Scientific Tests and Continuous Integration Strategies
to Enhance Reproducibility in the Scientific Software Context

Matthew Krafczyk
krafczyk.matthew@gmail.com
University of Illinois at
Urbana-Champaign
Champaign, Illinois

Darko Marinov
marinov@illinois.edu
University of Illinois at
Urbana-Champaign
Champaign, Illinois

ABSTRACT

Continuous integration (CI) is a well-established technique in com-
mercial and open-source software projects, although not routinely
used in scientific publishing. In the scientific software context, CI
can serve two functions to increase reproducibility of scientific re-
sults: providing an established platform for testing the reproducibil-
ity of these results, and demonstrating to other scientists how the
code and data generate the published results. We explore scientific
software testing and CI strategies using two articles published in
the areas of applied mathematics and computational physics. We
discuss lessons learned from reproducing these articles as well as
examine and discuss existing tests. We introduce the notion of a
scientific test as one that produces computational results from a
published article. We then consider full result reproduction within
a CI environment. If authors find their work too time or resource
intensive to easily adapt to a CI context, we recommend the in-
clusion of results from reduced versions of their work (e.g., run at
lower resolution, with shorter time scales, with smaller data sets)
alongside their primary results within their article. While these
smaller versions may be less interesting scientifically, they can
serve to verify that published code and data are working properly.
We demonstrate such reduction tests on the two articles studied.

CCS CONCEPTS

« General and reference — Validation; Verification; « Soft-
ware and its engineering — Software reliability; Software usabil-

ity.

KEYWORDS

Reproducibility; Continuous Integration; Software Testing; Soft-
ware Reliability; Scientific Software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

P-RECS’19, June 24, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6756-1/19/06.

https://doi.org/10.1145/3322790.3330595

August Shi
awshi2@illinois.edu
University of lllinois at
Urbana-Champaign
Champaign, Illinois

Adhithya Bhaskar

bhaskar7@illinois.edu

University of Illinois at
Urbana-Champaign
Champaign, Illinois

Victoria Stodden
ves@stodden.net
University of Illinois at
Urbana-Champaign
Champaign, Illinois

ACM Reference Format:

Matthew Krafczyk, August Shi, Adhithya Bhaskar, Darko Marinov, and Vic-
toria Stodden. 2019. Scientific Tests and Continuous Integration Strategies
to Enhance Reproducibility in the Scientific Software Context. In 2nd Inter-
national Workshop on Practical Reproducible Evaluation of Computer Systems
(P-RECS’19), June 24, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3322790.3330595

1 INTRODUCTION

Reproducibility is baked into the scientific method and modern
science. In a healthy research community it is expected that a cer-
tain fraction of published results will fail to hold up as knowledge
evolves, however the scientific community is questioning the cur-
rent rate of irreproducibility [21, 23] and pushing to improve the
reproducibility of published works [4, 9, 14, 39]. Recent studies,
however, have shown reproduction failures even with new policies
meant to improve them [16, 42]. These failures highlight the need
for new standards and practices to ensure transparency and com-
putational reproducibility of data- and computationally-enabled
results [40]. This article is intended to contribute to the search for
new techniques to mitigate these failures.

We first clarify what we mean by “reproducibility” in this work [4].
Here we refer to whether another scientific team can produce the
same computed values as the original team using the same methods
and input data, in other words computational reproducibility [36].
In the computational context, a different researcher should pro-
duce identical or nearly identical (within reasonable bounds for
non-deterministic computations [7]) values from the same code
and input data. A published article is computationally reproducible
if the same values can be produced using the original code and
data. Importantly, we are not interested in arbitrating the scientific
accuracy of specific code or algorithms.

Reliable software testing forms a cornerstone of modern software
engineering. Good tests allow the engineer to detect problems that
may be introduced while code is written and changed. Software
testing comes in several flavors, to name a few: white-box or black-
box testing and unit or system testing [29, 33]. Over time, the
nature of testing has changed, but general purpose techniques such
as continuous integration (CI), are now central to the software
testing process [6, 19, 20].

https://doi.org/10.1145/3322790.3330595
https://doi.org/10.1145/3322790.3330595

P-RECS’19, June 24, 2019, Phoenix, AZ, USA

Most scientific code must undergo a process of verification where
its functioning is compared to analytic solutions of theoretical mod-
els the code approximates [33]. Scientists usually publish their
verification process within their article, linking scientific code veri-
fication closely to reproducibility. An example is found in computa-
tional physics: a numerical model created for a differential equation
describing an idealized system. This numerical model or “scheme,”
is then translated into code by the scientist. The code is verified
by checking its result against an analytic solution whenever possi-
ble [33]. This check examines the functionality of the scheme and
its implementation, and whether it matches its intended use.

White-box and unit testing are ill-suited for this type of verifica-
tion as they determine whether specific functions or sections of code
are functioning properly, rather than the entire code. Black-box or
system testing however, seeks to test the whole application [29].
Although not routinely used in scientific research, the verification
process is very similar and often reproduces results of an article.
Tools and techniques that make black-box testing easier to use, and
access therefore improve reproducibility.

Container environments like Docker [31] provide a uniform vir-
tualized environment. Many CI environments such as Travis CI [1]
use containerization as part of their backend. CI and containers
are ideal environments to test reproducibility of scientific works.
A uniform environment frees the author from worrying about the
environment of the user. Starting empty, the author must specify
the necessary computational environment as well as how their tests
should be run.

From a previous study on computational reproducibility [38],
we encountered two articles suitable for showcasing testing in the
context of a scientific work. After reproducing their results, we
worked to implement the reproduction as a CI test. With author
permission, we release software packages for each article.

There are many efforts studying and influencing the state of
reproducibility. Various tools exist that can help alleviate repro-
ducibility problems encountered by scientists [8, 10, 11, 13, 25, 27,
28, 30-32]. Scientists and committees create recommendations for
changes in practice that can improve the reproducibility of final
results [2, 3, 5, 12, 15, 17, 22, 26, 34, 35, 37, 41, 43]. We consider this
article to extend recommendation efforts, clarifying how software
testing and CI can be made useful for scientists.

Many scientists may encounter high resource usage or runtimes
as a barrier to reproduction within a CI environment. In these cases,
we recommend authors augment their primary results with those of
reduced versions of their work. For example, running a simulation
at reduced resolution will reduce memory usage as well as run
faster. Such minimized tests serve to verify that published code and
data are working properly. Another strategy is to provide shorter
running tests to get immediate feedback alongside longer running
tests that may reveal more difficult to detect bugs with more run
time.

In this article we first discuss our methods for reproducing the
original articles in Section 2. Several ideas are explored in the Dis-
cussion section (Section 3): problems encountered during repro-
duction, what makes a good scientific test, benefits and strategies
for implementing tests with differing lengths, issues related to the
community, future work, and our code and data release information.
We finish with some concluding remarks in Section 4.

Krafczyk et al.

2 METHODS

During previous investigations, we considered the reproducibility
of 306 computational physics articles published in the Journal of
Computational Physics, and collected code and data from 55 of those
articles [38]. In ongoing work, we considered how much of each
article could be reproduced with up to 40 hours of dedicated effort.
For this study, we selected two articles for which we were able to
reproduce most of the article, and the authors gave us permission
to share their code (essential to demonstrate our CI strategies).

We describe the subject matter of each article. The first arti-
cle [44] we study provides a new method for inverting the factored
eikonal equation. The eikonal equation describes the propagation
of waves through a medium, so inverting it can be used to measure
properties of the medium [44]. The second article [18] concerns a
modification of Newton’s method for non-differentiable functions.

Article [44] demonstrated good scientific testing by implement-
ing broad tests like the code verification tests mentioned above.
The authors also use Travis CI [1], a popular CI service for open-
source projects.! We implemented our own tests for article [18], as
no code or data was published. For each article, we enumerated a
list of figures and tables which carried results from computational
experiments, and used existing code or wrote code to complete the
reproduction within 40 hours.

When inspecting the released code for article [44] we found a
script runExperiments. j1 that reproduced Tables 1-3 from the
article. However, the script crashed during the higher resolution
experiments. Since their code was released under the MIT license,
we forked their repository and made changes to reproduce more fig-
ures and skip experiments that took too long or required excessive
resources. All table values were reproduced along with Figure 3.
Table 1 shows our reproduction of Table 3 from article [44]. Other
figures from the article were missing critical data.

As mentioned, article [18] was published without code we im-
plemented their solver in Octave and created tests matching those
published in their article. We were able to reproduce their results
from all tables to machine precision.

With both articles of interest successfully reproduced, we fo-
cused on constructing testing scripts capable of running the whole
procedure on our local machines, within a Docker [31] container,
and within the Travis CI environment. We define these tests as
scientific tests — tests that produce computational results from a
published article. Scientific tests by definition follow the mold of
the black-box test, and the most expansive scientific test is to simply
reproduce all of the results from the published article. We elaborate
more on this testing philosophy in Section 3.

Within each script, we first run the computational experiment
or experiments, then compare the results against a known good
solution: the results in the published article. Choosing which com-
putational experiments to run and how to compare their results
to the known solution is critical. While we built our test scripts
to allow for full reproduction, we enabled the user to truncate the
tests if sufficient time or resources are unavailable. On Travis CI, we
run only those experiments which can complete within 5 minutes,
well under Travis’s 20 minute polling interval. Once complete, the

Their . travis.yml file, the configuration file for Travis CI, is at https://github.com/
Julialnv/FactoredEikonalFastMarching.jl/blob/master/.travis.yml

https://github.com/JuliaInv/FactoredEikonalFastMarching.jl/blob/master/.travis.yml
https://github.com/JuliaInv/FactoredEikonalFastMarching.jl/blob/master/.travis.yml

Scientific Tests and Continuous Integration Strategies
to Enhance Reproducibility in the Scientific Software Context

P-RECS’19, June 24, 2019, Phoenix, AZ, USA

Table 1: Our reproduction of Table 3 from article [44]. We draw the reader’s attention to the increasing computational cost
(columns listed as time) towards the bottom of the Table. Upper rows are suitable for quickly completing tests, while lower

rows should be allowed more time.

h n 1% order 2"d order

error in 7 time (work) errorinz time (work)
1/40 161 x 321 [6.156-03,3.866-03] 0.06s (309.15) [1.60e-04,5.94¢-05] 0.06s (309.86)
1/80 321 x 641 [1.54e-03,9.67e-04] 0.25s (329.09) [3.85e-05,1.56e-05] 0.25s (298.17)
1/160 641X 1281 [1.54e-03,9.67e-04] 1.02s(329.09) [1.08e-05,4.03e-06] 1.09s (351.82)
1/320 1281 X 2561 [7.68e-04,4.83e-04] 4.45s (362.82) [3.18e-06,1.04e-06] 4.58s (373.24)
1/640 25615121 [3.84e-04,2.42e-04] 18.53s (371.54) [9.59e-07,2.66e-07] 19.06s (382.16)
1/1280 5121 X 10241 [1.92e-04,1.21e-04] 77.53s (387.00) [2.99e-07,6.88¢-08] ~ 80.79s (403.26)

results must be compared with the article. For this, we implemented
a Python script to extract results from the output and compare them
to the expected values within a small tolerance for error.

Our test scripts follow a simple hierarchical structure. First, a
master script named run. sh coordinates all aspects of the experi-
ment from start to finish. This run. sh calls subordinate scripts to
perform different stages of the work such as running the compu-
tational experiment proper and the comparison of the results to
known good results. This structure makes the experimental proce-
dure clear, easing future modifications?. Once the testing scripts
were complete, we produced a . travis. yml3 file. It uses the Ubuntu
OS’s repositories to install all necessary software, and then execute
the master run. sh script. Computational experiments are run, their
results are checked, and Travis CI reports success or failure status.

3 DISCUSSION

Code from [18] uses Travis CI and we extend this work to conform
with the notion of scientific tests we introduce in this article. We
discuss limitations of these tests in Section 3.1.The challenges we
encountered reproducing the results for use in Travis CI are dis-
cussed in Section 3.2. In Section 3.3, we elaborate on the benefits
of scientific testing and why scientists should implement repro-
ductions of their published results as the test of choice. Strategies
for dealing with long-running or resource-consuming experiments
in CI environments are discussed in Section 3.4. How our work
interacts with current practices and industry efforts is discussed in
Section 3.5. We mention future avenues of investigation Section 3.6
and we discuss our code and data release in Section 3.7.

3.1 Existing tests and their limitations

The authors of article [44] generously provide their code through
a GitHub repository?* with a free software license. Inspection of
their code shows that the authors have already created a Travis CI
configuration file called . travis.yml. This file configures Travis
CI to download and install version 0.6 of Julia and then executes a

2The run.sh file we created for article [18], can be found here:
https://raw.githubusercontent.com/ReproducibilityInPublishing/10.1016_
S0377-0427-03-00650-2/master/run.sh

3You can find the . travis.yml for article [18] here: https://raw.githubusercontent.
com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650- 2/master/.travis.
yml

“https://github.com/Julialnv/FactoredEikonalFastMarching jl, commit ef@3de at the
time our reproduction was performed.

test suite that is built into their generalized library solving factored
Eikonal equations.

Our inspection of the authors’ test suite revealed that they per-
form computational experiments that are similar but not the same
as those published in the article [44]. Their tests perform versions
of the experiment called ‘Test case 1’ in their article. The test ver-
sion of the experiment has a significantly lower resolution, and
the results are compared against an analytical solution similar to
Tables 1-6 from their article.

This set of tests follows the spirit of black-box scientific testing
we introduce, but could go farther. First, the experiments being run
differ from those in the published article in their resolution and
so results from these experiments do not appear in the original
article. For outside observers using this code for the first time, it
can be difficult to determine whether passing this set of tests is
enough to know whether the code will faithfully reproduce what
was published. Had these parameters matched even just the top
row of Table 1 from [44], readers could be much more confident
that their numbers would match those in the article.

We modified their . travis. yml to execute our dedicated run. sh
script that runs the computational experiments from the paper. The
script allows an option for the number of rows to reproduce, so
Travis only executes some of the table rows. Finally, we added logic
that checks whether the output of the script matches the numbers
from the article, within a 10% tolerance.

3.2 Reproduction Challenges

Reproducing the two articles [18, 44] both came with their chal-
lenges. For [18], we originally believed the computations in the
article were simple enough that changes to Octave would present
exactly the same answer. This allowed us to apply a simple diff be-
tween the computed and expected answers. Unfortunately, this was
not the case. First, the variables R and d from the article had slight
differences near the machine precision level. Table 2 shows these
differences at around 10~8. However, our test for differences must
now accommodate this. We produced a Python script to compare
the computed values to the published values and check they are
equivalent within an error tolerance.

While reproducing [44], we encountered two notable problems.
First, the code published relied on an older version of Julia, version
0.6. The easiest and most reliable method to get this version of
Julia was to use the tarball download of the pre-compiled binaries.

https://raw.githubusercontent.com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2/master/run.sh
https://raw.githubusercontent.com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2/master/run.sh
https://raw.githubusercontent.com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2/master/.travis.yml
https://raw.githubusercontent.com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2/master/.travis.yml
https://raw.githubusercontent.com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2/master/.travis.yml
https://github.com/JuliaInv/FactoredEikonalFastMarching.jl

P-RECS’19, June 24, 2019, Phoenix, AZ, USA

Table 2: Values of R and d from article [18] varied depending
on which Octave version was used.

l oS Octave Version [R [d ‘
Ubuntu 14.04 3.8.1 0.00837735 | 0.41411902
Ubuntu 16.04 4.0.0 0.00837733 | 0.41411889

Arch 5.1.0 0.00837733 | 0.41411889

Building it ourselves or obtaining older versions through reposito-
ries was unsuccessful or very difficult. Second, we did not initially
find code to reproduce plots from the article such as Figure 3. By
examining the git history of the project, we were able to recover
older code which produced similar plots. We adapted this code to
produce figures exactly like those published. Finally, although we
reproduced Figure 3, we could not perform automatic comparison
to the published version. The authors did not publish the data be-
hind their figure, and we could not properly compare images as
slight differences to rendered colors could affect the results. Such a
detailed procedure was beyond the scope of this work.

3.3 Black-box Scientific Testing

Black-box testing is conceptually a test that checks the behavior of
software rather than deriving tests based on the code itself. Tests
in this paradigm do not focus on specific aspects of individual
functions or methods in the software but rather test broad behavior
of the software without knowing how it was implemented. When
publishing scientific articles, authors could include code verification
tests appropriate to their scientific domain to justify the correctness
of their code and advocate the use of their method in the wider
community. Usually, these code verification tests are fairly general,
and make good candidates for black-box tests. To help illustrate,
we discuss such tests in the context of our two articles of interest.

The authors of [18] first describe their method theoretically, es-
tablishing the method’s behavior and convergence, then present
several different example inputs to pass through the method. These
inputs consist of two different systems of equations: Examples 1
and 2 from their article. Each example shows how the method con-
verges to an answer and how the performance of the method may
be optimized by tweaking method parameters. The presentation
culminates in Tables 1-3 from the article that show how the method
behaves at each iteration with a range of method parameters. Both
examples offer a comprehensive test of the methods behavior, and
should an implementation follow the behavior listed, one can be
confident it reflects what the authors described in their article. Thus
reproducing the tables from their article forms a rigorous black-box
scientific test.

The authors of article [44] demonstrate their method with a se-
ries of examples using analytically defined mediums. Travel times
are extracted between pairs of randomized points and the method
is applied to extract the medium. The results of these experiments
are summarized in Tables 1-6 in their article. The comparison of
extracted to analytic travel times constitutes scientific code verifi-
cation, and the agnostic nature of the test to implementation details
constitutes a black-box scientific test. Similarly to the previous arti-
cle, reproducing the results published in these tables makes a good
black-box scientific test.

Krafczyk et al.

Unfortunately, several factors prevent the bit-wise comparison
of published results and computed results. By “bit-wise comparison”
we mean performing a simple difference test with a failure occurring
whenever the two numbers are different at all. First, code can evolve
with time, introducing changes into necessary tools or dependencies
that can change the results. In particular, various operations on
floating-point numbers introduced imprecision in these different
runs. Second, certain multi-threaded algorithms are inherently non-
deterministic, which can result in small changes between calculated
results and those published, although we note that this was not
the case for us here. As mentioned in Section 3.2, we encountered
the first type of change for the second article [18]. Attempting to
control all these sources of non-determinism is very difficult, so the
most pragmatic way to handle them would be to anticipate them.

Anticipating acceptable changes to scientific results is challeng-
ing and requires exact knowledge of the algorithm itself. The origi-
nal author is usually in the best position to provide an acceptable
bound. In the case of non-determinism, re-running the analysis
multiple times can also provide an estimate of resultant changes.
Because we were not the original authors, and our articles did not
involve non-determinism, we did not provide an accurate tolerance.
Instead, we chose a loose bound of 10%, which allows for small
changes, such as from the changes in the underlying libraries, but
fails for significant changes.

3.4 Minimized Testing

Some articles may not include results computable with consumer
hardware, requiring both an extreme amount of time and resources.
We recommend these authors publish results from ‘minimized’
versions of their computational experiments together with their
main results. With minimized computational experiments, serious
science changing bugs can be detected quickly. Fast access to such
information is worth the extra effort of creating the minimized test.

The most successful strategy for designing a minimized test is
to mimic the original work as much as possible but at a smaller
scale. If the code takes too long to run, then scaling down the
resolution and/or reducing the amount of time steps simulated can
both result in faster running simulations. If the code writes too
much data to disk for example, the author can aim to reduce how
often snapshots are saved or reduce resolution or time steps. Such
tests provide extensive groundwork for readers to understand and
execute the full set of simulations, and are subject to the same types
of variability as the full simulation.

To make this scheme more clear, consider our first article [44].
The authors show the results of their proposed method with a series
of tables, e.g., their Table 3 reproduced here as Table 1. Each row
in the table shows the error between the analytical result and the
computed result for different sets of parameters, with the compu-
tational cost of each experiment increasing towards the bottom of
the table, as shown by increasing computing times. The first rows
are small, short experiments that can be completed quickly even
on a system with low resources. The rows at the bottom start to
take several minutes and require a lot of memory to finish. Had the
authors not included the earlier rows, which are easier to complete,
we would have suggested that they purposely lower the resolution
of their simulation and include those results as well.

Scientific Tests and Continuous Integration Strategies
to Enhance Reproducibility in the Scientific Software Context

Travis CI offers the stages mechanism to define different test
categories. Tests for each of the defined stages are executed in
sequence, and certain stages can be flagged to not trigger a build
failure when they do fail. This technique can be harnessed to create
two test groups. A first group completes quickly, letting the authors
know about obvious bugs. These are often called “smoke tests” or
“build verification tests”, and in our paradigm, minimized scientific
tests are a good fit. A second group of tests can take much longer
to complete performing more thorough analysis. Scientific tests
that require a large amount of time, but for which authors do not
want to wait for their completion during the software development
cycle, are good candidates here.

The code for [18] runs too quickly to make a meaningful distinc-
tion, but [44] has results that can take almost 5 minutes to run. We
have grouped reproduction of all but the last two rows of Tables 1-6
from [44] as the smoke tests in this paradigm, and the last two rows
of each table as the set of long-running tests.

3.5 Prior Work and Community
Recommendations

Here, we mention some especially relevant prior work in the com-
munity as well as give some specific community guidelines. We
want to highlight Popper [25] and their related tool Popper CI [24].
The authors of Popper propose the creation of dedicated scripts to
check produced solutions appropriate for their specific situation.
We note that this is very similar to what we are proposing here.
As many researchers use Jupyter notebooks, integration of those
workflows into CI systems should be addressed. We recommend
converting the notebook to a script using nbconvert and then ex-
ecuting this script and checking its output. We note that this is
not a fool-proof method as Jupyter notebook specific ‘magics’ may
not work properly as a simple script. Existing CI systems could be
improved for scientific software reproduction by the addition of
non-binary failure states. For example, rather than a test simply
failing or succeeding, the CI system could return a partial success
perhaps with a percentage.

3.6 Future Work

We have left several avenues of investigation open for further
work. First, CI environments utilize hardware resources which may
change transparently to the user. We did not measure the effect
of such a change as we cannot control when Travis CI performs
them, and the additional scripting and data storage infrastructure
necessary for such a study was prohibitively time-consuming to im-
plement. Data of this type however could reveal whether updated
hardware can change results as well. Second, additional testing
methods such as unit and white-box testing could be tested more
carefully to gain a more complete picture of the testing landscape.
Finally, this study only concerns two articles. An expansion not
only of the number of articles considered, but also their subject
matter could reveal more general testing techniques or highlight
special cases for certain workflows.

3.7 Code and Data Release

All code and data relied on for this article are available as public
repositories on GitHub. Both packages provide a Dockerfile with

P-RECS’19, June 24, 2019, Phoenix, AZ, USA

which an appropriate Docker container can be built, and a run. sh
script that can be executed to perform all or most computational
experiments from the article. All experiments can be performed
without using a Docker container, but all necessary software will
need to be installed. A list of software necessary can be found
in the Dockerfile instructions. Each article of interest’s code is
also checked into GitHub. All of these packages also include a
.travis.yml file as to define how to build and run the tests on
Travis CI. Relevant links for each article are found below:

e Article [44]

- Code and data: https://github.com/ReproducibilityInPublishing/

j.jcp.2016.08.012. (Commit ba16911 at time of publication)
— Travis CI: https://travis-ci.org/ReproducibilityInPublishing/
ijcp.2016.08.012
e Article [18]

— Code and data: https://github.com/ReproducibilityInPublishing/

10.1016_S0377-0427-03-00650-2. (Commit 227b842 at time
of publication)

— Travis CI: https://travis-ci.org/ReproducibilityInPublishing/
10.1016_S0377-0427-03-00650-2

4 CONCLUSIONS

Data- and computationally-enabled science can be made more ro-
bust by adapting software engineering and software testing tech-
niques. Continuous Integration (CI) can provide important bene-
fits to the scientific reproduction process including for example
a uniform platform on which to build instructions and execute
a reproduction. We examined two articles [18, 44] to understand
how traditional software testing can advance reproducibility in a
scientific context. We introduce black-box scientific testing, where
scientific results from a computation are compared to those pub-
lished to provide the most reliable indication that a scientific work
is being faithfully represented by the code.

When scientists produce code for experiments that are too time
or resource intensive to run in a CI environment, we proposed the
production of minimized computational experiments that they can
publish in the same article as their main results. The cost in time
spent to implement these additional tests is worth the effort because
they can expose not only whether the software is working properly
even when the authors are making changes, but also whether the
results are sensitive to the computation environment. As more
scientists adopt these changes into their workflows we can expect
to see publications that are more easily verified and as a by-product
more reliable, strengthening the scientific record.

ACKNOWLEDGMENTS

Funding for this research was provided by NSF Awards CCF-1421503,
CCF-1763788, and OAC-1839010. We thank NCSA and their SPIN
program for their support. We also thank the anonymous reviewers
who helped us to improve this manuscript.

https://github.com/ReproducibilityInPublishing/j.jcp.2016.08.012
https://github.com/ReproducibilityInPublishing/j.jcp.2016.08.012
https://travis-ci.org/ReproducibilityInPublishing/j.jcp.2016.08.012
https://travis-ci.org/ReproducibilityInPublishing/j.jcp.2016.08.012
https://github.com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2
https://github.com/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2
https://travis-ci.org/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2
https://travis-ci.org/ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2

P-RECS’19, June 24, 2019, Phoenix, AZ, USA

REFERENCES

(1]
(2]

o
&

[9

=

[10]

(1]

[12

=
&

[14]

[15]

[16

[18]

[19

)
S

[21]

[22

[23

[24]

[n.d.]. Travis CI. https://travis-ci.org

David Bailey, Jonathan Borwein, and Victoria Stodden. 2013. Set the default to

‘open. Notices of the AMS, Accepted March (2013). http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.310.4101

Lorena A Barba. 2018. Praxis of Reproducible Computational Science. https:

//doi.org/10.22541/au.153922477.77361922

Lorena A. Barba. 2018. Terminologies for Reproducible Research. ArXiv e-prints

(Feb 2018). arXiv:cs.DL/1802.03311

Francine Berman, Rob Rutenbar, Brent Hailpern, Henrik Christensen, Susan

Davidson, Deborah Estrin, Michael Franklin, Margaret Martonosi, Padma Ragha-
van, Victoria Stodden, and Alexander S. Szalay. 2018. Realizing the Potential of
Data Science. Commun. ACM 61, 4 (March 2018), 67-72. https://doi.org/10.1145/

3188721

G. Booch. 1991. Object Oriented Design: With Applications. Benjamin/Cummings

Pub. https://books.google.com/books?id=w5VQAAAAMAA]

Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamari¢, Dong H.
Ahn, and Gregory L. Lee. 2013. Determinism and Reproducibility in

Large-Scale HPC Systems. https://www.semanticscholar.org/paper/

Determinism-and-Reproducibility-in-Large-Scale- HPC- Chiang- Gopalakrishnan/
9e8ea7d54dc67f672b31b223ed14edc758b0b28d

Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. Re-
proZip: Computational Reproducibility With Ease. In Proceedings of the 2016

International Conference on Management of Data (SIGMOD °16). ACM, New York,

NY, USA, 2085-2088. https://doi.org/10.1145/2882903.2899401

Jon F. Claerbout and Martin Karrenbach. 1992. Electronic documents give repro-
ducible research a new meaning. In SEG Technical Program Expanded Abstracts.
601-604. https://doi.org/10.1190/1.1822162

K. Cranmer and L. Heinrich. 2017. Yadage and Packtivity - analysis preservation

using parametrized workflows. ArXiv e-prints (June 2017). arXiv:physics.data-
an/1706.01878

K. Cranmer and I. Yavin. 2011. RECAST — extending the impact of existing

analyses. Journal of High Energy Physics 4, Article 38 (April 2011), 38 pages.
https://doi.org/10.1007/JHEP04(2011)038 arXiv:hep-ex/1010.2506

T. Crick, B.A. Hall, and S. Ishtiaq. 2017. Reproducibility in Research: Systems,

Infrastructure, Culture. Journal of Open Research Software 5 (2017), 32. Issue 1.
https://doi.org/10.5334/jors.73

Paolo Di Tommaso, Maria Chatzou, Evan W. Floden, Pablo Prieto Barja, Emilio

Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible com-
putational workflows. Nature Biotechnology 35 (11 Apr 2017), 316 — 319.
http://dx.doi.org/10.1038/nbt.3820

D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden. 2009. Re-
producible Research in Computational Harmonic Analysis. Computing in Science

Engineering 11, 1 (Jan 2009), 8-18. https://doi.org/10.1109/MCSE.2009.15

RR. Downs, W.C. Lenhardt, E. Robinson, E. Davis, and N. Weber. 2015. Com-
munity Recommendations for Sustainable Scientific Software. Journal of Open

Research Software 3 (2015), e11. Issue 1. https://doi.org/10.5334/jors.bt

Bryan T. Drew, Romina Gazis, Patricia Cabezas, Kristen S. Swithers, Jiabin Deng,

Roseana Rodriguez, Laura A. Katz, Keith A. Crandall, David S. Hibbett, and

Douglas E. Soltis. 2013. Lost Branches on the Tree of Life. PLOS Biology 11, 9 (09

2013), 1-5. https://doi.org/10.1371/journal.pbio.1001636

Seth Green. [n.d.]. Five reproducibility lessons from a year of
reviewing compute capsules. https://medium.com/codeocean/

five-reproducibility-lessons-from-a-year-of-reviewing-compute- capsules-de71729ebd8a

M.A Hernandez and M.J Rubio. 2004. A modification of Newton’s method for
nondifferentiable equations. 7. Comput. Appl. Math. 164-165 (2004), 409 — 417.
https://doi.org/10.1016/S0377-0427(03)00650-2 Proceedings of the 10th Interna-
tional Congress on Computational and Applied Mathematics.

Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 197-207.
https://doi.org/10.1145/3106237.3106270

Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-source
Projects. In Proceedings of the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2016). ACM, New York, NY, USA, 426-437.
https://doi.org/10.1145/2970276.2970358

John P. A. Toannidis. 2005. Why Most Published Research Findings Are False.
PLOS Medicine 2, 8 (08 2005). https://doi.org/10.1371/journal.pmed.0020124
Damien Irving. [n.d.]. Best practices for scientific software. https://software.ac.
uk/blog/2017-11-29-best-practices-scientific-software

Toannidis JA. 2005. Contradicted and initially stronger effects in highly cited
clinical research. JAMA 294, 2 (2005), 218-228. https://doi.org/10.1001/jama.294.
2.218 arXiv:/data/journals/jama/4983/joc50060.pdf

I Jimenez, A. Arpaci-Dusseau, R. Arpaci-Dusseau, J. Lofstead, C. Maltzahn, K.
Mohror, and R. Ricci. 2017. PopperCI: Automated reproducibility validation.

[25

[26

[27

'®
3

&
=

'®
i

[36

(37]

[38

[39

[40

[41

~
sl

[43

[44

Krafczyk et al.

In 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 450-455. https://doi.org/10.1109/INFCOMW.2017.8116418

Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn, Jay Lofstead,
Kathryn Mohror, Remzi Arpaci-Dusseau, and Andrea Arpaci-Dusseau. [n.d.].
Standing on the Shoulders of Giants by Managing Scientific Experiments Like
Software. ;login: The USENIX Magazine 41, 4 ([n.d.]). https://www.usenix.org/
publications/login/winter2016/jimenez

D.S. Katz, K.E. Niemeyer, S. Gesing, L. Hwang, W. Bangerth, S. Hettrick, R. Idaszak,
J. Salac, N. Chue Hong, S. Nufez-Corrales, A. Allen, R.S. Geiger, J. Miller, E. Chen,
A. Dubey, and P. Lago. 2018. Fourth Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE4). Journal of Open Research Software
6 (2018), 10. Issue 1. https://doi.org/10.5334/jors.184

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damién Avila, Safia Abdalla, and Carol Will-
ing. 2016. Jupyter Notebooks — a publishing format for reproducible computational
workflows. 87-90. https://doi.org/10.3233/978-1-61499-649-1-87

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1-20.
https://doi.org/10.1371/journal.pone.0177459

Milind G Limaye. 2009. Software testing. Tata McGraw-Hill Education.

B. Ludaescher, K. Chard, N. Gaffney, M. B. Jones, J. Nabrzyski, V. Stodden,
and M. Turk. 2016. Capturing the "Whole Tale" of Computational Research:
Reproducibility in Computing Environments. Arxiv: CoRR (2016). https:
//arxiv.org/abs/1610.09958

Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux J. 2014, 239, Article 2 (March 2014).
http://dl.acm.org/citation.cfm?id=2600239.2600241

H. Monajemi, D. L. Donoho, and V. Stodden. 2016. Making massive computational
experiments painless. In 2016 IEEE International Conference on Big Data (Big Data).
2368-2373. https://doi.org/10.1109/BigData.2016.7840870

William L Oberkampf and Christopher J Roy. 2010. Verification and validation in
scientific computing. Cambridge University Press.

National Academies of Sciences Engineering and Medicine. 2019. Reproducibility
and Replicability in Science. The National Academies Press, Washington, DC.
https://doi.org/10.17226/25303

Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig. 2013.
Ten Simple Rules for Reproducible Computational Research. PLOS Computational
Biology 9, 10 (10 2013), 1-4. https://doi.org/10.1371/journal.pcbi.1003285
Victoria Stodden. 2013. Resolving Irreproducibility in Empirical and Com-
putational Research. IMS Bulletin. http://bulletin.imstat.org/2013/11/
resolving-irreproducibility-in-empirical-and-computational-research/.

V. Stodden, D.H. Bailey, J. Borwein, RJ. LeVeque, W. Rider, and W. Stein. 2013.
Setting the default to reproducible: Reproducibility in computational and experi-
mental mathematics. http://www.davidhbailey.com/dhbpapers/icerm-report.pdf
Victoria Stodden, Matthew S. Krafczyk, and Adhithya Bhaskar. 2018. Enabling the
Verification of Computational Results: An Empirical Evaluation of Computational
Reproducibility. In Proceedings of the First International Workshop on Practical
Reproducible Evaluation of Computer Systems (P-RECS’18). ACM, New York, NY,
USA, Article 3, 5 pages. https://doi.org/10.1145/3214239.3214242

Victoria Stodden, Friedrich Leisch, and Roger D. Peng. 2014. Implementing
Reproducible Research. CRC Press.

Victoria Stodden, Marcia McNutt, David H. Bailey, Ewa Deelman, Yolanda
Gil, Brooks Hanson, Michael A. Heroux, John P.A. Ioannidis, and Michela
Taufer. 2016. Enhancing reproducibility for computational methods. Sci-
ence 354, 6317 (2016), 1240-1241. https://doi.org/10.1126/science.aah6168
arXiv:http://science.sciencemag.org/content/354/6317/1240.full.pdf

Victoria Stodden and Sheila Miguez. 2013. Best Practices for Computational Sci-
ence: Software Infrastructure and Environments for Reproducible and Extensible
Research. JORS (Sep 2013). https://doi.org/10.2139/ssrn.2322276

Victoria Stodden, Jennifer Seiler, and Zhaokun Ma. 2018. An empirical analysis
of journal policy effectiveness for computational reproducibility. Proceedings of
the National Academy of Sciences 115, 11 (2018), 2584-2589. https://doi.org/10.
1073/pnas.1708290115 arXiv:http://www.pnas.org/content/115/11/2584.full.pdf
Morgan Taschuk and Greg Wilson. 2017. Ten simple rules for making research
software more robust. PLOS Computational Biology 13, 4 (04 2017), 1-10. https:
//doi.org/10.1371/journal.pcbi. 1005412

Eran Treister and Eldad Haber. 2016. A fast marching algorithm for the factored
eikonal equation. J. Comput. Phys. 324 (2016), 210 — 225. https://doi.org/10.1016/
3jcp.2016.08.012

https://travis-ci.org
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.4101
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.4101
https://doi.org/10.22541/au.153922477.77361922
https://doi.org/10.22541/au.153922477.77361922
http://arxiv.org/abs/cs.DL/1802.03311
https://doi.org/10.1145/3188721
https://doi.org/10.1145/3188721
https://books.google.com/books?id=w5VQAAAAMAAJ
https://www.semanticscholar.org/paper/Determinism-and-Reproducibility-in-Large-Scale-HPC-Chiang-Gopalakrishnan/9e8ea7d54dc67f672b31b223ed14edc758b0b28d
https://www.semanticscholar.org/paper/Determinism-and-Reproducibility-in-Large-Scale-HPC-Chiang-Gopalakrishnan/9e8ea7d54dc67f672b31b223ed14edc758b0b28d
https://www.semanticscholar.org/paper/Determinism-and-Reproducibility-in-Large-Scale-HPC-Chiang-Gopalakrishnan/9e8ea7d54dc67f672b31b223ed14edc758b0b28d
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1190/1.1822162
http://arxiv.org/abs/physics.data-an/1706.01878
http://arxiv.org/abs/physics.data-an/1706.01878
https://doi.org/10.1007/JHEP04(2011)038
http://arxiv.org/abs/hep-ex/1010.2506
https://doi.org/10.5334/jors.73
http://dx.doi.org/10.1038/nbt.3820
https://doi.org/10.1109/MCSE.2009.15
https://doi.org/10.5334/jors.bt
https://doi.org/10.1371/journal.pbio.1001636
https://medium.com/codeocean/five-reproducibility-lessons-from-a-year-of-reviewing-compute-capsules-de71729ebd8a
https://medium.com/codeocean/five-reproducibility-lessons-from-a-year-of-reviewing-compute-capsules-de71729ebd8a
https://doi.org/10.1016/S0377-0427(03)00650-2
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1371/journal.pmed.0020124
https://software.ac.uk/blog/2017-11-29-best-practices-scientific-software
https://software.ac.uk/blog/2017-11-29-best-practices-scientific-software
https://doi.org/10.1001/jama.294.2.218
https://doi.org/10.1001/jama.294.2.218
http://arxiv.org/abs//data/journals/jama/4983/joc50060.pdf
https://doi.org/10.1109/INFCOMW.2017.8116418
https://www.usenix.org/publications/login/winter2016/jimenez
https://www.usenix.org/publications/login/winter2016/jimenez
https://doi.org/10.5334/jors.184
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1371/journal.pone.0177459
https://arxiv.org/abs/1610.09958
https://arxiv.org/abs/1610.09958
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1109/BigData.2016.7840870
https://doi.org/10.17226/25303
https://doi.org/10.1371/journal.pcbi.1003285
http://bulletin.imstat.org/2013/11/resolving-irreproducibility-in-empirical-and-computational-research/
http://bulletin.imstat.org/2013/11/resolving-irreproducibility-in-empirical-and-computational-research/
http://www.davidhbailey.com/dhbpapers/icerm-report.pdf
https://doi.org/10.1145/3214239.3214242
https://doi.org/10.1126/science.aah6168
http://arxiv.org/abs/http://science.sciencemag.org/content/354/6317/1240.full.pdf
https://doi.org/10.2139/ssrn.2322276
https://doi.org/10.1073/pnas.1708290115
https://doi.org/10.1073/pnas.1708290115
http://arxiv.org/abs/http://www.pnas.org/content/115/11/2584.full.pdf
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1016/j.jcp.2016.08.012
https://doi.org/10.1016/j.jcp.2016.08.012

	Abstract
	1 Introduction
	2 Methods
	3 Discussion
	3.1 Existing tests and their limitations
	3.2 Reproduction Challenges
	3.3 Black-box Scientific Testing
	3.4 Minimized Testing
	3.5 Prior Work and Community Recommendations
	3.6 Future Work
	3.7 Code and Data Release

	4 Conclusions
	References

