b)
T = M(a,b)

T − z(na + nb)

2nanb
Jna×nb , ∀ a �= b,

B(a,b)
T⊥ >

z(na + nb)

2nanb
Jna×nb − M(a,b)

T , ∀ a �= b. (6.16)

6.4 Proof of Theorem 2

Now we are ready to prove the main theorem, which follows directly from the propo-
sition below.

Proposition 5 Assume the proximity condition (1.2) holds for the partition {�a}ka=1.
We can choose z and B such that

z = ‖MT⊥ − BT⊥‖, B(a,b)
T⊥ = 4ua,bu�

b,a, ∀ a �= b,

and the sufficient condition in (6.16) is satisfied. Therefore, whenever the proximity
condition holds, X = ∑k

a=1
1

|�a |1�a1
�
�a

is the unique minimizer of the Peng–Wei
relaxation of k-means.

Lemma 3 For any 1 ≤ a, b ≤ k, M(a,b)
T⊥ = D(a,b)

T⊥ = −2XaX
�
b .

Proof Let xa,i and xb, j be the i th and j th points in theath and bth clusters, respectively.
Then,

‖xa,i − xb, j‖2 = ‖xa,i‖2 − 2〈xa,i , xb, j 〉 + ‖xb, j‖2.
Denote by φa ∈ R

na and φb ∈ R
nb the column vectors consisted of ‖xa,i‖2 and

‖xb, j‖2, respectively. Then,

D(a,b) = φa1
�
nb − 2XaX�

b + 1naφ
�
b .
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D(a,b)
T⊥ = (Ina − 1

n a
Jna×na )D

(a,b)(Inb − 1

n b
Jnb×nb)

= −2(Ina − 1

n a
Jna×na )XaX�

b (Inb − 1

n b
Jnb×nb)

= −2XaX
�
b .

The matrix M is defined in (6.9), and it is easy to check that M(a,b)
T⊥ = D(a,b)

T⊥ . ��

Lemma 4 The operator norm of MT⊥ − BT⊥ is bounded by 2
∑k

l=1 ‖X l‖2, i.e.,

z = ‖MT⊥ − BT⊥‖ ≤ 2
k∑

l=1

‖X l‖2.

Proof Note that ua,b = Xawa,b and by Lemma 3, M(a,b)
T⊥ = −2XaX

�
b . Hence,

BT⊥ − MT⊥ = 2X̂W X̂�, where X̂ ∈ R
N×mk is defined as

X̂(a,b) = 0, X̂(a,a) = Xa, ∀a �= b,

and W ∈ R
mk×mk is given by

W (a,b) = Im − 2wa,bw
�
a,b, W (a,a) = Im, ∀a �= b.

Note that each W (a,b) is an orthogonal matrix and thus ‖W (a,b)‖ = 1. Let y be a
vector of length N , and denote by ya the ath block of y, 1 ≤ a ≤ k. There holds,

∣
∣∣ y�(MT⊥ − BT⊥) y

∣
∣∣ ≤ 2

k∑

a=1

k∑

b=1

∣
∣∣ y�

a XaW (a,b)Xb y�
b

∣
∣∣

≤ 2
k∑

a=1

k∑

b=1

‖Xa‖‖ ya‖‖Xb‖‖ yb‖

≤ 2

(
k∑

l=1

‖X l‖‖ yl‖
)2

≤ 2

(
k∑

l=1

‖X l‖2
) (

k∑

l=1

‖ yl‖2
)

.

Therefore, the operator norm of MT⊥ − BT⊥ is bounded by 2
∑k

l=1 ‖X l‖2. ��

It only remains to check whether (1.1) implies the second inequality in (6.16):

B(a,b)
T⊥ = 4ua,bu�

b,a >
z(na + nb)

2nanb
Jna×nb − M(a,b)

T , ∀ a �= b. (6.17)
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To show this, we first derive an explicit expression for M(a,b)
T .

Lemma 5 For any a �= b, there holds

1

nb
D(a,b)1nb − 1

na
D(a,a)1na =

(
h2a,b + 1

nb
‖Xb‖2F − 1

na
‖Xa‖2F

)
1na − 2ha,bua,b.

Proof The i th entry of the left hand side is

(LHS)i = 1

nb

nb∑

l=1

‖xa,i − xb,l‖2 − 1

na

na∑

l=1

‖xa,i − xa,l‖2

= ‖ca − cb‖2 − 2〈xa,i − ca, cb − ca〉 + 1

nb

nb∑

l=1

‖xb,l − cb‖2 − 1

na

na∑

l=1

‖xa,l − ca‖2

= h2a,b − 2ha,b(Xawb,a)i + 1

nb
‖Xb‖2F − 1

na
‖Xa‖2F

= (RHS)i .

��

Lemma 6 For any a �= b, there holds

M(a,b)
T = h2a,b Jna×nb − 2ha,bua,b1�

nb − 2ha,b1nau
�
b,a .

Proof By the definition of M(a,b) in (6.9),

M(a,b)
T = D(a,b)

T − 1

na
D(a,a) Jna×nb − 1

nb
Jna×nb D

(b,b)

+ 1

2

(
1

n2a
〈D(a,a), Jna×na 〉 + 1

n2b
〈D(b,b), Jnb×nb 〉

)

Jna×nb

= 1

nb
D(a,b) Jnb×nb − 1

na
D(a,a) Jna×nb

︸ ︷︷ ︸

1

+ 1

na
Jna×na D

(a,b) − 1

nb
Jna×nb D

(b,b)

︸ ︷︷ ︸

2

+
(

1

2n2a
〈D(a,a), Jna×na 〉 + 1

2n2b
〈D(b,b), Jnb×nb 〉 − 1

nanb
〈D(a,b), Jna×nb 〉

)

Jna×na

︸ ︷︷ ︸

3

,

where we have used

D(a,b)
T = 1

na
Jna×na D

(a,b) + 1

nb
D(a,b) Jnb×nb − 1

nanb
〈D(a,b), Jna×nb 〉Jna×nb .
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By Lemma 5, we have


1 =
(

1

nb
D(a,b)1nb − 1

na
D(a,a)1na

)
1�
nb

=
(
h2a,b + 1

nb
‖Xb‖2F − 1

na
‖Xa‖2F

)
Jna×nb − 2ha,bua,b1�

nb .

Similarly,


2 = 1na

(
1

na
D(b,a)1na − 1

nb
D(b,b)1nb

)�

=
(
h2a,b + 1

na
‖Xa‖2F − 1

nb
‖Xb‖2F

)
Jna×nb − 2ha,b1nau

�
b,a .

Moreover, the (i, j)-entry of 
3 is

(
3)i, j = 1

2n2a

na∑

i=1

na∑

j=1

‖xa,i − xa, j‖2 + 1

2n2b

nb∑

i=1

nb∑

j=1

‖xb,i − xb, j‖2

− 1

nanb

na∑

i=1

nb∑

j=1

‖xa,i − xb, j‖2

= 1

na

na∑

i=1

‖xa,i − ca‖2 + 1

nb

nb∑

i=1

‖xb,i − cb‖2 − 1

na

na∑

i=1

‖xa,i − ca‖2

− 1

nb

nb∑

j=1

‖xb, j − cb‖2 − ‖ca − cb‖2 = −h2a,b.

Adding up (
1)i, j , (
2)i, j and (
3)i, j leads to the desired identity. ��

Proof of Proposition 5 Combined with the explicit expression of M(a,b)
T , (6.17) is

equivalent to

− 4ua,bu�
b,a +

(
z(na + nb)

2nanb
− h2a,b

)
Jna×nb + 2h(a,b)(ua,b1�

nb + 1nau
�
b,a) < 0.

(6.18)
By definition of τa,b, we have

τa,b ≥ max(ua,b), τa,b ≥ max(ub,a).

Define

f (x, y) := −4xy − 2h(a,b)(x + y) + z(na + nb)

2nanb
− h2(a,b).
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Let ua,b,i and ub,a, j be the i th and j th entry of ua,b and ub,a respectively. One can
easily see that f (−ua,b,i ,−ub,a, j ) is equal to the (i, j)th entry of the matrix on the
left hand side of (6.18). Therefore, in order to prove (6.18), it suffices to show that
f (x, y) < 0 for all x, y ≥ −τa,b. Note that if the proximity condition (1.1) holds,
then 2τa,b ≤ ‖ca − cb‖. Therefore, x, y ≥ −τa,b ≥ − 1

2ha,b.

We claim that the maximum of f (x, y) over {(x, y) ∈ R
2 : x ≥ −τa,b, y ≥ −τa,b}

is attained at x = y = −τa,b due to bilinearity of f (x, y).More precisely, this follows
from 2τa,b ≤ ha,b and

∂ f

∂x
= −4y − 2h(a,b) ≤ 4τa,b − 2ha,b ≤ 0,

∂ f

∂ y
= −4x − 2h(a,b) ≤ 4τa,b − 2ha,b ≤ 0

over {(x, y) ∈ R
2 : x ≥ −τa,b, y ≥ −τa,b}.

Therefore, (6.18) holds if

max{x,y≥−τa,b}
f (x, y) = −4τ 2a,b + 4ha,bτa,b − h2a,b + z(na + nb)

2nanb
< 0.

Since 2τa,b ≤ ha,b, the inequality above is equivalent to

ha,b − 2τa,b >

√
z(na + nb)

2nanb
.

Meanwhile, the proximity condition implies

h(a,b) − 2τa,b >

√∑k
l=1 ‖X l‖2(na + nb)

nanb
≥

√
z(na + nb)

2nanb
.

Hence, we have −4τ 2a,b + 4ha,bτa,b − h2a,b + z(na+nb)
2nanb

< 0 and (6.18) holds. ��

6.5 Proof of Theorem 3

This subsection is devoted to provingTheorem3, the necessary lower bound of 1
2ha,b−

τa,b for X = ∑k
a=1

1
|�a |1�a1

�
�a

to be a global minimum of the Peng–Wei relaxation of
k-means.Wewill use the necessary condition established in Proposition 2 for the proof
which states that, if X is global minimizer, then there exist a number z and a matrix
B obeying B ≥ 0, B(a,a) = 0 for all 1 ≤ a ≤ k, and Q = z(IN − E) + M − B � 0.

Proof of Theorem 3 The proof is partitioned into three steps:
Step One: We first show that for any a �= b, there holds

h2a,b1na − 2ha,bua,b = z(na + nb)

2nanb
1na + 1

nb
B(a,b)1nb . (6.19)
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Note that 〈D(a,a), Jna×na 〉 = 2na‖Xa‖2F . By Lemma 5 and the definition of M(a,b)

in (6.9), we have

M(a,b)1nb = nb

(
1

nb
D(a,b)1nb − 1

na
D(a,a)1na

)

+ nb
2

(
1

n2a
〈D(a,a), Jna×na 〉 − 1

n2b
〈D(b,b), Jnb×nb 〉

)

1na

= nb(h
2
a,b1nb − 2ha,bua,b)

= nbz

2

(
1

na
+ 1

nb

)
1na + B(a,b)1nb ,

where the last equation follows from (6.15).

Step Two: Next we establish a lower bound for z and show that z ≥ 2max ‖Xa‖2.
Combining Q = z(IN − E) + M − B � 0 with B(a,a) = 0 results in

Q(a,a) = z

(
Ina − 1

na
Jna×na

)
+ M(a,a) � 0

for all 1 ≤ a ≤ k. Also, Lemma 3 and (6.10) imply M(a,a) = M(a,a)

T⊥ = −2XaX
�
a .

Therefore, z cannot be negative and

z Ina � z

(
Ina − 1

na
Jna×na

)
� −M(a,a) = 2XaX

�
a ,

which gives z ≥ 2max1≤a≤k ‖Xa‖2.
Step Three: By applying B ≥ 0 and z ≥ 2max1≤a≤k ‖Xa‖2 to (6.19), we get

h2a,b1na − 2ha,bua,b ≥ z(na + nb)

2nanb
1na ≥ max ‖Xa‖2(na + nb)

nanb
1na .

Similarly, we have

h2a,b1nb − 2ha,bub,a ≥ max ‖Xa‖2(na + nb)

nanb
1nb .

Together they imply

h2a,b − 2ha,bτa,b ≥ max ‖Xa‖2(na + nb)

nanb
,

where τa,b = max{max(ua,b),max(ub,a)}. ��
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6.6 Proof of Proposition 1

Proof of Proposition 1 It suffices to prove min1≤i≤na

〈
xa,i − ca+cb

2 ,wb,a
〉 = 1

2ha,b −
τa,b. For any 1 ≤ i ≤ na , there holds

〈
xa,i − ca + cb

2
,wb,a

〉
=

〈
xa,i − ca + ca − cb

2
,wb,a

〉

= 〈xa,i − ca,wb,a〉 + 1

2
‖ca − cb‖

= (Xawb,a)i + 1

2
‖ca − cb‖

= −(ua,b)i + 1

2
‖ca − cb‖.

Similarly, for any 1 ≤ j ≤ nb, we have,

〈
xb, j − ca + cb

2
,wb,a

〉
= −(ub,a) j + 1

2
‖ca − cb‖.

Combining those two identities gives

min
a �=b

{
1

2
ha,b − τa,b

}
= min

a �=b
min

1≤i≤na

〈
xa,i − ca + cb

2
,wb,a

〉
,

which completes the proof. ��

7 Proof for Section 3.2

In this section,we provide concise proofs for Theorem5 andTheorem6. The proofs for
the balanced case is parallel to the general case to a large extent. To avoid redundancy,
we skip proofs and calculations that are basically the same as those in Sect. 6. Also,
we adopt similar notation as in Sect. 6 to emphasize the close relation between these
two SDP relaxations of k-means.

7.1 Proof of Theorem 5

Amini and Levina’s relaxation is equivalent to the following optimization problem:

min 〈Z, D〉
s.t. Z � 0, Z ≥ 0,

1

2
(Z + Z�)1N = 1N , diag(Z) = 1

n
1N . (7.1)
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In the standard form of a conic program, the optimization takes the form

min 〈Z, D〉, s.t. A(Z) =
[ 1
n 1N
1N

]
, Z ∈ K, (7.2)

where K = SN+ ∩ R
N×N+ and the linear operator A is given by

A(Z) : Z →
[

diag(Z)
1
2 (Z + Z�)1N

]
.

Thus, it is effortless to derive the dual problem of Amini and Levina’s relaxation using
the duality theory of conic programming. The dual program reads

max −
〈
1

n
z + α, 1N

〉
, s.t. D + A∗ (λ) ∈ K∗, (7.3)

where λ =
[
z
α

]
∈ R

2N is the dual variable with respect to the affine constraints,

K∗ = SN+ + R
N×N+ is the dual cone and

A∗(λ) := 1

2
(α1�

N + 1Nα�) + diag(z) (7.4)

is the adjoint operator of A under the canonical inner product over RN×N , where
diag(z) is the diagonal matrix whose diagonal is given by z.

We proceed to find the sufficient condition for X = ∑k
a=1

1
n 1�a1

�
�a

to be the
global minimum. Thanks to the conic duality theorem (Theorem 8), we can prove the
following lemma using the same construction as in Lemma 1

Lemma 7 (X,λ) is a pair of primal/dual optima if and only if the complementary
slackness holds: 〈D + A∗(λ), X〉 = 0 where D + A∗(λ) ∈ K∗.

Proof It is easy to verify that Z̃ = 1−λ
N 1N1�

N +λIN is strictly feasible for (7.2), where
λ = k−1

N−1 > 0 for k ≥ 2. As for the dual problem, we take α = 0 and z = z1N where z
is a sufficiently large positive number, thenD+A∗(λ) = JN×N +(D + z IN − JN×N )

is inside the interior of K∗. ��
The task is to find z andα such that the complementary slackness 〈D+A∗(λ), X〉 =

0 is true. By definition, D + A∗ (λ) = B + Q, where B ≥ 0 and Q � 0. We choose
z such that

za = za1n, ∀1 ≤ a ≤ k,

where z1, . . . , zk are variables to be determined. In a similar fashion to Lemma 2, the
complementary slackness gives

αa = −2

n
D(a,a)1n + 1

n2
〈D(a,a), Jn×n〉1n − za

n
1n .
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As a result, matrix B must satisfy

B(a,b) > 0, B(a,a) = 0 ∀a �= b.

The matrix Q is rewritten as

Q = F + M − B, (7.5)

where M is defined the same as before:

M(a,b) = D(a,b) − 1

n

[
D(a,a) Jn×n + Jn×nD(b,b)

]
+ 1

2n2
〈D(a,a) + D(b,b), Jn×n〉Jn×n .

and the matrix F is given by:

F(a,b) = − za + zb
2n

Jn×n, F(a,a) = za

(
In − 1

n
Jn×n

)
∀a �= b.

Just the same as Proposition 2, the following optimality condition is not enough to
guarantee that X is a unique global minimum of (7.1): Q � 0 and B ≥ 0 where Q
has the form of (7.5) and B(a,a) = 0 for all 1 ≤ a ≤ k. However, by following exactly
the logic of the proof of Proposition 3, one can show its counterpart for the balanced
case is still true:

Proposition 6 (A sufficient condition for the uniqueness of global minimum) Any
feasible pair of Q � 0 and B ≥ 0, where Q has the form of (7.5), B(a,a) = 0 for all
1 ≤ a ≤ k, and B(a,b) > 0 for all a �= b, certifies X to be a unique global minimum
of (6.1).

By following the argument of Proposition 4, we can transform the condition for the
uniqueness of global minimum into a more useful form.

Proposition 7 The optimality condition with uniqueness in Proposition 6 is equivalent
to

FT⊥ + MT⊥ − BT⊥ � 0,

M(a,b)
T − B(a,b)

T − za + zb
2n

Jn = 0, ∀a �= b,

B(a,b) = (B(b,a))�, B(a,a) = 0, B(a,b) > 0, ∀a �= b. (7.6)

Here, T and T⊥ are subspaces of RN×N defined in Sect. 6.3. The only free variables
remained in (7.6) are za and B(a,b)

T⊥ . We choose them as

za = 2k‖Xa‖2, B(a,b)
T⊥ = 4ua,bu�

b,a, ∀a �= b. (7.7)

Now we show that with such a construction leads to Theorem 5. In fact, Theorem 5
follows immediately from the proposition below as an implication of Proposition 6.
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Proposition 8 Assume the proximity condition for balanced clusters (3.4) holds for
the partition {�a}ka=1. We can choose za and B such that both the sufficient condition
(7.6) and (7.7) are satisfied.

Proof It remains to prove B(a,b) > 0 for all a �= b and FT⊥ + MT⊥ − BT⊥ � 0.
Notice that for all a �= b

B(a,b)
T = − za + zb

2n
Jn×n + M(a,b)

T ,

B(a,b)
T⊥ = 4ua,bu�

b,a,

where M(a,b)
T is given by Lemma 6. Then

B(a,b) = 4ua,bu�
b,a +

(
− za + zb

2n
+ h2a,b

)
Jn×n − 2ha,b(ua,b1�

n + 1nu�
b,a).

As with the proof of (6.18) in Sect. 6.4, it suffices to require

ha,b − 2τa,b >

√
za + zb
2n

=
√
k

n

(‖Xa‖2 + ‖Xb‖2
)
,

which is equivalent to the proximity condition for balanced clusters thanks to Propo-
sition 1.

Next we show FT⊥ � BT⊥ − MT⊥ . Based on the proof of Lemma 4, we have

M(a,b)
T⊥ = −2XaX

�
b . Hence, BT⊥ − MT⊥ = 2X̂W X̂�, where X̂ ∈ R

N×mk and

W ∈ R
mk×mk are given by

X̂(a,b) = 0, X̂(a,a) = Xa, ∀a �= b,

W (a,b) = Im − 2wa,bw
�
a,b, W (a,a) = Im, ∀a �= b.

Note that each W (a,b) is an orthogonal matrix and thus ‖W (a,b)‖ = 1. Let y ∈ R
N be

a unit vector, and denote by ya = {yi }i∈�a , 1 ≤ a ≤ k. There holds,

y�Wy ≤
k∑

a=1

k∑

b=1

y�
a W (a,b) y�

b ≤
(

k∑

l=1

‖ yl‖
)2

≤ k

(
k∑

l=1

‖ yl‖2
)

= k.

This implies W � k Imk , which further implies

BT⊥ − MT⊥ � 2k X̂ X̂� � G, (7.8)

where G stands for

G(a,b) = 0, G(a,a) = za In, ∀a �= b.
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By the definition of F, it is easy to verify that FT⊥ = GT⊥ . Applying PT⊥ to both
sides of (7.8) yields

BT⊥ − MT⊥ � FT⊥ .

��

7.2 Proof of Theorem 6

Proof of Theorem 6 Lemma 3 and (6.10) imply M(a,a) = M(a,a)

T⊥ = −2XaX
�
a . Since

Q � 0, Q(a,a) � 0 for any a. Using (7.5), we have

Q(a,a) = F(a,a) + M(a,a) − B(a,a) = za

(
In − 1

n
Jn×n

)
− 2XaX

�
a � 0.

Thus,

za In � za

(
In − 1

n
Jn×n

)
� 2XaX

�
a ,

which gives za ≥ 2‖Xa‖2. According to Lemma 6, there holds

M(a,b)
T = h2a,b Jn×n − 2ha,bua,b1�

n − 2ha,b1nu�
b,a,

since for the balanced case na = n for any a. Hence,

M(a,b)1n = M(a,b)
T 1n = n(h2a,b1n − 2ha,bua,b).

On the other hand, by (7.6), we have

M(a,b)1n = M(a,b)
T 1n = B(a,b)1n − za + zb

2
1n .

Combining the above two equations with the fact that B ≥ 0, we obtain the following
estimation

n(h2a,b1n − 2ha,bua,b) = B(a,b)1n + za + zb
2

1n ≥ (‖Xa‖2 + ‖Xb‖2)1n .

This is equivalent to

h2a,b − 2ha,bτa,b ≥ (‖Xa‖2 + ‖Xb‖2)
n

.

��
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8 Proofs for Section 4

In this section, we apply the deterministic guarantee to two typical randommodels and
prove Corollaries 2 and 4. Each of the two models inherits a partition structure from
how the data are sampled, which gives a ground truth of the underlying clusters. We
will discuss the sufficient condition for the exact recovery of the Peng–Wei relaxation
based on the minimal separation between cluster centers.

8.1 Key lemmas

The main mathematical tools for the analysis are various concentration inequalities of
random matrices as discussed in [23,26].

Theorem 9 (Matrix Bernstein inequality, Theorem 1.6 in [23]) Let {Zi }ni=1 be a
sequence of real d1 × d2 random matrices. Assume that

EZi = 0, ‖Zi‖ ≤ R, ∀ 1 ≤ i ≤ n.

Consider the sum S = ∑n
i=1 Zi , and denote

σ 2(S) = max

{∥
∥∥∥∥

n∑

i=1

E[Zi Z�
i ]

∥
∥∥∥∥

,

∥
∥∥∥∥

n∑

i=1

E[Z�
i Zi ]

∥
∥∥∥∥

}

.

Then for all t ≥ 0,

P (‖S‖ ≥ t) ≤ (d1 + d2) · exp
( −t2

2σ 2(S) + 2Rt/3

)
.

Lemma 8 (Generalized stochastic ball model) Let {ai }ni=1 be a sequence of i.i.d. ran-
dom vectors in R

m and assume each ai is a zero mean vector supported on the unit
ball in Rm with the covariance matrix given by �.

1. Denote a = 1
n

∑n
i=1 ai . We have

P(‖a‖ ≥ t) ≤ (m + 1) · exp
(

− nt2

2 + 2t/3

)
. (8.1)

2. Let A be an n × m matrix whose i th row is a�
i . Then

P(‖A‖ ≥ √
n(‖�‖ + t)) ≤ 2m exp

(
− nt2

2 + 4t/3

)
. (8.2)
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Proof Note that the distribution of each ai is supported on the unit ball with the
covariance matrix given by �. Thus,

σ 2

(
n∑

i=1

ai

)

= nmax{‖�‖,Tr(�)} ≤ n,

which follows from ‖E(ai a�
i )‖ = ‖�‖ and ‖E(a�

i ai )‖ = Tr(�) ≤ 1. Moreover,
there holds ‖ai‖ ≤ 1 and thus R = max1≤i≤n ‖ai‖ = 1. Therefore, applying Theo-
rem 9 immediately results in

P(‖a‖ ≥ t) ≤ (m + 1) · exp
(

− nt2

2 + 2t/3

)
.

For the second part, first note that ‖A‖2 = ‖A�A‖ = ∥∥∑n
i=1 ai a

�
i

∥∥. Let Zi =
ai a�

i − � be a centered random matrix and its operator norm is controlled by

R = max
1≤i≤n

‖Zi‖ ≤ max
1≤i≤n

‖ai‖2 + ‖�‖ ≤ 2.

For the variance of Zi , since E(Zi Z�
i ) = E(Z�

i Zi ) = E(‖ai‖2ai a�
i ) − �2, we have

−�2 � E(Zi Z�
i ) � �. Therefore,

‖E(Zi Z�
i )‖ ≤ max{‖�‖2, ‖�‖} = ‖�‖ ≤ 1

and σ 2(
∑n

i=1 Zi ) ≤ n. Applying Theorem 9 again gives

P

(∥∥∥∥∥

n∑

i=1

Zi

∥∥∥∥∥
≥ nt

)

≤ 2m · exp
(

− n2t2

2σ 2(S) + 2Rnt/3

)

≤ 2m · exp
(

− nt2

2 + 4t/3

)
.

Therefore, since ‖A‖2 ≤ ‖ ∑n
i=1 Zi‖ + n‖�‖, we have

‖A‖ ≤ √
n(‖�‖ + t)

with probability at least 1 − 2m exp
(
− nt2

2+4t/3

)
. ��

Lemma 9 (Gaussianmixturemodel) Let {ai }ni=1 be a sequence of i.i.d. random vectors
in Rm sampled from multivariate Gaussian distribution N (0,�).

1. Denote a = 1
n

∑n
i=1 ai . There holds

P

(

‖a‖ ≥
√
m(1 + t)‖�‖

n

)

≤ max{e−mt/8, e−mt2/8}, ∀t ≥ 0. (8.3)
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2. Let A be n × m matrix whose i th row is a�
i , then for any t ≥ 0

P(‖A‖ ≥ √‖�‖(√n + √
m + t)) ≤ 2e−t2/2. (8.4)

3. Let σmin be the smallest singular value of �, then for any t ≥ 0

P((‖A‖ ≤ σmin(
√
n − √

m − t)) ≤ 2e−t2/2, (8.5)

Proof Obviously, the sample mean a is a random vector satisfyingN (0, 1
n�). Due to

the rotational invariance, it can be rewritten as a = 1√
n
�1/2w where w ∼ N (0, Im).

Note that ‖w‖2 is a χ2
m random variable with E(‖w‖2) = m and

P(‖w‖2 − m ≥ t) ≤ exp

(
− t2

8m

)
∨ exp

(
− t

8

)
.

It is easy to see that ‖a‖ ≤
√

m(1+t)‖�‖
n holds with probability at least 1 −

max{e−mt/8, e−mt2/8}.
For the second and the third part, we use similar techniques by first rewriting A as

A = W�1/2 where W is an n ×m standard Gaussian random matrix. Corollary 5.35
in [26] implies that

√
n − √

m − t ≤ ‖W‖ ≤ √
n + √

m + t holds with probability at
least 1 − e−t2/2. Therefore,

σmin(
√
n − √

m − t) ≤ ‖A‖ ≤ √‖�‖(√n + √
m + t)

holds with probability at least 1 − 2e−t2/2. ��
Lemma 10 For two independent standard Gaussian random vectors x and y in R

m,
there holds

P(x�μ ≥ t‖μ‖) ≤ e−t2/2, ∀t ≥ 0, (8.6)

for a fixed deterministic vector μ. Also, we have

P(x�� y ≥ m
√
t(1 + t)‖�‖) ≤ 2max{e−mt/8, e−mt2/8}, ∀t ≥ 0, (8.7)

for a fixed matrix � and t ≥ 1. Moreover,

P(x��x − Tr(�) ≥ t) ≤ exp

(

− t2

8‖�‖2F

)

∨ exp

(
− t

8‖�‖
)

, ∀t ≥ 0, (8.8)

for a fixed positive semidefinite matrix �.

Proof Note that x�μ/‖μ‖ is a standard Gaussian random variable. For a standard
Gaussian random variable g, we have P(g ≥ t) ≤ 1

2e
−t2/2, which can be easily
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verified as follows:

P(g ≥ t) = 1√
2π

∫ ∞

t
e−x2/2dx

= e−t2/2 1√
2π

∫ ∞

t
e− (x+t)(x−t)

2 dx

≤ e−t2/2 1√
2π

∫ ∞

t
e− (x−t)2

2 dx = 1

2
e−t2/2.

For (8.7), first note that ‖ y‖2 is a chi-squared variable with m degree of freedom,
hence

‖� y‖ ≤ ‖�‖‖ y‖ ≤ √
m(1 + t)‖�‖

holds with probability at least 1 − max{e−mt/8, e−mt2/8}. Conditioned on the event
{‖� y‖ ≤ √

m(1 + t)‖�‖}, x�� y is a Gaussian random variable with variance at
most m(1 + t)‖�‖2. As a result,

P(x�� y ≥ m
√
t(1 + t)‖�‖) ≤ e−mt/2

and x�� y ≥ m
√
t(1 + t) holds with probability at least 1−2max{e−mt/8, e−mt2/8}.

For (8.8), we use the rotational invariance as well as the eigen-decomposition of
�, i.e., � = U� diag(λ1, . . . , λm)U with λi ≥ 0 for 1 ≤ i ≤ m. Therefore, x��x is
the sum of weighted χ2

1 random variables where

x��x =
m∑

i=1

λiξ
2
i , ξi = (Ux)i , E(x��x) = Tr(�).

After applying Bernstein inequality, we get the desired result where maxi λi = ‖�‖
and

∑m
i=1 λ2i = ‖�‖2F . ��

8.2 Stochastic ball model

In this subsection, we prove Corollary 2 for the generalized stochastic ball model.
It extends the results in [5,12,13] where the probability distributions are assumed to
the same and isotropic for all the clusters. The question is how large the minimal
separation � = mina �=b ‖μa − μb‖ should be in order to to ensure the exact recovery
of the Peng–Wei relaxationwith high probability. An outline of the proof ofCorollary 3
is also given at the end of the subsection.

Proof of Corollary 2 It suffices to estimate ‖Xa‖, ha,b and τa,b for all a �= b. We will
bound those quantities on the premise that (8.1) and (8.2), i.e.,

Xa − 1naμ
�
a ‖ ≤ √

na(‖�a‖ + t) and ‖ca − μa‖ ≤ t, (8.9)
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hold for all 1 ≤ a ≤ k with probability for all 1 ≤ a ≤ k, at least 1 −
4km exp(− Nwmint2

2+4t/3 ).Estimation of ‖Xa‖: By the triangle inequality, the operator norm
of Xa can be bounded from above as

‖Xa‖ = ‖Xa − 1na c
�
a ‖

≤ ‖Xa − 1naμ
�
a ‖ + √

na‖ca − μa‖
≤ √

na(‖�a‖ + t) + t
√
na

for all 1 ≤ a ≤ k with probability at least 1 − 4km exp
(
− Nwmint2

2+4t/3

)
.

Estimation of τa,b and ha,b: Recall that τa,b = max{max{Xawa,b},max{Xbwb,a}}.
For each entry of Xawa,b, we have

(Xawa,b)i ≤ ‖xa,i − μa‖ + ‖ca − μa‖ ≤ 1 + t

which follows from ‖xa,i − μa‖ ≤ 1 and (8.9). A similar bound holds for Xbwb,a

and thus under the event where (8.9) holds, τa,b ≤ 1 + t holds for all a �= b with

probability at least 1 − 4km exp(− Nwmint2

2+4t/3 ).
For ha,b, it has a simple lower bound:

ha,b = ‖ca − cb‖ ≥ ‖μa − μb‖ − ‖ca − μa‖ − ‖cb − μb‖ ≥ � − 2t .

Therefore, a lower bound of 1
2ha,b − τa,b is

1

2
ha,b − τa,b ≥ 1

2
� − t − (1 + t) = 1

2
� − 2t − 1,

which holds uniformly over all (a, b)with probability at least 1−4km exp(− Nwmint2

2+4t/3 ).

Proximity condition for stochastic ball model: Now we wrap up our discussion and
apply the proximity condition (1.2). For eacha, it follows from‖Xa‖ ≤ (

√‖�a‖ + t+
t)

√
na that

k∑

a=1

‖X l‖2 ≤
k∑

a=1

(‖�a‖ + t + 2t
√‖�a‖ + t + t2)na

≤ (σ 2
max + t + 2t(σmax + √

t) + t2)N

≤
[
(σmax + t)2 + t + 2t3/2

]
N ,

where the second line follows from ‖�a‖ ≤ σ 2
max and

√‖�a‖ + t ≤ √‖�a‖ + √
t .

Therefore, for all pairs of a and b, the proximity condition (1.2) for the generalized
stochastic ball model is guaranteed if

� ≥ 2 + 4t +
√
2

(
(σmax + t)2 + t + 2t3/2

)

wmin
, (8.10)
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which holds with probability at least 1 − 4km exp(− Nwmint2

2+4t/3 ). Now we choose t =
√

4 log(4kmNγ )
Nwmin

. We further assume that N ≥ 4
wmin

log(4kmN γ ), then t ≤ 1 and (8.10)
holds with probability at least

1 − 4km exp

(
−Nwmin · t2

2 + 4t/3

)
≥ 1 − 4km exp

(
−1

4
Nwmin · t2

)
≥ 1 − N−γ .

Note that wmin ≤ 1
k ≤ 1

2 and t ≤ 1. By enlarging the right hand side of (8.10) as the
following,

2 + 4t +
√
2

(
(σmax + t)2 + t + 2t3/2

)

wmin
≤ 2 +

√
2

wmin
σmax +

√
t

wmin

+ (4 +
√

2

wmin
)t +

√
2t3/2

wmin
≤ 2 +

√
2

wmin
σmax + 7

√
t

wmin
,

we derive a sufficient condition of (8.10) which guarantees the proximity condition
(1.2) for the stochastic ball models with probability at least 1 − N−γ :

� ≥ 2 +
√

2

wmin
σmax + 7

√
t

wmin
.

In particular, if na = n for all a and each Da is the uniform distribution over Rm ,
there holds σ 2

max = ‖�a‖ = 1
m+2 and (8.10) can be simplified into

� ≥ 2 +
√

2k

m + 2
+ 7

√
tk

which completes the proof. ��
The necessary lower bound (Theorem 3) can also be applied to the generalized

stochastic ball model. For the sake of simplicity, we restrict our discussion to the
special case where distributions are all uniform distributions over the unit balls and
clusters are balanced, i.e., na = n, ∀1 ≤ a ≤ k.

Proof outline of Corollary 3 For each pair of a and b, τa,b > 1−ε with high probability
for any ε > 0, provided that N is large.As for the operator norms, Theorem5.41 in [26]

implies that ‖Xa‖ ≥ (1 − ε)
√

n
m+2 with high probability. Simple calculations show

that the necessary lower bound (3.1) is equivalent to

ha,b ≥ τa,b +
√

τ 2a,b + 2

n
max ‖Xa‖2, ∀a �= b. (8.11)

Adding up all these together, we yield the necessary lower bound for the special case
as in Corollary 3. ��
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8.3 Gaussianmixture model

In this subsection, we prove Corollary 4 for the Gaussianmixturemodel.We still focus
on the minimal separation condition for the exactness of the Peng–Wei relaxation.
Denote p(t) = max{e−mt/8, e−mt2/8}.

Proof of Corollary 4 Let N be the number of points drawn from the Gaussian mixture
model and na be the number of points belonging to N (μa,�a). To simplify our
analysis, we assume na = waN and xa,i ∼ N (μa,�a) for all 1 ≤ a ≤ k.

Estimation of‖Xa‖: Let Xa ∈ R
na×m be the data drawn fromN (μa,�a). Lemma9

states that the sample mean ca = 1
na

∑na
i=1 xa,i satisfies ‖ca − μa‖ ≤

√
m(1+t)‖�a‖

na

for all a with probability at least 1 − k · p(t). Considering ‖Xa‖, it obeys

‖Xa‖ ≤ ‖Xa − 1naμ
�
a ‖ + √

na‖ca − μa‖
≤ √‖�a‖(√na + √

m + √
mt + √

m(1 + t))

≤ √‖�a‖(√na + 2
√
m(1 + √

t))

for all 1 ≤ a ≤ k with probability at least 1− 2ke−mt/2, where we have used (8.4) in
the second line. It follows that

∑k
l=1 ‖Xl‖2(na + nb)

4nanb
≤ 1

2N

(
k∑

l=1

‖�l‖ (na + 8m(1 + t))

) (
1

wa
+ 1

wb

)

≤ σ 2
max

Nwmin
(N + 8km(1 + t))

≤ σ 2
max

wmin

(
1 + 8km(1 + t)

N

)
,

where wmin = 1
N min1≤l≤k nl and wmin ≤ 1

k .

Therefore, for all a �= b and all t ≥ 0, the right hand side of (1.2) is bounded from
above by

√∑k
l=1 ‖Xl‖2(na + nb)

4nanb
≤

√
σ 2
max

wmin

(
1 + 8km(1 + t)

N

)

≤ σmax√
wmin

(

1 +
√
8km(1 + t)

N

)

(8.12)

with probability at least 1 − k · p(t) − 2ke−mt/2, which is greater than 1 − 3k · p(t).
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Estimation of τa,b and ha,b: For ha,b, it follows from Lemma 9 that

ha,b = ‖ca − cb‖ ≥ ‖μa − μb‖ − ‖ca − μa‖ − ‖cb − μb‖
≥ ‖μa − μb‖ −

√
m(1 + t)σ 2

max

(
1√
na

+ 1√
nb

)

≥ ‖μa − μb‖ − 2σmax

√
m(1 + t)

Nwmin
(8.13)

holds with probability at least 1 − 2ke−mt/8 for any a and b. Further assume N ≥
16σ 2

maxm(1+t)
�2wmin

, then

ha,b ≥ ‖μa − μb‖
2

. (8.14)

Note that ua,b is defined as ua,b = Xawa,b and each entry of ua,b is given by
(ua,b)i = 1

ha,b
(xa,i − ca)�(ca − cb). To get an upper bound for ua,b, it suffices to

bound (xa,i − ca)�(ca − cb), which can be partitioned into three terms:

(xa,i − ca)�(ca − cb) = (xa,i − μa)
�(ca − μa)︸ ︷︷ ︸
J1

+ (xa,i − ca)�(μa − cb)︸ ︷︷ ︸
J2

−‖ca − μa‖2.

1. For J1, note that xa,i −μa and ca −μa are not completely independent from each
other. Thus we further decompose J1 into

(xa,i −μa)
�(ca −μa) = 1

na
‖xa,i −μa‖2+ 1

na
(xa,i −μa)

�
⎛

⎝
∑

j �=i

(xa, j − μa)

⎞

⎠ .

For the first term above, (8.8) implies ‖xa,i − μa‖2 ≤ m(1+ t)‖�a‖ with proba-
bility at least 1 − e−mt/8. For the second term, we can reformulate it as

1

na
(xa,i − μa)

�
⎛

⎝
∑

j �=i

(xa, j − μa)

⎞

⎠ =
〈

w,
1

na
�

1/2
a

∑

j �=i

(xa, j − μa)

〉

where w ∼ N (0, Im) and w is independent of 1
na

∑
j �=i (xa, j − μa) ∼

N
(
0, na−1

n2a
�a

)
. Applying (8.7) implies

(xa,i − μa)
�

⎛

⎝
∑

j �=i

(xa, j − μa)

⎞

⎠ ≤ m‖�a‖
√
t(1 + t)

na
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with probability at least 1 − 2 · p(t). So we can conclude that

J1 ≤ m‖�a‖
(
1 + t

na
+

√
t(1 + t)

na

)

for all a with probability at least 1 − 3N · p(t), for all t ≥ 0.
2. For J2, we decompose it into two terms:

(xa,i − ca)�(μa − cb) = (xa,i − ca)�(μa − μb) + (xa,i − ca)�(μb − cb).

Since (xa,i − ca)�(μa − μb) ∼ N (0, na−1
na

(μa − μb)
��a(μa − μb)), (8.6)

indicates

(xa,i − ca)�(μa − μb) ≤
√
s(μa − μb)

��a(μa − μb)

for all (a, b, i) with probability at least 1 − kNe−s/2. On the other hand, (8.7)
directly gives

(xa,i − ca)�(μb − cb) ≤ m

√
t(1 + t)‖�a‖‖�b‖

nb
≤ mσ 2

max

√
t(1 + t)

nb

for all (a, b, i) with probability at least 1 − 2kN · p(t). Therefore,

J2 ≤
√
s(μa − μb)

��a(μa − μb) + mσ 2
max

√
t(1 + t)

nb

holds with probability at least 1 − 2kN · p(t) − kNe−s/2, for all s, t ≥ 0.

Using the estimation of J1 and J2, we can see that, for all (a, b, i),

(xa,i − ca)�(ca − cb) ≤
√
s(μa − μb)

��a(μa − μb) + 3mσ 2
max

1 + t√
min{na, nb}

holds with probability at least 1 − kN (4 · p(t) + e−s/2). Since (ua,b)i = 1
ha,b

(xa,i −
ca)�(ca − cb),, if N ≥ 16σ 2

maxm(1+t)
�2wmin

, then by (8.14) there hold,

τa,b = max{max{ua,b},max{ub,a}} ≤ 2
√
sσmax + 6mσ 2

max(1 + t)

�
√
Nwmin

. (8.15)

Proximity condition for Gaussian mixture model By combing (8.12), (8.13) and
(8.15), we have shown the proximity condition is satisfied with probability at least
1 − kN (5 · p(t) + e−s/2) if
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� ≥ 2σmax√
wmin

+ 4σmax
√
s + 2σmax(4

√
k + 1)

√
m(1 + t)

Nwmin
+ 6mσ 2

max(1 + t)

�
√
Nwmin

,

provided that N ≥ 16σ 2
maxm(1+t)
�2wmin

. These two inequalities are in turn implied by

� ≥ 2σmax√
wmin

+ 4σmax
√
s + 10σmax

√
km(1 + t)

Nwmin
+ 6mσmax(1 + t)√

N
(8.16)

Here by choosing t = max
{
8 log(kN 1+γ )/m,

√
8 log(kN 1+γ )/m

}
and s =

2 log(kN 1+γ ) where γ > 0, then the proximity condition holds with probability
at least

1 − kN (5 · p(t) + e−s/2) ≥ 1 − 6N−γ .

To simplify the expression, we assume N = (m2k2 log(k)/wmin)u, where u 
 1.
Denote q(N ;m, k, wmin) the sum of the last two terms of (8.16) divided by σmax. We
have the following asymptotic analysis:

q(N ;m, k, wmin) ≤
√

O
(
1 + log(km) + log(u)

kmu

)
+ O

(
1√
u

+ log(k)

k
√
u

+ log(N )√
N

)
= o(1).

This completes the Proof of Corollary 4. ��
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